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AN A POSTERIORI ERROR ESTIMATE FOR A

FIRST-KIND INTEGRAL EQUATION

CARSTEN CARSTENSEN

Abstract. In this paper we present a new a posteriori error estimate for the
boundary element method applied to an integral equation of the first kind. The
estimate is local and sharp for quasi-uniform meshes and so improves earlier
work of ours. The mesh-dependence of the constants is analyzed and shown to
be weaker than expected from our previous work. Besides the Galerkin bound-
ary element method, the collocation method and the qualocation method are
considered. A numerical example is given involving an adaptive feedback al-
gorithm.

1. Introduction

The numerical treatment of an integral equation of the first kind via an adaptive
scheme is studied in [4, 7, 8, 9, 14, 15, 18, 19, 24, 25]. In this paper we sharpen
results of [4, 7, 8, 9] and treat collocation and qualocation methods for the first
time.

As a model example, we consider Symm’s integral equation, which is equivalently
related to the interior or exterior Dirichlet problem for the Laplacian in a bounded
two-dimensional Lipschitz domain Ω with boundary ∂Ω of transfinite diameter 6= 1
and Γ ⊆ ∂Ω: Given f find φ with

− 1

π

∫
Γ

φ(y) log |x− y|dsy = f(x) (x ∈ Γ).(1.1)

A Galerkin discretization, a collocation method or a qualocation method provides
us with some φh and a partition π = {Γ1, . . . ,ΓN} of Γ in (so-called) elements
Γ1, . . . ,ΓN with the property that the residual R,

R(x) := f(x) +
1

π

∫
Γ

φh(y) log |x− y|dsy (x ∈ Γ),(1.2)

has at least one zero in each element Γj .
The aim of this paper is to prove that this information is sufficient for an a pos-

teriori error estimate

‖φ− φh ‖H−α(Γ) ≤ c(α, π) ·
( N∑
j=1

h2α
j · ‖

∂

∂s
R ‖2L2(Γj)

)1/2

,(1.3)
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140 CARSTEN CARSTENSEN

where prime or ∂
∂s denotes the derivative along Γ with respect to the arc length.

The constant c(α, π) depends on the norm (i.e., on α) and on the mesh π. The
mesh-dependence is very weak,

c(α, π) :=

{
Cα if α 6= 1/2,

C1/2 · (log(1 + κ))1/2 if α = 1/2,
(1.4)

where 0 ≤ α ≤ 1, κ := max{hj/hk : Γj is a neighbor of Γk}, and Cα is a universal
constant depending on α only.

We show that this dependence of κ for α = 1
2 in (1.4) is sharp. We remark

that the reverse inequality of (1.3) (with a different constant C) can be proved for
uniform grids as in [5].

An outline of this paper is as follows. In §2 we present an estimate as our main
result in Theorem 1. We report on some applications in §3, mainly for Symm’s
integral equation, but point to other first-kind integral equations as well. A numer-
ical example for the collocation method applied to Symm’s integral equation from
[14] is presented in §4, where we consider an adaptive mesh-refinement procedure as
well. A further important application to the adaptive coupling of boundary element
methods and finite element methods will appear in [6].

2. An estimate

We define the Sobolev space Hα(Γ) for an open or closed arc Γ. Let Ω be a

bounded Lipschitz domain with (closed) boundary Γ̂ = ∂Ω. The norm in H1(Γ̂) is

‖ v ‖2
H1(Γ̂)

= ‖ v ‖2
L2(Γ̂)

+ ‖ v′ ‖2
L2(Γ̂)

(prime denotes derivative with respect to the arc length). Then, we define Hα(Γ̂)

by (complex) interpolation of H1(Γ̂) and L2(Γ̂), 0 ≤ α ≤ 1 (cf., e.g., [3]).

Remark 1. Equivalently, Hα(Γ̂) is the trace space

Hα(Γ̂) := {v|Γ̂ : v ∈ Hα+1/2(R2)} (α > 0)

of Hα+1/2(R2) defined as the standard Sobolev space [16].

For α = 0 we define H0(Γ̂) = L2(Γ̂) and extend the scalar product in L2(Γ̂) to

the duality pairing 〈· , ·〉 in Hα(Γ̂) and H−α(Γ̂):

Hα(Γ̂) := (H−α(Γ̂))∗ (α < 0),

with ∗ denoting the dual space.
Let γ̂ : R→ Γ̂ be a periodic arc length parameterization of Γ̂ with length L̂. A

subarc ω of Γ̂ is defined by a < b, b− a < L̂, as the range of γ̂|[a,b]. In particular,
if Γ is an open arc, we assume γ := γ̂|[0,L] to be an arc length parameterization of
Γ. For any subarc ω,

Hα(ω) := {v|ω : v ∈ Hα(Γ̂)},
where the norm of v ∈ Hα(ω) is defined as the minimal norm of an extension, i.e.,

‖ v ‖Hα(ω) := inf{‖ v̂ ‖Hα(Γ̂) : v̂ ∈ Hα(Γ̂) with v̂|Γ = v}.

Note that functions in H1(ω) are absolutely continuous (on ω) and their derivative
(with respect to the arc length) belongs to L2(ω).

