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This article presents some numerical examples for coupling the finite element method (FEM) and 
the boundary element method (BEM) as analyzed in [ 1 I ] .  This coupling procedure combines the 
advantages of boundary elements (problems in unbounded regions) and of finite elements (nonlinear 
problems with inhomogeneous data). In [28], experimental rates of convergence for the h version 
are presented, where the accuracy of the Galerkin approximation is achieved by refining the mesh. 
In this article we treat the h-p version, combining an increase of the degree of the piecewise 
polynomials with a certain mesh refinement. In our model examples, we obtain theoretically and 
numerically exponential convergence, which indicates a great efficiency in particular if singularities 
appear. 0 1995 John Wiley & Sons, Inc. 

1. INTRODUCTION 

The finite element method can be applied to nonlinear or inhomogeneous problems 
concerning partial differential equations, but is restricted to bounded domains. This is 
contrary to the boundary element methods, which can be applied to the most important 
linear and homogeneous partial differential equations with constant coefficients also in 
unbounded domains (provided that the boundary is bounded). 

The coupling of FEM and BEM comes of interest, since it allows a combination of 
the advantages of both methods. Hence, it is applied for linear transmission problems 
in scattering problems, elastodynamics, electromagnetism, and elasticity [ 1 -61; numerical 
examples may be found in [7,8]. Recently, a class of nonlinear interface problems is treated 
in [9- 121 using a symmetric coupling method, which allows a variational formulation of 
a saddle-point problem. 

In this article we improve the convergence of the coupling method using the h-p version 
with a geometric mesh for the first time. Even in the case of singular solutions, we get 
exponential convergence, which leads to an efficient numerical treatment of the problems. 

A motivating interface problem in three-dimensional solid mechanics and a two- 
dimensional numerical test case are stated in Sections I1 and I11 to recall the coupling 
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procedure and to describe the error analysis. In particular we contribute an estimate for 
approximate discrete solutions in Theorem 3. For numerical results in two-dimensional 
elasticity, we refer to [ 161; this article focuses on two-dimensional harmonic examples. In 
Section IV, the discretization for the finite elements and boundary elements is sketched 
for the h-p version. Then, we derive exponential convergence of the h-p version of 
the Galerkin procedure of the coupled problem. The iterative solution and its numerical 
implementation are described explicitly in Sections V and VI. Numerical experiments are 
reported in Section VII to underline the exponential convergence and the efficiency of the 
proposed treatment of such nonlinear interface problems in case of singularities. 

It. COUPLING METHOD FOR A MONOTONE PROBLEM 
FOR HENCKY-ELASTICITY 

Let .R1 be a three-dimensional bounded Lipschltz domain with aRI  = r, U r in which 
we assume the nonlinear Hencky-von Mises stress-strain relation of the form 

I * div uI  + 2 p ( y ) ~ ,  

where (T and E = ~ ( V K ~  + V u )  denotes the (Cauchy) stresses and the (linear Green) 
strain, respectively, see [13-151. Then, if we define 

for i = 1,2,3, the equilibrium condition div u + F = 0 gives 

Pl (u l )  = F in . R I .  (1) 

Here, the bulk modulus k and the function p( y )  in PI satisfy (cf., e.g., [ 141) 

where Po, P I ,  ,ii2 are constants and 

In a surrounding unbounded exterior region .R2,  we consider the homogeneous Lam6 
system describing linear isotropic elastic material, with the Lam6 constants p2 > 0, 

(2) 

The interface problem under consideration [ 111 reads: For a given vector field F in R 
find vector fields K ,  in R ( j = 1,2) satisfying id I I ru = 0, the differential Eqs. ( I ) ,  (2), the 
inte$ace conditions 

3A2 -I- 2p.2 > 0, 

P ~ ( K z )  = - p z A u z  - (A2 + p2) grad div u2 = 0 in R2. 

U I  = u2, Tl(ul)  = T h 2 )  on r ,  ( 3 )  
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and the regularity condition at injnity ( n  = 3)  

2 Here, with p l  = p ( y ( u l ) ) ,  A l  = k - j p ( y ( u I ) ) ,  the tractions are given by 

T,(u,) = 2pJanu,  + A,n div u, + p,n X curl u,, ( 5 )  
and dnu, is the derivative with respect to the outer normal on r. 

