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A POSTERIORI ERROR ESTIMATE FOR THE MIXED

FINITE ELEMENT METHOD

CARSTEN CARSTENSEN

Abstract. A computable error bound for mixed finite element methods is
established in the model case of the Poisson–problem to control the error in the
H(div,Ω) ×L2(Ω)–norm. The reliable and efficient a posteriori error estimate
applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-Douglas-
Fortin-Marini elements.

1. Mixed method for the Poisson problem

Mixed finite element methods are well-established in the numerical treatment of
partial differential equations as regards a priori error estimates to guarantee con-
vergence [BF]. In practical applications, a posteriori error control is at least of
the same importance to guarantee a reliable approximation. Moreover, a posteri-
ori error estimators indicate adaptive mesh-refinement criteria [EEHJ, V1] for an
efficient computation.

In this paper we establish an efficient and reliable error estimator for the model
example in the mixed finite element methods: Given f ∈ L2(Ω), the Poisson prob-
lem consists in finding a function u ∈ H1

0 (Ω) that satisfies

div(A∇u) + f = 0 in Ω.(1.1)

Here, A ∈ L∞(Ω;R2×2) is symmetric and uniformly elliptic, Ω is a convex bounded
domain in the plane with polygonal boundary Γ. The Lebesgue and Sobolev spaces
L2(Ω) and H1

0 (Ω) are defined as usual (e.g., as in [H, LM]). We assume below that
(1.1) is H2–regular which, according to Ω being convex, means certain regularity
on A (A the unit matrix as for the Laplace equation is clearly sufficient).

The mixed formulation is given by splitting (1.1) into two equations where u ∈
H1

0 (Ω) and p ∈ L2(Ω)2 are unknown and have to satisfy

div p+ f = 0 and p = A∇u in Ω.(1.2)

It is well-known that (1.2) has a solution (p, u) ∈ H(div,Ω)×L2(Ω), where, as usual,
H(div,Ω) := {q ∈ L2(Ω)2 : div q ∈ L2(Ω)} is endowed with the norm given by

‖q‖2H(div,Ω) :=

∫
Ω

(|q|2 + | div q|2) dx (q ∈ H(div,Ω)).
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The numerical approximation to (u, p) consists in prescribing finite dimensional sub-
spaces Lh and Mh of L2(Ω) and H(div,Ω), respectively, and computing (ph, uh) ∈
Mh × Lh that satisfies for all (qh, vh) ∈Mh × Lh∫

Ω
(A−1 · ph) · qh dx+

∫
Ω
uh · div qh dx = 0,∫

Ω
vh · div ph dx = −

∫
Ω
vh · f dx.

(1.3)

It is well-known that the discrete problem (1.3) has a unique solution if a discrete
inf–sup–condition holds for the discrete spaces Mh and Lh [BF] so we are interested
in controlling the error

ε := p− ph ∈ H(div,Ω) and e := u− uh ∈ L2(Ω).(1.4)

Moreover, if the discrete inf–sup–condition holds uniformly in h we have a constant
c1 > 0 such that

‖(ε, e)‖H(div,Ω)×L2(Ω) ≤ c1 · inf
(qh,vh)∈Mh×Lh

‖(p− qh, u− vh)‖H(div,Ω)×L2(Ω),(1.5)

i.e., the error is bounded from above and below by a constant times the best–
approximation error. We refer to [BF] for the setting, examples, proofs, and more
details. The Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-Douglas-Fortin-
Marini elements are also described in §3.1.

2. A posteriori error estimator

In the mixed finite element method, we consider a regular triangulation Th of Ω
satisfying the angle condition (cf. §4 for explanations) and define, for each T ∈ Th,
hT as the diameter of T , and, for any edge E of T , let J(ph · t) denote the jump
of ph · t across E with t being the tangential unit vector along E; hE denotes the
length of E. Then, define

η2
T := ‖f + div ph‖2L2(T ) + h2

T · ‖ curl(A−1ph)‖2L2(T )

+h2
T · min

vh∈Lh
‖A−1ph −∇hvh‖2L2(T ) + ‖h1/2

E J(A−1ph · t)‖2L2(∂T )

for any T ∈ Th and consider the sum of all element contributions

ηh := (
∑
T∈Th

η2
T )1/2.

It is the aim of this paper to establish the following a posteriori error estimate.