A mesh π = {Γ1, . . . ,ΓN} is defined as a partition of Γ in elements Γ1, . . . ,ΓN
such that we have a partition of the parameter interval 0 = x0 < x1 < · · · < xN = L
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A POSTERIORI ERROR ESTIMATE FOR INTEGRAL EQUATION 141

with Γj being the range of [xj−1, xj ] under the mapping γ. Let hj denote the
length of Γj . If Γ is an open arc, then we further assume that the length of the

complementary arc Γ̂ \ Γ, that is, L̂− L, is greater than h1 + hN .

Theorem 1. Assume that f ∈ H1(Γ) has at least one zero in each of the elements
in the mesh π. Then, for 0 ≤ α ≤ 1 with c(α, π) given in (1.4),

‖ f ‖Hα(Γ) ≤ c(α, π)
( N∑
j=1

h
2(1−α)
j · ‖ ∂

∂s
f ‖2L2(Γj)

)1/2

.(2.1)

The proof relies on a local interpolation as in [8] and the following lemmas.

Lemma 1 ([14, 17, 21]). Let f1, . . . , fn ∈ Hα(Γ̂), 0 ≤ α ≤ 1, such that fj · fk = 0
on Γ whenever 1 ≤ j < k ≤ n. Then,

‖
n∑
j=1

fj ‖2Hα(Γ̂)
≤ C1 ·

n∑
j=1

‖ fj ‖2Hα(Γ̂)
.(2.2)

The constant C1 depends on Γ but does not depend on fj or on n.

Remark 2. The lemma is proved by von Petersdorff in [17], where Hα(Γ̂) is defined
by complex interpolation (cf., e.g., [3]) with C1 = 1 and for suppfj a Lipschitz
domain. The lemma is used by Stephan and Suri in [21] with C1 = C, where

Hα(Γ̂) is defined by real interpolation. Faermann studied the assertion and its

reverse inequality [14] and she derived some constant C1 explicitly in case Hα(Γ̂) is
regarded as a manifold (transforming the norm of Hα(R) in the parameter interval

to the manifold). — As is well known, all the abovementioned definitions of Hα(Γ̂)
define the same set of functions and equivalent norms [16]. Thus, the lemma holds
in all cases, but, in general, with a different constant C1. Here, in case of complex
interpolation, C1 = 1.

Remark 3. We recall the interpolation estimate: For all f ∈ H1(Γ) and 0 ≤ α ≤ 1,

‖ f ‖Hα(Γ) ≤ C2 · ‖ f ‖1−αL2(Γ) · ‖ f ‖
α
H1(Γ).(2.3)

The constant C2 depends certainly on the domain and on the interpolation; for
complex interpolation, C2 = 1.

Remark 4. An equivalent norm in Hα(R) is given by the Sobolev-Slobodeckij norm
| · |α defined by

|f |2α := ‖ f ‖2L2(R) +

∫
R

∫
R

|f(s)− f(t)|2
|s− t|1+2α

ds dt (f ∈ Hα(R)).(2.4)

A central role in the proof of Theorem 1 is played by hat functions ηx,y,z ∈ H1(R)
defined, for x < y < z, by

ηx,y,z(t) :=


0 if t ≤ x,
t−x
y−x if x ≤ t ≤ y,
z−t
z−y if y ≤ t ≤ z,
0 if t ≥ z

(t ∈ R).(2.5)

We essentially make use of the Sobolev-Slobodeckij norm, defined in (2.4), of the
hat functions.
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Lemma 2. For 0 ≤ α ≤ 1 there is a constant Cα > 0 such that for all x < y < z,

|ηx,y,z|α ≤
{

Cα · (|y − x|1−2α + |z − y|1−2α)1/2 if α 6= 1/2,

C1/2 ·
(

log(1 + max{ |z−y||x−y| ,
|x−y|
|z−y|})

)1/2

if α = 1/2.
(2.6)

This lemma is possibly well known; a proof is sketched at the end of this section
for completeness.

Proof of Theorem 1. Since f has a zero zj in Γj , the fundamental theorem of cal-
culus implies, for each z ∈ Γj ,

|f(z)| = |
∫ z

zj

f ′(ζ) dsζ | ≤ ‖ f ′ ‖L1(Γj) ≤
√
hj‖ f ′ ‖L2(Γj),(2.7)

where we used Cauchy’s inequality in the last step. Hence, if yj := γ(xj) ∈ Γj−1∩Γj
and fj := f(yj),

|fj| ≤ min{
√
hj−1‖ f ′ ‖L2(Γj−1),

√
hj‖ f ′ ‖L2(Γj)}.(2.8)

Similarly, we infer from (2.7) that

‖ f ‖L2(Γj) ≤ hj‖ f ′ ‖L2(Γj).(2.9)

First, we treat the case Γ closed (hence equal to Γ̂) and then deduce the second
case from that. Let y0 = yN , yN+1 := y1, xN+1 := L + h1, and, for j = 1, . . . , N
and z ∈ Γ, define the hat function

ηj(z) := ηxj−1,xj ,xj+1(γ−1(z)).(2.10)

The norm in Hα(Γ) and the norm |f ◦ γ−1|α, with | · |α as in (2.4), are equivalent.
Therefore, Lemma 2 leads to

