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Abstract 

This paper presents a posteriori error estimates for the symmetric finite element and boundary element coupling for 
a nonlinear interface problem: A bounded body with a viscoplastic or plastic material behaviour is surrounded by an 
elastic body. The nonlinearity is treated by the finite element method while large parts of the linear elastic body are 
approximated using the boundary element method. Based on the a posteriori error estimates we derive an algorithm for 
the adaptive mesh refinement of the boundary elements and the finite elements. Its implementation is documented and 
numerical examples are included. 
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1. Introduction 

Within engineering computations, the boundary element method and the finite element method 
are well-established tools for the numerical approximation of real-life problems where analytical 
solutions are mostly unknown or available under unrealistic modelling only. 

Both methods are somehow complementary: the finite element method seems to be more general 
and applicable to essential nonlinear problems while the boundary element method is restricted to 
certain linear problems with constant coefficients. On the other hand, the finite element method 
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requires a bounded domain while the boundary element method models an unbounded exterior body 
as well. Since the work [23] by Zienkiewicz et al. the combination of the two methods is of 
advantage and, starting in the late seventies with papers by Johnson, Nedelec, Brezzi and others (cf. 
[21] for a summary and an extensive collection of relevant references) its mathematical justification 
reached a high level. The symmetric coupling due to Costabel appeared to be a proper tool and its 
convergence is guaranteed for problems with corners or for problems in quasi-linear elasticity. See, 
e.g., [7-91 with a material described in [ 181. For strong nonlinearities as a plastic material behaviour 
[ 13, 19, 201 the convergence of the coupling is proved in [l-3]. 

A very important tool in Galerkin methods based on meshes or grids like the finite element method 
or the boundary element method is the adaptive mesh-refinement to reduce the approximation error. 
Various techniques are applied, some of them based on heuristic arguments, some of them based on 
a posteriori error estimates. In plasticity, for example, a mesh refinement is forced in plastic zones 
as pointed out in [15, 141. 

This work extends recent work on the adaptive coupling of finite elements and boundary elements 
for linear or quasi-linear problems in [4, 51 to viscoplastic and plastic material. This makes engi- 
neering applications possible to geomechanics (deep tunnel with surrounding viscous material) or 
to local crack or support problems in huge shells as in Kirsch’s problem where we model the real 
problem as a hole in an unbounded two-dimensional ductile material. 

We stress that the coupling might be reasonable also if we have large parts of a body where a 
linear elastic material behaviour is good enough. Then, the coupling of boundary elements and finite 
elements is also possible as illustrated in an example given in Section 10. 

This paper extends adaptive coupling techniques of FE and BE to the class of nonlinear interface 
problems which include viscoplastic and perfectly plastic material behaviour. 

An outline of the paper is as follows. The interface problem is stated in Section 2 to fix nota- 
tion and to give a precise example where the coupling of finite elements and boundary elements is 
advantageous. As a nonlinear material behaviour in a bounded domain, we consider viscoplasticity 
and plasticity and give an introduction in Section 2.1. For a convenient reading we briefly recall 
the definitions and a few properties of boundary integral operators of the first kind involved in the 
symmetric coupling in Section 3. Then, in Section 4, we introduce the complete coupled problem and 
its discretization is recalled in Section 5. The implementation of the nonlinear problem is reported in 
Section 6 while, in Section 7, we emphasize the regularization of the discontinuity in the stress-strain 
relation in viscoplasticity. The main contribution is the derivation of a posteriori error estimates 
where we can indeed follow [4, 51 in the viscoplastic case but have to take [ 14, 151 into 
account in case of perfect plasticity. Based on these a posteriori estimates we derive an adaptive 
feedback procedure in Section 9. Numerical examples are presented in Section 10 which illustrate the 
advantage of the coupling and underline the necessity of adaptive grid refinements in the numerical 
analysis. 

