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MATHEMATICA!. MODELUNG AND NUMERICAL ANALYSIS
MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 29, n° 7, 1995, p. 779 à 817)

ADAPTIVE COUPLING OF BOUNDARY ELEMENTS AND FINITE
ELEMENTS (*)

by Carsten CARSTENSEN (*) and Ernst P. STEPHAN (2)

Communicated by F. BREZZI

Abstract. — In this note we present an h-adaptive procedure for the symmetrie coupling of
boundary element andfinite éléments meîhods for two-dimensional linear and nonlinear interface
problems. An a posteriori error estimate is derived which guarantees a given bound of the error
in the energy norm (up to a multiplicative constant). Following the approach of Eriksson &
Johnson this leads to a residual based adaptive procedure within the Galerkin discretization.
Numerical examples confirm that our procedure gives good meshes leading to efficient numerical
procedures.

Subject Classifications : AMS(MOS) 65 N 35, 65 R 20, 65 D 07, 45 L 10.

Key words : adaptive finite element methods, adaptive boundary element methods, a posteriori
estimâtes, symmetrie coupling.

Résumé. — Dans cette note, nous présentons un procédé adaptatif pour coupler des méthodes
d''éléments finis et d'éléments frontière pour des problèmes d'interface linéaires ou non linéaires.
Une estimation d'erreur a posteriori est obtenue. Des exemples numériques confirment que ce
procédé donne de bons maillages, menant à des méthodes numériques efficaces.

1. INTRODUCTION

Since the first mathematical justifications of the « mariage à la mode » in the
later seventies by Brezzi, Johnson, Nedelec, Bielak, MacCamy and others
further progress in the analysis of the coupiing of finite and boundary éléments
concerns Lipschitz boundaries, Systems of équations, and nonlinear problems
(approximated by finite éléments) cf. e.g. [7, 10, 11, 17, 18, 19, 29] and the
literature quoted therein.

(*) Manuscript received May 25, 1994. The work is partly supported by DFG research group
at the University of Hannover.

(*) Fachbreich Mathematik, Technische Hochschule Darmstadt, 64289 Darmstadt, Germany.
(2) Institut fur Angewandte Mathematik, UNI Hannover, Welfengarten 1, D-30167 Hannover,
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780 Carsten CARSTENSEN, Ernst P. STEPHAN

In order to get a good convergence behavior not only asymptotically but
also when we are dealing just with a few degrees of freedom, we need a good
triangulation in particular when singularities appear. If the nature and the
position of a singularity are known a priori, the mesh refinement can reflect
on this. Otherwise one requires the information we may achieve from an
analysis of the discrete solution and the given data. Whereas the main topics
in the adaptive feedback steering of mesh refinements, usually based on the
residuals, are mathematically understood for the finite element methods (we
refer only to the pioneering works [1,13] and to [20,28] for nonlinear
problems), comparably little is known for the boundary element method (cf.
e.g. [4, 23, 24, 30, 31]).

In this paper an adaptive /z-version of the Galerkin discretization for the
symmetrie coupling of the finite element method and the boundary element
method is presented for linear and nonlinear interface problems. It is based on
an a posteriori error estimate which gives a computable error estimate up to
a multiplicative constant. Then, following the approach of Eriksson and
Johnson elaborated for the finite element method we present an adaptive
feedback algorithm for the mesh refinement of the coupling procedure.

The paper is organized as foliows. For convenience of the reader we treat
the interface problem and its rewritten form, problem (P), in § 2. Here, we
are able to neglect the technical assumption of a Dirichlet boundary stated in
the literature [11, 18]. Then, its discretization, the problem (Ph), is considered
in § 3 where we conclude quasi-optimal convergence for the displacements in
the Hl -norm approximated by (continuous, piecewise linear) finite éléments
in the domain Q and for the tractions in the H~1/2 -norm approximated by
(discontinuous piecewise constant) boundary éléments on the interface
F-these norms may be considered as natural (« energy ») norms. Then, in § 4,
we state the précise assumptions and then prove an a posteriori error estimate.
In § 5 we present and discuss the adaptive algorithm which is illustrated
numerically in § 6.

We use the following notations. H\Q) dénotes the usual Sobolev spaces
[21] with the trace spaces Hs~ll2{F) (s e IR) for a bounded Lipschitz domain
Q with boundary F. || • li^*^) and | • \H^œ) dénote the norm and semi-norm
in Hk( œ) for œ ç Q and an integer k.

2. THE INTERFACE PROBLEM

This section présents the interface problem and rewrites it with boundary
intégral operators as an equivalent problem (P) which will be treated nu-
merically in the sequel.
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COUPLING OF BOUNDARY AND FTNITE ELEMENTS 781

Let Q Œ R2 be a bounded Lipschitz domain in the plane with boundary
F. The possibly nonlinear partial differential équation considered in Q, the
interior part of the problem, is described by the operator A defined by

A:L\Q-U2)

( •fi, +tfiol l * I l ' f i , *

\

The coefficients a» = aj7 e L°°(Q) may or may not depend on the argument

( G L (i2(.R ) and may vary in Q provided that A is uniformly bounded
\e2/
and monotone, i.e. there exists positive constants a0 and ax with

(e — 3) - [ s ~x „ ,
\a2X(x,3)31 +a12(x,

for all 3, e e IR and for a.e. x e Q.

S)S2-au(x, e) fij - a12(jc, e)e 2

(5) <52 - a21(x, e) £j - a12(x, 2) e2

Example 1 : As a typical example consider A= p • I where I is the
two-dimensional unit matrix. In the linear case p e L°°( £2 ) is a scalar function
with p0 ̂  ƒ?(*) ^ px for almost every x e 12 and some global constants
po,px>O:

(Ae) (x) -p{x) • e for a.e. x e Q .

In particular p = 1 leads to the Laplacian équation, cf. (1). In the nonlinear
case we consider p as a function of the argument t := |e| and may take e.g.

p( r ) = 2 + . which gives

(Ae) (x) =p( \e\ ) • e for a.e. xe Q

and 2 ^ p ( | e | ) ^ 3.