Theorem 2.1. For the Raviart–Thomas, the Brezzi-Douglas-Marini, or the Brezzi-
Douglas-Fortin-Marini elements there is a positive constant c1 which only depends
on A, Ω, and on the shape of the elements and their polynomial degree k, such that

‖(ε, e)‖H(div,Ω)×L2(Ω) ≤ c2 · ηh.(2.1)

Moreover, the reverse inequality holds as well provided that on each T ∈ Th,
A−1ph|T ∈ P` and ∇huh|T ∈ P`; Pk denotes the set of polynomials in two variables
of total degree at most k. (Again, A the unit matrix as for the Laplace equation is
clearly sufficient.)

Theorem 2.2. For the Raviart–Thomas, the Brezzi-Douglas-Marini, or the Brezzi-
Douglas-Fortin-Marini elements there is a positive constant c3 which only depends
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on A, Ω, and on the shape of the elements and the polynomial degrees k and `, such
that

c3 · ηh ≤ ‖(ε, e)‖H(div,Ω)×L2(Ω).(2.2)

The proofs of Theorems 2.1 and 2.2 will be given in §§4–6 under sharper but
more technical assumptions while we first precede with some remarks in §3.

3. Remarks

Some supplements are in order to comment on the results displayed in Theorems
2.1 and 2.2.

3.1. Examples for mixed finite elements. The examples mentioned in Theo-
rems 2.1 and 2.2 are briefly described for triangles T ∈ Th by some Dk(T ) ⊂ C(T )
andMk(T ) ⊂ C(T ) given in the following table where k ≥ 0 and RT indicates entries
for the Raviart–Thomas elements, BDM for the Brezzi-Douglas-Marini elements,
and BDFM for the Brezzi-Douglas-Fortin-Marini elements.

Element Mk(T ) Dk(T )
RT P2

k + x · Pk Pk
BDM P2

k+1 Pk
BDFM {q ∈ P2

k+1 : (q · n)|∂T ∈ Rk(∂T )} Pk

Here, Pk denotes polynomials of total degree at most k and Rk(∂T ) denotes
(not necessarily continuous) functions on ∂T which equal a polynomial of degree
at most k on each edge of T . With the above sets Dk(T ) and Mk(T ) we define

Lh := {vh ∈ L2(Ω) : ∀T ∈ Th vh|T ∈ Dk(T )},
Mh := {ph ∈ H(div,Ω) : ∀T ∈ Th vh|T ∈Mk(T )}.

For more information, in particular about other elements in Rn and about practical
implementations using multipliers, we refer to [BF].

3.2. Estimates in a weighted norm. The results in §§4–6 give the following
estimate with a different scaling in the equilibrium residual. Indeed, with h : Ω→
(0,∞) defined by h|T = hT on T ∈ Th and by h|E = hE on E ∈ Eh there holds

c4 · ηh,κ(ph, uh) ≤ ‖A−1/2ε ‖L2(Ω) + ‖hκ div ε ‖L2(Ω) + ‖ e ‖L2(Ω) ≤ c5 · ηh,κ(ph, uh)

where 0 ≤ κ ≤ 1 and (Eh denotes the set of edges in Th and Γh :=
⋃
Eh)

ηh,κ(ph, uh) := ‖hκ · (f + div ph)‖L2(Ω) + ‖h · curl(A−1ph)‖L2(Ω)

+ min
vh∈Lh

‖h · (A−1ph −∇hvh)‖L2(Ω) + ‖h1/2 · J(A−1ph · t)‖L2(Γh).

3.3. Estimates for the stress variables. The results in §§4–6 give the following
estimate for the stress variable p− ph, where 0 ≤ κ ≤ 1,

c6 · ηh,κ(ph) ≤ ‖A−1/2ε ‖L2(Ω) + ‖hκ div ε ‖L2(Ω) ≤ c7 · ηh,κ(ph),

ηh,κ(ph) := ‖hκ · (f + div ph)‖L2(Ω) + ‖h · curl(A−1ph)‖L2(Ω)

+‖h1/2 · J(A−1ph · t)‖L2(Γh).

We emphasize that this estimate holds also if (1.1) is not H2-regular, so Ω may be
an arbitrary bounded Lipschitz domain and Aij ∈ L∞(Ω) is sufficient.
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3.4. On the term A−1ph −∇hvh. In the definition of ηT , we may replace

h2
T · min

vh∈Lh
‖A−1ph −∇hvh‖2L2(T )

by its upper bound

h2
T · ‖A−1ph −∇huh‖2L2(T )

without losing reliability and efficiency. Indeed, we conclude from Lemma 6.3 in §6
that Theorem 2.2 remains valid for this modified (less sharp but possibly simpler)
estimator.