2. The interface problem 

In this section we consider the interior and the exterior problem and a reformulation of the latter 
using boundary integral operators. Throughout the paper, let Q c Rd where d = 2 or d = 3, be a 
bounded Lipschitz domain, the interior domain. Let Q, := Rd\SZ and let r = 852 = 2 n DC be 
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partitioned into r, U r2. We use the usual Sobolev spaces ([ 11, 171) H”( Rd, Rd), 

H~,(Q,, RP) := {U : u EW(c.0) for any cc) C C a,} 

H”(T, Rd) := {U]r : 24 E fw2( Iad, R”)} (s > 0) 

P(T, P) := I4r, FP) (s = 0) 

H”(T, UP) := (fr”(T, Rd))* (s < 0) 

fT(Iy, Rd) := (2.4 E K”(Iy, Rd)}* (s < 0) 

345-363 347 

H”(Q, Rd) and 

with * denoting duality extending the L2 scalar product. For brevity we use the notation 

2 := H1(SZ,Rd) and X, := {UE% : ulr, = 0). 

2. I. The interior problem: viscoplasticity and perfect plasticity 

The basic step in the modelling of (small strain) elastoplasticity is the additive split of the total 
strain E(U). Given a displacement field u E XU we define 

E(U) := symgrad u = 
(: (z+g))I=, 

E [L,(Q) := L2(Q, [w:;:> 

where Rdxd denotes the set of real symmetric d x d-matrices. In the announced additive split 
sYm 

E(U) = Ee + &P, (1) 

the elastic contribution is ce = Eo with the inverse E of the linear elasticity operator, 

E : Wfgd + W;y;d, TH L~D+&,d-dd. 
2P 

(2) 

Here A and ,U are the Lame constants, c2 = l/2(1 + II) and c3 = l/3(31 + 2~), Ld is the d x d unit 
matrix and 

fJn := 1 
o--VtroVLd 

d 
(tic := cl1 + ” ’ + c&j) 

is the deviatoric part of the stress tensor c E R,, dxd. As in linear elasticity, the stress field CJ E [L,(Q) 
satisfies local equilibrium conditions 

div 0 + f = 0 in a, (3) 

0.n=g on r2, (4) 

where r2 is the Neumann part of the boundary and we are given an applied volume force 

f E L2(Q, Rd) and an applied surface load g E fi-“‘(r2, Rd). 
To describe the material law for J? in plasticity we need the concept of admissible stresses. In 

addition to (3) and (4), the stress CJ has to satisfy the von Mises yield condition 

IoDI < GY, (5) 
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where the yield stress gy > 0 is a given material parameter and 1 . 1 denotes the Frobenius norm in 
[wf$‘, i.e., ICI2 = Et=, Oij. 

In this work we include viscoplasticity as a related material behaviour with a vicosity parameter 
Q > 0. If P is the set of all c E 1w$’ which satisfy (5), the dissipation functionals are defined by 

~,cJD)=+&p-~12 (e>O>, 

cPo(oD) = { 
0 if oDEP 

coifoD#P (e = 0). (7) 

It can be proved that qe tends to q. in the sense of epigraphs as Q + 0 [19], which justifies the 
notation qo. Given a dissipation functional qQ, the Prandtl-ReuD flow rule reads 

&P E dq,(aD) (8) 

and links the plastic strain .sP (see (1)) with the stress field. In (8) the subgradient is defined as 

%&J) = {Q%(o)] = { f(cn - ncu)} (e ’ O)> (9) 

~~o(~)={rltIL,(R):~~:(a-r)dx>Ov?EP} (Q = O), (10) 

with the scalar product in [wfYz defined by 

d 

cT:z= 
c 

Oij ’ Zij* 

i,j=l 

We stress that ( 1 ), ae = Eo and (8) give the stress-strain relation 

E(U) = Eo + d,(oD). (11) 

Remark 1. The condition (11) is one step of a time discretization of a time-dependent Prandtl- 
ReuD flow rule which is of some importance in engineering and material science to describe plastic 
deformations of ductile solids as metals. We refer to [ 191 for the setting and a discussion of related 
references. 

The stress-strain relation can be inverted. 

Theorem 2. For Q > 0, there exists a bijective operator A, mapping kL2(12) onto L,(Q) dejned by 

z = A,rj - rj E ET + a(~&~). 

