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A POSTERIORI ERROR ESTIMATES

FOR BOUNDARY ELEMENT METHODS

CARSTEN CARSTENSEN AND ERNST P. STEPHAN

Abstract. This paper deals with a general framework for a posteriori error

estimates in boundary element methods which is specified for three examples,

namely Symm's integral equation, an integral equation with a hypersingular

operator, and a boundary integral equation for a transmission problem. Based

on these estimates, an analog of Eriksson and Johnson's adaptive finite element

method is proposed for the h -version of the Galerkin boundary element method

for integral equations of the first kind. The efficiency of the approach is shown

by numerical experiments which yield almost optimal convergence rates even

in the presence of singularities.

1.  INTRODUCTION

The construction of an adaptive mesh refinement procedure is of very high

practical importance in the numerical analysis of partial differential equations,
and we refer to the pioneering work of Babuska and Miller [3] and Eriksson

and Johnson [10, 11]. Whereas the main features ofadaptivity for finite element
methods now seem to be visible, and the door is open to implementation [15],

comparably little is known for boundary element methods for integral equations
(see e.g. [1, 13, 18, 19,24]).

In this paper a new adaptive «-version of the Galerkin discretization for the

boundary element method is presented based on a posteriori error estimates.
A general framework for these a posteriori error estimates is derived in §2,
and three examples are discussed in §§3-5 involving the Dirichlet problem,

the Neumann problem (for a closed and an open surface), and a transmission

problem for the Laplacian, leading to integral equations with strongly elliptic
pseudodifferential operators.

Even for smooth data the lack of regularity of the solution near corners (of a

polygonal domain Q) leads to poor solutions of the numerical schemes unless
appropriate singular functions are incorporated in the trial space or a suitable
mesh refinement is used. In practical problems such information is missing,

e.g., when we have singular (or nearly singular) data and the main problem is

how to balance a graded mesh refinement towards singularities and a global
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almost quasioptimal refinement. The convergence results in the literature are

in general asymptotic, i.e., a proposed refinement leads to a certain order of

convergence which can be expected if the mesh is very fine, but it is not obvi-

ous how to handle only a few elements in order to get some optimal meshes.

Hence, an adaptive feedback procedure is desired where the algorithm itself
decides when and where to refine the mesh in order to improve the computed

Galerkin solution. One such strategy is proposed in §6 and is based on a poste-
riori estimates following ideas of Johnson and Eriksson (proposed for the finite
element method). Although we are far from proving efficiency of the general

algorithm, our numerical experiments in §7 yield almost optimal convergence

results and confirm that the algorithm gives good triangulations.
In contrast to the a posteriori error estimates in [21, 24, 25] which are re-

stricted to closed smooth curves in two dimensions, our general framework

covers also open arcs, corners and problems in any dimension. The results in

[21,24, 25] give—in some sense—a local a posteriori error estimate, whereas our

approach leads to an upper bound of the global error in energy norms consisting
of terms which can be evaluated locally. Finally, here we need no restriction
at all on the mesh for two-dimensional problems (contrary to [8, 9]) whereas

the analysis in [21, 25] is performed for K-meshes only (i.e., the quotient of

the element lengths of two neighboring one-dimensional elements is uniformly

bounded).
We remark that the general framework in §2 is not restricted to the three

examples discussed here. The ideas can easily be adapted to other problems,

e.g., crack and wave problems, problems in thermodynamics, elasticity, and

magnetostatics.
As shown by numerical examples, the new adaptive algorithm is efficient.

However, a mathematical proof of efficiency remains an important open prob-

lem.

2. Abstract framework of a posteriori error bounds
for boundary integral equations

In finite element methods, adaptive feedback algorithms are often based on

the residual. The adapted analog for boundary integral equations presented in

this paper can be generally described as follows and is specified for concrete

situations in the subsequent sections.
Let X, Y be Banach spaces and let the operator

A : X —> Y   be linear, bounded, and bijective .