For a given right hand side ƒ e L2( O ), we consider the (possibly nonlinear)
partial differential équation

(1) - d i v ( A g r a d « ) = / in Q.

vol. 29, n° 7, 1995
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In the complement Qc := U2 \ Q we consider

(2) -4i> = 0 in Qc

with the radiation condition

(3) v(x) = ̂ log\x\+o(l) as | x | - > ~ .

where b e R is a constant (depending on v ). Both problems are coupled on
the interface F~Qr\Qc where we allow prescribed jumps, i.e. given
u0 e Hm(F) and t0 <= H~ m(F) we demand

(4) M = ü + M0> (A grad «) • n = | ^ + f0 on

where n = (n15n2) is the unit outward normal to F pointing from Q into

Qc. We remark that (Â grad u) • rc|r and | ^ are deflned in H~ 1 /2(T) v*'a
Green's formula [9, Lemma 3,1].

Then, the interface problem (IP) of this note reads as follows where any
derivative has to be interpreted in the distributional sense.

DEFINITION 1 : (Problem (IP)) Given (ƒ, «0, f0) G L2(Ü) X
Hm(F)xH~m(F) find («, i?) e ff^O) x ffjjtf) ^ r ^ m g (l)-(4).

Remark 1 : It should be emphasized that in related works (e.g. [10, 11, 18,
19]) the constant displacements (or rigid body motions in elasticity) in the
interface problem are prevented by an additional Dirichlet boundary inside of
the interior domain. It is shown in this paper that this technical restriction is
not necessary. Indeed, the radiation condition of the exterior problem yields
positive definiteness of corresponding boundary intégral operators (see
Lemma 4 below) which, together with the semi-definiteness of the partial
differential operators in the interior problem» avoid the constant displacements.

In order to give an equivalent formulation of problem (IP) we incorporate
some boundary intégral operators. Let H~S(F) be the dual of
HS(F) (0 ^ s ^ 1 ) (F is closed) where the duality { , ) between these
spaces extends the scalar product in L2(F).
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Given v e Hll\r) and 0 e H' m(r) we define for z e r

(Kv)(z):= - £ j \ ( C ) ^

This defines linear and bounded boundary intégral operators when mapping
between the following Sobolev-spaces [8]

V:Hs~m(F)-^Hs+m(F)

K:Hs+U2(F)->Hs+m(F)

where (since we allowed F to be a Lipschitz boundary) s e [— 1/2, 1/2].
Moreover, the single layer potential Vis symmetrie, the double layer potential
K has the dual K' and the hyper singular operator W is symmetrie. V and W
are strongly elliptic in the sense that they satisfy a Gârding inequality (in the
above spaces with 5 = 0) [8]. Additionally, we have definiteness, where

HS
O(F) := {t?e H\F) : <1, v) = 0} = HS(F)/U

with its dual H~S(F), 0 ^ s ^ 1.

LEMMA 1 : [16, 22, 25, 26] Provided the capacity of F is less than 1

V:H~m(F) ->Hm(F)

is linear, bounded, symmetrie and positive definite. •

Remark 2 : For a définition of cap ( F), the capacity of ƒ", we refer to [25]
and only mention hère that, e.g., if Q lies in a bail with radius less than 1, then
cap (F) < 1. Thus, cap(F)< 1 can always be achieved by scaling [16,
25, 26].

vol. 29, n° 7, 1995



784 Carsten CARSTENSEN, Ernst P. STEPHAN

The relation between the single layer potential and the hypersingular
intégral operator is given by W= - -r- V— where — dénotes the derivative
with respect to the arc-length (at least in the distributional sense).

LEMMA 2 : ([22]) < Wv9 w) = ( ^ J p f j ) ƒ<"* any v, w e Hm(F). D
From Lemmas 1 and 2 we get directly the following known result.

LEMMA 3 : Provided the capacity of F is less than 1

W:H~m(F) ~^H

is lineary bounded, symmetrie and positive semi-definite. •
We are now in the position to reformulate the interface problem (IP).

DEFINITION 2 : (Problem (P)) Given (ƒ, M0, f0) e L2(Q) x
Hm( F) x H~ 1/2( F) find ( w, <p ) e Hl( Q ) x FT m( F) satisfying

(5) f (Agmdu) < gradt1dQ+};(Wu\r+(K'-l)<pfïi\r) =
JQ Z

= J ƒ-ridQ + (to + iwuO9t]\r) (neHl(Q))

(6) <^, V0 + (1 - K)u\r) = (y/,(\ ~K)u0) (y e H~ 1 / Z (F) ) .

The problems (IP) and (P) are equivalent ; compare also [10, 11, 18, 19] for
related results. The proof is given hère for convenient reading.

THEOREM 1 : The problems (IP) and (P) are equivalent in the following
sense. If (u,v) e H\Q) x Hl

lQC(Qc) is a solution of (IP) then
(w, (p) e H (Q) x H~ (F) solves (P) with <p := -~— . If conversely,
( w, (j) ) is a solution of problem (P) then ( u, v) solves (IP) with
v e HIQC(QC) defined by

(7)
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Proof: Assume that (w, v) solves (IP). Then, from [9, Lemma 3.5], there

holds the représentation formula (7) with <p := \-~ . Letting z —» F and by

using the jump conditions, one obtains that the Cauchy data ( v\n \^—

satisfy

(8)

compare [9, Theorem 3.11] (note that a = 0 hère, cf. (3)). Using (4) in the
first component of (8) gives (6). Multiplying of (1) with a test function
rj e Hl(Q), intégration over Q, using Green's formula, and incorporating (4)
we get

J (Agradu)-gradi/dG =

From the second component in (8) we have

|^lr+ ^ >l\r)

\Wv\r+(K'-l) = - 2 I—I
\dn\r'

The last two identities (with <p = | ^ | J and (4) yield (5).
Conversely, let ( u, 0 ) solve (P) and define v by (7). Then, according to [9],

v satisfies (2), (3) and hence (8), and the jump relations yield

(9)
u\r-uQ\

The first component of (9) together with (6) yields u\r-v\r+uQ. From
the second identity in (9) we then have

dv\
dn\

Using this in (5) gives, by Green's formula again,

for all fj e H\Q). Choosing rj e Hl
0(Q), the completion of C^(Q) in the

H1 -norm, we conclude the weak form of (1). Hence using (1) we get (4). •

vol. 29, n° 7, 1995
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Remark 3 : We note that

(10) M = 0 and K\ = - 1

with 1 being the constant function with the value one. The identities (10)

follow from H\ ) = ( j (cf. [9, Lemma 3.5]).