We are interested in solutions u, of (1)-(4), which belong to ( H / 0 c ( f l J ) ) 3 ,  i.e., which 
are of finite energy. A variational formulation is obtained as in [ I  I]. An application of 
the first Green formula to (1) yields 

Plulwdx = @I(u~, W )  - Tlulw ds (6) 
I n l  IIr 

for all w E H 1 ( f l l ) ,  where 

2 
@ i ( U i ,  w )  := I { k - 7 P ( Y ( U i ) )  div U I  div w + 

3 

2P(v(ui))E,J(ui)E,J(Mi)J d x .  
nl l . J - 1  

(7) 

On the other hand, the solution u2 of (2) is given by the Somigliana representation formula 
for x E f12: 

u2(x)  = Ir { T ~ ( X , Y ) V ~ ( Y )  - G 2 ( x , y ) 4 2 ( y ) ) d s ( y ) ,  ( 8 )  

where v2 = u2,  # J ~  = T2(u2) on r, and the fundamental solution G 2 ( x , y )  of P2u2 = 0 
is the 3 X 3 matrix function 

with the unit matrix Z and T 2 ( x , y )  = T ~ . , ( G ~ ( X , Y ) ) ~ ,  where T denotes transposition. 
Taking Cauchy data in (8), i.e., boundary values and tractions on r for x - r, we obtain 
a system of boundary integral equations on r, 

with the single layer potential V2, a weakly singular boundary integral operator, the double 
layer potential A2 and its dual A;, strongly singular operators, and the hypersingular 
operator W2 defined as 
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As in interface problems for purely linear equations [3], we obtain a variational formulation 
for the interface problem (1)-(4) by adding a weak form of the boundary integral Eqs. (9) 
on r to the weak form (6). Then we insert it into (6 )  and make use of the interface 
conditions ( 3 ) ,  i.e., t2 = r I  =: 4 and v2 = U I  =: u. 

This yields the following variational problem: For given F E L2(R1)3 find u E 
H1(R1)3 ,  4 E H - 1 ’ 2 ( r ) 3  such that u I ~ ,  = 0 and 

b (u ,  4;  w ,  4)  = F w d x  for all ( w ,  4)  E H1(Rl)3 X H - I l 2 ( r ) ’ .  (10) 

.) in (7) and the brackets (*, -) denoting the extended L2-duality 

I f 1  ] 

Here, with the form 
duality between the trace space H1’2(I‘)3 and its dual H-l’’(!J3, we define 

- ( 4 J 2 4 ) .  (1 1) 

Theorem 1 ([11,16]). For F E L2(R1)3 there exists exactly one solution u E H ’ ( R I ) ~ ,  
4 E H-’I2(r)’  of(l0) yielding ( u  = u I  in R l  and u2 given by ( 8 )  in R2) a solution of 
the interface problem (1 )-(4). 

The proof in [l 11 is based on the fact that the C2-functional, 

1 
J I ( u , ~ )  := A ( u )  + Y ( U ,  W ~ U )  

A(u)  := / [ kldiv uI2 + /,”’” p ( r ) d r }  d x ,  
f l I  2 

u E H1(fl l )3 ,  4 E H - 1 ’ 2 ( r ) ’ ,  has a unique saddle-point. The two-dimensional case, 
treated in [ 161, requires minor modifications only. 

Given finite dimensional subspaces X N  X YM of H1(RI)’ X H - ” 2 ( r ) 3 ,  the Galerkin 
solution ( U , Y , ~ M )  E X N  X YM is the unique saddle-point of the functional .!I on X N  X 
Y M ;  the Galerkin scheme for (10) reads: Given F E L2(R1)3Jind U N  E X N  and 4~ E YM 
such that, f o r  all w E XN and E Y M ,  

The Theorem 2 states quasi-optimal convergence in the energy norm for any conforming 
Galerkin scheme. See [ 161 for the two-dimensional case. 

