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Summary. This paper concerns the combination of the finite element method
(FEM) and the boundary element method (BEM) using the symmetric coupling.
As a model problem in two dimensions we consider the Hencky material (a cer-
tain nonlinear elastic material) in a bounded domain with Navier–Lamé differ-
ential equation in the unbounded complementary domain. Using some boundary
integral operators the problem is rewritten such that the Galerkin procedure leads
to a FEM/BEM coupling and quasi–optimally convergent discrete solutions. Be-
side this a priori information we derive an a posteriori error estimate which allows
(up to a constant factor) the error control in the energy norm. Since information
about the singularities of the solution is not available a priori in many situation
and having in mind the goal of an automatic mesh–refinement we state adaptive
algorithms for theh–version of the FEM/BEM–coupling. Illustrating numerical
results are included.

Mathematics Subject Classification (1991):65N35, 65R20, 65D07, 45L10

1. Introduction

The mathematical justification of the ”mariageá la mode” proposed by engineers
started in the later seventies by Brezzi, Johnson, Nedelec, Bielak, MacCamy and
others. Further progress in the analysis of the coupling of finite elements (FE)
and boundary elements (BE) concerns Lipschitz boundaries, systems of equations,
and nonlinear problems cf. e.g. [5, 8, 9, 12, 13, 18, 27] and the literature quoted
therein.

In order to get asymptotically a good convergence but also when dealing with
a few degrees of freedom, we need a good mesh in particular when singularities
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appear. If the nature and the position of a singularity are known a priori, the mesh
refinement can reflect on this. Otherwise one requires the information we may
achieve from an analysis of the discrete solution. Nowadays the main topics in the
adaptive feedback steering of mesh refinements, usually based on the residuals,
are mathematically understood for the finite element methods — we refer only to
the pioneering works [1, 11], to [19, 25] for nonlinear problems, and to [26] for
a recent review. Comparably little is known for the boundary element method
— cf. e.g. [2, 23, 24, 29, 30].

In this paper adaptiveh–versions of the symmetric FEM/BEM—coupling
are presented for linear and nonlinear interface problems. They are based on
an a posteriori error estimate which gives a computable error estimate up to a
multiplicative constant. Then, following the approach of Eriksson and Johnson
(elaborated for the finite element method) we present an adaptive feedback algo-
rithm for the mesh refinement of the coupling procedure and report on numerical
experiments.

We consider a model problem for the FE and BE coupling in two dimensional
elasticity described in the sequel. LetΩ be a bounded Lipschitz domain in the
plane with boundaryΓ and complementΩc := IR2\Ω. Neglecting the functional
analytic framework (outlined in Sect. 2) we have inΩ a displacement fieldu, a
strain fieldεu, and a stress fieldσ satisfying the elasticity material behaviour

σ = A(εu) in Ω(1)

which reads for the Hencky material (in componentsi , j = 1, 2)

σij =
(
κ− µ̄(γ(u))

)
δij div u + 2µ̄(γ(u))εij (u),(2)

with δij = 1 iff i = j andδij = 0 iff i /= j ,

εij (u) :=
1
2

(
∂ui

∂xj
+
∂uj

∂xi
)(3)

andγ(u) := devεu : devεu with

devζ := ζ − 1
2

tr ζ, tr ζ := ζ11 + ζ22, ζ ∈ IR2×2
sym .

In (2), κ is a constant bulk modulus and ¯µ is a certain function (cf. Example 1
below).

Given a volume forcef the equilibrium equations readσT = σ and

div σ + f = 0 inΩ.(4)

The exterior problem consists of the Navier–Lamé equations

0 =−∆∗u := −µ2∆u − (λ2 + µ2)grad divu in Ωc(5)

and a radiation condition of the form [15, 16]
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Dα(u − a)(x) = O(|x|−1−α), α = 0, 1, (|x| → ∞)(6)

whereD = ∂/∂xj anda ∈ IR2 is a constant vector.
The two problems are coupled on the interfaceΓ where we have in the

simplest case continuity of the displacements and equilibrium of the tractions,
i.e.

u|Ω = u|Ωc and σn = T2(u|Ωc) onΓ(7)

whereσ is the stress field inΩ, n is the unit normal vector onΓ pointing from
Ω into Ωc, andT2 is the conormal derivative related to the Lamé operator∆∗,

T2(u) := 2µ2∂nu + λ2n div u + µ2n × curl u

with the normal derivative∂n.

In this paper we consider the transmission problem (1)—(7) and extend re-
sults in [3] in three aspects at least: regarding the Lamé system instead of the
scalar Laplacian; allowing more general nonlinearities; using a different and more
general coupling (zero means for the discrete tractions need no assumptions on
the size of the domain).

This paper is organized as follows: In Sect. 2 we give a functional analytic
framework and rewrite the exterior part equivalently using boundary integral op-
erators (as in [28]). Then, we discuss the resulting weak form of the transmission
problem and prove existence and uniqueness of solutions. The numerical approxi-
mation of the problem is given in Sect. 3 via the coupling of boundary and finite
elements. As an a priori result we prove quasi-optimal convergence estimates
while we prove a posteriori error estimates in Sect. 4. These error estimates can
be used to derive an adaptive algorithm for an automatic mesh–refinement as
performed in Sect. 5. In order to give numerical examples we explain computa-
tional details and study a class of examples with singular solutions as well as a
more practical example in Sect. 6. Thereby we prove efficiency of our adaptive
algorithms and illustrate that theh–method yields efficient solutions.

We finally emphasize that this model problem combines the advantages of
the two methods (FEM for nonlinear problems, BEM for simple problems in
unbounded domains) but can be used also as a model for generally combining
FE and BE where many subdomains are discretized via FEM or BEM also for
bounded domains.

2. A nonlinear transmission problem

We use the following notations.H s(Ω) denotes the usual Sobolev spaces [20]
with the trace spacesH s−1/2(Γ ) (s ∈ IR) for a bounded Lipschitz domainΩ
with boundaryΓ . ‖ · ‖H k (ω) and | · |H k (ω) denote the norm and semi-norm in
H k(ω) for ω ⊆ Ω and an integerk.
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In Ω we have the non–linear elastic Hencky material [22, 32] determined by
a stress strain relation (1) where

ε : H 1(Ω; IR2) → L2(Ω; IR2×2
sym), u 7→ 1

2
(gradu + gradTu)

maps the displacementsu to the (linear) Green’s strainsεu, σ ∈ L2(Ω; IR2×2
sym)

denotes the stress field and

A : L2(Ω; IR2×2
sym) → L2(Ω; IR2×2

sym)

describes the elastic material behavior, IR2×2
sym is the 3–dimensional real vector

space of real 2× 2 symmetric matrices.

Example 1.For example letA be the derivative of a mapping

M : L2(Ω; IR2×2
sym) → IR

with

M (ζ) :=
1
2

(λ + µ)tr(ζ)2 + µϕ(devζ : devζ), ζ ∈ L2(Ω; IR2×2
sym),

whereλ, µ are the positive Laḿe constants and the functionϕ : [0,∞) → IR is
a C2 map withϕ(0) = ϕ′′(0) = 0 and

a ≤ ϕ′(t) ≤ 1, −b ≤ ϕ′′(t) ≤ 0,
1
n
≤ ϕ′(t) + 2ϕ′′(t) ≤ n(8)

for all t ∈ [0,∞) and constantsa, b > 0 and a natural numbern. Thus,∫
Ω

A(ξ) · ζ dΩ =
∫
Ω

{(λ + µ) tr (ξ)tr (ζ)

+2µϕ′(devξ :devξ) · devξ :devζ} dΩ

(ξ, ζ ∈ L2(Ω; IR2×2
sym)).

It is proved in [32, Sect. 62] thatA is uniformly monotone and Lipschitz
continuous.

In the sequel we provide the weaker assumptions thatA : L → L∗,
L := L2(Ω; IR2×2

sym) is strongly monotone and Lipschitz continuous for bounded
arguments, i.e. there exists a convex function

α : [0,∞) → [0,∞)(9)

with

0 = lim
t→0+

α(t)/t , ∞ = lim
t→∞α(t)/t , α(t)/t strongly monotone in t,

such that for anyξ, ζ ∈ L := L2(Ω; IR2×2
sym)
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On the adaptive coupling of FEM and BEM in 2–d–elasticity 191∫
Ω

(A(ξ)− A(ζ)) · (ξ − ζ) dΩ ≥ α(‖ξ − ζ‖L)(10)

and there exists a functiona : [0,∞) → [0,∞) such that for anyr > 0 and
ξ, ζ, ρ ∈ L we have

‖ ξ ‖L, ‖ ζ ‖L ≤ r ⇒
∫
Ω

(A(ξ)− A(ζ)) · ρ dΩ ≤ a(r )‖ξ − ζ‖L‖ ρ ‖L.