Define the continuous mapping B : (Hl(Q)xH~ 1 /2(T))2 -> IR and the
linear form L : HX{Q) X H~ 1/2(T) -> R by

\{Wu\r+{K'-\)4>,v\r)

\ ):= \ fv

for any (u,<p), (v, y/) e H\Ï2) x H~ m(r).

COROLLARY 1: Problem (P) is equivalent to (u, <p) e H\Ü) X

(11)

Le. for any ( v, y/ ) e Hl( Q ) x H~ l/z( T) rA«« holds

<(;>(;))•<;>

Proof: Note that Z?( f J, ( J J = L ( J is equivalent to (5) and
/ / S. /" \ \ s* ^ \ * / \ / / \ /

/ / M \ / 0 \ \ /O \ .
Bl I U I | = Ll J is equivalent i: to (6). D

We need the following resuit (cf. [3] for related properties in three dimen-
sional elasticity).
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LEMMA 4 : The operator S := W+ ( 1 - K') V \ 1 - K) :
H (F) —> H~ (F) is linear, bounded, symmetrie and positive definite.

Proof : Due to the above mentioned properties of W, K, V, K\ the operator
S is linear, bounded, symmetrie, positive semidefinite and a Fredholm operator
of index zero. Thus, it suffices to prove that the kernel ker S is trivial in order
to conclude that S is positive definite. Let u e ker S, then 0 = {Su, u). On the
other hand (Su, u) 5= (Wu9 u) 5= 0, so that (Wu, w) = 0. By Lemma 1, u
is constant. Therefore 0 = (V^ l(l - K) u, (\ - K) u). By Lemma 1,
V l is positive definite so that ( 1 - K) u = 0. Using (10), this implies that
the constant u is equal to zero. Thus, ker S = {O}. •

In the case that A is a linear mapping, the following result proves that the
bilinear form B satisfies the Babuska-Brezzi condition.

THEOREM 2 : There exists a constant ƒ? > 0 such that for all
(w, 0 ) , (v, y/) e H\Ü) xH~m(F) we have

( 1 2 )

<(;>(:::))-<(;>(:::))

with

2r/:= <p + \r\l-K)u\n2ö:= y/ + V~ \ 1 - K) v\r e H~m(F),

Proof: Some calculations show

JQ
= ( (A g r a d u ) - ( A g r a d v ) ) • g r a d (u-v) dQ

J

vol. 29, n° 7, 1995
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Due to Lemmas 1, 3 and 4 and since A is uniformly monotone we have that
the right hand side is bounded below by

c c
ao\\gmd(u-v)\\2

L2(ü) + j W\(u-v)\r\\
2

Hu2in + j || 0 - y/\\2
H- ,« ( r )

where cv c2 > 0 result from the positive definiteness of V and 5. Note that

IIIMIII2= | | g r a d n | | l 3 ( o ) + | |M| r | | ^ i« ( n (uz H\Q))

defines a norm III • III which is equivalent to the standard norm in HX(Q). Thus
there exists a constant c3 > 0 with lllwlll ^ c3 \\ u\\H\^Qy Altogether we have
proved that

u - v

with

r 2 2 r c i i i

c4 := min j - j , c3 • min S a, -^ > > > 0 .

On the other hand, by définition of rj, 3, we have

I k - * 5 I I / / - 1 / 2 (o ^ \ i \\<t>-V\\H-™{n + c5(l + c e ) IIM

where c5 > 0 and c6 > 0 are the bounds of V~ l
 : Hm(F) -> / T i / 2(T) and

K:Hm(F) -^Hm(F), respectively, and c7 = max {l, c5(l + c6)}.
Combining the last two estimâtes we obtain (12) with

jff := y *min{l, l/c7}. D
In case that A is linear, Theorems 1 and 2 and the Lax-Milgram lemma gives

existence and uniqueness of solutions of the interface problem (IP) as well as
of the rewritten problem (P).

COROLLARY 2 : The problem (IP) as well as the problem (P) have unique
solutions.
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Proof : Note that (6) is equivalent to

(13) < p ~ - \ r \ \ \ r 0

which may be used to eliminate <p in (5). This leads to the problem to find
we H\Q) with

(14) A'(u)(n):
Ja

Here, Z/is some bounded linear functional. The operator A'on the left hand
side maps Hl(Q) into its dual, is continuous, bounded, uniformly monotone
(cf. the arguments of the proof of Theorem 2). From the main theorem on
monotone operators [32] we obtain that A'is bijective. This yields the exist-
ence of u satisfying (14). Letting <p as in (13) we have that («, 0 ) solves
Problem (P). Uniqueness of the solution may be concluded from the converse
calculation and the bijectivity of A'or, alternatively, from Theorem 2. •

3. THE DISCRETE PROBLEM ( Ph )

In this section we treat the discretization of problem (P) in the form (11).

Let (Hh x H~ 1/2 : h e I) be a family of finite dimensional subspaces of
H (Q) x H (F). Then, the coupling of finite éléments and boundary
éléments consists in the following Galerkin procedure.

DÉFINITION 3 : (Problem (Ph)) For h e l find (uh, <ph) e HhxH~h
 m

such that

for all (vh,¥h)eHhxH-h
m.

In order to prove a discret Babuska-Brezzi condition if A is linear, we need
some notations and a discrete analog of Lemma 4.

ASSUMPTION 1 : For any h e l let Hhx H~h
m ç Hl(Q) X H" m(F)

where I Œ ( 0 , 1 ) with 0 G ƒ. 1 e H~~h
 m for any h e I where 1 dénotes the

constant function with value 1.

vol. 29, n° 7, 1995
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Let ih\ Hh^H\Q) and j h : H~h
 m ^ H~ m(F) dénote the canonical injec-

tions with their duals i*h : HX(Q)* -^ H*h and fh : Hm(F) -> (fTh
 1/2)* being

projections. Let y : Hl(Q) —» HV2(F) dénote the trace operator, yu = u\rfor
all u e Hl(Q), with the dual y*.

Th en, define

(16) Vh := fh Vj„ Kh := j \ Kyih, Wh := Ch y Wyih, K'h := Ch y K* j h

and, since Vh is positive definite as well,

(17) Sh:= Wh+dl-K'h)V-h\lh-Kh):Hh^Hl

with lh := j ^ y/A and its dual 1̂ .