Theorem 2 ([ll, 161). There exists exactly one solution ( u N ,  4 ~ )  E X N  X YM of the 
Galerkin Eqs. ( 1  3). There exists n constant C independent of X N  and Y ,  such that 

Ilu - U N I I H ~ ~ ~ , , ~  + I14 - 4 M l I H - I / 2 ( r ) ?  
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where (u ,  4) E H 1 ( f l l ) 3  X H-I12(r)' is the exact solution of the variationalproblem (10). 

Within the class of saddle-point problems, the Galerkin solution can, in general, be 
approximated by an iterative process only. To control the error of an approximation 
( E N ,  6,) to the Galerkin solution ( u N ,  4,,,), we prove the following a posteriori estimate. 

Theorem 3. Let ( u N ,  4 M )  E X N  X Y M  be the unique Galerkin solution of (13) and let 
( E N ,  $ M )  E X YM be known such that we can compute 

F N  := IlDJl x (EN, 6 M ) I I H ' ( n l ) * x H ' I ? ( T ) .  

Then. 

I l ( u N  - EN, 4 M  - $M)I IHl (Ol )xH ~"?(f) c ' FN . 

The constant C > 0 depends on fl l ,  r, and the constants k ,  j i j ,  h2, p2 only; but not on 
X N  x Y M .  

Proof. Since V2 is positive definite and W2 is positive semi-definite, and since D 2 A  is 
uniformly monotone (see, e.g., [ 111) we infer, using the main theorem on calculus, 

Noting that D J 1 ( u N ) [ u N  - E N , $ M  - = 0 and DA = aI, we derive 

c-'Il(uN - ~ W Y ,  4 M  - dM)ll~l(rlI,xH-1/2cr) -DJl(iiN? d N ) [ ( u N  - E N ?  d M  - 4 M ) 1  
5 FN . Il(uN - - ~ M ) I I ~ ~ ( n l ) x H  to(r). 

From this, we conclude the assertion. 

In the numerical examples below, we compute (EN,&,,,) such that FN is of machine 
precision. Then, by triangle inequality, Theorems 2 and 3 verify that (iiN,6,+,) is a 
reasonable approximation of ( u ,  4 ) .  This justifies the numerical treatment below and in [8]. 

111. MODEL PROBLEM 

Our numerical experiments with the h-p version are related to the following two- 
dimensional model problem [8] involving prescribed jumps across the interface r : Given 
F E L2(fl), f E H112(r ) ,  g E H-1'2 ( r ) ,J ind  u 1  E H1(RI),  u2 E H;,,(fl2) satishing 



544 CARSTENSEN AND STEPHAN 

a u ,  a u 2  
a n  dn u I  = u2 + f,p(lVull)- = - + g on r 

Here, A E R is a constant depending on u2 and p E C’(R) satisfies, with some constants 
7 1 9  7 2  ’ 0, 

Y I  5 p ( r )  5 y2 and y~ 5 p ( r )  + r p ’ ( r )  5 y2 ( r  2 0 ) .  

As in the previous section, the interface problem (15) allows an equivalent variational 
formulation: 

b(u ,  4; w, $) = F w  dx + l(w,$) (16) 

for all (w. $1 E H1(RI)  X H-’”(T) ,  where b is given in (1 l ) ,  and 

Corresponding to the Laplace operator, we have the single-layer potential operator V2,  the 
double-layer potential operator A2 and its adjoint A;, and the hypersingular operator W2 

I a as defined above with -; loglx - y l  replacing G 2 ( x ,  y )  and ;i;; replacing T (see, e.g., [8] 
for details). As in [S], we assume cap(I‘)  < 1 so that Vz is positive definite. Let 

1 
2 

J ( u )  : = 2 J O ( U )  + - (u .Wzu)  

1 
2 

JO(u)  := ill {I,’””’ t p ( t ) d t  + -Iul2 - f ” )  d x .  

Under the present conditions on p ,  the second Gateaux derivative of JO is uniformly 
monotone [8], so that the results in [ I  13 are applicable and briefly summarized as follows 
(see [S, 161): 

a. The weak form of the Euler equation to the variational problem of JI coincides with 

b. The variational problem (16) has exactly one solution (u .  4). 
c. For any pair of finite dimensional subspaces X N  C H’(R), YM C H p ” 2 ( r ) ,  there exists 

exactly one solution ( u N , + M )  of the Galerkin scheme for (16) and a constant C 
independent of XN and YM such that 

the weak form (16) of the coupling problem (15). 