Given some right-hand side f e Y, let u := A~xf € X be the continuous

solution of the equation

Au = f,

and let uh be some approximation of u . Define the residual R by

R:=f-Auh,

and assume that the residual can be computed, at least numerically. By the

inverse mapping theorem,  A~x  is bounded with a bound  ||-p4_1||¿(y;;r)  say,
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such that

(2.1) \\u - uh\\x = \\A-XR\\X < \\A-X\\L(Y,X) - \\R\\Y.

For motivation, let «/, be obtained by some Galerkin procedure so that we

have more information on Uh and R . Thus, there exists a finite-dimensional

subspace Th of Y*, the (algebraic and topological) dual of Y, such that

(2.2) 0={th,R)Y.XY      for all   th e Th,

where (, )yxr denotes the dual pairing between Y* and Y.

Lemma 1. There exists some p e Y* with \\p\\Y. = \\R\\Y = (p, R)y-xy ■

Proof. The lemma follows from the Hahn-Banach theorem, compare e.g. [20,

Theorem 3.3], which yields existence of some functional p e Y* with norm 1

and ||i?||y = {p, R)y'xy ■ Then, p = \\R\\y • p satisfies the assertion.   □

With some p chosen as in the lemma, (2.2) shows that

\\R\\2Y = (p, R)Y.xY = inf (p-th, R)Y.xY

<\\R\\y- inf \\p-th\\Y.,
'/i€7/,

whence

(2.3) \\R\\Y< inf\\p-th\\Y..

Comparing this with (2.1) yields the abstract a posteriori error estimate

II" - uh\\x < \\A-X\\L{Y.X) • inf \\p - th\\Y..
th£h

When dealing with boundary integral equations, one of the typical problems
arises from the fact that the "natural" spaces are often Sobolev spaces with

noninteger order, which are defined, e.g., via interpolation of Banach spaces

[2]. Combining the interpolation arguments with the above abstract a posteriori
error estimate, we prove the following more explicit estimate, which is illustrated

in this paper for three examples.

Theorem 1. Let X, Y0, Ye, Yx be Banach spaces with Yx ç Yg ç F0. Let ce
be some positive constant with

(2-4) IMk < cHL<;e ' IL<      M all  yeYx.

Let A: X -» Ye be linear, bounded, and bijective. Let f e Ye , u:= A~xf, and

let uh G X with R := f - Auh £ Yx satisfy

(2-5) 0 = (th,R)Y-xYo      for all   tneTh,

where (,)y0-xy0 denotes the dual pairing between F0* and Y0, and Th isa

subspace of Y0*. Let p € Y0* be defined as in Lemma 1 (with Y0 replacing Y),
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i.e., with

(2.6) \\p\\2Y. =\\R\\2Yo = (p,R)Y.xYo.

Then we have

II« - uk\\x < ce • \\A-x\\L(Ye,x) • \\R\\eYi. inf \\p - y£«.

Proof Using (2.1) with Ye replacing Y, and estimating ||i?||y8 via (2.4), we

obtain

\\u-uh\\x<ce-\\A-x\\L{Ye,xy\\R\\Yr\\R\\Y;e.

By Lemma 1 we have some p satisfying (2.6). Using (2.3) with Y0 replacing

Y leads to a bound of \\R\\y0, which concludes the proof.   D

Theorem 1 is applied to Symm's integral equation, an integral equation with

a hypersingular operator, and a boundary integral equation for a transmission

problem in the following sections. In particular, we can explicitly determine p

in these examples.

Remark 1. In applications we have that the norms in Yo and Yx are "local"

(like L2(Y) or HX(Y)), i.e., they can be computed for any element of a trian-
gulation (in a boundary element method for instance), and then they are given

as a certain sum over all elements (compare e.g. (6.1) in §6).

Remark 2. Although Theorem 1 is simply based on the interpolation estimate

(2.4) and some duality arguments, the main point is that in boundary element

methods we do have orthogonality (2.2) in the L2-sense which generalizes to

HS(Y) x H~S(Y) for all s with -1 < s < 1 if Y is a closed Lipschitz curve.
This is why we may apply (2.2) in those duality pairings—contrary to the sit-
uation in finite element methods, where (2.2) holds e.g. in the HX(Q.) inner

product.

Remark 3. Note that we use only that A is a bijective mapping between the
energy space and its dual, i.e., we need no regularity assumption on the solution,

which is in general not available (cf. §5 and Remark 9).