A, is uniformly bounded and uniformly monotone, i.e, there 
such that 

exist e-dependent 

(12) 

constants a,fi > 0 

(13) 
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For (2), (9) and Q E [0, co] we have 

A,tj = e 
l+LV 

D + .trYf.I& 
2P 

(14) 

Proof. By changing the norm in the Hilbert space [L,(Q) we may and will assume for this proof 
that E = I. By a standard result from convex analysis 8’~~ is maximal monotone: for any given 
q E [L,(Q) there exists a unique c E IL,(Q) satisfying y E d + acp,(o). Thus, A, is well defined. For 
Q > 0, the subdifferential reduces to the gradient and A, is bijective. 

To prove boundedness of A, we set g = Ae([), z = A,(q) and estimate 

/(A& - A,q) : (5 - r/)dx = s,(o - z) : (A,‘o - A,‘z)dx 
a 

G (1 + e-W - &2) 

where we have used Cauchy’s inequality and, by Lipschitz continuity 

According to the monotonicity of dq,, 

and so ( 16) implies 

J (A&A,q):(t-~l)dx2 a 

(15) 

(16) 

(17) 

(18) 

Combining (17) with (15) and using Cauchy’s inequality again, we obtain 

-I 
IlQ - rllL2(sz) < II5 - rllbm 

which finishes the proof of (13). 
The representation of A, in (14) can be checked by hand utilizing that 

{ 

CT for c E P, 
npa = 

Dyfi fora$P * 
0 

The weak formulation of the problem under consideration is obtained as follows: multiplying 
div r~ + f = 0 with a test function v E S,, integrating v . div 0 over 0 and using Green’s formula 

results in the weak form. Given f E L2(s2, Rd), g E fi-“2 (P2, lQd) and Q E (0, co], find u E XU such 
that, for all v E SU, 

J (A~.+)) : E(v)d~= Jy.vdx+ J g+ds 
a D rz 

(19) 
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Theorem 3. There exists a unique u E YF,, to ( 19). 

Proof. According to Theorem 2, A, : k2( f2) -+ IL2(Q) is uniformly monotone and (according to 
(14)) Lipschitz continuous. By Korn’s inequality this holds for the operator HU + 2: given by 
the left-hand side of (19) as well. Then standard results in the theory of monotone operators (as, 
e.g., in [22]) conclude the proof. 0 

2.2. The exterior problem: linear elasticity 

In Q = Rd\2, the exterior domain, we have linear elastic material modelled by the homogeneous 
Navier-Lame equations of linearized elasticity 

-d*u,:=~Cdu,+(il,+~C)graddivu,=O in&. (20) 

For the displacement field U, we assume regularity at infinity (see, e.g., [16]), i.e., U, satisfies a 
radiation condition of the form 

U, = O(]x]-‘) and Vu, = O(]X]-~) as 1x1 + 00. (21) 

Let T,(u,) denote the conormal derivative related to the operator -A* which is, in its strong form, 
defined by 

TC(u,) = 2,&,u, + ;l,n div U, + pCn x curl U, 

where d, denotes the normal derivative and n is the unit normal on r pointing into 52,. The weak 
form of T, is defined by Green’s formula (cf., e.g., [7]). 

2.3. The interface problem 

The transmission problem under consideration in this paper combines the interior and exterior 
problems. With the operator A, introduced in Theorem 2 the equilibrium (3) reads 

div(A,e(u)) + f = 0 in a. (22) 

The two displacements are coupled on the interface r = 0 n Q2, where we have, in the simplest case, 
continuity of the displacements and equilibrium of the tractions, i.e., 

ulr = u,lr and (A,&(U)) en = TC(u,) on r. (23) 

Definition 4. Given f E L,(Q, I@) the transmission problem (TP), consists in finding (u, u,) E X x 
H,i,(sZ,, Rd) satisfying (1 l), (3), (20)-(23) and A&U). n = g on r2. 