LEMMA 5 : There exist constants cQ > 0 and h0 > 0 ^wc/i r/za£ /or
/i G I with h < h0 we have

(Shuh,uh) ^ c0- \\uh\r\\
2

Hia(n foralluhe Hh,

Proof : The proof is quite analog to that of [3, Lemma 8] so that we give
only a sketch. Assume that the conclusion is false. Then one can construct a
séquence of functions ( uh )n = x 2 3 in H ( Q ) with

"*„ e Hhn, || uhii\r\\H,nir) = 1, (5^ « v uh) « ^ (» = 1, 2, 3, . . . )

and lim ftn = 0. Due to the Banach-Alaoglu theorem we may assume that

(uh | r ) r t = 1 2 3 converges towards some w G HU2(F) weakly in Hl/2(F) (a
subsequence at least).

Then, by définition of Sh, we firstly conclude that ( Wuh | n uh \ r) tends
towards zero so that (by weak convexity of (W • , - )) (Ww,w) = 0, i.e.
w\r is constant by Lemma 1. A décomposition of uhn\r

=v
n
 + wn w ^

vn e Hl
0
/2(r) and wn G IR shows additionally that (u„)«= i 2 3 tenc^s towards

zero strongly in Hl/2(F) so that we have also strong convergence of
(uhn\r\=i 2 3 towards the constant w G IR in HV2(F).

On the other hand we have 0 = lim {Vzn, zn)

with zn := \TK
l(cf>n ) e ^ m c H-"' r2rr),

0„ == k yn ̂  (^,, ' /2)*. y. := «„„ - ^ e H

Thus, 0 = lim II z„ || H~ 1/2, r^ whence 0 = lim II óti II, „- m,*.

Because of OJ r ) r t = 1 > 2 ,3 , . . . -» w we get (?„)„= i,2,3,... ~> 2 w strongly in
Hm(F) (by (10) a n d w e ' ü ) . Hence,

M2 AN Modélisation mathématique et Analyse numérique
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i.e. w = 0. This contradicts II wil „m,r, = iim II u, I Jl „m,r, = 1.

791

D

THEOREM 3 : There exist constants /?0 > 0 and h0 > 0 SMC/I tóar /or an^
h e ƒ vwï/i h< h0 we have that for any (uh, <ph), ( vh, y/h) e Hhx H~ xa

Hl(Q)xH~ l/2(

with

Proof: The proof is quite analog to that of Theorem 2 dealing with the
discrete operators (16) and (17). All calculations in the proof of Theorem 2 can
be repeated with obvious modifications. Due to Lemma 5 the constants are
independent of h as well so that /?0 does not depend on h < h0, h0 chosen in
Lemma 5. Hence we may omit the details. •

COROLLARY 3 : There exist constants c0 > 0 and h0 > 0 such that for any
hel with h< h0 the problem (Ph) has a unique solution (uh, <ph) and, if
(M, 0 ) dénotes the solution of (P) , there holds

H\Q)xH~

inf

Proof : The existence and uniqueness of the discrete solutions follows as in
the proof of Corollary 2. Let (Uh,<Ph)e HhxH~U2 be the orthogonal

projections onto
HX(Q) x H~ U2(F). From

' that

h , < P h ) e H x H
of the solution (w, <p) of Problem (P) in

Theorem 3 we conclude with appropriate

Hl(Q)xH~ U2(r)

^ B

vol. 29, n° 7, 1995
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Using the Galerkin conditions and the Lipschitz continuity of B, with related
constant L (which follows since A is Lipschitz continuous), we get that the
right hand side is bounded by

Hl(Q)xH~ in(

Uh-u

Hx{Q)xH~ m(r)

Dividing the hole estimate proves
/2(D

Uh-uh
n n

Uh-u

'\n

From this, the triangle inequality yields the assertion.m( D

Remark 4: If 1 € Hh then <p~~(fike FTo
m(r), For a proof consider

( ( > ( 0 >
4. A POSTERIORI ERROR ESTIMATE

In this section we state the assumptions and the result of an a posteriori
error estimate, proved in the following section, which is the base of our
adaptive feedback procedure. For simplicity, we restrict ourselves to linear
triangles as finite éléments in Hh and piecewise constants H~h

 1/2.

ASSUMPTION 2 : Let Q be a two-dimensional domain with polygonal bound-
ary F on which we consider a family 2T:= (2Tft:/ie ƒ ) of décomposition
gT = {Av ..., AN) of Q in closed triangles Âv ..., AN such that

Q — yj A. and two different triangles are disjoint or have a side in common
or have a vertex in common. Let £f h dénote the sides, Le.

£f h — {dTi o dTj : i ̂  j with dT( o èT. is a common side] ,

dT being the boundary of Tj. Let

*§, = \E : E e Sf u with E c F]

be the set of « boundary sides » and let

be the set of « interior sides ».
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We assume that all the angels of s ome A G ?Fh G 2T are ^ O for some fixed
0 > 0 which does not depend on A or 2Tft.

Then, define

Hh:= {rjhG C{Q):rjh\àG Px for any A G 3^}

H~h
m:= {nheL~(r):rih\EeP0foranyEe <ëh)

where Pj dénotes the polynomials with degree ^ j .
For fixed ?Fh let h be the piecewise constant function defined such that the

constants h\A and h|E equal the element sizes diam (A) of A G ?Fh and
diam(E) of E G S?h.

We assume that the coefficients ar of A are piecewise smooth such that
A(grad vh) e Cl(A) for any A e 3 ^ e 2T and any trial function vh e Hh.
Finally, let fe L2(Q), u0 e Hl(T), and t0 G L2( F).

Let n be the exterior normal on F and on any element boundary dA, let n
have a fixed orientation so that [(A grad uh) • n] \E G L2(E) dénotes thejump
of the discrete tractions (A grad uh) • n over the side E G £f\. Define

R2~ d i a m ( ^ ) 2 • | / + div (A grad uh)\
2dQ

là

R3:= I Vh • (t0 - (A grad uh) - n + \w(u0-uh\r)-\(K'-

Under the above assumptions and notations there holds the following a
posteriori estimate where ( «, 0 ) and ( wA, <ph ) solve problem ( P ) and
(P ; i), respectively.

THEOREM 4 : There exists some constant c > 0 SMC/I that for any h G I with
h < hQ (hQ from Lemma 5) we have

Note that /?,, ..., /?4 can be computed (at least numerically) as far as the
solution (uh, <ph) of problem (Ph) is known.
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The proof of Theorem 4 is divided into several lemmas. Throughout this
section we adopt the notations and assumptions of Theorem 4 and let

e:=u-uh, e:=<p~<ph, S := \ (e + V~ \ 1 - K) e\r) .