3. Symm's integral equation

Given a bounded Lipschitz domain QÇK" with boundary Y, the Dirichlet
problem for the Laplacian is related to the so-called Symm's integral equation

for the unknown density <p on Y,

(3.1) V(f)(x) = g(x)   (xeY)

with the weakly singular operator V of the single-layer potential,

V(t)(x):= j 4>(y)G(x,y)dsy.

Here G(x, y) := -^log\x -y\ for « = 2, G(x, y) := cn • \x -y\'n for « > 3

with some constant cn > 0. In (3.1) the right-hand side g is some function

determined by the given Dirichlet data u\r.
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Let HS(Y), 0 < s < 1, be the usual Sobolev space on Y, H°(Y) = L2(Y),
and H~S(Y) the dual space of HS(Y) with respect to the duality (, ) which is

defined for smooth functions u, v by

(u, v) = / u-vds.

The operator F is a Fredholm operator of index zero, it is injective in LX(Y)

for « > 3 or for « = 2 if cap(r) ¿ 1 [22]. Thus, V isbijective from HS-X(Y)
onto HS{Y) in these cases. It is therefore assumed throughout this paper that

in the two-dimensional case we have 1 ^ cap(r), where cap(T) denotes the
capacity, or conformai radius, or transfinite diameter of Y (cf. e.g. [4, 6, 22]

for proofs).
Let Th := S% ç L2(r) denote the vector space of piecewise polynomials with

respect to a "triangulation" of the boundary

N

;'=i

where the "elements" T!, ... , Yn are either equal or have at most one common

point or side, respectively. We assume that Yj is an interval for « = 2 or a

triangle for « = 3 etc. Define

« : T -+ (0, oc), x »-> diam(ry)   for x G Yj■■,

where diam(r;) > 0 denotes the element size.
Let (¡>h G Th denote the Galerkin solution of (3.1), i.e.,

(3.2) 0 = (th,R)      for all   theTh,

where R := g - V(f)n. Assume that g G L2(r), so that, according to Tn ç

L2{Y), we have R = F(</> -</»/,) G HX(Y), owing to the mapping properties of

the single-layer potential [4]. Let Vr denote the gradient with respect to Y.

Theorem 2. Under the above assumptions, we have for 0 < j < 1

H - </>h\\k->(T) < ll^-1llL(if.-(r);//-nr)) ' 11*11% • HA • VrÄHiw

Proof. Apply Theorem 1 with A = V, X = H~S(Y), Y0 = L2(Y), Yx = HX(Y),
0 = 1-5, Ye = HX~S(Y), so that (2.4) holds with c9 = 1. Note that p = R

satisfies (2.6), and there holds

inf ||* - y L2(r) < II" • Vr*IIlw

by standard interpolation/approximation arguments. Hence, Theorem 1 yields

the assertion,   d

Remark 4. Using more regularity of R and higher-order polynomials in Tn ,

one concludes, e.g. for « = 2, that ||« • Vr-RH^n = H^ ' r'\\l2(T) can be

replaced in Theorem 2 by cp • \\hp+x • {§-s)p+xR\\L2(r) > where cp is a constant

depending on p. The piecewise constant function p : Y ^> {0,1,2,3,...}
denotes locally the degrees (i.e., {//,|r; : th e Th) includes all polynomials of

degree p\Tj).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



488 CARSTEN CARSTENSEN AND E. P. STEPHAN

Remark 5. In Theorem 2 the term ||Ä||//i(D can be replaced by c • ||i?'||z,2(r),

where c > 0 is a constant. For a proof, compare Lemma 3 below and note that

(1,H) = 0, owing to (3.2).

4. Integral equation with hypersingular operator

In this section we treat two examples for the hypersingular integral equation,

namely for a two-dimensional problem (related to a closed curve Y) and for a

three-dimensional problem (related to an open surface Y).