3.5. Other estimates for the displacements. The preceding estimates for the
stress variables and standard arguments in the theory of mixed finite element meth-
ods give a posteriori bounds for ΠLhe and u−u∗h where u∗h is the improved displace-
ment field taking Lagrange multipliers in a practical implementation into account.
Following the lines in [BF, p.186] we can verify that

‖ΠLhu− uh ‖L2(Ω) ≤ c8 · (‖h · A−1/2ε ‖L2(Ω) + ‖h · div ε ‖L2(Ω))

which proves the a posteriori error estimate, hmax := ‖h ‖L∞(Ω),

‖ΠLhu− uh ‖L2(Ω) ≤ c9 · hmax · ηh,1(ph).

Furthermore, let L1,NC
k := {vh ∈ L2(Ω) : ∀T ∈ Th ∀ψ ∈ Rk(∂T ) vh|T ∈ Pk ∧∫

∂T J(uh) · ψ ds = 0}, let u∗h ∈ L
1,NC
k denote the improved discrete displacement

field defined in [BF, p.187] and let ũh denote the L2(Ω)-best approximation to u in

L1,NC
k . Then, as shown in [BF, Eq. (3.13)],

‖ ũh − u∗h ‖L2(Ω) ≤ c10 · (‖h · ε ‖L2(Ω) + ‖ΠLhe ‖L2(Ω))

which results in the a posteriori error estimate

‖ ũh − u∗h ‖L2(Ω) ≤ c11 · hmax · ηh,1(ph).

3.6. Comments on the estimator by Braess and Verfürth. Braess and Ver-
fürth established a posteriori error estimates for mixed methods in [BV] involving
integration by parts in

∫
Ω
uh · div q dx (which appears, e.g., in (1.3)). Since uh

jumps across interelement boundaries those jumps count in their error indicator.
Braess and Verfürth designed an error estimator working in mesh-dependent norms
which is reliable and efficient in those norms but, somehow, is not efficient in the
natural norm of H(div,Ω)× L2(Ω), seemingly because the displacement variable is
overestimated in their mesh-dependent norm. In this paper, we outlaw any such
integration by parts (with one well-chosen exception, cf. (5.12) below) and so
jumps of displacements cannot arise at all. Instead, we emphasize a Helmholtz
decomposition and are led to the estimator ηh which is reliable and efficient in the
natural norm and avoids the saturation assumption that is important in [BV].

3.7. Comments on A. To estimate e in the proof of Theorem 2.1, we need that
(1.1) is H2-regular (see §4.2 below for details). Since Ω is convex, the condition
A ∈ C1,0(Ω) is sufficient for that (see, e.g., [G, Thm 3.2.1.2] for a proof). Moreover,
even some discontinuities are allowed, because we only need that the restriction u|T
of a solution u to an element T belongs to H2(T ) (cf., (4.2) below). The following
example proves that there exist problems (1.1) which are not H2-regular but satisfy
this assumption.
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Example 1. Let A(x) = ρ(x) · I2×2 (I2×2 the 2× 2-unit matrix), and ρ(x) > 0 is
piecewise constant (with polygonal lines of discontinuities), the possible singularities
of such transmission problems are understood and some of them lead to H2-regular
problems (see, e.g., [N, Sec. 2.4] and the references quoted therein). For example,
consider a square Ω := (0, 1)2 and halve it along a diagonal D := T1 ∩ T2 into two
(open) congruent triangles T1 and T2. Let ρ(x) = ρj for x ∈ Tj , j = 1, 2, for two
positive constants ρ1 6= ρ2.

Then any u ∈ H1
0 (Ω) with div(A∇u) ∈ L2(Ω) satisfies u|Tj ∈ H2(Tj) for j = 1, 2,

but (1.1) is not H2-regular.

Proof. The natural interface conditions along D show that u /∈ H2(Ω) (provided
the normal derivatives (and hence their jump accross D) are non-zero which is
generically the case). A careful study of the corner singularities tells us that u|Tj ∈
H2(Tj) for j = 1, 2. (See, e.g., [N, Example 2.4] for a proof of that — there, it
suffices to check that DD

2 (λ) = 0 and λ > 0 is possible only for 2 ≥ λ; cf., [N, page
102] for details and notation.)

In Theorem 2.2 we stated the condition that A−1ph is a polynomial on each
element (but may be discontinuous on interelement boundaries). In the examples
of §3.1, ph|T is a polynomial so that A−1 is required to be a polynomial too. The
analysis in §6 shows that this restriction can be weakened. Actually, A−1 has to be
approximated by some polynomial A−1

T for which we precede as in the proof given

below while some additional approximation error ‖A−1 −A−1
T ‖L∞(Ω) arises in the

bounds.