3. Boundary integral operators 

For convenient reading we briefly summarize well-known properties of some integral operators 
related to A*. For proofs and details we refer, e.g., to [12, 16, 211. 
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The fundamental solution for the Lame operator -A* has a kernel G(x, y), the Kelvin matrix, for 
d= 2,3 

G(x, Y)= 
A + 3P., 2, + Y, (x - Y)(X - y)T 

47&(& + 2clc) Ix - Y12 ’ 

2, + 3P, 
G(x’ ‘) = 87t,~~(A, + 2,~c) 

1 I + 1, + PC (x - Y)(X - Y)’ 
IX - YI 3 A + 3Pc 

Since G is analytic in lRd x Rd without the diagonal, the traction may be defined by 

T(x, Y> := T,,_G(x, Y>>~ for x # Y. 

Proposition 5 (Hsiao and Wendland [12]). Each solution u, E H,L,(a,, 178~) of (20), (21) satisjies 
the Betti representation formula 

u,(x) = s T(x> Y) . v(y) ds, - s G(x, Y) .&UN, (x E 0,) (24) l- r 

with v = ulr and C/I = TC(u,). ??

For any x E Sz,, (24) can be differentiated, giving a representation for the stresses T,(u,). If the 
classical jump relations for x + r are taken into account, the following identities hold for a piecewise 
smooth boundary (see, e.g., [7]). 

(25) 

where 

(v+>(x) = l G(-GY). h’s,, WV)(X) = l T(x, Y> . v c’s,, 

V@)(x) = Tc,, l G(x, Y > . 4 dsy, (WV>(X) = -Tc,, ./, T(x, Y 1. v ds,. 

The next result recalls some mapping properties of the above boundary integral operators where 
9(X, Y) denotes the real Banach space of bounded linear operators mapping X into Y. Let H1/2 = 
H’j2(r, Rd) and H-II2 = H-‘i2(T, E”). 

Lemma 6 (Costabel [6] and Costabel and Stephan [7]). 

v E 9 (HV2; ~~1~) , K E 9 (HI/~; H*/*) , 

K’ E 9 (H-“~; H-“~) , w E 2 (~‘1~; H-I/~> 

We have 

Moreover, W and V are symmetric, the hypersingular operator W is positive semi-de$nite and its 
kernel consists of the rigid body motions. The single layer potential V is positive de$nite for d = 3. 
Finally, the double layer potential K has the dual operator K’. 0 
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4. Equivalent form of the interface problem 

The transmission problem may be reformulated using boundary integral operators. Let the mapping 
B : (~9 x H-1/2)2 + R and the linear form L : 2 x H-‘j2 + R be defined by 

+ .I (P- 1/2)qh(rds+ .I (1/2-K)2+3ds 
r r 

L(Q) :=~f.& 

Definition 7. Given f E L2(Q, Rd) problem (I’), consists in finding (u, 4) E 2 x H-1/2 satisfying 

B,((u, 4), (v> ti)) = L((u, $)) (26) 

for all (0, II/) E &? x H-‘j2, respectively. 

For Q > 0, the problems (TP), and (P), are equivalent, as proved, e.g. in [l, 2, 4, 5, 71 for similar 
problems. 

Theorem 8 (Carstensen and Stephan [5]). Assuming Q > 0, the problems (TP), and (P), are equi- 
valent in the following sense: if (u,u,) E H’(52, Rd) x H,k,(Q,, Rd) is a solution of (TP), then 
(u, 4) E H’(Q Rd) x H-‘i2(T, Rd) solves (P), with C$ = TC(u,). If, conversely, (u, 4) is a solution of 
problem (P), then (u, u,) solves (TP), with u, E H,k,(sZ,, Rd) dejned by the representation formula 
(24). 

For Q > 0, problem (P), has a unique solution. The proof in [7] is based on the fact that (26) are 
the Euler-Lagrange equations of a @-functional with a unique saddle point (for a different proof, 
see [5]). 