Given a two-dimensional bounded domain Q with polygonal boundary Y,

the Neumann problem for the Laplacian is related to the integral equation

(4.1) Wv(x) = f(x)   (xeY)

for the unknown displacement » onT, where W is the hypersingular operator

Wv(x) :=--—- / v(y)—-log\x-y\dsy.
•f onx JT        dny

In order to analyze (4.1), we need the following two lemmas, where

H¿(Y):={ipeHs(Y):(l,y,) = 0},

and ( ) is the duality between H~X/2(Y) and HX/2(Y) ; a prime or J^ denotes
differentiation with respect to the arc length.

Lemma 2 ([17]). We have (Wv,w) = {V%, ^f) for any v, w G HXI2(Y),

ie   W = -$-V$-     nimV-   ry dsV ds ■     U

Each / G L2(Y) may be integrated along the boundary with respect to the arc
length, which yields a function F e HX(Y) if (/, 1) = 0 (then F is globally
continuous and single-valued). So far, F is defined up to a constant which

is fixed by (F, 1) = 0.   Then the mapping / : / *-> F defines an operator

I:H$(Y)^HX(Y).

Lemma 3. After changing to an equivalent norm in //¿(T), s G [0, 1], the op-

erator I : Hq~x(Y) —> Hq(Y) is isometric with

£(/</») = </>   forall(beH^x(Y).

In other words, differentiation is an isomorphism between H^(Y) and Hq~x(Y)

with an inverse I.

Proof. The mapping / : H§(Y) -* H¿(Y) is linear and bounded if we consider

the H~x-norm in Hfj(Y) and the L2-norm in H0X(Y). Hence we may extend /

uniquely to a bounded linear mapping / : H0~x —* H^(Y) which is the inverse of

differentiation. Thus, / is isometric if we endow HQ~X(Y) with the equivalent

norm

W„-1(n := Halber)   (^^'(r)).
Therefore, the assertion for arbitrary s, 0 < s < 1 , follows by interpolation

[2].   G
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As a direct consequence of Lemmas 2 and 3 we have, by the mapping prop-

erties of V, that

rV:H^(Y)^H^x(Y)

is linear, bounded and bijective.
Let Th := S0xh ç H¿(Y) be the vector space of continuous and piecewise

polynomials (with respect to a "triangulation" of the one-dimensional boundary

T as explained in the previous section) with integral mean zero. Given / G

H^(Y), let vh G Th denote the Galerkin solution, i.e.,

(4.2) 0 = (th,R)       for all   th G Th,

where R:=f- Wvh G H¿ (Y).

Theorem 3. Under the above assumptions, we have for 0 < s < 1

l|w - vh\\mr) < W-l\\LiH*-i(r).H,{r)) • \\R\\h{r) * IIa ' ̂ lllj'rr

Proof. Apply Theorem 1 with A = W, X = HS0(Y), Y0 = HQ~X(Y), Yx =

H$(Y), 6 = s, Ye = H^~X(Y), so that (2.4) holds with ce = 1. Note that, by
construction of the Sobolev spaces HS(Y), the duality in (4.2) is the duality

between L2(Y) and L2(r) as well as between H0X(Y) and H0~X(Y). Hence,
(2.5) is satisfied. Note that integrating -R twice with respect to the arc length

gives p, whence p = -I o I(R) satisfies (2.6). Therefore,

inf \\p - th\\Hur) = inf \\IR - t'h\\L2(T) < ||« • R\\LHr)

by choosing t'h as the L2-projection of IR and using standard interpolation/

approximation arguments. Hence, Theorem 1 yields the assertion.   D

Remark 6. As mentioned in Remark 4, using more regularity of R and higher-

order polynomials in Th, one concludes that ||« • R\\l2(d can be replaced in

Yheorem3by cp.\\hP.(fs)P-xR\\LHr).

Remark 1. In the numerical realization we use the space S\ of piecewise lin-
ear trial functions without the restriction of having mean value zero. Given
(/, b) G L2(Y) x R, the problem results (see [5]) of finding (u, a) G Hx (Y) x E
with

Wu + a = f      and   (u,l) = b,

and the Galerkin scheme consists in finding (uh , an) G Sxh x R with

(Wvh + ah, wh) = {f, wh)       for all   wh€Sxh,

(uh, i) = b.

Using exact arithmetic, we have u - uh G H¿ (Y), ah = íj^yf whence f - ah£

Lq(Y) . Then, Theorem 3 can be applied.