The quasi–static equilibrium condition is (4) in the sense of distributions
where f ∈ L2(Ω; IR2) is a given body force. Due to Green’s formula and the
symmetry ofσ = A(εu) the equilibrium yields the weak form∫

Ω

A(εu) · εv dΩ =
∫
Ω

f · v dΩ +
∫
∂Ω

σn · v d∂Ω(11)

for any test functionv ∈ H 1(Ω; IR2).

Remark 1.For Lipschitz domains we may use Green’s formula (used in (11)) to
defineσ · n ∈ H−1/2(Γ ; IR2) as well as the conormal derivativeT2 (cf. [9] in 3
dimension or e.g. [6] for the general case).

Definition 1. The transmission problemhas the dataf ∈ L2(Ω; IR2), u0 ∈
H 1/2(Γ ; IR2), and t0 ∈ H−1/2(Γ ; IR2) and consists in finding (u1, u2) ∈
H 1(Ω; IR2)× H 1

loc(Ωc; IR2) satisfying

div A(εu) + f = 0 inΩ(12)

with u = u1 and (5), (6) with replacingu by u2 and the interface conditions

u1 = u2 + u0 and A(εu1)n = T2(u2) + t0 onΓ.(13)

Remark 2.Although the physical interpretation of inhomogeneous transmission
datau0 and t0 is not already clear, the present formulation is more general than
(7) which is included byu0 = 0 = t0.

In the sequel we recall definitions and some properties of boundary integral
operators yielding the rewritten form of the transmission problem of Definition
1 following a particular case of the general description in [17, 28].

Definition 2. For anyu in

L2 := {u ∈ H 1
loc(Ωc; IR2) : there exists a constant vectora such that

u satisfies (6) and (5)}

let (u|Γ ,T2(u)|Γ ) denote itsCauchy data.
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Remark 3.Due to the trace lemmau2|Γ ∈ H 1/2(Γ ; IR2) whenever u2 ∈
H 1

loc(Ωc; IR2), H 1
loc(Ωc; IR2) denoting the displacements of locally finite energy.

The brackets< ·, · > always denote the duality betweenH 1/2(Γ ; IR2) and
H−1/2(Γ ; IR2) = (H 1/2(Γ ; IR2))∗ such that forv ∈ H 1/2(Γ ; IR2) and w ∈
L2(Γ ; IR2)

< w, v >=
∫
Γ

w · v dΓ.

Then, the Cauchy data ofu2 ∈ H 1
loc(Ωc, IR

2) with ∆∗u2 = 0 satisfy (cf. e.g. [9])

(u2|Γ ,T2(u2)|Γ ) ∈ H 1/2(Γ ; IR2)× H−1/2(Γ ; IR2).

For the Laḿe operator the fundamental solutionE with the kernelE(x, y)
–called Kelvin–matrix– is well-known,

E(x, y) =
λ2 + 3µ2

4πµ2(λ2 + 2µ2)

{
log

1
|x − y| · I +

λ2 + µ2

λ2 + 3µ2

(x − y)(x − y)T

|x − y| 2

}
.

I is the 2×2 unit matrix andT denotes the transposed matrix. SinceE is analytic
in IR2 × IR2 without the diagonal we may define its traction

T(x, y) := T2,y(E(x, y))T, x /= y.

As it is derived e.g. in [15, 16, 17] we have the following Betti representation
formula for x ∈ Ωc

u2(x) =< T(x, ·), v > − < E(x, ·), φ > +a(14)

for all u2 ∈ L2 with v = u2|Γ , φ = T2(u2)|Γ .

Remark 4.Note that< T(x, ·), v > − < E(x, ·), φ > +a satisfies (6) if and only
if < φ1, 1 >= 0 =< φ2, 1 > [16], i.e. φ ∈ H−1/2

0 (Γ ) := {ψ ∈ H−1/2(Γ ; IR2) :
< ψ1, 1 >= 0 =< ψ2, 1 >}.

For anyx ∈ Ωc, (14) can be differentiated giving a representation formula
for the stressesT2(u2). By using the classical jump relations forx → Γ and
inserting the Cauchy data into these formulas one obtains onΓ(

v
φ

)
= C2 ·

(
v
φ

)
(15)

where the Calderón projector

C2 =

(
1
2 + K −V
−W 1

2 − K ′

)
is defined by

(Vφ)(x) = < E(x, ·), φ >

(Kv)(x) = < T(x, ·), v >
(Wv)(x) = −T2,x(< T(x, ·), v >)

(K ′φ)(x) = −T2,x(< E(x, ·), φ >) (x ∈ Γ ).
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V is the single layer potential,K is the double layer potential with its dualK ′,
andW is the hypersingular operator.

It is known (cf. e.g. [5, 6, 9]) that,L (X; Y) denotes the real Banach space
of bounded linear operators mappingX into Y ,

V ∈ L (H−1/2(Γ ; IR2); H 1/2(Γ ; IR2))

K ∈ L (H 1/2(Γ ; IR2); H 1/2(Γ ; IR2))

K ′ ∈ L (H−1/2(Γ ; IR2); H−1/2(Γ ; IR2))

W ∈ L (H 1/2(Γ ; IR2); H−1/2(Γ ; IR2)).

W andV are symmetric,K ′ is the dual ofK , W is positive semi–definite andV
is positive definite onH−1/2

0 (Γ ), i.e. there exists a constantγ2 > 0 such that for
all v ∈ H 1/2(Γ ; IR2) and allφ ∈ H−1/2(Γ ; IR2) with < φ1, 1 >= 0 =< φ2, 1 >
there holds

< Wv, v >≥ 0 and < φ,Vφ >≥ γ2‖φ‖2
H−1/2(Γ ;IR 2).(16)

This may be proved as in the three dimensional case in [9] since we assume the
radiation condition (6).

As it is already proved for transmission problems concerning the Laplacian
or the Navier–Laḿe equations in three dimensions (cf. e.g. [7, 9]) the Calderón
projector is a projection inH 1/2(Γ ; IR2) × H−1/2(Γ ; IR2) onto its subspace of
Cauchy data of weak solutions.

We summarize this briefly reviewing descriptions of the exterior problem.

Theorem 1. For any(v, t) ∈ H 1/2(Γ ; IR2)×H−1/2
0 (Γ ) there exists u∈ H 1

loc(Ωc)
solving(5) and(6) and having Cauchy data(v, t) if and only if(15) holds. In this
case the solution u2 of the exterior problem is unique and given by the right hand
side of the representation formula(14).

Remark 5.Note T2(u2) ∈ H 1/2
0 (Γ ) and (13) lead to the further assumption∫

Ω

f dx +
∫
Γ

t0 ds = 0(17)

(cf. (11)) which will be used in the sequel.

Remark 6.We note that for any rigid body motion withr we have

Wr = 0 and Kr = −1
2

r .(18)

Remark 7.It should be emphasized that in related works (e.g. [8, 9, 13, 18])
the rigid body motions in elasticity in the interface problem are prevented by an
additional Dirichlet boundary inside of the interior domain. It is shown in this
paper that this technical restriction is not necessary. Instead with one solutionu1

in Ω, u2 in Ωc any u1 + c, u2 + c with a constant vectorc is a solution as well.

We need some subspaces in order to treat the constant displacements.
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Definition 3. Let

H−1/2
0 (Γ ) := {φ ∈ H−1/2(Γ ; IR2) :< φ1, 1 >= 0 =< φ2, 1 >}
H 1/2

0 (Γ ) := {v ∈ H 1/2(Γ ; IR2) :< v1, 1 >= 0 =< v2, 1 >}
H 1

0 (Ω) := {u ∈ H 1(Ω; IR2) : u|Γ ∈ H 1/2
0 (Γ )}

and defineP : H 1/2(Γ ; IR2) → H 1/2
0 (Γ ) by Pv := v−v0 wherev ∈ H 1/2(Γ ; IR2)

andv0 ∈ IR2 is defined byvj
0 =< vj , 1 > / < 1, 1 >. With the integral operator

V , W we have the continuous mappings

V0 := PV |
H−1/2

0 (Γ )
: H−1/2

0 (Γ ) → H 1/2
0 (Γ )

and

S0 := W +

(
1
2
− K ′

)
V−1

0 P

(
1
2
− K

)
: H 1/2

0 (Γ ) → H−1/2
0 (Γ ).

Lemma 1. The operators V0 and S0 are well defined, linear, bounded, symmetric
and positive definite.