IIU - uNIIHl(nl) + I14 - 4MIIH-”2(I‘) 

d. Theorem 3 is also valid for the two-dimensional model problem at hand. 
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IV. DISCRETIZATION 

Let the two-dimensional domain .RI have the polygonal boundary r, i.e., r = U,”=ITJ is 
the union of straight lines r l , .  . . , r,,, connecting the endpoints xo = x , , , x I , .  . . , x,. Near 
the comer point xI we improve the approximation quality of the trial space concerning the 
comer singularities using a geometric mesh and a particular distribution of the polynomial 
degrees. 

First we define a geometric partition I ;  of level n on the interval I = [0,1] by xo := 0 
and xJ := d - J ,  j = 1,. . . , n. With a degree vector q = ( q , ,  . . . , qn) the trial space Sq(1;)  
is the vector space of all continuous functions on I ,  which are piecewise polynomials with 
degree qJ+ I on (xJ  , xJ+  I ) .  Next we introduce the analogous two-dimensional vector space 
on Q = [0,1] X [0,1] as a space of tensor-products 

S q P r ( Q : )  = Sq(I : )  X S r ( I : ) .  

In our examples, we use a geometric mesh-refinement towards the origin of Q by using a 
geometric partition of 0, obtained by affine transformations of Sqvr(Q;) as shown in Fig. 1 
and Fig. 2. Then we define X N  := Sq.r(Q;)  with N being the dimension of S q . r ( Q ; ) .  

The trail space YM for the boundary elements is obtained as a trace space of gradients 
in X N ,  i.e., 

yM := ss(r:) := {vwN i r :  wN E xN}, 
where M := dim YM is the number of degrees of freedom. This means we take the partition 
of the boundary r induced by the geometric partition of .R I and take piecewise polynomials 
there with the degree from the neighboring finite element (along the current side) minus 
one. Note functions in YM are, in general, discontinuous. 

By using countable normed spaces Bb (a )  (which are appropriately weighted Sobolev 
spaces; see Appendix) used by Guo and Babuska in [17], one can prove conver- 
gence rates (see [8]) as in the linear case [7]: Denote the internal angle at x, by 
wI(O < wI < 27r, 1 5 j 5 rn) and choose p = (PI, . . ,Pm)  under the condition 0 < 
PI < 1/2, p, > 1 - 7r /wJ .  In the linear case, certain conditions on the data f and g 
(namely f E @(r) and g E Bb/2(r)) lead to the regularity of the solution (namely 
u E Bb(R)). In the nonlinear case, we have to assume this regularity assumption explicitly 
and then conclude, as in [7], 

FIG. 1. Geometric mesh with polynomial degrees. 
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FIG. 2. Symmetric geometric mesh with polynomial degree. 

V. SOLVING THE DISCRETE PROBLEM 

According to the nonlinear function JI as in (19), the Galerkin equations 

DJI(uN9 4 M )  [ v ,  41 = 0 v ( v ,  4) E X N  Y N  7 (21) 
( i n )  are to be solved within an iterative process. Let U N  and @:) denote the coefficient 

vectors of the piecewise polynomials u p )  and +E), respectively, obtained iteratively with 
Newton-Raphson method or the method of Broyden. One step of Newton's-Raphson's 
method can be written in a compact form as 

with A l l  being positive definite and A22 being negative definite defined by 

A11 := D2J0(ujyn")[v; w ]  + ( w ,  W ~ V ) ,  

One iteration step of the method of Broyden, a quasi-Newton method, reads 

(0) (0) where A0 = (Ai , )  is the stiffness matrix evaluated at (UN , +M ) and then updated by 
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( m )  - (-1) while dm := UN 
In our numerical examples, the iterations of the Newton- and Broyden-method have 

been performed until the residual FN in Theorem 3 was of the order of the machine 
precision E .  Then, Theorem 3 verifies that the computed approximation ( u r ) ,  
might replace the unknown Galerkin-solution (uN ,  q5,+,) in our numerical experiments 
reported below. 

U f -  I), e,,, := R,,, - R,,-l, R-  I := UN := 0. 