The second example for a hypersingular integral equation is related to screen
problems in three dimensions, namely to the Neumann problem for the Lapla-

cian outside of an open surface. It is known (cf. e.g. [12, 23] and the references
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therein) that this problem can be equivalently rewritten as a hypersingular in-

tegral equation

(4.3) Wv(x) := ~~ [ f/   .    1    .) v(y)dsy = f(x)       (x G Y).
K    '        y '        4ndnx JT\dny\x-y\)   K '    y    JK '       y     ■   '

Here, the integral

-5— / *—i-->v(y)dsy= / --rrv(y)dsy
dnxJTdny\x-y\  v';    y    JT\x-y\3  v''    y

has to be understood as a "Hadamard finite-part integral" and v gives the

jump across the screen Y of the solution of the original Neumann problem.

For notational simplicity, we take r.= [0, l]2 x {0} = [0, l]2 . Then, let f be
a smooth, bounded, closed surface containing Y. We use the following Sobolev

spaces for real 5 [14, 16]:

HS(Y) := {u\t : u e Hs+xl2(R3)}       (for s > 0),

H°(Y):=L2(Y),

H~S(Y) := (HS(Y)Y       (dual space)       (for 5 > 0),

HS(Y) := {u\r : u G HS(Y)}       (for all s),

HS(Y) := {u G HS(Y) : supp u ç Y}       (for all s).

Note that J/1/2^) = H0x0r2(Y) in [16]. It is known (cf. e.g. [12, 23] and the

references therein) that the hypersingular operator W maps Hx/2+s(Y) onto

H~xl2+S(Y) and is bounded, linear and bijective for all real j with |i| < 1/2.

Let Th := 5¿ ç HX(Y) be the space of continuous piecewise linear trial
functions (with respect to a regular triangulation of the two-dimensional domain
T where the triangulation satisfies the angle condition) which vanish at the

boundary ôr of T. Then, the Galerkin equations (cf., e.g., [12]) yield that

(R, Wh)H-iß{r)XH>/2{r) = 0 for any wheTh, where R:=f- Wuh.

From the general framework in §2 we obtain the following a posteriori error

estimate. The local element diameter is denoted by the piecewise constant

function h G L°°(r).

Theorem 4. Under the above assumptions there exists a constant C > 0 such

that for 0 < s < 1 and f G L2(r)

\\v - vh\\ÑJ(r) < C - \\rV-%{H,-l(r).ñííT)) • Il*lll2(r)ll" • £2/>ll[7(Sr) >

where D2 := {g^- : i, j = 1,2) denotes the vector of all second-order partial

derivatives with respect to xx and Xi. Here, p G H2(Y) is the solution of the

problem

(4.4) Ap = -R   inY,        p = 0   ondY.

Proof. Since uh G Th lies in HX(Y), we have Wuh G L2(f), whence (WM,,)|r=.
Wuh G L2(r). Thus, R:= f - Wuh e L2(Y). Compare, howeve^ Remark 9.

Therefore, we may apply Theorem 1 with A = W, X = HS(Y), Yq =
H~X(Y), Yx = L2(Y), Ye = HS~X(Y), 6 = s, so that (2.4) holds with ce = 1 .
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In HX(Y) the seminorm is an equivalent norm and we may endow HX(Y) with

the norm ||Vr • ||L2(r) where Vr = (^ , ^).

Note that (2.5) is satisfied, so that it remains to determine p with \\p\\Y. =

\\R\\Y = (p, R)y'xy0 • Consider p e HX(Y), the solution of (4.4), which, since

R g L2(Y) and Y is convex, lies also in H2(Y). For this p we have by duality

(and the equivalent norm chosen in HX(Y))

\\R\\h-hd=     suP    <*»>/>=       SUP      {&P,n)
llfllAi(r)<l \\Vrl\\L2(r)<l

sup     (Vr/>,Vri7>.
HVriill^^^l

Hence, according to Cauchy's inequality, ||/?||f/-i(r) < II/'IIa'ct) • Taking « =

P/\\p\\h<(d then Proves

ll*ll//-'(r) = IIPllÄ'(r)-
Moreover (taking the optimal n = />/ll/>ll/ji(r) again together with (4.4)), we

conclude

\\R\\2H-l(r) = (R,p).