We start with a simple inequality and estimate the appearing terms in the rest
of this section.

LEMMA 6 : We have

P' O 0) \ + r2 + r3 + r4

where, for any (eh,ôh) e HhxHh
 I/2,

(ƒ + div (A grad uh))(e-eh)dQ

T — —
*2 '

[( A grad uh) n]( e-eh)\E ds

T3:= (t0- (A gradM,) • n +\w(u0- uh\r) -\{K'- 1) <j)h, (e - eh)\r)

T4:= ±(S-ôh,a-K)(u0-uh\r)-V<ph).

Proof: Due to the arguments of the proof of Theorem 2 we have

O 10)1 2 ( D
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using (15) and (11). By définition of B and L, the last expression is equal to

£ (f(e-eh)-A grad uh grad (e - eh)) dQ
Q

±(ô-Sh,(l-K)(u0-uh\r)-V<fih).

Using Green's formula on any element A G <3'h we obtain

JQ
- A grad uh grad ( e - eh ) dQ

= V I dn
, va

div (A grad uh)(e - eh) dQ
4 e l

JE
n](e-eh)\Eds

h)-n,(e-eh)\r).

Combining the last two identities proves the lemma. •
We note that under the Assumption 2 the results of [6] apply here and give

the following lemmas where c > 0 is a generic constant and dépends only on
ST but not on h, A, N, u, etc.

LEMMA 7 : There exists a family of interpolation operators
{Ih: Hl(Q) —» Hh: h e / ) and a constant c > 0 such that the following
holds. For any A G 2TA e 2T and integers K q with 0 ^ k ^ q ^ 2
w/f/i Af := u {zi7 G ?fh : ̂ ' n zi ̂  0 }, f̂ e union of all neighbor éléments of
A% and for all u e Hq(N),

Proof : The proof follows from the analysis in [6] ; compare e.g. [6,
page 82, line 13] in different notations.

Remark 5 : The operator Ih is obtained in [6] locally as follows. For any knot
Xj let Nj'.= u {A : x. e A e STj be the support of some trial function (or
« hat function ») rj. in Hh related to xy Let c- be the value of the
L2(A^)-projection of u\N, u e Hl(Q), at xy Then, Ih u is the sum of all such

vol. 29, n° 7, 1995



796 Carsten CARSTENSEN, Ernst P. STEPHAN

Remark 6 : Due to the angle condition in Assumption 2 we have that the
number of neighbor éléments is bounder, i.e.

card {A* e °Fh : A'n A * 0 } ^ 6 n/0 .

Moreover, the quotient of the size of two neighboring éléments is bounded, i.e.
there exists c 2* 1 (depending only on 2T) with

lic ^ diam ( A )/diam ( / ) ^ c i f z f o / ^ 0, A, A' e ?Fh e 2T .

In particular, if E is one side of Â e ST̂  e 3",
l/c • diam ( J ) ^ diam (£") ^ c • diam ( J ).

LEMMA 8 : Choosing eh := Ihe we have Tx ^ c • l^l//^^) • /?p

\e-eh\\û{à)

c 2 ) d i a m ( J ) - | | / + div (A grad MA)||L2(2f) • \e\Hi(N),

using Lemma 7 (/c = 0, ^ = 1 ) with 7V̂  denoting the union of all neighbors
of A. Using Cauchy's inequality and Remark 6, this gives

T ^ c - R • V6 n/0 - \e\ !

which proves the lemma. O
We recall the following weighted trace inequality which can be proved

using the trace inequality and équivalence of norms on the référence triangle
and then by transformation on the éléments.

L E M M A 9 ([6, Lemma 4]) : There exists a constant c>Q such that for any
E, E is one side of A e &'h e. 9", and any u e Hx(é) there holds

diam ( 4 ) i | W i | ^ ( ^ ^ c - ( | | W | | ^ ( ^ () \\^)

LEMMA 10: Choosing eh:= Ihe we have T2 ^ c • \e\Hi^a) Rr
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Proof: Combining Lemma 9 (with e — Ih e replacing u) and Lemma 7
(with e replacing u, k = 0, q = 1 and k = 1 = q ) we obtain for any
E € Sf°h, E ç J, J e 3 \ € 3",

Ik - / ^ || 22(£) ^ c( 1/diam ( A ) || « - VII l>w

with NA denoting the union of all neighbors of A. Therefore,

S h)n]\\^E) • \\e-Ihe\\L2iE)

Vdiam (E) || [(A grad w,) n] \\L2{E) • 1^1^^) .

Using Cauchy's inequality and Remark 6 again, this gives

T2<cy/l2n/e-R2' \e\Hi{Q)

which proves the lemma. D

LEMMA 11 : Choosing eh := Ihe we have T3 ̂  c - \e\H^Q^ • R3.

Proof: Note that toe L2(r), W(uQy - uh\r) e L2(T) since
uo-uh\re H\r)9 (K'-l)4>he L\r) since (ph<= L2(T), and
(A grad uh) n\rG L2(F) since grad uh is piecewise constant a- is piecewise
smooth. Thus, we may repeat the arguments of the proof of Lemma 10 in
connection with <@h. This proves the lemma. D

LEMMA 12: For y/ := ( 1 - K)(u0 - uh\r) - V<ph we have

Proof: Note that ^ e Hl
0(F) has the property that (^»?;A) = 0 for any

piecewise constant function t}h e H^ 1/2. Then, the assertion follows from [4,
Proposition 1] so that we only give a brief sketch of the proof here.