VI. NUMERICAL IMPLEMENTATION 

In this subsection, we briefly report on the numerical evaluation of the stiffness matrices 
involved in the iterative process of Section V. 

A. Integrals over the Domain 

In the evaluation of the Gateaux-derivatives DJo and D'Jo of JO [see (20)] we have 
integrals over R l  to be computed by applying a standard 32 X 32 point Gaussian 
quadrature formula on any element. 

6. Single-Layer Potential 

With 4 and (I, E Sr(r:) we get for the single-layer potential operator V2: 

where (I, and 4 are monomials on Ti € T:. To perform the outer integral, we use a 
32-point Gauss quadrature formula, whereas the inner integral we compute analytically as 
follows: An affine transformation mapping Tj to [- 1, I ]  leads to 

where the constants a ,  b, c with b2 - 4ac 5 0, depend on y only, and rj and 21 and 22 

are complex numbers with (5 - z1)(5 - 22) = .f2 + ; ( + f .  The appearing integrals 
are then evaluated with 

h 
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C. Double-Layer Potential 

For v E SP.q(R,) and $ E S'(ri) a typical term involving the double-layer potential 
operator is 

where $ is a monomial on r, E ri. The outer integral we evaluate using a 32-point 
Gauss quadrature formula, whereas the inner integral we again compute analytically: With 
an affine transformation and related constants a . b , c , e ,  f satisfying b2 - 4ac 5 0, 

To evaluate the appearing integrals we let R := a t 2  + 6 5  + c ,  A := 4ac - b2,  and 
make use of 

B c Xm-2  X m  - I 
- - 1 F d t  - - 1 R d 5  

/ $ d t =  (m - 1)A A A 
1 1 f d 5  = - log(R) - - 

2A 2A 1 $ = 2 arctan( 2A5 + B ) . 
dx A 

D. Hypersingular Operator 

For u,  v E Sp.q(R;), we evaluate the hypersingular operator W2 with procedures of the 
single-layer potential operator (see [18]): ( u ,  W2v) = - ( V 2 z u ,  K V ) .  

d d  

VII. NUMERICAL RESULTS 

For the computations we consider a couple of examples for the interface problem with R I  
being the square {(xI, x2) E R2: Ix, I < 1, i = 1,2}. In all examples we have 

G ( r )  = /Ltp(t)dt = 

F .  u ] d x ,  

so that 1 5 p ( r )  5 3, 1 5 p ( r )  + r . p ' ( r )  5 3, r > 0. With 
r 2  + r - log(1 + r ) ,  the functional Jo on H1(RI )  becomes 

and with (15) we have P l u  = -2Au - div(&) + u.  In Tables 1-111 and Figs. 3, 
4, and 5 ,  we present experimental rates of convergence for the L2-errors e := 
llul - K N  IIL2(n,) in R I  and E := 114 - 4t)llLqr) on r, where uI  E H 1 ( R l )  and 
4 = p(lVul I)% E H-1'2(I') solve the interface problem (15). In the sequel, mK denotes 
the number of iterations of the Newton-method, and NI and N2 denote the dimensions 
of S P . 4  and S',  respectively. 

( m )  
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TABLE I. Absolute errors in Example 1. 

0.1 1358 
0,03013 
0,01181 
0.00518 

0,11358 
0,01324 
0,0028 15 
0,000989 

0,11358 
0,01201 
0,00422 

4 
17 
48 

112 

4 
17 
48 

112 

4 
17 
48 

u = 0.5: 
1,5117 
1,3554 
1,1910 
1,0433 

1,5117 
1,1679 
0,9107 
0,7141 

1,5117 
1,02482 
0,70973 

u = 0.25: 

u = 0.1: 

4 
14 
30 
52 

4 
14 
30 
52 

4 
14 
30 

5 
5 
5 

TABLE 11. Absolute errors in Example 2. 