3.8. Adaptive algorithms. As in many contributions to self-adapting mesh-
refinements (see, e.g., [EEHJ, V1, V2, V3] and the references quoted therein),
based on an error estimator ηh we get an algorithm for efficient mesh-design: For
each mesh ThL with a Galerkin solution (phL , uhL) and local error estimators ηT ,
we refine T ∈ ThL (e.g., by halving its largest side) if (for example)

ηT ≥ 0.5 · max
T ′∈ThL

ηT ′ .

Then, further refinements to avoid hanging nodes lead to a new mesh ThL+1 from
which we start again.

4. Preliminaries

Theorem 2.1 holds under the following weaker assumptions on Th, A, on Lh ⊂
L2(Ω) and Mh ⊂ H(div,Ω). We emphasize that the Raviart–Thomas, Brezzi-
Douglas-Marini, and Brezzi-Douglas-Fortin-Marini elements satisfy all the assump-
tions in this section.

4.1. Assumptions on Ω. The bounded Lipschitz domain Ω is assumed to be
convex with a polygonal boundary. Depending only on Ω we have a constant
c12 > 0 such that, for all v ∈ H1(Ω) with integral mean v0, Poincaré’s inequality
reads

‖ v − v0 ‖2,Ω ≤ c12 · ‖∇v ‖2,Ω.(4.1)
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4.2. Assumptions on A. We assume that A ∈ L∞(Ω;R2×2
sym) is uniformly elliptic,

i.e., A(x) is a symmetric and positive definite 2×2-matrix, with eigenvalues λj(x) ∈
R satisfying 0 < cA ≤ λ1(x), λ2(x) ≤ CA for almost all x ∈ Ω. Then, by the Lax-
Milgram lemma, the operator

− div(A∇·) : H1
0 (Ω)→ H−1(Ω)

is invertible and the norm of the inverse is bounded by a constant c13 > 0 depending
on cA and c12. Moreover, since Ω is convex, A ∈ C1,0(Ω) implies that

− div(A∇·) : H1
0 (Ω) ∩H2(Ω)→ L2(Ω)

is invertible [G] and there is a constant c14 > 0 such that

‖ v ‖2,2,⋃Th ≤ c14 · ‖ div(A∇v) ‖2,Ω (v ∈ H1
0 (Ω) such that div(A∇v) ∈ L2(Ω)).

(4.2)

We emphasize that we only need an estimate on ‖ v ‖2,2,T for each T ∈ Th, i.e.,
the assumption on A could be weakened in the sense that only (4.2) is required
(cf., Example 1 where A is piecewise constant and satisfies (4.2) but (1.1) is not
H2-regular).

Finally, we need that A is elementwise smooth assuming that there exists a
constant c15 > 0 such that

max
i,j,k=1,2

‖ (∇hA)ijk ‖∞,⋃Th ≤ c15.(4.3)

4.3. Assumptions on Th. The triangulation Th is assumed to be regular in the
sense of [C] and satisfies the angle condition which means that there is a constant
c16 > 0 such that for all T ∈ Th

c−1
16 · h2

T ≤ |T | ≤ c16 · h2
T(4.4)

where |T | is the area of T . We define S0(Th) ⊂ L2(Ω) as the piecewise constant and
S1(Th) ⊂ H1(Ω) or S1

0(Th) ⊂ H1
0 (Ω) as continuous and piecewise affine functions;

piecewise is understood with respect to Th. We consider Clement’s interpolation
operator [Cl] rh : H1(Ω)→ S1(Th) which satisfies

‖ v − rhv ‖2,T ≤ c17 · hT · ‖ v ‖1,2,ωT
‖ v − rhv ‖2,E ≤ c18 · h1/2

E · ‖ v ‖1,2,ωE
(v ∈ H1

0 (Ω))(4.5)

for each T ∈ Th and E ∈ Eh, Eh being the set of element sides in Th. Here and
below, ‖ · ‖p,ω denotes the norm in Lp(ω) for ω ⊂ Ω as well as for some edge ω = E
while ‖ · ‖m,p,ω and | · |m,p,ω denote norm and semi-norm in Wm,p(ω), respectively;
in particular, we will occasionally write ‖ · ‖2 instead of ‖ · ‖2,Ω and Hm(ω) instead
of Wm,2(ω). With T ∈ Th and E ∈ Eh we associate neighbourhoods ωT and ωE

ωT :=
⋃
{T ′ ∈ Th : T ∩ T ′ 6= ∅} and ωE :=

⋃
{T ∈ Th : E ⊂ T}.