Proof. Since P : H 1/2(Γ ; IR2) → H 1/2
0 (Γ ) is linear and boundedV0 is well

defined, linear, and bounded as a composition of linear and bounded operators.
According to (16),V0 is positive definite, hence invertible, andV−1

0 is bounded
and positive definite as well; (the symmetry ofV0 follows from that ofV ). By
(18) we have for e1 = (1, 0) and e2 = (0, 1), v ∈ H 1/2(Γ ; IR2), ψ = (ψ1, ψ2) ∈
H−1/2(Γ ; IR2), and j = 1, 2

< Wv, ej >=< v,Wej >= 0

and

− < ψj , 1 >=< ψ,

(
K − 1

2

)
ej >=<

(
K ′ − 1

2

)
ψ, ej > .

Thus (K ′ − 1
2) mapsH−1/2

0 (Γ ) into itself andW mapsH 1/2
0 (Γ ) into H−1/2

0 (Γ ).
Thus,S0 is well defined, linear, and bounded.

The symmetry ofS0 follows from

<

(
1
2
− K ′

)
V−1

0 P

(
1
2
− K

)
v, w >=< V−1

0 P

(
1
2
− K

)
v,P

(
1
2
− K

)
w >

since< V−1
0 P( 1

2 − K )v, ej >= 0 for anyv, w ∈ H 1/2
0 (Γ ).

Note S0 is positive semi–definite (cf. (16)). In order to prove positive defi-
niteness ofS0 let us assume that this is false, i.e. there exists a sequence (un)n

in H 1
0 (Ω) with

‖ γun ‖H 1/2
0 (Γ )

= 1 and 0≤< S0un, un >≤ 1/n, n = 1, 2, 3, . . . .

It is known form the analysis in [9] (performed for three dimensions which
works also in this case according to (6)) thatW is positive definite on
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H 1/2(Γ ; IR2)/KerW and KerW are the rigid body motions. Therefore, we may
write un = vn + rn wherevn ∈ H 1/2(Γ ; IR2)/ Ker W and rn is a rigid body mo-
tion. Because of< Wvn, vn >≤< S0vn, vn >≤ 1

n we obtain that (vn)n tends in
H 1/2(Γ ; IR2)/ Ker W towards 0. Since (rn) is a bounded sequence in a finite di-
mensional normed space we may and will choose a subsequence, also denoted by
(rn), which converges strongly inH 1/2(Γ ; IR2) towards some rigid body motion
r . By assumption and the strong convergence we have

1 = lim
n→∞ ‖ γun ‖H 1/2

0 (Γ )
= ‖ r ‖

H 1/2
0 (Γ )

(19)

and < S0r , r >= 0. By (18) this implies< V−1
0 r , r >= 0, i.e. r = 0. This

contradicts (19).�

We are now in the position to reformulate the transmission problem of Defi-
nition 1.

Definition 4 (Problem (P)).∫
Ω

A(εu) · εη dΩ+ < Wu|Γ + (K ′ − 1
2

)φ, η|Γ >(20)

=
∫
Ω

f · η dΩ+ < t0 + Wu0, η|Γ > (η ∈ H 1
0 (Ω))

< ψ,Vφ +

(
1
2
− K

)
u|Γ >=< ψ,

(
1
2
− K

)
u0 > (ψ ∈ H−1/2

0 (Γ )).(21)

The transmission problem of Definition 1 and problem (P) are equivalent;
compare also [8, 9, 13, 18] for related results.

Theorem 2. The transmission problem and problem (P) are equivalent in the
following sense.
(i) If (u1, u2) ∈ H 1(Ω; IR2)×H 1

loc(Ωc; IR2) is a solution of the transmission problem
stated in Definition 1 then let c∈ IR2 be a constant vector with u= u1+c ∈ H 1

0 (Ω)

and letφ := T2(u2). Then(u, φ) ∈ H 1
0 (Ω)× H−1/2

0 (Γ ) solves problem (P).
(ii) If (u, φ) is a solution of problem (P) then for any a∈ IR2 let u1 = u + a and
define u2 ∈ H 1

loc(Ωc; IR2) by (14) with replacingv by u1|Γ − u0 on the right hand
side of(14). Then(u1, u2) solves the transmission problem.

Proof. The proof is based on arguments concerning (14) and (15) and quite
similar to the proof in [3]. Hence we omit the details.�

We rewrite the problem (P) using some formsB andL.

Definition 5. Define the continuous mappingB : (H 1
0 (Ω) × H−1/2

0 (Γ ))2 → IR

and the linear formL : H 1
0 (Ω)× H−1/2

0 (Γ ) → IR by

B(( u
φ), ( vψ)) :=

∫
Ω

A(εu) · εv dΩ

+ < Wu|Γ + (K ′ − 1/2)φ, v|Γ >
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+ < ψ,Vφ + (1/2− K )u|Γ >

L( vψ) :=
∫
Ω

f · v dΩ+ < ψ, (1/2− K )u0 >

+ < t0 + Wu0, v|Γ >

for any (u, φ), (v, ψ) ∈ H 1
0 (Ω)× H−1/2

0 (Γ ).

Remark 8.Problem (P) is equivalent to finding (u, φ) ∈ H 1
0 (Ω)×H−1/2

0 (Γ ) with

B(( u
φ), (·)) = L,(22)

i.e. for any (v, ψ) ∈ H 1
0 (Ω)× H−1/2

0 (Γ ) there holdsB(( u
φ), ( vψ)) = L( vψ).

In the case thatA is a linear mapping, the following result proves that the
bilinear formB satisfies the Babuška–Brezzi condition.

Theorem 3. There exists a constantβ > 0 such that for all (u, φ), (v, ψ) ∈
H 1

0 (Ω)× H−1/2
0 (Γ ) we have withα from (9)

α(‖ εu − εv ‖L2(Ω;IR 2×2
sym )) + β‖ ( γu−γv

φ−ψ ) ‖2
H 1/2(Γ ;IR 2)×H−1/2(Γ ;IR 2)(23)

≤ B(( u
φ), ( u−v

η−δ))− B(( vψ), ( u−v
η−δ))

with 2η := φ + V−1
0 P( 1

2 − K )u|Γ , 2δ := ψ + V−1
0 P( 1

2 − K )v|Γ ∈ H−1/2
0 (Γ ).

Proof. The proof is similar to that in [3] and given here for completeness. Some
calculations show

B(( u
φ), ( u−v

η−δ))− B(( vψ), ( u−v
η−δ))

=
∫
Ω

(
A(εu)− A(εv)

)
· ε(u − v) dΩ

+
1
2
< W(u − v), u − v > +

1
2
< S0(u − v), u − v >

+
1
2
< V0(φ− ψ), φ− ψ > .

SinceA is strongly monotone and by the definiteness ofS0 andV0 we have that
the right hand side is bounded below by

α(‖ εu − εv ‖L2(Ω;IR 2×2
sym )) +

c1

4
‖ γu − γv ‖2

H 1/2(Γ ;IR 2)

+
c2

4
‖φ− ψ ‖2

H−1/2(Γ ;IR 2)

with constantsc1, c2 > 0. This proves (23).�

In caseA is linear, Theorem 3 and continuity of the formsB(·, ·) and L(·)
give with the Lax–Milgram lemma give existence and uniqueness of solutions
of the transmission problem (unique up to constant displacements) as well as of
the rewritten problem (P) (due to Theorem 1 and 2).
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Theorem 4. The problem (P) has a unique solution.

Proof. Note (21) is equivalent to

φ = −V−1
0 P(1/2− K )(u|Γ − u0)(24)

which may be used to eliminateφ in (20). This leads to the problem of finding
u ∈ H 1

0 (Ω) with
Â(u)(η) = L′(η) (η ∈ H 1

0 (Ω)).(25)

Here,L′ is some bounded linear functional. The operator

Â(u)(η) :=
∫
Ω

A(εu) · εη dΩ + < S0u|Γ , η|Γ > (u, η ∈ H 1
0 (Ω))

mapsH 1(Ω; IR2) into its dual, it is continuous, bounded and strongly monotone.
From the main theorem on monotone operators [31] we obtain thatÂ is bijective.
This yields the existence ofu satisfying (25). Lettingφ as in (24) we have that
(u, φ) solves Problem (P).�

Remark 9.We emphasize the different meanings of< uj , 1 >= 0, (j = 1, 2) and
< φj , 1 >= 0, (j = 1, 2) for φ = (φ1, φ2). φ ∈ H−1/2

0 (Γ ) guarantees that we
consider solutions of the exterior domain having a correct physical relevance,
namely finite energy, whereas the constrains< u1, 1 >= 0 =< u2, 1 > for
u ∈ H 1(Ω; IR2) just fix an (otherwise undetermined) additive constant which
may also be chosen in another way (compare Remark 7).