‖ηj‖Hα(Γ) ≤ c(α, π) · (h1−2α
j−1 + h1−2α

j )1/2,(2.11)

where c(α, π) is given in (1.4). Next we split f into three parts, f = r+godd +geven,

geven :=
N∑

j=1, j even

fj · ηj and godd :=
N∑

j=1, j odd

fj · ηj ;(2.12)

r := f − godd − geven. We remark that r has zeros y1, . . . , yN and godd has ze-
ros y0, y2, . . . , while geven has zeros y1, y3, . . . . We may apply Lemma 1 to r by
considering rj defined by rj := r on Γj and rj := 0 on Γ \ Γj . By construction,
rj is continuous at yj−1 and yj and is piecewise an absolutely continuous func-
tion. Furthermore, the derivative r′j belongs to L2(Γ), so that rj belongs to H1(Γ).
According to Lemma 1,

‖ r ‖2Hα(Γ) ≤
N∑
j=1

‖ rj ‖2Hα(Γ) ≤
N∑
j=1

‖ r ‖2(1−α)
L2(Γj)

‖ r ‖2αH1(Γj)
,(2.13)

where we used (2.3) and that rj is zero outside Γj . Since r vanishes at the endpoints
of Γj , we find, as in (2.9),

‖ r ‖L2(Γj) ≤ hj‖ r′ ‖L2(Γj).(2.14)

By definition of r we have r = f − fj−1 · ηj−1 − fj · ηj on Γj . Thus, by the triangle

inequality and by ‖ η′j−1 ‖L2(Γj) = ‖ η′j ‖L2(Γj) = h
−1/2
j ,

‖ r′ ‖L2(Γj) ≤ ‖ f ′ ‖L2(Γj) + h
−1/2
j |fj−1|+ h

−1/2
j |fj | ≤ 3‖ f ′ ‖L2(Γj)(2.15)
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because of (2.8). By (2.13)–(2.15),

‖ r ‖2Hα(Γ) ≤ 9
N∑
j=1

h
2(1−α)
j (1 + h2

j)
α‖ f ′ ‖2L2(Γj)

.(2.16)

Arguing for godd and geven as in (2.13) we conclude from Lemma 1 that

‖ geven ‖2Hα(Γ) ≤
N∑

j=1,j even

|fj|2 · ‖ ηj ‖2Hα(Γ)

and an analogous estimate for godd. Combining the two estimates and using (2.8)
and (2.11), we finally derive

‖ geven ‖2Hα(Γ) + ‖ godd ‖2Hα(Γ) ≤ 2c(α, π)2
N∑
j=1

h2−2α
j ‖ f ′ ‖2L2(Γj)

.(2.17)

According to the triangle inequality, we get, for f = r + godd + geven, from (2.16)
and (2.17), that

‖ f ‖Hα(Γ) ≤ 6(1 + c(α, π))
( N∑
j=1

(1 + h2
j)
αh2−2α

j ‖ f ′ ‖2L2(Γj)

)1/2

.(2.18)

This proves the theorem in case Γ is a closed arc.
It remains to consider the case that Γ is an open arc. Then, the norm of f is

defined by extension such that we define an upper bound of ‖ f ‖Hα(Γ) if we extend

f to f̂ ∈ H1(Γ̂) by reflection at the endpoints of Γ, i.e.,

f̂(γ̂(s)) := f(γ̂(−s)) if −x∗1 ≤ s ≤ 0,

f̂(γ̂(s)) := f(γ̂(L− s)) if L ≤ s ≤ 2L− x∗N ,

where γ(x∗j ) is a zero of f in Γj . Hence, we extend f̂ by zero outside of Γ∗ :=

γ̂[−x∗1, 2L−x∗N ]. Note that Γ∗ is an open subarc of Γ̂ because of L̂−L > h1 + hN .

Therefore, f̂ belongs to H1(Γ̂) and has zeros in each of the elements

Γ0 := γ̂[−h1, 0],Γ1, . . . ,ΓN ,ΓN+1 := γ̂[L,L+ hN ],ΓN+2 := Γ̂ \ Γ∗.(2.19)

In other words, we have a partition of the closed arc Γ̂ and a function f̂ in Γ̂.
Therefore, we may apply the proven first case of the theorem and obtain an estimate
like (2.1); actually it is (2.1) when we add contributions of the element Γ0 (which is
smaller than the contribution of Γ1), of ΓN+1 (which is smaller than the contribution

of ΓN ) and of ΓN+2 (which is zero). Thus, ‖ f ‖Hα(Γ) ≤ ‖ f̂ ‖Hα(Γ̂) is bounded by

twice (2.1). It remains to consider the case α = 1/2, where a different κ in the

new mesh (2.19) on Γ̂ might cause another constant. A closer look at the above
arguments shows that the hat functions at the endpoints of Γ∗ do not appear
because f̂ vanishes there. Consequently, the norms of the related hat functions are
not involved; we in fact may consider the same constant c(α, π) in the new situation
(2.19). This concludes the proof of Theorem 1 in the second case.

Remark 5. We stress that (2.8) and (2.9) imply (2.1), so the condition on the
zeros of f is needed to ensure (2.8) and (2.9) only. Thus, Theorem 1 can be
generalized, replacing the condition on the zeros of f by the inequalities (2.8) and
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(2.9). Moreover, assuming weaker forms of (2.8) and (2.9), we get a (weaker)
estimate of the form (2.1) following the arguments in the proof of Theorem 1.