5. Discretization 

Let Yk={d}dE.Yh be a regular finite element subdivision of the polygonal domain Q into nonover- 
lapping tetrahedrons A of diameter hd < h and let lp,+(D, KY) denote the set of polynomials on a 
domain D of degree at most k with values in R”. Define 

Sh := {t&%(QRd): uld~lP,(A,(Wd) VAEF~}, 
H;‘12 := {$EL,(T,R~): &,,EP,,(~~I~R~) VAM,}, 

):al&F’,(A,R~;d) VAO-jj}. 

(27) 
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Then, the symmetric coupling of finite elements and boundary elements is the following Galerkin 
procedure. 

Definition 9. Problem (P)e,h consists in finding (uh, &) E #h xH~-“~ such that, for all (uh, &) E Xh x 

4-‘!2, 

For the discrete subspaces introduced above there holds the approximation property (i.e., the best 
approximation error, e.g., in the right-hand side of (29) below tends to zero as h --f 0) . Therefore 
the next a priori estimate shows quasi-optimality of the Galerkin scheme (28). In particular, we get 
convergence of the algorithm. 

Theorem 10 (Carstensen and Stephan 
ho > 0 such that for any h < ho the 
denotes the solution of(P),, then 

[5]). Suppose Q > 0. Then there exist constants co > 0 and 
problem (P)e,h has a unique solution (u,,, &,) and, if (u, 4) 

II@ - uh, $ - $h>ll < CO ’ inf 
(;)E.F,$Xff-’ 2 

Il(” - %, 4 - +h)ii> 

where the error is measured in the norm of the space 2 x H-‘j2. 

(29) 

6. Implementation 

In this section we describe some details of the implementation of method (28). Let xl,. . . , xN 
be a (nodal) basis of yi” and write uh := c:, xi&, with x = (xi,. . . ,x~)~ E RN. Similarly, let 
$h := Czi yiyli for a basis vi,. . .,P/M of HL”*, y = (~1,. . .,y~)~ E [WM. 

We define functions r9,8, : [O,CQ) --+ R and the functional F, : X + R by 

{ 

P if x d (e/2~)~, 
6(x) = 4 uyfi-- 

4P 
if x > (0~/2p)~ , 

e,(x) = +yx) + x-5 
21( I+$’ 

F,(u) = 
J 

R e,(p+)l2) + y . t12&(U) dx. 

(30) 

(31) 

(32) 

Since 8, is continuously differentiable, F, admits a GHteaux derivative. Therefore, we may write (28) 
as 

(33) 
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with 

W 
LZ?= 

K- l/2 

(K- 1/2)T -V 1 ’ 

GQ (w > = (DFphu XI >, . . . , D&(wt, XN), &...&I, 
M times 

M times 

(34) 

W= (- / Xj(i>. C,x / T(5,5> . Xi(<)dstdsoN 2 

r r i,j=l 

Y 

T(xTy)= 27L(/l+2p) 
2(A+P) (X-Y)(X-Y)T 

P 

DFe(U, xj) = s 3A + 2/l 
28;( [c~(u)[~) . Ed : ED(xj) + 3 ’ trE(U) . tr&(Xj)dX 

a 

using the Kelvin matrix G as given in Section 3. The entries of the stiffness matrix of the hypersin- 
gular operator can be reduced to the terms appearing in the integration of the matrix V (see, e.g., 
Appendix of [lo]). It is emphasized that those trial functions which are not related to nodes on r 
vanish on the boundary and the corresponding matrix entries are 0. 

Remark 11. The stiffness matrices V, K and W have to be computed only once while the nonlinear 
part requires an iterative process. 

7. Regularization 

In [14] a Picard-type iteration is proposed where a sequence (u;) is defined by 

(G&-l, u;, XI ), . . . > G&-‘, 4, XN), 0,. . . ,O) + d . (4, $;I> - b = 0, (35) 
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cf. (32) and (33). Although the function 19, from (3 1) is not twice differentiable, a formal application 
of the second Gateaux differential results in 

D2FQ(U, 27,W) = 
I 

D 2e;( leD(u>12> . ED(W) : ED(V) 

+ 48i( IsD(z#) ((ED(U) @ ED(U)) : ED(W)) : ED(V) 