3. The discrete problem (Ph )

In this section we treat the discretization of problem (P) in the form (22).
Let (Hh × H−1/2

h : h ∈ I ) be a family of finite dimensional subspaces of

H 1
0 (Ω)×H−1/2

0 (Γ ). Then, the coupling of finite elements and boundary elements
consists in the following Galerkin procedure.

Definition 6 (Problem (Ph)). For h∈ I find (uh, φh)∈Hh × H−1/2
h such that

B(( uh
φh

), ( vh
ψh

)) = L( vh
ψh

)(26)

for all (vh, ψh) ∈ Hh × H−1/2
h .

In order to prove a discrete Babuška–Brezzi condition ifA is linear, we need
some notations and a discrete analogue of the positive definite operatorS0.

Assumption 1. Let I ⊆ (0, 1) with 0 ∈ Ī and for any h∈ I let Hh × H−1/2
h ⊆

H 1
0 (Ω)×H−1/2

0 (Γ ). Let us assume that for any(v, ψ) ∈ H 1
0 (Ω)×H−1/2

0 (Γ ) and

h ∈ I there exists(vh, ψh) ∈ Hh × H−1/2
h with

lim
I3h→0

‖ (v − vh, ψ − ψh) ‖
H 1

0 (Ω)×H−1/2
0 (Γ )

= 0.
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Definition 7 (Notations). Let ih : Hh ↪→ H 1
0 (Ω) and jh : H−1/2

h ↪→ H−1/2
0 (Γ )

denote the canonical injections with their dualsi ∗h : H 1
0 (Ω)∗ → H ∗

h and j ∗h :

H 1/2
0 (Γ ) → (H−1/2

h )∗ being projections. Letγ : H 1
0 (Ω) → H 1/2

0 (Γ ) denote the
trace operator,γu = u|Γ for all u ∈ H 1

0 (Ω), with the dualγ∗. Then, define

Vh := j ∗h Vjh, Kh := j ∗h Kγih, Wh := i ∗h γ
∗Wγih, K ′

h := i ∗h γ
∗K ∗jh(27)

and, sinceVh is positive definite as well,

Sh := Wh +

(
1
2

1∗h − K ′
h

)
V−1

h

(
1
2

1h − Kh

)
: Hh → H ∗

h(28)

with 1h := j ∗h γih and its dual 1∗h.

Lemma 2. There exist constants c0 > 0 and h0 > 0 such that for any h∈ I with
h < h0 we have

< Shuh, uh >≥ c0 · ‖ γuh ‖2
H 1/2(Γ ;IR 2) for all uh ∈ Hh.

Proof. The proof is quite analogue to that in [3] and is included for complete-
ness. Assume that the assertion is false. Then one can construct a sequence of
functions (uhn )n=1,2,3,... in H 1

0 (Ω) with

uhn ∈ Hhn , ‖ γuhn ‖H 1/2(Γ ;IR 2) = 1, < Shn uhn , uhn >≤
1
n
,

(n = 1, 2, 3, . . .), and limn→∞ hn = 0. Due to the Banach–Alaoglu theo-
rem we may assume that a subsequence of (uhn |Γ )n=1,2,3,... (also denoted as

(uhn |Γ )n=1,2,3,...) converges towards somew ∈ H 1/2
0 (Γ ) weakly inH 1/2

0 (Γ ). Then,
by definition of Sh, we firstly conclude that< Wuhn |Γ , uhn |Γ > tends towards
zero so that (by weak convexity of< W·, · >) < Ww,w >= 0, i.e.w|Γ is a
rigid body motion. A decomposition ofuhn |Γ = vn + wn with vn ∈ H 1/2

0 (Γ ) and
wn a rigid body motion shows additionally that (vn)n=1,2,3,... tends towards zero

strongly inH 1/2
0 (Γ ) so that we have also strong convergence of (uhn |Γ )n=1,2,3,...

towardsw in H 1/2
0 (Γ ).

On the other hand we have 0 = limn→∞ < Vzn, zn > with zn := V−1
hn

(φn) ∈
H−1/2

hn
⊆ H−1/2

0 (Γ ), φn := j ∗hn
yn ∈ (H−1/2

hn
)∗, yn := 1

2uhn − Kuhn ∈ H 1/2
0 (Γ ).

Thus, 0 = limn→∞ ‖ zn ‖H−1/2
0 (Γ )

whence 0 = limn→∞ ‖φn ‖(H−1/2
hn

)∗ . Because of

(uhn |Γ )n=1,2,3,... → w we get (yn)n=1,2,3,... → w strongly in H 1/2
0 (Γ ) (compare

(18)). Hence, since‖w ‖H 1/2(Γ ;IR 2) = limn→∞ ‖ γuhn ‖H 1/2(Γ ;IR 2) = 1 we findrn ∈
H−1/2

hn
with limn→∞ ‖ rn − w ‖

H−1/2
0 (Γ )

= 0. (cf. Assumption 1). Then, since

‖ rn ‖H−1/2
0 (Γ )

is bounded, we obtain

0 = lim
n→∞ < φn, rn >= lim

n→∞ < yn, rn >=< w,w >,

a contradiction.�
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Theorem 5. There exist constantsβ0 > 0 and h0 > 0 such that for any h∈ I
with h < h0 we have that for any(uh, φh), (vh, ψh) ∈ Hh × H−1/2

h

α
(
‖ εuh − εvh ‖L2(Ω;IR 2×2

sym )

)
+ β0 · ‖ ( γuh−γvh

φh−ψh
) ‖2

H 1/2(Γ ;IR 2)×H−1/2(Γ ;IR 2)

≤ B(( uh
φh

), ( uh−vh
ηh−δh

))− B(( vh
ψh

), ( uh−vh
ηh−δh

))

with 2ηh := φh + V−1
h ( 1

21h − Kh)uh, 2δh := ψh + V−1
h ( 1

21h − Kh)vh ∈ H−1/2
h .

Proof. The proof is quite analogue to that of Theorem 3 dealing now with
the discrete operators (27) and (28). All calculations in the proof of Theorem 3
can be repeated with obvious modifications. Due to Lemma 2 the corresponding
constants are independent ofh so thatβ0 does not depend onh < h0; we omit
the details.�

Theorem 6. There exist constants c0 > 0 and h0 > 0 such that for any h∈ I
with h < h0 the problem (Ph) has a unique solution(uh, φh) and, if (u, φ) denotes
the solution of (P), there holds with constantsα > 0 in (9) andβ > 0

α
(
‖ εu − εuh ‖L2(Ω;IR 2×2

sym )

)
+ β · ‖ ( γu−γuh

φ−φh
) ‖2

H 1/2(Γ ;IR 2)×H−1/2(Γ ;IR 2)

≤ c0 · inf
(vh,ψh)∈Hh×H−1/2

h

{
α∗
(

c0‖ εu − εvh ‖L2(Ω;IR 2×2
sym )

)
+‖ ( γu−γvh

φ−ψh
) ‖2

H 1/2(Γ ;IR 2)×H−1/2
0 (Γ )

}
lettingα∗(s) := supt>0(s · t − α(t)) for s > 0, the dual ofα.

Proof. The existence and uniqueness of the discrete solutions follow as in the
continuous case.

Let (vh, ψh) ∈ H h × H−1/2
h be an approximation of (u, φ), the solu-

tion of Problem (P), (cf. Assumption 1) such that we may assume that
‖ (vh, ψh) ‖

H 1
0 (Ω)×H−1/2

0 (Γ )
is bounded. Let (uh, φh) solve problem (Ph) such that,

from Theorem 5, we get

α
(
‖ εuh ‖L2(Ω;IR 2×2

sym )

)
+ β · ‖ ( γuh

φh
) ‖2

H 1/2(Γ ;IR 2)×H−1/2(Γ ;IR 2) ≤ L(( uh
ηh

)).

Using equivalence of‖ ε · ‖L2(Ω;IR 2×2
sym ) + ‖ γ · ‖H 1/2(Γ ;IR 2) and ‖ · ‖H 1(Ω;IR 2) one

concludes that (uh, φh), (u, φ), and (vh, ψh) are bounded inH 1
0 (Ω) × H−1/2

0 (Γ )
by r0 > 0, say, wherer0 is independent ofh. Therefore, we may and will assume
in the sequel thatA is Lipschitz continuous with Lipschitz constanta(r0) (see
below).