We conclude this section with some remarks on the proof of Lemma 2.

Proof of Lemma 2. It is sufficient to consider x = −a, y = 0, and z = b with
a, b > 0, and η := η−a,0,b. Since ‖ η ‖L2(−∞,∞) = (a + b)/3, the proof relies on a
direct computation of the integral

I :=

∫ +∞

−∞

∫ +∞

−∞

|η(s)− η(t)|2
|s− t|1+2α

ds dt.

The domain of integration (−∞,∞) is split into four parts (−∞,−a), (−a, 0), (0, b),
and (b,∞), according to the piecewise definition of η. Each of these integrals is an
analytic function which can be computed by hand.

A (laborious) Maple calculation of the resulting 12 nonzero contributions for
α = 1/2 reveals

I = (1 +
b

a
) · log(1 +

a

b
) + (1 +

a

b
) · log(1 +

b

a
) (α = 1/2).(2.20)

Define k := max{ab ,
b
a}. Then, (2.20) shows

I ≤ 2(1 + 1/k) · log(1 + k) ≤ 4 · log(1 + k),

which proves the assertion in Lemma 2 for α = 1/2.
We report on the case α 6= 1/2, 0 < α < 1, in the sequel. The abovementioned

12 integrals can be transformed into four types of integrals I1, . . . , I4 which are
estimated below, where the constants C1, . . . , C4 depend only on α 6= 1/2 but not
on a or b. The first type of integral is

I1 :=

∫ ∞
a

∫ a

0

|1− x/a|2
|x− y|1+2α

dx dy = a1−2α

∫ ∞
1

∫ 1

0

|1− x|2
|x− y|1+2α

dx dy = a1−2α · C1,

where C1 :=
∫∞

1

∫ 1

0
|1−x|2
|x−y|1+2α dx dy ≤ 1/(2α(1 − 2α)2) < ∞. The second type,

obtained, e.g., after the substitution of x into −x, is

I2 :=

∫ ∞
a

∫ b

0

|1− x/b|2
|x+ y|1+2α

dx dy =: I2a + I2b

with

I2a :=

∫ ∞
b

∫ b

0

|1− x/b|2
|x+ y|1+2α

dx dy = b1−2α

∫ ∞
1

∫ 1

0

|1− x|2
|x+ y|1+2α

dx dy ≤ C2b
1−2α,

where C2 :=
∫∞

1

∫ 1

0
dx dy

|x+y|1+2α ≤ 2/(α|1− 2α|) <∞. The second contribution is, for

a < b only,

I2b :=

∫ b

a

∫ b

0

|1− x/b|2
|x+ y|1+2α

dx dy ≤
∫ ∞
a

∫ a

0

|1− x/a|2
|x+ y|1+2α

dx dy

+

∫ b

a

∫ b

a

dx dy

|x+ y|1+2α
dx dy ≤ a1−2αC2 +

1

2α|1− 2α| (a
1−2α + b1−2α).

In the last term we used
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∫ b

a

∫ b

a

dx dy

|x+ y|1+2α
dx dy ≤


b1−2α

2α(1−2α) if 1 > 2α,

a1−2α

α(2α−1) if 1 < 2α.

Altogether,

I2 ≤ (C2 + (α|1− 2α|)−1) · (a1−2α + b1−2α).

The third type of integral is

I3 :=

∫ a

0

∫ a

0

|x/a− y/a|2
|x− y|1+2α

dx dy = a1−2αC4,

where C4 :=
∫ 1

0

∫ 1

0 |x− y|
1−2α dx dy ≤ 2/(1− α) <∞.

The remaining contribution is, essentially,

I4 :=

∫ a

0

∫ b

0

|x/b− y/a|2
|x+ y|1+2α

dx dy =: I4a + I4b.

We may, and will, assume without loss of generality that a ≤ b. Then,

I4a =

∫ a

0

∫ a

0

|x/b− y/a|2
|x+ y|1+2α

dx dy = a1−2α ·
∫ 1

0

∫ 1

0

|x− y · a/b|2
|x+ y|1+2α

dx dy

= a1−2α ·
∫ 1

0

∫ y+1

y

(z − y − y · a/b)2 · z−1−2α dx dy

≤ a1−2α ·
∫ 1

0

∫ y+1

y

z1−2α dx dy + a1−2α · (a/b)2

∫ 1

0

∫ y+1

y

y2 · z−1−2α dx dy

≤ a1−2α · (2/(1− α) + 1/(2α))

and

I4b =

∫ b

a

∫ a

0

|x/b− y/a|2
|x+ y|1+2α

dx dy ≤ a1−2α

∫ ∞
1

∫ 1

0

dx dy

|x+ y|1+2α
≤ a1−2αC2.

Altogether,

I4 ≤ a1−2α · (C2 + 2/(1− α) + 1/(2α)).

To summarize, one can find the claimed estimate by dealing with 12 nonzero inte-
grals which are transformed into four types I1, . . . , I4 and estimated as above. In
this way, one proves the lemma.

Remark 6. Considering a hat function ηj as in the proof of Theorem 1, one verifies
that the mesh-dependence in c(α, π) is sharp.