Let Fv ..., FN dénote the boundary éléments of the considered triangulation,
"iv f

F = v Fy Since y/ ds = 0 we have at least one zero y^ of the continuous
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function y/ in the interior of Fj9 j = 1, ..., N. Let y/j e Hm(F) be equal to
y/ on the part of F between y. and yj+ j and equal to 0 on the remaining part
of F. Here we set y0 = yN. Then, the triangle inequality gives

N-I

Since supp y/, çr F.KJ FJ+l and by interpolation [2] we obtain

(19) || WjWn^n < » rçll*V> • II ̂ lll?(r) ^

Since ^ has at least one zero j . in F'., the main theorem of calculus shows

Here, /i. > 0 is the length of the boundary element F} and we note that
hjlhj+v hj+\ fhj ^ c ^ u e t o ^ e a ngl e condition (cf. Remark 6). Using this
leads to

and (19) gives

According to (18), this proves the assertion. D

Proof of Theorem 4 : Use Lemmas 8, 10, 11 and 12 to estimate Tv T2,
and T4 (with Ôh = 0 ) in Lemma 6, respectively. Then, division by
e

proves the theorem. D

5. ADAPTIVE FEEDBACK PROCEDURE

For a given triangulation ?Th~{dv ..., AN} of Q and the related partition
{Fv ..., FM} = <ëh of the boundary 7" we can consider one element
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A. e ?Fh and compute its contributions a., bk to the right hand side of the a
posteriori error estimate in Theorem 4

a] := diam ( A. f • \f + div (A grad «A ) |2 dQ

+ 2 diam(£) • |
JE

+ diam ( F n d Aj) • t0- (A grad uh) • n -h ^W(uQ - uh\ r)

:= diam(rk)
m f{( 1 - K)(uö - uh\r) -

The computational details a for a., i?fc re given in the next section. If we neglect
the constant c > 0 in Theorem 4, the error in the energy norm is bounded by

(20)

This a posteriori error estimate is almost useless for absolute error control
unless the constant c > 0 ( o r an upper bound at least) is known. But it can
be used to compare the contributions to the local error.

Note that the different nature of the coefficients a, and bk is, in gênerai,
caused by two different discretizations : a. is related to a finite element, bk is
related to a boundary element. Because of a simple storage organization and
a simple computation of the stiffness matrices, it is convenient to use only one
mesh, i.e. to take the boundary element discretization induced by the finite
element triangulation. Therefore, we consider this case in the sequel. For any
element A. let

where the sum may be zero or consists of one or two summands.
The meshes in our numerical examples are steered by the following

algorithm where 0 ^ 0 ^ 1 is a global parameter.
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Algorithm (A) Given some coarse e.g. uniform mesh refine it successively
by halving some of the éléments due to the following rule. For any triangu-
lation define av ..., aN as above and divide some element Fj by halving the
large s t side if

c, ^ 0 • max ch.

In a subséquent step all hang ing nodes are avoided by further refinment in
order to obtain a regular mesh.

Remark 7 : (i) Note that in Algorithm (A) 0 = 0 gives a uniform trian-
gulation and with increasing 0 the number of refined éléments in the present
step decreases.

(ii) By observing (20) we have some error control which, in some sense,
yields a reliable algorithm. In particular, the relative improvement of (20) may
be used as a reasonable termination criterion.

(iii) If in some step of Algorithm (A), (20) does not become smaller then
we may add some uniform refinement steps (0 = 0). It can be proved that
in this case (20) decreases and tends towards zero. If we allow this modifi-
cation we get convergence of the adaptive algorithm.

6. NUMERICAL EXPERIMENTS

We consider four numerical examples for the solution of linear and non-
linear interface problems related to Example 1, i.e. A=pl.

First, we describe the numerical implementation of the Algorithm (A).

6.1. Implementation of the Galerkin procedure

We treat the case p(t) = 1 and p(t) = 2+ « yielding a linear and
nonlinear operator A = p • 7, respectively, as expfained in Example 1. In the
sequel we explain the computation of the form in (15) where it is sufflcient to
describe the approximation of

and

used in the numerical examples. Here n-, r\k e Hx
h are « hat functions » and

y/m, y/n G H~ 1/2 are constant on one boundary element Fm, Fn and vanish on
the remaining part of F partitioned by Fv .„, FM.
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Note that the displacements are piecewise linear such that grad uh is
piecewise constant. Thus, for any triangle A G 9^, the weight p is constant on
A. Therefore,

v A

p - (grad rjj - grad rjk) dQ = area (A ) • p • (grad rjj • grad rjk)\A

can be determined explicitly. The intégrais

Ik(x):= log \x-y\ ds and Jk(x) := ~-\og\x-y\ds
Jrk irk

any

can be calculated analytically [15]. By using the functions Ik and Jk, the outer
intégration of { Vy/k, y/m) and {{Kf' — 1 ) y/k, rjn\r), respectively, is performed
by a 32 point Gaussian quadrature rule on any boundary element. Since the
derivative of r]\r with respect to the arc-length is piecewise constant, the
stiffness matrix Wh of the hypersingular intégral operator can be computed
using the entries of the stiffness matrix of the single layer potential due to
Lemma 2.

In order to approximate the right hand side for given functions

ƒ G L 2 (T ) , u0 e Hm(F), and t0 G H~ m(F) we compute ƒ • Y}. dQ via a
v A

quadrature rule with order 19 and 73 knots on any triangle A as presented in
[12].

The intégrais (y/k, ( 1 - K) uQ) = Jk(x) • uQ(x) dsx, t0 > rjkds and
Jr J r

{Wu0, rj\r) = UQ( Vr/j) ds are computed using a 32 point Gaussian quadra-
J r

ture formula on any boundary element and the values of Jk, w0, f0, u'o and
(Vr/j). Since rf. is piecewise constant, the values of (Vrf'j) are may be
calculated with Ik.

Altogether the above descriptions détermine the (approximate) computation
of the mappings B and L when applied to discrete functions. In the linear case
{p = 1 is a constant weight and A = I) this yields a linear System of
équations which is solved directly via Gaussian élimination. In the nonlinear
case we get a nonlinear system of équations which is solved via a Newton-
Raphson method until the termination error is of the magnitude of the machine
precession. Then, the second derivatives of the interior problem are calculated
as above ; we refer e.g. to [5] for more details.

6.2. Calculation of norms and residuals

In the examples below the error of the displacements u and hence their
gradient grad M and normal derivative <p=— (cf. Theorem 1) are known
explicitly.
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Hence the L2(Q) norm of u - uh and grad ( w - uh) can be calculated via
the 73 knot quadrature rule [12] on any triangle. This yields an approximation
of the error u — uh in the Hl(Q)-norm.

The H~ 1/2( Jr)-norm is equivalent to the « energy norm »

which is used in the sequeL For x e F- and y/ = <p — (j)h we compute

M «M

(21) i

by numericai quadrature rules. For j ^ k we apply a 32 point Gaussian
quadrature formula. For j = k we divide and transform the intégral such that
the « singular point » x lies at the end of the unit interval. Then, we apply a
8 point Gaussian quadrature rule with logarithmic weights [27]. This explains
the approximation of the « energy norm » of 0 — (fih we use.