Hence, the considered p satisfies (2.6).

Finally, since p G H2(Y), and using standard arguments in finite element
approximation, we obtain

ijrf \\P - thUnD ^ c * P • D2P\\lhd-

Hence, Theorem 1 yields the theorem.   D

Remark 8. Note that for open surfaces we have in general that a solution v G
Hxl2(Y) of (4.3) does not lie in Hx (r), even for a smooth right-hand side / (cf.

[12,23]). Thisiswhy s= 1 is excluded in Theorem 4: \\W~x\\L(L2(j-y fn^ = oo.

Nevertheless, the residual R still belongs to L2(r).

Remark 9. Although W is not bijective as a mapping between Hx (Y) and

L2(r) [23], we can prove

II?) — fii II -        < CSCX~S . IU?ll1-i       .11 PIK\\v    VhWwiPi - *-it'o      ll-^ll/z-nr)   11-^11^2^)'

as shown in Theorem 4, whereas a simple interpolation between s = 0 and
s = 1 is not allowed.

In Theorem 4 the term ||« • D2p\\L2^ can be evaluated only if p is known

after solving (4.4). In the remaining part of this section we estimate the right-
hand side by solving (4.4) approximately via a Galerkin procedure. Thus, we

obtain some unique ph G Th with

j VrPh • Vri/, da = j R-thda      for all th G Th.

In order to give a bound for p - ph we use results of [11], where we need

assumptions on the mesh. In addition we assume that the triangles of the

triangulations have an interior angle bounded below by a constant 0O. We also
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need some « G CX(Y) which is related to the mesh diameters described by the

piecewise constant function « via

Coh < h <h   a.e. on Y.

Then, we require

|Vp«| < p   a.e. on Y

with some constant p > 0. We emphasize that ö0, cq , p are independent of

the mesh.
Since Ph is piecewise linear, its gradient is piecewise constant, and hence

its normal derivative has a jump [VrPh • n] across the interior sides E of the

elements in the triangulation. Let

Dh,iPh-.=   rE^rPh-n]]2,

where the sum is with respect to all interior sides E and «£ is the length of

E.

Theorem 5 ([11, Theorem 2.2]). There exists a constant C > 0 depending only

on on and cç, such that if p > 0 is sufficiently small, then

l|Vr(/> - Ph)\\mr) < C(\\h • R\\L2(Y) + Dh,xPh),

where p solves (4.4) and Ph G Th is its Galerkin approximation. D

Remark 10. We remark that the right-hand side in Theorem 5 can be com-
puted (at least numerically) and is sharp in the sense that, the right-hand side

is bounded from above by C||«Z)2/>||L2(r) (see [11, Theorem 3.2]).

Taking th = Ph in the proof Theorem 4, we get from Theorem 5 the following

result.

Theorem 6. Under the above assumptions, we have for 0 < s < 1 with some

constant C > 0, and for p > 0 sufficiently small,

I« - «All*(r) < c • llÄllWllft • R\W) + F>h,iPh)
\-s

Remark 11. A similar result also holds for the Dirichlet problem and a weakly

singular integral operator on the open surface.

5. Integral equation for a transmission problem

In [7] the transmission problem is rewritten into a boundary integral equation

(5.1) H{l) = \(l+H){{),

where (f,g)e HX(Y) x L2(Y) are prescribed jumps over the polygonal bound-

ary T of the bounded domain Q and

H := (~w   k) : HS{T) x ^"l(r) ~* HS{T) x HS~l{r)-

Here, V and W are the single-layer potential and the hypersingular operator,

respectively, as described in the previous sections, and K is the double-layer
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potential with its dual K',