+ 3L+2,~ 
-tr c(W)tr c(2)) dx, 

3 
(36) 

where @ denotes the tensorial product r @ Q = (rijckl)ijk[. 
In order to apply Newton-Raphson’s method, we regularize the function 6 as depicted in 

Fig. 1 (details are given in the appendix). This regularization technique allows usage of the 
Hessian 

L+W 
q(Q) = 

K- l/2 

(K- 1/2)T -V I 
(37) 

with the tangential stiffness matrix L = (D2F,6(vh, Xi, xj))yj_, . 
Then, Newton-Raphson’s method is as follows: 

6) 
(ii) 

(iii) 
(iv) 
(v) 

(vi) 

(vii) 

Initialize v = 0, 6 = 1. 
Solve the linear elastic interface problem: compute solution of DFk (ui) + d . (uf, c#$) = b. 
If 6 > lo-l2 then replace 6 by 6150. 
Increment v. 
Solve the linear system of equations 

II@;-‘). (u, c$)= DF,o (u;;-‘) + d . (u;-‘, 4;-‘) - b. 

Set (u;l, c#$) = (u;l-I, &-‘) - (u,4). 

Ij- 11 D;; (u;l) + & . (u;,&‘) - bllwv++f < lo-l3 then STOP and accept (L&C&,) as discrete 
solution, else got0 (iii). 

Fig. 1. The functions 19: 19” and their regularizations. 
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8. A posteriori error estimates 

Let & be a partition of the two dimensional polygon Q and let Y,, denote the set of sides split 
into boundary and interior sides, 

Y,, = {E : E is a side of A E &} , 

gh={E~YPh:Ecr} and Yi=YPh\gh. 

The angles of any A E Fj are bounded below by some 0 > 0. With h we identify the piecewise 
constant function on & such that hid = diam( A) for A E F,, and hlE = diam(E) for E E Y’,,. 

Given an interior side E E 9: such that A and A’ are the neighbour triangles, let ItE denote that 
unit normal to E which points from A into A’ and for a given tensor z let [z . ns] be the jump across 
the side E. 

The following result is taken from [5] and applies to viscous materials where Q > 0. Given a 
solution (uh, &) of (28) let ch := AQ(&(Uh)) and 

+IlhaA ’ (ch ’ n + wuh + (K’ - 1/2)dh>ll;,cr”aA, 

bE = IlJhE. -$cK - 1/2>~h - Vd)h}jILz(E), 

where d/as denotes derivative with respect to the arc-length along E. 

Theorem 12 (Carstensen and Stephan [S]). Let (u, 4) and (uh,$h) solve problem (P), and (P)e,h 
with Q > 0, respectively. Then there exist constants ce, ho > 0 such that for any h < ho there holds 

(38) 

Remark 13. The constant cQ tends to infinity as Q -+ 0. Theorem 12 gives an a posteriori error 
estimate, although c, is difficult to compute. Nevertheless, (38) justifies an adaptive mesh refinement 
algorithm as introduced in Section 9. 

In order to obtain an a posteriori error estimate for perfectly plastic materials we recall that the 
elasticity operator is positive definite on R$z and introduce a norm on this space by 

ll~lli = .I, Ez:zdx= .I 1 

n$ D 
1 

: ZD + 2(I. + p) tr’?zdx 

which is equivalent to the initial norm. Given CJ h, which may be obtained via some post-processing, 
the triangulation Fh of Q splits into an elastic part Q2” and a plastic part $8’ defined by 

&?2”=52;nS$, and !Z’ = SZ\@, (39a) 



C. Carstensen et al. I Journal of Computational and Applied Mathematics 7.5 (1996) 345-363 357 

where 

(39b) 

(39c) 

E, =diva,, +f 

E2 = 
[g/l . nl on E E 9’;, 

g--a,,.n on E~3h 

and consider residuals 

IV . El II&l) + c II& 42112,~~p A E Q” 
a2 = 

1 

EE.Y;,E C dA 
A 

c” . Ilh . El IIL,(A) + c” . C ll~.-blI~,(E), A E Qp 

EE.Yj,E C 8A 

Theorem 14. Let (CI, u, 4) E [L,(0) x ~‘6 x Hell2 solve problem (P)o and let (crh, uj, &) E k,(Q) X 