The calculation of the intégrais for the residuals Rv ...,R4 over the flnite
element A and the boundary element Fk is performed as follows : the intégral

L \f + div (p grad uh ) |
2 dû

is approximated via the above mentioned 73 knot quadrature rule [12]. Hère,
f(x) is given explicitly and p grad uh is constant on À (even in the nonlinear
case), whence the term div (p grad uh ) is negleeted. The jumps on the interior
element boundaries in R2 are piecewise constant and their L -norm is deter-
mined explicitly. The L (Fk )-norm of

is approximated by a 32 point Gaussian quadrature formula. Hère, to(x) is
known, (A grad uh) • n is constant on Fk and determined explicitly, while the
term ((K'- 1) <ph)(x) is computed by using the intégrais Jm(x) above.
With vh := uh\r the remaining term ^( M o~ w J r )*
(x) = - ( -r- V(uQ — vh)')(x) is computed with replacing - by a
symmetrie différence quotient with stepsize 10" 5. This requires the compu-
tation of V(u0 - vhY(y)- Hère, Vv'h(y ) can be treated by using the intégrais
ltn(y) as above while Vuf

0(y) is calculated as in (21) where u0 is differentiated
analytically.

For any x e F we compute the first and third summand of

:= (u0- uh\r)(x) - (K(uQ- uh\r))(x) - (Vç>A)(y)
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explicitly and by using Ik(y), respectively. The term (Krjj\r)(x) is calculated
analytically giving (Kuh\r)(x) while the intégral (KuQ\r)(x) is approxi-
mated by a 32 point G au s si an quadrature rule on any boundary element Th en,
II V'IIL2(/*) *S aPP r o x i r n a ted by a 32 point Gaussian quadrature rule on Fk

where the value y/\x.t) is determined for any Gaussian knot xi as follows. For
1 < / < 32, the values of y/^x^^), *//(*,) and y/(xj+l) are interpolated by
a second order polynomial p. and its derivative ƒ?;(*,-) replaces y/'(x.). For
/ = 1 we take y/(x}), y/(x2) and y/(x3) and for i = 32 ip(x3Q), y/(x3l) and
y/(xn) to détermine px and p32.

6.3. Numerical example on the L-shape

The domain under considération Û is the L-shape région with vertices
(0,0), (1,0), (1,1), ( - 1 , 1 ) , ( - 1 , - 1 ) , ( 0 , - 1 ) . The numerical
calculations are carried out as explained in the previous subsections for known
displacement fields

(22) M = r M . s i n ( ! « ) and v ^ l o g ( (X + \)2 + (y - {

in polar and Cartesian coordinates (r, a ) and (x,y) respectively. Even if the
right hand side is smooth, the solution has a typical corner singularity such that
the convergence rate of the /î-verion with a uniform mesh leads not to the
optimal convergence rate.

In the flrst example we take a linear problem with the constant weight
p = 1 and ƒ = 0. The jumps of u0 and t0 are given by (4). Using these data
ƒ, «0, t0 the Algorithm (A) générâtes meshes as shown in figure 1 for
0 = 0 A As it is expected for a reasonable improvement, the meshes
automatically refine towards the origin where we have the singularity of the
solution. In view of the well-known improvement of the Galerkin procedure
by using e.g. graded meshes if corner singularises appear, this is quite
reasonable.

In Table 1 we have the numerical results for the uniform mesh ( 0 = 0 ) and
for the meshes generated by Algorithm (A) for thêta = 6= 0.2, 0.4, 0.6, 0.8
and 1.0. Hère, we show only the number of degrees of freedom TV for the finite
element method (chosen by the algorithm ; a new row corresponds to a new
refinement step in the adaptive algorithm), and the corresponding relative error
of the displacements eN in the //1(^2)-norm.

In order to illustrate the estimate of Theorem 3 let yN be the error in energy
norm divided by (20). Hence, by Theorem 3, y^ is bounded which can be
observed from Table 1. Moreover, yN is bounded below which indicates
efficiency of the estimate and hence of the adaptive scheme.

From Table 1 we compare the degrees of freedom needed to make the
relative error smaller than 0.05 : the values for 0 = 0 , 0.2, 0.4, 0.6 and 0.8
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Figure 1. — Adapted meshes for the linear transmission problem.
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Figure 1 (suite).
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Figure 1 (suite).
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Table 1. — Numerical results for the linear transmission problem.

Uniform mesh

N

8

11

21

33

65

113

225

0.20434

0.18587

0.14485

0.12564

0.09563

0.08027

0.06230

(A) for 0 =

N

8

11

19

27

41

52

66

75

102

134

156

eN

0,20434

0.18587

0.14621

0.12844

0.10297

0.09020

0.07554

0.06900

0.05947

0.05128

0.04646

JN

.152

.173

.164

.185

.149

.159

.148

0.2

IN

.152

.173

.163

.182

.155

.166

.162

.172

.174

.176

.175

(A) for 0 =

N

8

11

15

21

26

31

40

48

55

71

80

101

134

157

201

226

eN

0.20434

0.18587

0.17074

0.14520

0.12197

0.11007

0.09420

0.08544

0.07824

0.06837

0.06260

0.05633

0.04959

0.04510

0.03904

0.03656

:0.4

IN

.152

.173

.176

.182

.188

.201

.168

,177

.180

.182

.184

.187

.187

.184

.183

.184

(A) for 0 =

N

8

10

13

17

21

26

33

38

50

55

69

78

97

108

149

164

211

239

eN

0.20434

0.20467

0.17286

0.14848

0.13954

0.11594

0.10579

0.09402

0.08328

0.07744

0.06742

0.06448

0.05639

0.05448

0.04533

0.04367

0.03783

0.03562

0.6

JN

.152

.173

.176

.185

.193

.196

.209

.214

.181

.181

.183

.185

.189

.189

.189

.185

.184

.185

201 0.04004 .177

235 0.03604 .177
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Table 1 (suüe).