3. Applications

Assume A is a pseudodifferential operator of order α ∈ R on the closed arc Γ.
Suppose there exists some s ∈ R with 0 ≤ s ≤ 1 such that

A : Hs+α(Γ)→ Hs(Γ) is linear, bounded, injective, surjective.(3.1)

Hence, for f ∈ Hs(Γ) there exists a unique solution u ∈ Hs+α(Γ) of

Au = f.(3.2)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



146 CARSTEN CARSTENSEN

Assume we are given a mesh π = {Γ1, . . . ,ΓN} on Γ and a function uh ∈ Hs+α(Γ)
with the property that the residual R := Auh− f belongs to H1(Γ) and that R has
a zero on each element Γj . Then, according to Theorem 1,

‖ u− uh ‖Hs+α(Γ) ≤ c(s, π) · ‖h1−s ∂

∂s
R ‖L2(Γ).(3.3)

Here, h is considered as the piecewise constant function with h|Γj = hj. (For
a proof of (3.3) notice that A−1 is bounded, say by CA−1 , owing to the inverse
operator theorem, and so ‖ u− uh ‖Hs+α(Γ) ≤ CA−1‖R ‖Hs(Γ). Thus, (3.3) follows
from Theorem 1.)

In the sequel, we consider a few examples where (3.3) holds. The first model case
is the single-layer potential operator A = V , V φ defined as the left-hand side in
(1.1). (We consider φ = u and φh = uh in this section for A = V to unify notation.)
The condition (3.1) is satisfied with s = −1/2, α = −1 provided the capacity of
Γ is not equal to 1 (cf., e.g., [13, 22, 20, 23]; sufficient is, e.g., that Ω is included
in a unit disc, and hence this is achievable by scaling of the domain). By [12],
(3.1) is actually true for any s in the unit interval, even for a Lipschitz boundary
Γ. Moreover, if f ∈ H1(Γ) and uh ∈ L2(Γ), then R ∈ H1(Γ). (R ∈ H1/2+ε(Γ) for
some ε > 0 would be sufficient.) So it remains to study why the residual R has a
zero on each element.

Example 1 (Galerkin method I: discontinuous trial functions). Assume that Sh is
a finite-dimensional subspace of L2(Γ) such that, for any element Γj , we have at
least one element ηj ∈ Sh which satisfies

ηj > 0 on Γj and ηj = 0 on Γ \ Γj (1 ≤ j ≤ N).(3.4)

(In practical examples Sh is some spline space such that ηj = 1 on Γj , η = 0 on
Γ \ Γj , belongs to Sh.)

Then, the Galerkin solution uh ∈ L2(Γ) satisfies∫
Γ

(Auh − f)wh ds = 0 for all wh ∈ Sh,(3.5)

and hence (3.3). (For a proof notice that, by (3.5), the integral of R · ηj is zero. By
(3.4), the continuous function R has a zero on Γj .)

Example 2 (Galerkin method II: continuous trial functions). In case of continu-
ous trial functions, we may fail to find ηj satisfying (3.4). (For example, in
case Sh = S1

π(Γ), the continuous piecewise linear splines, the hat functions are
supported on two neighboring elements.) Therefore, we assume in this example
that Sh includes nonnegative functions η1, . . . , ηJ and that there exists a mesh
π̂ = {Γ̂1, . . . , Γ̂J} with supp ηj ⊆ Γ̂j ⊂ Γ for j = 1, . . . , J . As in the previous
example, we conclude from (3.5) that R has a zero on each element in π̂, and so
Theorem 1 leads to

‖ u− uh ‖Hs+α(Γ) ≤ c(s, π̂) ·
( J∑
j=1

ĥ
2(1−s)
j · ‖ ∂

∂s
R ‖2

L2(Γ̂j)

)1/2

.(3.6)

To obtain the estimate (3.3), we further suppose that at most d elements of π are
needed to cover one element of π̂ and that conversely each element of π̂ contains at
least one element of π. Then, for all Γ̂j ∈ π̂ and Γk ∈ π with Γk ⊂ Γ̂j there holds
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hk ≤ ĥj ≤ d · κd−1 · hk. This and (3.6) prove the estimate (3.3) with replacing the
constant c(s, π) by

Cs · d1−s · κd(1−s) if s 6= 1/2 and C1/2 · d1/2 · κd/2 · (log(1 + d · κd))1/2 if s = 1/2.

(3.7)

To illustrate this example, we consider Sh = S1
π(Γ) and define a coarser mesh π̂ by

J := bN/2c and Γ̂j := Γ2j−1 ∪ Γ2j for j = {1, . . . , J − 1} or for j = J if N is even,

and otherwise Γ̂J :=
⋃
k=J,J−1,J−2 Γk. Thus, d = 2 if N is even, and d = 3 if N is

odd. Finally, we stress that similar constructions are also possible for higher-order
spline functions, even with higher smoothness properties.

Example 3 (Qualocation method). As in Example 1, let Sh satisfy (3.4). Then,
the qualocation method determines uh ∈ L2(Γ) with

N∑
j=1

kj∑
i=1

ωij · (Auh − f)(xij) · wh(xij) = 0 for all wh ∈ Sh,(3.8)

where xij are kj simple nodes on Γj and ωij are positive weights. The condition
(3.8) is simply a numerical approximation of the Galerkin condition (3.5) by some
quadrature rules which are properly developed for integral equations in [11]. Since
the weights are positive, (3.8) implies that, for a fixed element Γj , some values of
R(xij) are ≥ 0 and some are ≤ 0. By continuity of R, R has a zero on Γj , thus
(3.3) holds.