2f x H-‘12 SOlVe problem (P)a,h. Then there exists a constant c > 0 such that for h < ho 

lb - DhIIb(Q) + Il(u - Uh)lI-IIH’Z + 114 - &l(H-, 2 < c. (p+isbE). (40) 

Proof. We combine the assertion of Theorem 12 and a result from [ 141. Assuming s2P c c Sz we 
deduce as in [14] 

]]c - chllE,QP < c” ’ c Ilh ’ El /k,(A) + II& ’ E2 11L@A)* 
AEQP 

The assertion follows by applying the notion of Theorem 12 to Q2” and using that 

IIg - ghlllL2(R) + II& - Uh)lI+PJ + 114 - 4hl/H-” 

d c . II& - uh, 4 - 4h)ll.RxW 

by equivalence of norms and positive definiteness of E. Cl 

Remark 15. Note that (40) is not a full a posteriori error estimate since Sz” and c” depend on U. 
In addition, we emphasize that under a safe load assumption it may be proved that c” is bounded 
but tends to infinity as the limit load is approached (cf, e.g., [20]). 
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9. Adaptive feedback procedure 

Assume that there is given a triangulation yh = {d,, . . . , AN} of Q with a related partition $h = 

V 1>-..> rM} of the plane polygon r, i.e., gk is induced by rh. Considering one element A E Fh 
we can compute its contributions ad, bE to the right-hand side of the a posteriori error estimate in 
Theorem 12. Provided %‘,, is induced by the subdivision &, of Q, let 

CA =aA + c bE. 
EE(ehnaA 

Note that the sum above is either zero or consists of one or two summands. The meshes in the 
numerical examples are steered by the following algorithm. 

Algorithm (A): Given some mesh and a global parameter 0 < 0 < 1 refine the mesh successively 
by halving some elements due to the following rule. Divide some element A by halving its largest 
side if 

(41) 

In a subsequent step all hanging nodes are avoided by a further refinement to get a regular mesh. 

Remark 16. Note that 19 = 0 in Algorithm (A) implies a uniform refinement of the mesh. The 
parameter 8 steers the refinement: 8 small gives a more overall refinement whereas 8 M 1 refines a 
small region only. 

10. Numerical examples 

We report on two two-dimensional model problems of the form studied above. In the first example 
we consider an unbounded plate with a rectangular hole under uniform pressure p = 1.5 as seen 
in Fig. 2 with material parameters cy = 1, II = 576.92 and p = 384.61 corresponding to Young’s 
modulus lo3 and Poisson’s ratio 0.3. 

By equilibrium, the stress will decrease with the distance from the hole such that the nonlinearity 
only needs to be considered in some bounded domain surrounding the hole. In this way, we are 
lead to the coupling of FEM and BEM as shown in Fig. 2. Note we plot the finite elements only 
but the system continues outside of r with a linear elastic material. 

As explained in Section 9, we started with a coarse mesh shown in Fig. 2 and run Algorithm 
(A) with 8 = 0.8. If the material was linear, the singular behaviour of the solution at the corners 
of the rectangular hole would lead the adaptive algorithm to refine the mesh strongly towards the 
corner points. The final meshes were obtained after 8 refinement steps and shown in Fig. 2 for 
viscoplastic material with p = 4 and for plastic material with p = 0. The expected singularities are 
not observed in Fig. 2, instead we have a strong refinement towards the rectangular hole but a 
nearly uniform refinement along its edges for p > 0. The plastic zones are plotted as follows: a dot 
is drawn whenever the discrete stress in some element-midpoint satisfies Ic$‘l 2 gy. 
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:&J : 

Fig. 2. Deformed meshes and plastic zones for Example 1. First row: system and loading and initial mesh. Second and 
last row: final meshes and plastic zones for Q > 0 resp. Q = 0. 

In case p = 0 we observe some nonsmooth displacements which, regarding the plastic zones 
([CT: 1 = ny), might be caused by a shear band like singularity. 