(Kv)(z):=-X-j^(Q-?-\og\z-Qdsr,

(K'(f))(z):=-1- [<i,(Ç)JLiog\z-C\dsr.
n Jr       onz

The operator H is linear, bounded and a Fredholm operator of index zero for

5 G [0, 1] [7] and, since the conditions in [7] are satisfied (compare [9]), H is

bijective, so that the transmission problem as well as the integral equation (5.1)

have unique solutions (v , <f>) e HX(Y) x L2(Y).
A boundary element method for (5.1) is described and analyzed in [7] as

well. For a "triangulation" of Y let

Th:=S0hxSxhCL2(Y)xHx(Y),

where Si and 5° denote the continuous piecewise linear and (discontinuous)

piecewise constant functions. Let (vh , (¡>h) g Th denote the Galerkin solution,

so that the residual

R:=\(l + H)( {) - H( I) =: (Rx, R2) e HX(Y) x L2(Y),

Rx:=\(f-Kf+Vg)-V(t)h + Kvh,

R2 :=t(g + K'g + Wf) - Wvh - K'cph

satisfies

(5.2) 0 = (R,(iph,wh)) = (Rx, Vh) + {Ri,wh)   for all   {y/h,wh)eTh.

Theorem 7. Under the above assumptions, we have for 0 < s < 1

IK-P _ (^)ll//s(r)x//^-i(r) < \\H~~  \\L(H'(T)xH*-i(Y);H'(T)xH'-\r))

'\\RWSW(T)x.LHT) ' P ' (R2)Hi2(r)2-

Proof Apply Theorem 1 with A = H, X = HS(Y) x HS-X(Y), Y0 = L2(Y) x

H~X(Y), Yx = HX(Y) x L2(Y), 6 = s, Ye = HS(Y) x HS'X(Y), so that (2.4)
holds with eg = 1. Note that p = (Rx, -I o IR2) satisfies the conditions of

Lemma 1, and

inf \\R-th\\L2{r)xH¡ir)<\\h.(%2)\\L2(r)2
'At-/*

by standard interpolation/approximation arguments. Hence, Theorem 1 yields

the theorem.   D

Remark 12. As in the previous sections, assuming more regularity of the resid-

uals and higher degrees of the piecewise polynomials in Th, we obtain terms

with higher powers of « .

Remark 13. Using (5.2) and Lemma 3, one may replace ||/?i||/fi(r) in Theorem

7 by c • \\R'X ||x,2(r) with a constant c.
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6. Adaptive feedback algorithm

For a given "triangulation" of the boundary Y = [)f=l Yj we can compute an

approximation of the contribution a¡ of one element Yj by numerical integra-
tion. For Symm's integral equation, a¡ := ||-R'|lí.2(r-) > f°r the integral equation

with the hypersingular operator, a¡ := \R\ii(Y-) > and in the case of the integral

equation for the transmission problem, a, := ||^i Nz.2(i~o + H-^2Hi.2(r ) • Then,

with some constant c > 0, we have in all three examples that the error in the

energy norm ( s = 1/2) is bounded by

(«i -(¿*;)"4-(i>M)"4,
j=\ j=i

where h¡ \—\T¡\ is the length of the element r;.
This a posteriori error estimate is not very useful for absolute error control

unless the constant c > 0 (or at least an upper bound) is known. But it can be

used to compare the contributions to the local error.
Hence, we may control the process of mesh refining such that (6.1) becomes

small and the error is uniformly distributed. Let a := \jY,f=x à] ', then the

contribution of any element Yj to the error is c4 • h2 • a2 • a2 . Thus, we are

led to consider hj • a¡ and to organize the mesh refinement so that all terms

«i • ax, ... , «jv • UN become of the same magnitude.
The meshes in our numerical examples are controlled by the following algo-

rithm, where 0 < 6 < 1 is a global parameter:

Algorithm (A). Given some coarse, e.g. uniform, mesh, refine it successively by

halving some of the elements, using the following rule. For any triangulation
define ax, ... , un as above and refine the element Yj if and only if

hi • a¡> 6 •    max   hk • ak.
'       ' -        k=l,...,N   k       K

Note that 0 = 0 gives a uniform triangulation, whereas the number of refined

elements decreases with increasing 6 .

Although pseudodifferential operators are nonlocal, we hope that a refinement

of T7 leads to improved bounds (6.1) for the error in the energy norm.

7. Numerical experiments

We consider three numerical examples, namely the «-version of the Galerkin
method for the weakly singular integral equation, for the hypersingular integral

equation, and for the transmission problem.