From Theorem 5 we conclude with appropriateηh, δh ∈ H−1/2
h that

α
(
‖ εvh − εuh ‖L2(Ω;IR 2×2

sym )

)
+ β0 · ‖ ( γvh−γuh

ψh−φh
) ‖2

H 1/2(Γ ;IR 2)×H−1/2(Γ ;IR 2)

≤ B(( vh
ψh

), ( vh−uh
ηh−δh

))− B(( uh
φh

), ( vh−uh
ηh−δh

)) .
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Using the Galerkin condition,

B(( u
φ), ( vh

ψh
))− B(( uh

φh
), ( vh

ψh
)) = 0 for all (vh, ψh) ∈ Hh × H−1/2

h ,

and the continuous dependence ofηh − δh from (γ(vh − uh), ψh − φh), i.e.

‖ ηh − δh ‖H−1/2(Γ ;IR 2)

≤ C
(‖ γvh − γuh ‖H 1/2(Γ ;IR 2) + ‖ψh − φh ‖H−1/2(Γ ;IR 2)

)
,

we get a constantc1 such that the right hand side of the last inequality is bounded
by ∫

Ω

(A(εvh)− A(εu)) · (εvh − εuh) dΩ

+ c1‖ ( γvh−γuh
ψh−φh

) ‖H 1/2(Γ ;IR 2)×H−1/2(Γ ;IR 2)

·‖ ( γvh−γu)
ψh−φ ) ‖H 1/2(Γ ;IR 2)×H−1/2(Γ ;IR 2) .

Using thatA is Lipschitz continuous (see above in this proof) we obtain

α(a) + β0 · c2 ≤ c2 · a · b + c1 · c · d

with some constantc2 > 0 and real numbers

a := ‖ εvh − εuh ‖L2(Ω;IR 2×2
sym )

b := ‖ εvh − εu ‖L2(Ω;IR 2×2
sym

c := ‖ ( γvh−γuh
ψh−φh

) ‖H 1/2(Γ ;IR 2)×H−1/2(Γ ;IR 2)

d := ‖ ( γvh−γu
ψh−φ ) ‖H 1/2(Γ ;IR 2)×H−1/2(Γ ;IR 2).

Next we uset · s ≤ 1
2α(t) + 1

2α
∗(2s) for t = a ands = c2b and a similar standard

argument forc · d to obtain with some constantc4 > 0

α(a) + β0 · c2 ≤ α∗(2c2b) + c4 · d2.

Thusc2 = ‖ ( γvh−γuh)
ψh−φh

) ‖2
H 1/2(Γ ;IR 2)×H−1/2(Γ ;IR 2) is bounded by the right hand side

of the claimed inequality of the theorem.
With 2η := φ + V−1

0 P( 1
2 − K )u|Γ ∈ H−1/2

0 (Γ ) and 2δ := φh + V−1
0 P( 1

2 −
K )uh|Γ ∈ H−1/2

0 (Γ ) we obtain from (23)

α
(
‖ εu − εuh ‖L2(Ω;IR 2×2

sym )

)
+ β‖ ( γu−γuh

φ−φh
) ‖2

H 1/2(Γ ;IR 2)×H−1/2(Γ ;IR 2)

≤ B(( u
φ), ( u−uh

η−δ ))− B(( uh
φh

), ( u−uh
η−δ ))(29)

= B(( u
φ), ( u−vh

η−δ ))− B(( uh
φh

), ( u−vh
η−δ ))

using the Galerkin property forvh ∈ Hh. SinceA is Lipschitz continuous (see
above in this proof) and sinceη− δ depends continuously on (γ(u−uh), φ−φh)
we get

α(e) + β · f 2 ≤ c5 · e · b + c6 · f · (f + d)
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with a, b, c, d defined above and

e := ‖ εu − εuh ‖L2(Ω;IR 2×2
sym )

f := ‖ ( γ(u−uh)
φ−φh

) ‖H 1/2(Γ ;IR 2)×H−1/2(Γ ;IR 2).

According to triangle inequality,f 2 ≤ 2(c2 + d2) which gives

α(e) + β · f 2 ≤ c5 · e · b + c7 · (c2 + d2).

Again usingt · s ≤ 1
2α(t) + 1

2α
∗(2s) for t = e ands = c5b yields

α(e) + β · f 2 ≤ α∗(2c5b) + c8 · (c2 + d2).

Finally, combining this with the above bound forc2 concludes the proof.�

4. A posteriori error estimate

In this section we present an a posteriori error estimate, which is the base of our
adaptive feedback procedure. For simplicity, we restrict ourselves to piecewise
linear functions on triangles as finite elements inHh and to piecewise constant
functions onΓ as boundary elements inH−1/2

h assuming the following.

Assumption 2. Let Ω be a two-dimensional domain with polygonal boundary
Γ on which we consider a familyT := (Th : h ∈ I ) of decompositionsTh =
{∆1, . . . , ∆N} of Ω in closed triangles∆1, . . . , ∆N such thatΩ̄ = ∪N

i =1∆i and
two different triangles are disjoint or have a side in common or have a vertex in
common. LetSh denote the sides, i.e.

Sh = {∂∆i ∩ ∂∆j : i /= j with ∂∆i ∩ ∂∆j is a common side},
∂∆j being the boundary of∆j . Let

Gh = {E : E ∈ Sh with E ⊆ Γ}
be the set of ”boundary sides” and let

S 0
h = Sh \Gh

be the set of ”interior sides”.
We assume that all the angles of some∆ ∈ Th ∈ T are≥ Θ for some fixed

Θ > 0 which does not depend on∆ or Th.
Then, define

Hh := {ηh ∈ H 1
0 (Ω) : ηhj |∆ ∈ P1 for any∆ ∈ Th (j = 1, 2)}

H−1/2
h := {ψh ∈ H−1/2

0 (Γ ) : ψhj |E ∈ P0 for any E∈ Gh (j = 1, 2)}
where Pk denotes the polynomials with degree≤ k.
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For fixed Th let h be the piecewise constant function defined such that the
constants h|∆ and h|E equal the sizesdiam(∆) of∆ ∈ Th anddiam(E) of E ∈ Sh.

We assume that A is of the form(Aζ)(x) = (aij (x, ζ(x)))i ,j =1,2 for some coef-
ficients aij which are piecewise smooth with respect to both variables such that
A(εvh) ∈ C1(∆) for any∆ ∈ Th ∈ T and any trial functionvh ∈ Hh. Finally,
let u0 ∈ H 1(Γ ; IR2) and f ∈ L2(Ω; IR2), , t0 ∈ L2(Γ ; IR2) satisfy(17).

Remark 10.We emphasize that a standard basis forH−1/2
h is given by the deriva-

tives with respect to the arc–length of the standard piecewise linear hat functions
on the polygonΓ (piecewise with respect toGh). As noted above (cf. Remark
9) the restriction ofHh to be a subspace ofH 1

0 (Ω) is not really necessary, it
determines just the constant in the (discrete) solution.

Instead of constructing a basis of piecewise linear trial functions inH 1
0 (Ω)

we may use the standard basis of piecewise linear trial functionsĤ 1
h (neglecting

the above condition< η1, 1 >= 0 =< η2, 1 > for η = (η1, η2)) but adding one
artificial boundary condition on the discrete problem determining a constant like,
e.g. ηh(x0) = 0 for some fixed node in the mesh (or on the boundary) giving
H̃h. Then, the modified discrete problem yields a unique solution ( ˜uh, φh) ∈
H̃ 1

h × H−1/2
h of

B(( ũh
φh

), ( vh
ψh

)) = L( vh
ψh

) (( vh
ψh

) ∈ H̃ 1
h × H−1/2

h ).

Letting uh := Pũh we obtain a solution (uh, φh) ∈ Hh ×H−1/2
h of Problem (Ph).

Definition 8 (Notations). Let n be the exterior normal onΓ and on any element
boundary∂∆, let n have a fixed orientation so that [(Aεuh)·n]|E ∈ L2(E) denotes
the jump of the discrete tractions (Aεuh) · n over the sideE ∈ S 0

h . Define

R2
1 :=

∑
∆∈Th

diam(∆)2 ·
∫
∆

|f + div (Aεuh)|2 dΩ

R2
2 :=

∑
E∈S 0

h

diam(E) ·
∫

E
|[A(εuh) · n]|2 ds

R3 := ‖
√

h ·
(

t0 − A(εuh) · n + W(u0 − γuh)

−(K ′ − 1/2)φh

)
‖L2(Γ ;IR 2)

R4 :=
∑

E∈Gh

diam(E)1/2 · ‖ ∂
∂s
{(1/2− K )(u0 − γuh)

−Vφh}‖L2(E;IR 2).

Remark 11.Note thatR1, . . . ,R4 can be computed (at least numerically) as far
as the solution (uh, φh) of problem (Ph) is known (see also Sect. 6 below for the
computational details).