Although no direct comparisons with experiments were possible from the literature, the authors 
were adviced by engineers that the different phenomena for Q > 0 and Q = 0 are reasonable. 
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Fig. 3. Deformed meshes and plastic zones for Example 2. First row: system and loading and initial mesh. Second and 
last row: final meshes and plastic zones for Q > 0 resp. Q = 0. 

Similar to the first example we apply the finite element method in the second example to a 
bounded part of L2 near the hole where we might expect plastic zones and hence have to consider 
the nonlinear material behaviour. Our choice, shown in Fig. 3, was motivated by a rough previous 
finite element computation. The remaining part of 52 is expected to behave linearly and thus is 
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modelled using the boundary element method. The material constants are the same as above but the 
main difference is that the body is bounded here and included in the exterior frame which represents 
a Dirichlet boundary at the top and a homogeneous Neumann boundary at the three remaining sides. 
We stress that the mesh for the boundary element method is along the exterior frame and along 
the outer boundary of the finite element mesh. The final meshes were produced automatically by 
Algorithm (A) as shown in Fig. 3 where, caused by a different loading, the plasic zones are restricted 
to the lower corners of the hole. 

We present two alternative iteration schemes for solving the (nonlinear) discrete problem (28). 
The Picard-type iteration (35) did converge too slowly as shown in Table 1. There, G denotes the 
left hand side of (35) with u;-’ replaced by u;l. Therefore, we proceeded as indicated in Section 7 
and used Newton-Raphson’s method instead. In each step of the iteration, the parameter 6, which 
steers the regularization, has been divided by 50 in order to get as near to the exact discrete 
solution as possible, cf. Table 2. This shows the superior efficiency of the presented regularization 
technique. 

Table 1 
Picard iteration for Example 1 

v IlGll V IIGII 
1 0.64054909858001 6 0.50759329469558 
2 0.56715925862251 7 0.50482885662070 
3 0.53690978284427 8 0.50347864319758 
4 0.52094250303812 9 0.50300490011140 
5 0.51247594432732 10 0.50274840558972 

Table 2 
Newton-Raphson’s method for Example 1 

v 6 II Dy; (u;]) + d. (u;l, 4;;) - bll 

1 2.00 D-02 5.02748 D-01 
2 4.00 D-04 7.28313 D-01 
3 8.00 D-06 1.13009 D-01 
4 1.60 D-07 1.03294 D-02 
5 3.20 D-09 2.37536 D-04 
6 6.40 D-II 1.63663 D-07 
7 1.28 D-12 8.64827 D-14 

Appendix 

The regularization of 6 (as indicated in (30)) and depicted in Fig. 1 is analytically defined in this 
appendix. For 6 > 0 let x0 = (o~/~,u)*, x* =x0 - 6 and define the following coefficients: 

a = OY(7XO - 3x*1 

~~OX~‘*C?~ ’ 
b= 

rJyp** - 3x(&* - 34) 

32x5’* ki3 
9 

0 0 
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C= 
oyx*(6x; -x*x0 - x*~) cTyx*2(5x* - 9x0) 

1 6x5’283 3 d= 16~~~~8~ ' 0 0 

With p”(n) = 20ax3 + 12bx2 + 6cx + 2d the polynomial p’ is defined by p’(x) = %x4 + 4bx3 
2dx + e where e is choosen such that p/(x0) = #(x0). With this polynomial the function 

+ 3cx2 + 

P’(x*), x < x*, 

6;(x) = L P;$), x* < x < x0, 

2&’ 
x >, x0 

may be regarded as a regularization of I?‘. 19; is twice continously differentiable and converges locally 
uniformly to 19’ as 6 + 0. Finally we obtain 196 simply by integration, fig(x) = Ji 19:(c) d& and after 
setting 

e;(x) = j+%(x) + q, 
2P l+Fii 

we introduce the functional Fe” : X’ + R through 

F;(u) = I i-2 

e,“( IE~(u)~~) + qsr%(u) dx, 

which is now used in Section 6 instead of (32). 
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