7.1. Remarks on the implementation. In all cases we take continuous piecewise
linear and piecewise constant trial functions Sxh and 5J?, respectively.

As it is shown in [13, 18], the single-layer potential and the adjoint of the

double-layer potential can be evaluated explicitly for piecewise polynomials.

Then, the outer integration in the Galerkin scheme is performed via a Gaussian

quadrature rule. Any other term is computed by applying Gaussian quadrature

twice. We refer the reader to [8, 9] for a description of the numerical details.
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t—I-r-

•H-l-h

Figure 1. The meshes produced by Algorithm (A) for 6 = 0.75
in Example 1

For T we take the L-shaped polygon with vertices (0,0), (1,0), (1,1),
(-1, 1), (-1,-1), (0,-1), cf. Figure 1.

We identify R2 with the complex plane and write z = xx + ix2 for a complex
number, with 3?z = xx and 3z = x2.

7.2. Example 1:  Symm's integral equation. On the L-shaped polygon Y we

consider Symm's integral equation (3.1) with the solution d) = 3fz2/3.
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Number of Unknowns

A uniform mesh

V theta = 0.25
o theta = 0.5

a theta = 0.75

A theta = 0.9

Figure 2. The error of the Galerkin solutions with respect to

meshes produced by Algorithm (A) in Example 1

We refer to [8] for a detailed description of the numerical computations con-
cerning the Galerkin procedure, which is an «-method with piecewise constant

trial functions.
The given coarse mesh is shown in Figure 1 as well as the meshes produced by

Algorithm (A) for t9 = 0.75 . The various convergence rates are shown in Figure
2 for 0 = 0, 0.25, 0.5, 0.75 , 0.9. Here and in the following we compute the
error in the energy norm and plot the relative error versus the corresponding

number of unknowns both in a logarithmic scaling.
As is well known, the convergence rates of uniform meshes, i.e., for 6 = 0,

are nonoptimal, owing to the singular behavior of the solution. In the example

we expect an order of convergence 2/3 for the uniform mesh (0 = 0) and 3/2
as the optimal value. This rate together with a considerable improvement of the

produced meshes, e.g., for 6 = 0.75, is shown in Figure 2. Thus, our adaptive

algorithm (A) is efficient and therefore our a posteriori error estimate is sharp.
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7.3. Example 2: A hypersingular integral equation. On the L-shaped polygon

r we consider the hypersingular integral equation (4.1) with the solution v =

3z1/7. We refer to [8] for a detailed description of the numerical computa-

tions concerning the Galerkin procedure, which is an «-method with continuous

piecewise linear trial functions (compare Remark 7). Again, the convergence
rates for uniform meshes (0 = 0) are nonoptimal owing to the singular behav-

ior of the solution. This and some improvement of the produced meshes can

be seen in Figure 3 where the convergence behavior is shown for 0 = 0, 0.25,
0.5, 0.75, 0.9.

o
Z

u

c

W

328     408    488

Number of Unknowns

a uniform mesh

v theta = 0.25

o theta = 0.5

□ theta = 0.75

A theta = 0.9

Figure 3. The error of the Galerkin solutions with respect to

meshes produced by Algorithm (A) in Example 2
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7.4. Example 3: Transmission problem. We consider the integral equation (5.1).

As an example we take the transmission problem with the solution ux = 3z2/3

in Qi, the L-shaped domain, and u2 = log \z - \ - \i\ in fí2 := R2 \ Clx. We
refer the reader to [9] for a description of the numerical details. The resulting
convergence behavior is shown in Figure 4 for (9 = 0, 0.3, 0.5, 0.6, 0.7, 0.8,
0.9. Owing to the singularity of the solution, we get a convergence rate 2/3
for a uniform refinement (0 = 0) and almost an improvement to the optimal

convergence rate 1.5 for 6 close to 1.

o
Z

s?
s

1
>

T
156 296

Number of Unknowns

i—r~r
576   716 856

A

V

O

□

A

T

♦

theta = 0.0

theta = 0.3

theta ■ 0.5

theta = 0.6

theta = 0.7

theta = 0.8

theta = 0.9

Figure 4. The error of the Galerkin solutions with respect to

meshes produced by Algorithm (A) in Example 3
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