Under the above assumptions and notations there holds the following a poste-
riori estimate where (u, φ) and (uh, φh) solve problem (P) and (Ph), respectively.
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Theorem 7. There exists some constant c> 0 such that for any h∈ I with
h < h0 (h0 from Lemma 2) we have

α
(
‖ εu − εuh ‖L2(Ω;IR 2×2

sym )

)
+ β‖ ( γu−γuh

φ−φh
) ‖2

H 1/2
0 (Γ )×H−1/2

0 (Γ )
(30)

≤ α∗
(

c · (R1 + R2 + R3)
)

+ c · (R2
1 + R2

2 + R2
3 + R2

4)

Proof. The proof of Theorem 7 is of some length but analogous to corresponding
results in [3] so that we give only a sketch of the proof. We adopt the notation
and the assumptions of this section.c > 0 is a generic constant and depends
only on T but not onh, ∆,N , u, etc.

We start as in the proof of Theorem 6 and use (29) to see that the left hand
side in (30) is bounded by

L( e−eh
ρ−ρh

)− B(( uh
φh

), ( e−eh
ρ−ρh

))

wheree := u− uh, ρ := 1
2(φ− φh) + 1

2V−1
0 P(1/2− K )(γu− γuh) and (eh, ρh) ∈

Hh × H−1/2
h will be chosen later on.

Elementwise integration by parts of the terms
∫
∆

A(εuh) · ε(e− eh) dΩ and
direct calculations yield that the left hand side in (30) is bounded by

T1 + T2 + T3 + T4

where

T1 :=
∑
∆∈Th

∫
∆

(f + div A(εuh))(e− eh) dΩ

T2 := −
∑

E∈S 0
h

∫
E

[A(εuh) · n](e− eh)|E ds

T3 := < t0 − A(εuh) · n + W(u0 − γuh)

−(K ′ − 1/2)φh, (γe− γeh) >

T4 := < ρ− ρh, (1/2− K )(u0 − γuh)− Vφh > .

It remains to estimateT1, . . . ,T4 corresponding toR1, . . . ,R4.
Under the Assumption 2 the results of [4] apply here which are recalled

in the present notations. Firstly, there exists a family of interpolation operators
(Ih : H 1(Ω; IR2) → Hh : h ∈ I ) — obtained by localL2–projection — such
that for any∆ ∈ Th ∈ T and integersk, q with 0 ≤ k ≤ q ≤ 2 and with
N∆ := ∪{∆′ ∈ Th : ∆′ ∩∆ /= ∅}, the union of all neighbor elements of∆, and
for all u ∈ H q(N∆),

| Ihu − u |2H k (∆;IR 2) ≤ c · diam(∆)2(q−k) · | u |2H q(N∆;IR 2).(31)

Secondly, (cf. [4, Lemma 4]) for any sideE side of∆ ∈ Th ∈ T , and any
u ∈ H 1(∆; IR 2) there holds
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diam(∆)‖ u ‖2
L2(E;IR 2) ≤ c ·

(
‖ u ‖2

L2(∆;IR 2) + diam(∆)2 · | u |2H 1(∆;IR 2)

)
.(32)

We chooseeh := Ihe and letρh be arbitrary.
Using Cauchy’s inequality, (31) (k = 0, q = 1) and since the number of

neighbors is bounded, one concludes

T1 ≤ c · | e |H 1(Ω;IR 2) · R1.

Combining (31) (withe − Ihe replacingu) and (32) (withe replacingu,
k = 0, q = 1 andk = 1 = q) we obtain for anyE ∈ S 0

h , E ⊆ ∆, ∆ ∈ Th ∈ T ,

‖ e− Ihe‖2
L2(E;IR 2) ≤ c · diam(∆)| e |2H 1(N∆;IR 2).

Therefore,

T2 ≤
∑

E∈S 0
h

‖ [A(εuh) · n] ‖L2(E;IR 2) · ‖ e− Ihe‖L2(E;IR 2)

≤ c
∑

E∈S 0
h

√
diam(E)‖ [A(εuh) · n] ‖L2(E;IR 2) · | e |H 1(N∆;IR 2)

≤ cR2 · | e |H 1(Ω;IR 2).

Note thatt0 ∈ L2(Γ ; IR2), W(u0−γuh) ∈ L2(Γ ; IR2) sinceu0−γuh ∈ H 1(Γ ; IR 2),
(K ′ − 1/2)φh ∈ L2(Γ ; IR2) sinceφh ∈ L2(Γ ; IR2), and A(εuh)n|Γ ∈ L2(Γ ; IR2)
sinceεuh is piecewise constant andaij is piecewise smooth. Thus, we may repeat
the above arguments to see

T3 ≤ c · | e |H 1(Ω;IR 2) · R3.

Defineψ := (1/2− K )(u0 − γuh)− Vφh and note

T4 =< ρ− ρh,Pψ >

for any ρh ∈ H−1/2
h . Since η := Pψ ∈ H−1/2(Γ ; IR2) we obtain thatη ∈

H 1(Γ ; IR2) is orthogonal to any piecewise constant function (not only these from
H−1/2

h ). As it is proved in [2, Proposition 1] this properties include

‖ η ‖H 1/2(Γ ;IR 2) ≤ c ·
M∑
j =1

‖
√

h · η′ ‖L2(Γj ;IR 2), c = c̃
√

k, ∈̃IR

when {Γ1, . . . , ΓM } = Gh. We remark that [2, Proposition 1] the factor
√

k
appears withk := max{diam(Γi )/diam(Γj ) : Γi andΓj have a common node}
which is bounded because of the angle property in Assumption 2. Thus, choosing
ρh = 0 and noting‖ ρ ‖H−1/2(Γ ;IR 2) ≤ c · ‖ ( γe

φ−φh
) ‖

H 1/2
0 (Γ )×H−1/2

0 (Γ )
, we get

T4 ≤ c · ‖ ( γe
φ−φh

) ‖
H 1/2

0 (Γ )×H−1/2
0 (Γ )

·
M∑
j =1

‖
√

h · ψ′ ‖L2(Γj ;IR 2).
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By the above estimates he have that the left hand side in (30) is bounded by

c(R1 + R2 + R3) · | e |H 1(Ω;IR 2) + cR4 · ‖ ( γe
φ−φh

) ‖
H 1/2

0 (Γ )×H−1/2
0 (Γ )

.

Since‖ ε · ‖L2(Ω;IR 2×2
sym ) + ‖ γ · ‖

H 1/2
0 (Γ )

is an equivalent norm inH 1
0 (Ω) we obtain

α(a) + β · b2 ≤ c(R1 + R2 + R3 + R4) · b + c(R1 + R2 + R3) · a

where

a := ‖ εe‖L2(Ω;IR 2×2
sym )

b := ‖ ( γe
φ−φh

) ‖
H 1/2

0 (Γ )×H−1/2
0 (Γ )

Using t · s ≤ 1
2α(t) + 1

2α
∗(2s) for t = a and s = c(R1 + R2 + R3) and a similar

standard argument forc(R1 + R2 + R3 + R4) · b we obtain

α(a) + β · b2 ≤ α∗
(

c(R1 + R2 + R3)
)

+ c(R1 + R2 + R3 + R4)2

concluding the proof.�

Example 2.In the case of Example 1A is uniformly monotone, i.e. we have a
global positive constantα0 such that

α0(ξ − ζ) : (ξ − ζ) ≤ (A(ξ)− A(ζ))(ξ − ζ)

for any ξ, ζ ∈ IR2×2
sym. Hence, in the above notations,α(t) = α0 · t2. Thenα∗(s) =

s2/(4α0). Therefore, in this example, Theorem 7 gives

‖ ( u−uh
φ−φh

) ‖
H 1

0 (Ω)×H−1/2
0 (Γ )

≤ c · (R1 + R2 + R3 + R4).(33)

5. Adaptive feedback procedure

For a given triangulationTh = {∆1, . . . , ∆N} of Ω and the related partition
{Γ1, . . . , ΓM } = Gh of the boundaryΓ we can consider one element∆j ∈ Th

and compute its contributionsaj , bk to the right hand side of the a posteriori
error estimate in Theorem 7

a2
j := diam(∆j )

2 ·
∫
∆j

|f + div A(εuh)|2 dΩ

+
∑

E∈S 0
h ,E⊆∂∆j

diam(E) ·
∫

E
|[A(εuh) · n]|2 ds

+ diam(Γ ∩ ∂∆j ) · ‖ t0 − A(εuh) · n + W(u0 − γuh)

−(K ′ − 1/2)φh ‖2
L2(Γ∩∂∆j ;IR 2)

bk := diam(Γk)1/2 · ‖ ∂

∂s
{(1/2− K )(u0 − γuh)− Vφh} ‖L2(Γk ;IR 2).
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The computational details for the computation ofaj , bk are given in the next
section.