(A) for 9 =

N

8

10

12

17

19

24

28

37

40

51

57

62

80

87

108

133

166

199

238

0.20434

0,20467

0.19035

0.14848

0.14027

0.11730

0.11187

0.09378

0.09206

0,08049

0.07650

0.07401

0.06404

0.06071

0.05430

0.04934

0.04366

0.03927

0.03589

-0.8

IN

.152

.173

.178

.185

.192

.195

.202

.209

.218

,175

.184

.184

.187

.186

.189

.186

.187

.188

.185

N

8

9

10

11

12

15

17

18

19

22

24

25

26

27

28

31

33

34

35

36

37

38

39

40

43

(A) for 0

eN

0.20434

0.20451

0.20467

0.19777

0.19035

016267

0.14848

0.14462

0.14027

0.12391

0.11730

0,11651

0.11459

0.11246

0.11187

0.10368

0.10067

0.09884

0.09698

0.09545

0.09378

0.09285

0.09181

0.09206

0.08820

= 1.0

7N

.152

.162

.173

.173

.178

.181

.185

.187

.192

.191

.195

.195

197

.201

.202

.201

.204

.202

.201

.205

.209

,211

,213

.218

.219

45

46

47

48

49

50

51

52

53

54

55

58

59

60

62

63

64

65

66

67

68

69

70

71

72

0.08681

0.08391

0.08322

0.08305

0.08207

0,08108

0.08065

0.08018

0,07867

0.07712

0.07650

0.07467

0.07467

0.07467

0,07401

0.07324

0.07298

0.07267

0.07187

0.07161

0.07129

0.07110

0.07088

0.07055

0.06855

.221

.202

.192

.186

.188

.190

.191

.192

.193

.195

.179

.178

,181

.183

.184

.184

.185

.183

.183

.184

.182

.182

.183

.184

,184
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are > 255, 156, 134, 149 and 133. This shows that, in this example, the adapted
meshes are better than a uniform triangulation. In order to détermine the most
efficient procedure we have to take into account the number of meshes created
for this improvement. The number of corresponding required meshes (and
hence the number of Galerkin équations to be solved) are > 7, 11» 13, 15 and
16. Since the values are more or less comparable, it is not clear which of the
parameter leads to the most efficiënt procedure (the answer dépends on the
précise implementation and the machine we use). Conversely, we conclude
that Algorithm (A) is robust concerning the parameter 6.

From Table 1 we may compute expérimental convergence rates. For the
uniform mesh we get experimentally a convergence of the form O(ha) with
a mesh size h = O(N~ m) and a ~ 2/3 as expected. In order to compress
the data but compare the convergence rates, we present our numerical ex-
amples below in the form of figures where an entry corresponds to a symbol
(like A , V, O etc.) depending on the parameter theta = 6. The entries
belonging to the same parameter are connected by a straight line. The
jt-coordinate of a symbol is log (N) where N is the number of degrees of
freedom while the y-coordinate of the symbol is l o g ( ^ ) . However, the
numbers shown on the axis are eN and N.

In figure 2 we show the results for the first example where we have in the
left picture the error for the displacement in relation to the number of

a theta - 0.6
* theta = 0.8
* theta =1.0

Figure 2. — Numerical results for the Hncar transmission problem (L-shape).
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unknowns in the finite element discretization while the right picture shows the
error for the tractions (p - <ph in relation to the number of unknowns in the
boundary element discretization. The slope corresponds to the expérimental
convergence rates and we see an improvement of the convergence rates from
2/3 to the optimal value 1 for the displacements and an average optimal value
L5 for the tractions.

In the second part of this example we treat the noniinear probiem where

p(t) = 2 + . . We consider the same displacement fields as in (22) and
obtain

- 5/3

. 2 ,.-1/3
3r y • sin (h)

in polar coordinates (r , a ) . The jumps of u0 and tQ are again given by (4).
Using these data ƒ, w0, tö the Algorithm (A) générâtes meshes which refine
towards the singularity as well The related numerical output is shown in
figure 3 which is quite similar to figure 2. Hence, we may conclude the same
properties as above.

6.4. Numerical example on the Z-shape

The domain under considération Q is the Z-shape région with vertices (05 0),
(1, 0), (1, 1), ( - 1,1), ( - 1, - 1 ), ( 1 , - 1 ). The numerical calculations

a thêta = 0.0
v thêta = 0.2
o thêta = 0.4
D thêta = 0.6
• thêta = 0.8
» Iheta = 1.0

Figure 3. — Numerical results for the noniinear transmission probiem (L-shape).

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



COUPLING OF BOUNDARY AND FINITE ELEMENTS 811

Figure 4. — Adapted meshes for the nonlinear transmission problem.
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are carried out as explained in the previous subsections for known displace-
ment fields

(23) M = r 4 / 7 ' S i n ( | a ) and v = | log ( (x + ±)2 + ( y - | ) 2 )

in polar and Cartesian coordinates ( r, a ) and (x, y ) respectively. The solution
has a typical corner singularity such that the convergence rate of the ft-version
with a uniform rnesh leads not to the optimal convergence rate.

We consider the nonlinear problem where p(t) = 2 + 7 — with the
displacement fields (23) and obtain

ƒ=
48 - 13/7

343 sin (H
in polar coordinates (r, a). The jumps of u0 and t0 are then given by (4).
Using these data ƒ, w0, t0 the Algorithm (A) générâtes meshes which refines
towards the singularity as well. In figure 4 we show the meshes created by
Algorithm (A) for 0 = 0.4,

The convergence rates can be seen in figure 5 which is analog to the figures
of the previous examples. As in the previous examples we get an improvement
of the convergence rates.

Ù theta c o.o
9 theta = 0.2
o theta = 0.4
a theta = 0.8
* theta = 0.8
* theta = 1.0

Figure 5. — Numerical resuite for the nonlinear transmission problem (Z-shape).
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We also considered the linear problem (p = 1 ) for this example. The
convergence behavior was similar as in the presented nonlinear case, hence we
omit the details.

6.5, Conclusion

From the numerical experiments reported in the previous subsections, we
claim that adaptive methods are important tools for an efficient numerical
solution of transmission or interface problems via a coupling of flnite éléments
and boundary éléments. The asymptotic convergence rates are quite improved
as well as the quality of the Galerkin solutions corresponding to only a few
degrees of freedom. This underlines the efficiency of the adaptive algorithm
as well as significance and sharpness of the a posteriori error estimate.

Acknowledgment. The authors would like to thank S. Funken for calcu-
lating the numerical examples and the DFG Forschergruppe at the University
of Hannover for support.
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