In case (3.4) is violated but there exist nonnegative ansatz functions with a larger
support, we can proceed as in Example 2 and obtain either estimate for a coarser
mesh π̂ or (3.3) with larger constants as in (3.7).

Example 4 (Collocation method). In the notation of Example 3, (3.8) is a col-
location method if kj = 1, ωj = 1, i.e., if the residual R is zero at a given node
x1j ∈ Γj. Hence (even if (3.4) is not satisfied), (3.3) holds.

We remark that, even in the case of midpoint collocation on polygons (Sh the
piecewise constants and x1j is the midpoint of Γj), an a priori error estimate in
Hs+α(Γ) seems unknown; only a tricky convergence result [10] in mesh-dependent
norms (equivalent to Sobolev norms for uniform meshes) serves as a motivation to
apply a low-order collocation method.

Remark 7. The Arnold-Wendland lemma [1] is used to construct a posteriori er-
ror estimates for the collocation method in [14]. Hence, discontinuous piecewise
constant splines as in Example 4 are excluded in [14].

The second model case is the hypersingular integral equation, equivalently re-
lated to the Neumann problem for the Laplacian,

Wu(x) = f(x) (x ∈ Γ),(3.9)

where the hypersingular operator W : Hs(Γ)→ Hs−1(Γ), defined by

Wv(x) := − 1

π

∂

∂nx

∫
Γ

v(y)
∂

∂ny
log |x− y|dsy,(3.10)

is linear, bounded, symmetric and a Fredholm operator of index zero [12]. The

operator A = W is positive definite between H
1/2
0 (Γ) and H

−1/2
0 (Γ),

Hs
0(Γ) := {v ∈ Hs(Γ) :

∫
Γ

v ds = 0} ≡ Hs(Γ)/R.(3.11)
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From [12], (3.1) is true for α = 1 and any s with −1 ≤ s ≤ 0. Hence, with a little
modification, we are in the situation (3.1) and (3.2).

Given a mesh π, let S1
π(Γ) be the space of continuous functions, with support in

Γ, which are a polynomial of degree ≤ 1 on each element.

Theorem 2. Let Γ be an open or closed arc as in §2. If f ∈ L2(Γ) is L2(Γ)-
orthogonal to S1

π(Γ), then for 0 ≤ α ≤ 1 with c(α, π) given in (1.4),

‖ f ‖H−α(Γ) ≤ c(α, π) · ‖hαf ‖L2(Γ).(3.12)

Proof. First, assume Γ to be a closed arc. The differentiation ∂
∂s is an isomorphism

between Hα
0 (Γ) and Hα−1

0 (Γ) (see, e.g., [7]). Its inverse is the integration operator
I : Hα−1

0 (Γ) → Hα
0 (Γ). Let F := I(f), i.e., ∂

∂sF = f . Since f is orthogonal to

ηh ∈ S1
π(Γ), we have

0 =

∫
Γ

ηh
∂

∂s
F ds = −

∫
Γ

F
∂

∂s
ηh ds(3.13)

by using integration by parts. Hence, F is L2(Γ)-orthogonal to the set of { ∂∂sηh :

ηh ∈ S1
π(Γ)}, which is the set of piecewise constant functions with integral mean

zero. Since F ∈ H1
0 (Γ), F is orthogonal to all piecewise constant functions, and

so has at least one zero on each element. Therefore, Theorem 1 can be applied to
F and proves the assertion. Finally, if Γ is an open subarc of Γ̂, as in §2, with
endpoints a and b, let f̂ = f on Γ and f̂ = 0 on Γ̂ \Γ, so f̂ ∈ H0

0 (Γ̂). Set F̃ := I(f)

and F (x) := F̃ (x) − F (a), so F vanishes on Γ̂ \ Γ and (3.13) leads to F being
L2(Γ)-orthogonal to the piecewise constants. Thus, F has a zero on each element.
Since F ′ = f and differentiation is a bounded operator from H1−α(Γ) to Hα(Γ),
we have

‖ f ‖H−α(Γ) ≤ ‖ f̂ ‖H−α(Γ̂) ≤ C · ‖ F̂ ‖H1−α(Γ̂).

Then, the assertion follows from the estimate on F in Theorem 1.

Remark 8. As indicated in the proof of Theorem 2, the differentiation operator can
be used to shift the range of interest from 0 ≤ s ≤ 1 in Theorem 1 to any real s
(under appropriate regularity conditions on Sh, uh, f , A etc.).

Example 5 (Galerkin method for W ). Assume that Sh is a finite-dimensional sub-
space ofH1(Γ) including S1

π(Γ), Γ closed for notational simplicity. Given f ∈ L2(Γ),
the Galerkin solution uh ∈ H1(Γ) of the hypersingular integral equation (3.9) sat-
isfies ∫

Γ

(Wuh − f) · wh ds = 0 for all wh ∈ Sh.(3.14)

Hence, r := Wuh − f is L2(Γ)-orthogonal to S1
π(Γ), so that Theorem 2 proves,

0 ≤ t ≤ 1,

‖ u− uh ‖Ht(Γ) ≤ c(1− t, π) · ‖h1−tr ‖L2(Γ).(3.15)

Remark 9. Theorems 1 and 2 can be applied to a transmission problem as analyzed
in [8] (also under consideration in [7]). The application of Theorems 1 and 2 follows
the lines of this section, so we omit the details.