According to Theorem 7, the error in the energy norm is bounded by

α∗
(

c
N∑

j =1

a2
j

)
+ c

N∑
j =1

a2
j + c

(
M∑

k=1

bk

)2

.(34)

This a posteriori error estimate is almost useless for absolute error control without
the computation of an upper bound for the constantc > 0. — But it may be
used to compare the contributions to the local error.

In order to simplify notations and to stress the physical importance of the
Hencky material we consider the particular case of Example 1 and 2 and obtain
(cf. (33))

‖ ( u−uh
φ−φh

) ‖
H 1

0 (Ω)×H−1/2
0 (Γ )

≤ c

√√√√ N∑
j =1

a2
j + c

M∑
k=1

bk .(35)

For any element∆j let

cj := aj +
N∑

k=1,Γk⊆∆j

bk(36)

where the sum may be zero or consists of a finite number of summands. Note that
cj describes the contribution of the element∆j to the right hand side of (35).
The notion for the construction of an automatic mesh–refinement is to refine
these elements having a larger ”contribution”cj . The meshes in our numerical
examples are steered by the following algorithm where 0≤ θ ≤ 1 is a global
parameter.

Algorithm (A) Given some coarse e.g. uniform mesh refine it successively by
halving some of the elements due to the following rule. For any triangulation
define a1, . . . , aN as above and divide some element∆j by halving the largest
side if

cj ≥ θ · max
k=1,...,N

ck .

In a subsequent step all hanging nodes are avoided by further refinement in order
to obtain a regular mesh.

Remark 12.(i) Note that in Algorithm (A)θ = 0 gives a uniform triangulation
and with increasingθ the number of refined elements in the present step decreases.
(ii) By observing (35) we have some error control which, in some sense, yields
a reliable algorithm. In particular, the relative improvement of (35) may be used
as a reasonable termination criterion.
(iii) If in some step of Algorithm (A), (35) does not become smaller then we
may add some uniform refinement steps (θ = 0). It can be proved that in this
case (35) decreases and tends towards zero. If we allow this modification we get
convergenceof the adaptive algorithm.
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6. Numerical experiments

We consider two numerical examples for the solution of nonlinear interface prob-
lems related to Example 1.

First, we describe the numerical implementation of the Algorithm (A).

6.1. Implementation of the Galerkin procedure

We treat the caseϕ(t) = 1
2(t − (1 + t)−1), t ≥ 0 yielding a nonlinear operatorA

as explained in Example 1 witha = 1
2, b = 1 andn = 3 in (8). In the sequel we

explain the computation of the form in (26) where it is sufficient to describe the
approximation of

B(( ηj

ψk
), ( ηn

ψm
)) and L( ηn

ψm
)

used in the numerical examples. Hereηj , ηk ∈ H 1
h are linear basis functions on

triangular or quadrilateral elements andψm, ψn ∈ H−1/2
h are piecewise constants

on boundary elementsΓm, Γn and vanish on the remaining part ofΓ partitioned
by Γ1, . . . , ΓM .

The integral∫
∆

{(λ + µ) tr (εηj )tr (εηk) + 2µϕ′(devεηj : devεηj ) · devεηj : devεηk} dΩ

is computed by a symmetric quadrature rule of order 19 on any triangle∆ as
presented in [10]. The dualities< Vφ, ϕ > and < Kφ, ϕ > whereφ, ϕ are
polynomial functions can be calculated almost analytically [21]. The remaining
integrals which appear are performed by a 32 point Gaussian quadrature rule. By
using the relation< Kηj , ψm >=< K ′ψm, ηj > and−Wηj = d

dsV ? d
dsηj [14] the

computation of the Galerkin matrix is performed. The operatorV ? is defined by

(V ?φ)(x) =< E?(x, ·), φ >

where

E?(x, y) =
µ2(λ2 + µ2)
π(λ2 + 2µ2)

{
log

1
|x − y| · I +

(x − y)(x − y)T

|x − y| 2

}
.

In order to approximate the right hand side for given functionsf ∈ L2(Γ, IR 2),
u0 ∈ H 1/2(Γ, IR 2), and t0 ∈ H−1/2(Γ, IR 2) we compute

∫
∆

f · ηj dΩ via a
quadrature rule with order 19 on any triangle∆.

The integrals< ψk , ( 1
2 − K )u0 > and< t0 + Wu0, γηj > are calculated in

the following way. The terms are rewritten such that the integral operator acts
on the polynomial function. These integrals can be computed analytically. The
outer integral is approximated by a 32 point Gaussian quadrature formula.

Altogether the above descriptions determine the (approximate) computation
of the mappingsB andL when applied to discrete functions. SinceA is a nonlinear
operator we get a nonlinear system of equations which is solved via a Newton
method until the termination error is of the magnitude of the machine precession.
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6.2. Calculation of norms and residuals

In the examples below the error of the displacementsu and hence their gradient
gradu and tractionφ = T2v (cf. Theorem 1) are known explicitly. Hence the
L2(Ω) norm of u − uh and grad (u − uh) can be calculated via the quadrature
rule of order 19 [10] on any triangle. This yields an approximation of the error
u − uh in the H 1(Ω; IR2)–norm.

The calculation of the integrals for the residualsR1, . . . ,R4 over the finite
element∆ and the boundary elementΓk is performed as follows: The integral∫

∆

|div A(εuh) + f |2 dΩ

is approximated via the above mentioned quadrature rule of order 19 [10]. Here,
f is given explicitly andA(εuh) is performed by the central difference replace-
ment of εuh which is known for each point. The jumps on the interior element
boundaries inR2 are polynomial functions and theirL2–norm is determined an-
alytically. TheL2(Γk)–norm of

t0 − A(εuh) · n + W(u0 − γuh)− (K ′ − 1
2

)φh

is approximated by a 32 point Gaussian quadrature formula. Here,t0(x) is known,
A(εuh) · n is determined for each point onΓk , while the analytic functionu0 is
replaced by its best approximation ¯u0 in IP8 and the terms ((K ′ − 1)φh)(x) and
W(ū0 − γuh)(x) = −( ∂∂sV ∗ ∂

∂s(ū0 − γvh))(x) are calculated analytically.
For anyx ∈ Γj the first summand of

ψ(x) :=
1
2

(u0 − γuh)(x)− (K (u0 − γuh))(x)− (Vφh)(y)

is given explicitly, the third can be calculated analytically and by using the best
approximation ¯u0 instead ofu0|Γk the termK (u0|Γk − γuh)(x) is calculated ana-
lytically. Then,‖ψ′ ‖L2(Γk ;IR 2) is approximated by a 32 point Gaussian quadrature
rule onΓk where the valueψ′(xi ) is determined for any Gaussian knotxi as fol-
lows. For 1< i < 32, the values ofψ(xi−1), ψ(xi ), andψ(xi +1) are interpolated
by a second order polynomialpi and its derivativep′i (xi ) replacesψ′(xi ). For
i = 1 we takeψ(x1), ψ(x2), andψ(x3) and for i = 32 we takeψ(x30), ψ(x31), and
ψ(x32) to determinep1 andp32, respectively.

6.3. Numerical experiments

Let us consider the interface problem (1)-(7), i.e. Problem (P) for Example 1 on
the L-shaped domain in Fig. 1 with exact solution

u1(x, y) =

(
r

2
3 sin(2

3θ)− C
r

2
3 sin(2

3θ)− C

)
whereC =

∫
Γ

r
2
3 sin(2/3θ)ds∫

Γ
ds
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Fig. 1. L-shape

and

u2(r , θ) =

(
r̄−1

0

)
where ¯r 2 = (x + 0.5)2 + (y − 0.5)2

in polar and Cartesian coordinates (r , θ) and (x, y), respectively. Young’s modulus
E = 2 · 107Ncm−2 and Poisson’s coefficientν = 0.3 in both domains. We have
ϕ(t) = 1

2(1− (1 + t)−1), t ≥ 0 in (8), compare Example 1. The solution has a
typical corner singularity such that the convergence rate of the h–version with
a uniform mesh does not lead to the optimal convergence rate even if the right
hand side is smooth. The right hand sidef and the jumpsu0 andt0 are computed
by (12) and (13) fromu1 andu2 above. The Laḿe coefficients are given by the
relations

λ =
E ν

(1− 2ν)(1 +ν)
and µ =

E
2(1 +ν)

.

As initial mesh we use a partition ofΩ in six similar triangles with vertex at the
origin (see Fig. 1).

Numerical results for theh–versions are shown (see Tables 1-6). The al-
gorithm (A) generates meshes as shown in Fig. 1 forθ = 0.4. The meshes
automatically refine towards the origin where we have the expected singularity
of the solution.