Then, the positive constants c17 and c18 only depend on c16. Moreover, let c19 be
the maximal number of elements in ωT which is h–independently bounded by the
angle condition (depending on c16). For all E ∈ Eh we fix one direction of a unit
normal on E pointing in the outside of Ω in case that E ⊂ Γ. With Γh :=

⋃
Eh we

define J : H1(
⋃
Th)→ L2(Γh), for E ⊂ Γh and v ∈ H1(

⋃
Th) by

J(v)|E := (v|T+)|E − (v|T−)|E if E = T+ ∩ T− (E ∈ Eh;T+, T− ∈ Th)
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and nE points from T+ into its neighbour element T−; while

J(v)|E := (v|T )|E if E = T ∩ Γ (E ∈ Eh;T ∈ Th).

We define Wm,p(
⋃
Th) := {v ∈ Lp(Ω) : ∀T ∈ Th v|T ∈ Wm,p(T )} and consider

local versions of the differential operators div,∇, curl (understood in the distri-
butional sense, i.e., in D′(Ω)), namely, div h, curl h : W 1,2(

⋃
Th)2 → L2(Ω) and

∇h : W 1,2(
⋃
Th)→ L2(Ω) defined such that, e.g.,

div hv|T := div(v|T ) in D′(T ) (T ∈ Th).

If there is no risk of confusion the local meshsize h is defined on both Ω and
Γh :=

⋃
Eh by h|T := hT for T ∈ Th and h|E := hE for E ∈ Eh, respectively.

4.4. Assumptions on Lh. We assume that Lh ⊂ H1(
⋃
Th) such that the L2(Ω)–

orthogonal projection ΠLh : L2(Ω)→ Lh satisfies

‖ v −ΠLhv ‖2,Ω ≤ c4 · ‖h · ∇hv ‖2,Ω (v ∈ H1(
⋃
Th)).(4.6)

For example, if S0(Th) ⊂ Lh, the Poincaré inequality (4.6) is satisfied with a positive
constant c20 which only depends on the shape of the elements.

Furthermore, for the lower bound (Theorem 2.2) we assume (∇huh)|T ∈ P2
` for

all T ∈ Th.

4.5. Assumptions on Mh. We assume that

S0(Th)2 ∩H(div,Ω) ⊂Mh ⊂ H1(
⋃
Th) ∩H(div,Ω) and divMh = Lh.(4.7)

Furthermore, in Theorem 2.2, we assume (A−1ph)|T ∈ P2
` for all T ∈ Th.

4.6. Assumptions on an interpolation operator Πh. We assume that there
exists an operator Πh : W →Mh where W = H(div,Ω)∩Ls(Ω)2 for some s > 2 as,
e.g., in [BF, §III.3], such that the following diagram commutes

W
div−→ L2(Ω)

Πh ↓ ↓ ΠLh

Mh
div−→ Lh

(4.8)

where ΠLh is the L2(Ω)–orthogonal projection. Let Id denote identity and let ⊥
denote L2(Ω)–orthogonality. Then, the commuting diagram property in (4.8) reads

div(Id−Πh)W ⊥ Lh.(4.9)

Further, we assume that the interpolant satisfies a local error estimate (note that
H1(

⋃
Th) ∩H(div,Ω) ⊂W )

‖h−1 · (Id−Πh)q ‖2 ≤ c21 · | q |1,2,⋃ Th (q ∈ H1(
⋃
Th) ∩H(div,Ω)).(4.10)

Finally, we assume that Πh approximates the normal components on element edges
such that we have, for any E ∈ Eh, for any vh ∈ Lh, and for all q ∈W ,∫

T

vh · (Id−Πh)q · nE dx = 0.(4.11)

We refer to [BF] for proofs, further explanations and explicit definitions of Πh in
the examples under consideration.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



472 CARSTEN CARSTENSEN

5. Proof of Theorem 2.1

Theorem 2.1 is a direct consequence of the following two lemmas and the fact
that − div ε = f + div ph. We recall that the local meshsize h is defined on Ω \ Γh
by h|T := hT for T ∈ Th and on Γh :=

⋃
Eh by h|E := hE for E ∈ Eh.

Lemma 5.1. For c22 := max{
√

8c12 · c18 · CA,
√

2c12 · c17 · c19 · CA, c20 · c−1
A } we

have

‖A−1/2ε ‖2,Ω ≤ c22 ·
(
‖h · curl h(A−1ph) ‖22,Ω

+‖h · (f + div ph) ‖22,Ω + ‖h1/2 · J(A−1/2ph · t) ‖22,Γh
)1/2

.