In conclusion, Theorems 1 and 2 improve on recent work [4, 7, 8, 9] in case Γ is a
one-dimensional open or closed arc. The a posteriori estimate is sharp for uniform
meshes.
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Theorem 3. Let Γ be a closed polygon and let the right-hand side f in (3.2) be
smooth such that the singularities of a solution u are caused by corner singularities
only. Suppose π is a quasi-uniform mesh, i.e.,

max{hj/hk : j, k = 1, . . . , N} ≤ C1,(3.16)

where C1 is a global constant. In Examples 1—4 we have uh ∈ S0
π(Γ) and

C−1
2 ‖h1−s ∂

∂s
R ‖L2(Γ) ≤ ‖ u− uh ‖Hs−1(Γ) ≤ C2‖h1−s ∂

∂s
R ‖L2(Γ).(3.17)

In Example 5 we have uh ∈ S1
π(Γ) and

C−1
2 ‖h1−tr ‖L2(Γ) ≤ ‖ u− uh ‖Ht(Γ) ≤ C2‖h1−tr ‖L2(Γ).(3.18)

Proof. The assertion follows as in [4], because there is no difference in the trial
function space between Galerkin and collocation methods, and only approximation
and inverse properties of the trial function space and regularity of the solution are
required.

4. Numerical experiments

A posteriori error estimates are useful tools to verify the reliability of a compu-
tation and to motivate an adaptive algorithm using local upper error bounds. In
this section we consider the new estimates and focus on the midpoint-collocation
of Symm’s integral equation method as in Example 4, because there is no rigorous
a priori error estimate in energy norms H−1/2(Γ) for arbitrary meshes (however,
cf. [10]), and so the reliability is not guaranteed without an a posteriori error con-
trol — thus the estimate (3.3) is very important to justify the numerical scheme.
Numerical examples for Galerkin methods can be found, e.g., in [7, 8, 9] including
algorithms of the type under consideration below.

The following numerical example is taken from [14] where we refer to for details
on the implementation; see also the appendix. Let Ω be three quarter of the disc
of radius 1/2 centered at the origin. So, a parameterization of Γ is γ(s) = (s, 0)
for 0 ≤ s ≤ 1/2, γ(s) = 1

2 (cos(s − 1/2), sin(s − 1/2)) for 1/2 ≤ s ≤ 1/2 + 3π/4,
γ(s) = (0, 1 + 3π/4− s) for 1/2 + 3π/4 ≤ s ≤ 1 + 3π/4. The right-hand side f is
computed by the Dirichlet data u0 as

f(x) = u0(x)− 1

π

∫
Γ

u0(y)
∂

∂ny
log |x− y|dsy (x ∈ Γ).(4.1)

We use u0(r, ϕ) = r2/3 · sin(2ϕ/3) as Dirichlet data in polar coordinates. The
solution of the Dirichlet problem is u = u0 (since u0 is harmonic) and φ in (1.1) is
the normal derivative of u. Note that the singularity of u0 at the corner is generic
for the domain Ω.

In the discretization, the integral Ij(x) := − 1
π

∫
Γj
φ(y) log |x− y|dsy is approxi-

mated by I(x, a, b), where Γj is replaced by the straight line segment [a, b] between
the end points a and b of Γj (taking the chord instead of the arc). We refer to
[14] for details; the numbers below are computed with functions f and I(x, a, b) as
shown in the appendix.
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With xj denoting the midpoint of Γj (on the arc), the collocation equations read,
for the unknown coefficients uj,

N∑
j=1

Ij(xk) · uj = f(xk) (k = 1, . . . , N).(4.2)

The implementation is performed in Maple, the (small) linear system is solved by
Gaussian elimination.

Once (u1, . . . , uN) are known, the residual can be computed by R(x) := f(x)−∑N
j=1 Ij(x) · uj. We evaluated R on each interval and computed a spline approxi-

mation of R to reduce computational costs.
The discrete solution uh (piecewise constant with uj := uh|Γj ) for N = 10 and

the exact solution are plotted in Fig. 1a as functions on the parameter interval. The
coarsest mesh is indicated there by the jumps of uh (uh being piecewise constant).
In a different scaling, the related residual R is shown in Fig. 1b.

By using a spline approximation of R, the quantities

aj := ‖R′ ‖L2(Γj) (j = 1, . . . , N)(4.3)

can easily be computed as the upper bound bN ,

bN :=
( N∑
j=1

hj · a2
j

)1/2

.(4.4)

Since the solution is known, we can compute the energy error

eN :=
( N∑
j=1

∫
Γ

R · (u− uh)
)1/2

=

∫
Γ

(V (u− uh))(u− uh) ds,(4.5)

which is equivalent to the error in the H−1/2(Γ)-norm. Starting with the coarse
mesh for N = 10, indicated in Fig. 1a by the jumps of uh, we define a quasi-
uniform discretization by successively halving of all elements giving meshes with
N = 10, 20, 40, 80, . . . elements. The corresponding quantities are shown in Table
1.