N ,  IIdJ - d J r K ) l l L ~ K )  N2 mK 
( n l K )  IIU - U N  llL2(Il,) 

u = 0.25: 
2,470 16 4 3,27856 4 2 
0,07507 24 2,11075 16 5 
0,005 175 84 0,7572 36 5 
0,000695 217 0,2585 64 5 

2,470 16 4 3,27856 4 2 
0,03830 24 1,8602 1 16 5 
0,01073 84 0,56459 36 5 
0,OO 1690 217 0,170889 64 5 

2,47016 4 3,27856 4 2 
0,02678 24 1,75752 16 5 
0,01667 84 0,47349 36 5 
0,00 1246 217 0,130997 64 5 

u = 0.2: 

u = 0.171: 

TABLE 111. Absolute errors in Example 3. 

IIU - UjymK)IIL2(0,) Nl IIdJ - dJFK) I lL2W) N? mK 

u = 0.25: 
1,10564 4 3,27733 4 2 
0,07415 24 3,41856 16 5 
0,005366 84 2,80817 36 5 
0,000620 217 2,23380 64 5 

1,10564 4 3,27733 4 2 
0,035443 24 3,26434 16 5 
0,006374 84 2,50 149 36 5 
0,000560 217 1,86517 64 5 
0,000398 475 1,38318 100 5 

u = 0.171: 
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e -  - 
1 1 4 0  z 

10-22 

10-3? - 

10-4 

- 

4 

E - 
u = 0.5 Il4llo - u = 0.5 h=O.l 0 u = 0.25 2.10-*- ~ 0 u = 0.25 

1 o - ' p  I I I I I I I I 10 
I I I I I I I I 

9 u = 0.25 
0 u = 0.2 

10-1- 

1 0 - 2 p  1 I I I I I ,  I ,  

fi U 

FIG. 4. The relative error of Example 2. 

3 

FIG. 5 .  The relative error of Example 3. 
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Example 1. Let the data functions be defined by 

For the partition, fl:: = {Q', is a rectangle with the corners (1 - u'-', 1 - a'-' 1, ( 1  - 
u', 1 - a'-'), ( 1  - u'-', 1 - a'), (1 - a', 1 - u'), 1 5 i , j  5 n},  we use different 
constants u and appropriate polynomial degrees. See Fig. 1 for u = 7 .  

The errors of the Galerkin procedure are shown in Table I and illustrated in Fig. 3. The 
exact solutions are given by 

I 

u ~ ( x ~ , x ~ )  = (2 - xI - x ~ ) ~ / ~  (X E fl,) 

(x  E a,). 1 
2 U * ( X , ,  x* )  = - lo&; + x;) 

Since u - rZ3, we have u E B$(Ql) (1/3 < p < 1 )  and E BF(I ' ) ,  (1 /3  < p < l ) ,  
and get exponential convergence for IIu - u ~ I I ~ I ( R ~ )  and 114 - 4,,.,IIH IE(I-)  [7], which is 
confirmed in this example. This is shown in Fig. 2 by the linear dependence of log & 
and m or 1% &) and a. Here llullo := IIUIIL'(R]) and Il4llo := ll4llL:(r). 

Example 2. Let the data functions be defined by 

16r2 - 32r' 32 16 
9A 

+ - A  + 
3 3(A-I + 8/3r) 9(A + 8/3rA2)? F(XI>X2) = - 2 

+ A4 
64r 

9(A-I + 8/3r)? 
- 

A := (2 - x: - , r := J.: + x i .  

For this and the next example, we use the geometric mesh shown in Fig. 2. The 
corresponding errors of the Galerkin procedure are given in Table I1 and illustrated in 
Fig. 4. The exact solution is given by 

U I ( X , , X 2 )  = (2 - x; - x;)4/3 (x  E 01) 
1 
2 U2(XI, x2)  = - lo& + x;) (x  E a,). 
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Since u - r8‘3, we have u E @(al) (0 < p < 1) and E B $ ( T )  (0 < p < I ) ,  and 
we get exponentially fast convergence in the norms Ilu - U N I I H ~ ( ~ , )  and 114 - ~ M I I H - I / z ( ~ ) .  
This is confirmed in the numerical example, where we observe even exponential conver- 
gence of (4M)  in t2(r) .  