Proof. We consider a Helmholtz decomposition of A−1ph fixing α ∈ H1
0 (Ω) with

div(A∇α) = div ph in D′(Ω).(5.1)

Then, there is some β ∈ H1(Ω) satisfying
∫

Ω β dx = 0, Curlβ ⊥ ∇H1
0 (Ω), and

ph = A∇α+ Curlβ(5.2)

(⊥ denotes L2(Ω)-orthogonality). From (1.2) and (5.2) we obtain

ε = A∇z − Curlβ with z := u− α ∈ H1
0 (Ω)(5.3)

and hence the error decomposition∫
Ω

(A−1ε) · ε dx =

∫
Ω

(A∇z) · ∇z dx+

∫
Ω

(A−1 Curlβ) ·Curlβ dx.(5.4)

To estimate the first contribution of the right-hand side in (5.4) we integrate by
parts and utilize div ε ⊥ Lh (which follows from (1.2) and (1.3)). With (4.6), this
leads to ∫

Ω

(A∇z) · ∇z dx =

∫
Ω

∇z · ε dx = −
∫

Ω

z · div ε dx

= −
∫

Ω

(z −ΠLhz) · div ε dx ≤ c20 · c−1
A · ‖h · div ε ‖2 · ‖A1/2∇z ‖2.(5.5)

To estimate the second contribution to the right-hand side of (5.4) we define βh :=
rhβ ∈ S1(Th) ⊂ H1(Ω) utilizing Clement’s operator rh. Note that Curl hβh =
Curlβh ∈ S0(Th)2 ⊂ L∞(Ω)2 and Curlβh ⊥ ∇H1

0 (Ω), whence div Curlβh = 0, and

Curlβh ∈ H(div,Ω) ∩ L∞(Ω)2 ∩Mh

according to (4.7). Therefore, (5.3) and (1.2)–(1.3) show∫
Ω

(A−1 Curlβ) · Curlβh dx = −
∫

Ω

(A−1ε) ·Curlβh dx

=

∫
Ω

e · div Curlβh dx = 0.(5.6)

From the integration by parts formula∫
ω

(φ · ∂ψ
∂xj

+ ψ · ∂φ
∂xj

) dx =

∫
∂ω

ψ · φ · nj ds

(say, for φ, ψ ∈ H1(ω), j = 1, 2, n = (n1, n2)T ∈ R2 the exterior unit-normal to the
Lipschitz boundary ∂ω) we gain∫

ω

(ψ · Curlφ+ φ · curlψ) dx =

∫
∂ω

φ · (ψ · t) ds (φ, ψ1ψ2 ∈ H1(ω))(5.7)
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where t is tangential on ∂ω: t1 = −n2, t2 = n1, and where we differentiate between
curls involved as

curlψ =
∂ψ2

∂x1
− ∂ψ1

∂x2
and Curlφ = (− ∂φ

∂x2
,
∂φ

∂x1
)T .

Utilizing (5.6), (5.2), and (5.7) we infer (recall Γh =
⋃
Eh)∫

Ω

(A−1 Curlβ) · Curlβ dx =

∫
Ω

A−1ph ·Curl(β − βh) dx

= −
∫

Ω

(β − βh) · curl h(A−1ph) dx +

∫
Γh

J(A−1ph · t) · (β − βh) ds.

According to (4.5), and since the number of elements in ωT is bounded by c19,∫
Ω

(β − βh) · curl h(A−1ph) dx ≤ c17 · c19 · ‖h · curl h(A−1ph) ‖2 · ‖ β ‖1,2,Ω,∫
Γh

J(A−1ph · t) · (β − βh) ds ≤ 2c18 · ‖h1/2 · J(A−1ph · t) ‖2,Γh · ‖ β ‖1,2,Ω.

With Poincaré’s inequality (4.1) and ellipticity of A we deduce

‖ β ‖1,2,Ω ≤ c12 · ‖∇β ‖2,Ω = c12 · ‖ Curlβ ‖2,Ω ≤ c12 · CA · ‖A−1/2 Curlβ ‖2,Ω.

The above estimates verify∫
Ω

(A−1 Curlβ) ·Curlβ dx ≤ c23 · ‖A−1/2 Curlβ ‖2,Ω

·
(
‖h1/2 · J(A−1ph · t) ‖2,Γh + ‖h · curl h(A−1ph) ‖2

)
where c23 := c12 · CA · max{2c18, c17 · c19}. Together with (5.4) and (5.5) this
establishes

‖A−1/2ε ‖22 ≤
(
c220 · c−2

A · ‖h · div ε ‖22 + 2c223 · ‖h1/2 · J(A−1ph · t) ‖22,Γh
+2c223 · ‖h · curl h(A−1ph) ‖22

)1/2 · ‖A−1/2ε ‖2

and concludes the proof.