Table 1. Numerical results for quasi-uniform meshes

N eN αN bN eN/bN
10 .083212 .16861 .4935
20 .050715 .714 .09877 .5135
40 .031698 .677 .06063 .5227
80 .019925 .669 .03787 .5260

160 .012544 .667 .02377 .5275

We observe that the error eN is decreasing and so the scheme seems to converge.
The experimental convergence rate αN is computed as

αN =
log(eN ′/eN)

log(N/N ′)
,(4.6)

where N ′ and eN ′ are the corresponding values of the previous row. From Table 1
we see that a uniform mesh yields a convergence rate 2/3 which, as is well known,
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Figure 1. Exact and discrete solution in 1a (top) and residual R
in 1b (bottom) for N = 10

is expected for a Galerkin scheme (see, e.g., [21, pp. 805 f] for a discussion on the
convergence rates in this example). In practical situations, we do not know eN but
may compute bN . Since, by Theorem 1 applied in Example 4, we have an estimate

eN ≤ C(log(1 + κ))1/2 · bN(4.7)

(κ as in (1.4)), the values bN in Table 1 indicate convergence as well and justify
that uh may be regarded as a reasonable approximation to u.
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Figure 2. Meshes generated by Algorithm (A) indicated by nodes
in the parameter interval

The question of efficiency is related to the quantities eN/bN in Table 1, which
are proved to be bounded from above. The numbers in Table 1 are bounded below
as well, which indicates efficiency of the estimate as proved in Theorem 3.

The final application is to adaptive algorithms. As in [7, 8, 9] we use the size of
hja

2
j , the contribution of Γj to the upper bound, to decide if we should refine Γj

or not.

Algorithm (A) . Given a coarse mesh, refine it successively by halving some of
its elements as follows: For any mesh π compute a1, . . . , aN as defined above and
refine Γj if and only if

hj · a2
j ≥ θ · max

k=1,... ,N
hk · a2

k.(4.8)

Remark 10. We ignored the mesh-dependence in c(1/2, π) in this algorithm for
simplicity. Since the dependence on κ is very weak, this is reasonable if we deal
with a few refinement steps only.

With θ = 1/2 and the coarse mesh with N = 10 as above, Algorithm (A)
determines a sequence of meshes as shown in Fig. 2, where the coarse mesh (chosen
as in Fig. 1) is indicated on top by displaying the nodes in the parameter interval
only. Each subsequent line represents the mesh after another step of Algorithm (A)
and corresponds to the rows in Table 2.

In the first four steps, we observe just a refinement towards the endpoints, which
is reasonable in view of the singularity there. The fifth and seventh mesh show some
overall refinement followed by a further local refinement towards the endpoints. For
these, quite arbitrary meshes, no convergence result in the energy norm seems to be
available, so we can only rely on the computable upper bound bN shown in Table
2 as well as other related quantities explained above.
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Table 2. Numerical results for adapted meshes generated by Al-
gorithm (A)

N eN αN bN eN/bN
10 .083212 .16861 .49
12 .056021 2.17 .11900 .47
14 .040796 2.06 .09164 .44
16 .032842 1.62 .07806 .42
24 .016187 1.74 .03646 .44
26 .012974 2.76 .03137 .41
34 .010497 0.79 .02272 .46
40 .008647 1.19 .01910 .45
42 .008561 0.20 .01821 .47
46 .007017 2.19 .01656 .42
52 .004830 3.04 .01269 .38

From Table 2 we infer convergence because bN seem to decrease to zero. More-
over, the convergence rate as well as the accuracy is remarkably improved. Effi-
ciency is observed because eN/bN seems to be bounded below — though there is
no proof for that. In conclusion, Algorithm (A) appears to be a proper tool in
this example, even for the collocation method as illustrated as follows: The initial
error e10 is reduced to 10% using 10 meshes with degrees of freedom 10, 12, . . . , 46.
The computer costs for each (small) system with N elements are essentially C ·N2

(postprocessing and computation of the stiffness matrix rather than the LU decom-
position dominate the effort). So we have to compare 102 + 122 + · · ·+ 462 = 8, 584
with 1602 = 25, 600 for the finest uniform mesh which produced far worse results.

Appendix

This appendix briefly documents the implementation of the midpoint collocation
considered in the example of §4. We refer to [14] for more details and proofs.
Calculation of f(x):

f(x) = −1

2
|x|2/3 sin(2ϕ/3) + φD(x),

φD(x) = − 3

π
2−8/3 if |x| = 1/2,

φD(x) = − 3

π
2−8/3

(
1 +

1

2
(1− t2) ·

∫ π

0

sinω

1 + t2 − 2t cos(3ω/2)
dω

)
if t := 2 · |x| < 1.

Calculation of I := I(x, a, b): α := |b−a|2, β := −2(x−a)T ·(b−a), γ := |x−a|2,

δ := 4αβ − β2, η := − β
2α ;

if δ = 0 then
if η = 0 or η = 1

then I := −
√
α

2π (1
2 logα− 1)

else I := −
√
α

2π

(
1
2 log(α + β + γ) − 1 − η log |1−ηη |

)
fi
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else

I := −
√
α

2π

(1− η
2

log(α+ β + γ) +
η

2
log(γ)− 1

+
2√
δ
· (γ + βη/2)

[
arctan(

2α+ β√
δ

)− arctan(
β√
δ

)
])

fi.
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