Example 3. Let the data functions be defined by 

16r - 16r2 16 8 
9A4 3A 3(A + 4 / 3 r )  9(A + 4 /3r )2  

8r2 
9(A + 4 /3r )2  . A2 

F ( X I , X 2 )  = - ~ + - +  

+ + A2, 

For this example, we also use the geometric mesh shown in Fig. 2. The corresponding 
errors of the Galerkin procedure are given in Table I11 and illustrated in Fig. 5. The exact 
solution is given by 

Since u - r4I3, we have u E B$(fl , )  (0 < p < 1) and E B L ( T )  (1/6 < p < 1) that 
expect exponentially fast convergence in the energy norms. Numerically, we observe 
exponential convergence of Ilu - U N I I L ~ ~ , )  and 114 - ~ M I I L ~ ( ~ ) .  

APPENDIX 

Let .RI C R 2  be a bounded domain whose curvilinear boundary d Q I  is a piecewise 
analytic curve T = U;=,T;, where Ti is an open arc connecting the vertices Ai and 
A ; + I ( A M + ~  = Al ) .  Let a2 = R 2 \ f i 1 ,  we denote the internal angle at Ai by w ; .  and assume 
0 < w ;  I 27r, 1 5 i I M. d /dn  denotes the derivative with respect to the normal to r 
pointing from to a2. 

Let f l I  be a bounded open set in R 2  and let Hk(aI), k 2 0 integer, denote the usual 
Sobolev spaces (e.g. [ 191): 

M -  
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where (Y = ( ( Y I , ( Y ~ ) ,  ai 2 0 integers, i = 1,2, IaI = ( Y I  + ( ~ 2 ,  and 

Hk-112 (r) is defined as the restriction of u E H k ( f l l )  to r for integer k 2 1 i.e., 

H k - 1 1 2 ( r )  = {U Ir: u E H k ( f l l ) }  

with 

and for k 5 0 by duality 

Let r i ( x )  = d i s t ( x , A i ) ,  and let P = (P I ,  P 2 , .  . . , P M )  be an M-tuple of real numbers 0 < 
Pi < 1. For any integer k 2 0, we shall write P + k = (PI + k ,  P2 + k , .  . . , PM + k ) ,  
and @ P + ~ ( X )  = nEIri  ( x ) .  As in [17], we define the weighted Sobolev space for 
integers k and 1, k 2 1 2 0, by 

P,  + k  

H ; ' ( f l 1 )  = { u :  u E H ' - ' ( f l , )  if 1 > 0, I I @ ' P + ~ a ~ - l D a ~ I ( L ~ ( ~ , )  < 03 for 1 5 la1 I k } ,  

and the countably normed space for 1 2 0, 

Bh(fl1) ={u: u E H : ' ( f l ~ )  t/ k 2 I, I l @ p + k - / D a ~ I I ~ * ( n l )  5 Cdk-'(k - I)! 
for la1 = k = 1,l + 1 ,..., with C 2 I,d 2 1 independent of k } .  

(r) [resp. Bk-112(I')] k ,  1 integers, k I 1 2 1, is the trace The space H p  
(r) [resp. ~ k - I ~ ~ ( r ) ]  space of ~2;"(n,)  [resp. B ~ ( R ~ ) I ,  i.e., for any g E ~p 

there exists G E H ; ' ( f l l )  [resp. Bh(fll)] such that G Ir = g, and ~ ~ g ~ ~ H ; - ~ ~ 2 . ~ - ~ ~ *  (r) = 

In the exterior domain f 1 2 ,  we incorporate the behavior of solutions at infinity. Let 
rr*(x) = mint], r i ( x ) )  for x E f12, then the weight function @ P + ~ ( x )  is modified by 

k-112.1-112 

k -  112. I- 112 

infc ll.=g IIGIIHil(n,). 

M 

r = I  
k l  The weighted Sobolev space, H,' ( f l 2 ) ,  k 2 1 2 2, is defined by 

H2;"(f12) ={u: u E H;, , ( f l2) ,  D"u E L2( f12)  for 2 5 I(YI < I ,  
I l ~ p + i o t - ~ D a u I I ~ ? ( n ? )  < a, for 1 5 IaI 5 k } .  

The definition of the space $(a2) is the same as B$(flI) .  

The authors thank W. Thies for performing the numerical examples and the DFG for 
support. The work was partially supported by the DFG Forschergruppe "Zuverlassigkeit 
von Modellierung und Berechnung in der Angewandten Mechanik" at Hannover. 
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