Lemma 5.2. For c24 := (c220 · c−2
A + c214 · c221 · (C2

A + 4c215))1/2 we have

‖ e ‖2,Ω ≤ c24 ·
(
‖h · (f + div ph) ‖22,Ω + min

vh∈Lh
‖h · (A−1ph −∇hvh) ‖22,Ω

)1/2
.

Proof. There exists exactly one η ∈ H1
0 (Ω) with div(A∇η) = e. According to (4.2),

we have η ∈ H1
0 (Ω) ∩H2(

⋃
Th) and

max{c−1
14 · ‖ η ‖2,2,⋃Th , c−1

13 · ‖ η ‖1,2,Ω, cA · | η |1,2,Ω} ≤ ‖ e ‖2,Ω.(5.8)
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By construction of η, integration by parts and with (1.2), (1.3) and (4.9) we infer,
for any vh ∈ Lh,

‖ e ‖22 =

∫
Ω

(u− uh) · div(A∇η) dx

= −
∫

Ω

p · ∇η dx−
∫

Ω

uh · div Πh(A∇η) dx

= −
∫

Ω

ε · ∇η dx−
∫

Ω

(A−1ph) · (Id−Πh)(A∇η) dx

=

∫
Ω

η · div ε dx+

∫
Ω

(∇hvh −A−1ph) · (Id−Πh)(A∇η) dx(5.9)

−
∫

Ω

∇hvh · (Id−Πh)(A∇η) dx.

Letting ηh := ΠLhη we get from (1.2), (1.3), and (4.6) that∫
Ω

η · div ε dx =

∫
Ω

(η − ηh) · div ε dx ≤ c20 · ‖∇hη ‖2,Ω · ‖h · div ε ‖2,Ω.(5.10)

The second term on the right-hand side of (5.9) is∫
Ω

(∇hvh −A−1ph) · (Id−Πh)(A∇η) dx

≤ ‖h · (∇hvh −A−1ph) ‖2 · ‖h−1 · (Id−Πh)(A∇η) ‖2.
According to (4.10) and letting c25 := c21 · (C2

A + 4c215)1/2 we obtain

‖h−1 · (Id−Πh)(A∇η) ‖2,Ω ≤ c21 · |A∇η |1,2,⋃Th ≤ c25 · ‖ η ‖2,2,⋃Th
and conclude ∫

Ω

(∇hvh −A−1ph) · (Id−Πh)(A∇η) dx

≤ c25 · ‖h · (∇hvh −A−1ph) ‖2 · ‖ η ‖2,2,⋃Th .(5.11)

The last term in (5.9) vanishes because the integral on Γh in the integration by
parts is zero by (4.11) and so∫

Ω

∇hvh · (Id−Πh)(A∇η) dx =

∫
Ω

vh · div(Id−Πh)(A∇η) dx = 0(5.12)

because of (4.9). Putting (5.9)—(5.12) together with (5.8) we have

‖ e ‖22 ≤ ‖ e ‖2 · (c20 · c−1
A · ‖h · div ε ‖2 + c14 · c25 · ‖h · (∇hvh −A−1ph) ‖2)

and conclude the proof with Cauchy’s inequality.

6. Proof of Theorem 2.2

As indicated by the additional hypothesis A−1ph|T ∈ P` and ∇huh|T ∈ P`, the
lower bound is proved by inverse inequalities — a technique already elaborated in
[V1, V2, V3]. The setting is simple: various weighted norms on polynomials on the
reference element are equivalent and that by transforming backwards and forwards
the equivalence constants of the current element only depend further on the change
of the shape (i.e. on c16) and the scaling (i.e. on hT ) during these transformations.

The proof of Theorem 2.2 is divided into Lemmas 6.1–6.3 where the positive
constants c26, . . . , c36 arising below only depend on the shape of the elements, their
maximal polynomial degree, and on `.
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Lemma 6.1. For each T ∈ Th and with β as defined in (5.2),

hT · ‖ curl(A−1ph) ‖2,T ≤ c26 · ‖A−1/2 Curlβ ‖2,T .(6.1)

Proof. Fixing ψT ∈ P3 with 0 ≤ ψT ≤ 1 = maxψ and zero boundary values on T
we learn (e.g., from [V1, Lemma 1.3], or [V2, Lemma 4.1], or [V3, Lemma 5.1])

c27 · ‖ curl(A−1ph) ‖22,T ≤ ‖ψ
1/2
T · curl(A−1ph) ‖22,T .(6.2)

Integration by parts, curl h(A−1ph) = − curlh(A−1ε), and (5.3) verify

‖ψ1/2
T · curl(A−1ph) ‖22,T =

∫
T

(A−1ε) ·Curl(ψT · curl(A−1ph)) dx

= −
∫
T

(A−1 Curlβ) · Curl(ψT · curl(A−1ph)) dx.(6.3)

Since ψT · curl(A−1ph) ∈ P`+2 with zero boundary values on T we have

|ψT · curl(A−1ph) |1,2,T ≤ c28 · h−1
T · ‖ψT · curl(A−1ph) ‖2,T(6.4)

(as, e.g., in [V2, Lemma 4.1] or [V3, Lemma 5.1]). Finally, Cauchy’s inequality,
(5.4), and (6.2)–(6.4) prove the lemma.

Lemma 6.2. For each E ∈ Eh,

‖h1/2 · J(A−1ph · t)‖L2(E) ≤ c29 · ‖A−1/2 Curlβ ‖2,ωE .(6.5)

Proof. Let ψE denote that continuous function satisfying 0 ≤ ψE ≤ 1 = maxψE
on ωE and ψE |T ∈ P2 for each T ∈ Th with T ⊂ ωE . Put σ := J(A−1ph · t)
which is a polynomial of degree ≤ k along E. As defined by backward and forward
transformation and by continuous extension on the reference element in [V2, V3],
there exists an extension operator P : C(E)→ C(ωE) satisfying Pσ|E = σ and

c30 · h1/2
E · ‖ σ ‖2,E ≤ ‖ψ1/2

E · Pσ ‖2,ωE ≤ c31 · h1/2
E · ‖ σ ‖2,E .(6.6)

Similar to (6.2) (again established in [V1, V2, V3]) we gain

c32 · ‖ σ ‖22,E ≤ ‖ψ
1/2
E · σ ‖22,E = −

∫
E

(ψE · Pσ) · J(A−1ε · t) ds.(6.7)

An application of (5.7) to each element T ⊂ ωE and of (5.3) result in

−
∫
E

(ψE · Pσ) · J(A−1ε · t) ds

= −
∫
ωE

(A−1ε) ·Curl(ψE · Pσ) dx−
∫
ωE

(ψE · Pσ) · curl(A−1ε) dx

=

∫
ωE

(A−1 Curlβ) · Curl(ψE · Pσ) dx+

∫
ωE

(ψE · Pσ) · curl(A−1ph) dx

≤ ‖A−1 Curlβ ‖2,ωE · |ψE · Pσ |1,2,ωE + ‖ψE · Pσ ‖2,ωE · ‖ curl(A−1ph) ‖2,ωE .
Using (6.1) and (6.6) we infer

−
∫
E

(ψE · Pσ) · J(A−1ε · t) ds ≤ ‖A−1 Curlβ ‖2,ωE · |ψE · Pσ |1,2,ωE(6.8)

+c26 · c31 · h−1/2
E · ‖ σ ‖2,E · ‖A−1/2 Curlβ ‖2,ωE .

Since ψE ·Pσ is a certain extension of a polynomial it follows as an inverse inequality

|ψE · Pσ |1,2,ωE ≤ c33 · h−1
E · ‖ψE · Pσ ‖2,ωE
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(see, e.g., [V2, p.76] or [V3, Eq.(5.6)]). With (6.6), this proves

|ψE · Pσ |1,2,ωE ≤ c31 · c33 · h−1/2
E · ‖ σ ‖2,E.(6.9)

After this, the lemma follows from (6.7)–(6.9).

Lemma 6.3. For each T ∈ Th,

hT · ‖A−1ph −∇huh ‖2,T ≤ c34 ·
(
‖ e ‖2,T + hT · ‖A−1/2ε ‖2,T

)
.(6.10)

Proof. As in (6.2), there holds

c35 · ‖A−1ph −∇uh ‖22,T ≤ ‖ψ
1/2
T · (A−1ph −∇uh) ‖22,T(6.11)

and integration by parts gives

‖ψ1/2
T · (A−1ph −∇uh) ‖22,T

(6.12)

= −
∫
T

ψT ·A−1ε · (A−1ph −∇uh) dx−
∫
T

e · div(ψT · (A−1ph −∇uh)) dx

≤ ‖A−1ε ‖2,T · ‖ψT · (A−1ph −∇uh) ‖2,T + ‖ e ‖2,T · |ψT · (A−1ph −∇uh) |1,2,T .
As in (6.4), we deduce

|ψT · (A−1ph −∇uh) |1,2,T ≤ c36 · h−1
T · ‖ψT · (A−1ph −∇uh) ‖2,T(6.13)

and, finally, conclude the lemma from (6.11)–(6.13).

The lower bound in Theorem 2.2 is a direct consequence of Lemmas 6.1–6.3 and
the (global) error decomposition (5.4).
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