In Table 1 we have the numerical results for the uniform mesh (θ = 0)
and in Table 2-6 for the meshes generated by Algorithm (A) fortheta = θ =
0.2, 0.4, 0.6, 0.8, 1.0. We show the number of degree of freedomN and the
corresponding relative error of the displacementseN in the H 1(Ω; IR2)–norm.
From Table 1-6 we may compute experimental convergence rates. For the uniform
mesh we get experimentally a convergence of the formO(hα) with a mesh size
h = O(1/N 2) andα ≈ 2

3. We compare the degrees of freedomN needed to make
the relative error smaller than 6.5%. For θ = 0, 0.2, 0.4, 0.6 and 0.8 we have
N = 450,236,168,166,166 and the number of adaptive steps are 4,8,10,12,15.
This shows that, in this example, the adapted meshes yield better results than
a uniform triangulation, but it is not clear whichθ leads to the most efficient
procedure.
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Fig. 2. Adapted meshes for the nonlinear transmission problem
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Fig. 2. (continued)
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Table 1. Numerical results for the nonlinear transmission problem

θ = 0

N
|| u1 − uN ||H 1(Ω)
||u1||H 1(Ω)

log
( ||u1−uN1

||
||u1−uN2

||

)
log N2

N1

16 0.25281
0.41376

42 0.16958
0.47234

130 0.09945
0.35313

450 0.06414
expected: 0.33

Table 2. Numerical results for the nonlinear transmission problem

θ = 0.2

N
|| u1 − uN ||H 1(Ω)
||u1||H 1(Ω)

log
( ||u1−uN1

||
||u1−uN2

||

)
log N2

N1

16 0.25281
0.00881

22 0.25352
0.55156

38 0.18754
0.26539

56 0.16920
1.18407

74 0.12164
0.34385

110 0.10614
0.60987

152 0.08714
0.84846

170 0.07925
0.52938

236 0.06661
0.45343

278 0.06185
0.82056

334 0.05320
0.47952

392 0.04951
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Table 3. Numerical results for the nonlinear
transmission problem

θ = 0.4

N
|| u1 − uN ||H 1(Ω)
||u1||H 1(Ω)

log
( ||u1−uN1

||
||u1−uN2

||

)
log N2

N1

16 0.25281
0.07237

20 0.24876
0.54832

28 0.20685
0.39568

46 0.16996
0.67566

60 0.14203
1.38666

78 0.11940
0.37952

88 0.10827
0.60628

110 0.09457
0.49228

130 0.08710
0.65764

152 0.07859
0.80326

168 0.07252
0.76238

194 0.06499
0.35093

254 0.05912
0.46000

302 0.05460
0.67717

348 0.04960
0.48282

410 0.04582

Table 4. Numerical results for the nonlinear
transmission problem

θ = 0.6

N
|| u1 − uN ||H 1(Ω)
||u1||H 1(Ω)

log
( ||u1−uN1

||
||u1−uN2

||

)
log N2

N1

16 0.25281
0.07237

20 0.24876
0.92354

24 0.21021
0.10453

28 0.20685
0.25132

42 0.18681
0.84729

56 0.14640
1.24741

66 0.11927
0.90066

72 0.11028
1.06361

80 0.09859
0.32314

104 0.09058
0.39653

124 0.08447
0.42860

144 0.07923
0.49460

166 0.07385
0.67173

186 0.06842
0.47885

224 0.06259
0.39081

280 0.05736
0.55940

336 0.05268
0.70794

372 0.04798
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Table 5. Numerical results for the nonlinear
transmission problem

θ = 0.8

N
|| u1 − uN ||H 1(Ω)
||u1||H 1(Ω)

log
( ||u1−uN1

||
||u1−uN2

||

)
log N2

N1

16 0.25281
0.63723

18 0.23453
0.63019

22 0.20667
0.19519

24 0.21021
0.18019

26 0.20720
0.18842

32 0.19925
0.26904

44 0.18289
0.09819

46 0.18369
1.18070

62 0.12913
1.05527

72 0.11028
1.06361

80 0.09859
0.70532

84 0.09525
0.22608

104 0.09076
0.43513

128 0.08292
0.40064

146 0.07866
0.53578

166 0.07344
0.58319

182 0.06960
0.71381

212 0.06242
0.35890

270 0.05723
0.38711

312 0.05411
0.52817

346 0.05124

Table 6. Numerical results for the nonlinear
transmission problem

θ = 1.0

N
|| u1 − uN ||H 1(Ω)
||u1||H 1(Ω)

log
( ||u1−uN1

||
||u1−uN2

||

)
log N2

N1

16 0.25281
0.63723

18 0.23453
1.17641

20 0.20719
0.02637

22 0.20667
0.19519

24 0.21021
0.18019

26 0.20720
0.02281

28 0.20685
0.28034

32 0.19925
0.36072

34 0.19494
0.23764

36 0.19231
0.52977

40 0.18187
0.06189

42 0.18242
0.16561

44 0.18102
0.32939

46 0.18369
1.66691

48 0.17111
0.64698

50 0.16665
1.28970

52 0.15843
1.42936

54 0.15011
0.82558

56 0.14567
1.18413

60 0.12913
0.83262

62 0.12913
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Fig. 3. Numerical results for the nonlinear transmission problem

In order to compare the adaptive algorithms for various parameters we com-
press the data in the sequel using Fig. 3. In Fig. 3 an entry corresponds to a symbol
depending on the parameterθ. The entries belonging to the same parameter are
connected by a straight line. Thex-coordinate of a symbol is log(N ) whereN
is the number of degrees of freedom corresponding to a mesh. They-coordinate
of the symbol is log(eN ). A straight line with the slope−α corresponds to an
algebraic convergence of orderα.

6.4. Practical example

In this section we describe the followingt́unnel problemẃhere the exact solution
is unknown. An infinite elastic plane of steel is considered with a rectangular
hole and a socket of rubber in it. The hole in the socket is also rectangular and
one side is loaded by a constant force, the other sides are fixed (see Fig. 4). The
task is to compute the displacements. In a more mathematical formulation it is
the following transmission problem. Two different materials are connected. In the
interior domain we have rubber (E = 2 Ncm−1 , ν = 0.45) which has nonlinear
character and in the exterior domain we have steel (E = 2 · 107 Ncm−1 , ν = 0.3)
which behaves almost linear. This classical situation leads to the coupling of
finite elements and boundary elements for the transmission problem described as
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Fig. 4.

−div A(εu) = f in Ω := (0, 1)2 \ ( 1
4,

3
4

)2

−∆∗v = 0 in Ωc := IR 2 \ (0, 1)2

u = v andA(εu1)n = T2(u2) on Γc := ∂Ω̄c

u = 0 onΓu := ∂Ω̄ \ (Γc ∪ Γt )
A(εu) · n = g on Γt :=

(
1
4,

3
4

)× { 1
4}

in the strong formulation. Following the description above we can reformulate
this transmission problem with mixed boundary conditions on the noncoupling
boundary as the following variational problem:
Given(f , g) ∈ L2(Ω; IR2)× L2(Γt ; IR2) find (u, φ) ∈ H 1

u (Ω)× H−1/2
0 (Γc) with∫

Ω

A(εu) · εη dΩ

+ < Wγu + (K ′ − 1/2)φ, γη > + < ψ,Vφ + (1/2− K )γu >

=
∫
Ω

f · η dΩ +
∫
Γt

g · γη ds

for all (η, ψ) ∈ H 1
u (Ω) × H−1/2

0 (Γc) where H1
u (Ω) := {u ∈ H 1(Ω; IR2)| u =

0 onΓu}.

Remark 13.With the Dirichlet boundaryΓu /= ∅ we need not look for solutions
u in H 1

0 (Ω)∩H 1
u (Ω); instead the variational problem above, is even coercive on

H 1
u (Ω)× H 1/2

0 (Γc).

Corresponding to this variational formulation we get the contributionsaj , bk

to the right hand side of the a posteriori error estimate (30) in Theorem 4 as
follows:
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Fig. 5. Adapted meshes for the nonlinear transmission problem
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Fig. 5. (continued)
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a2
j := diam(∆j )

2 ·
∫
∆j

|f + div A(εuh)|2 dΩ

+
∑

E∈S 0
h ,E⊆∂∆j

diam(E) ·
∫

E
|[A(εuh) · n]|2 ds

+ diam(Γc ∩ ∂∆j ) · ‖ t0 − A(εuh) · n + W(u0 − γuh)

−(K ′ − 1/2)φh ‖2
L2(Γc∩∂∆j ;IR 2)

+ diam(Γt ∩ ∂∆j ) · ‖ g − A(εu) · n ‖2
L2(Γt∩∂∆j ;IR 2)

bk := diam(Γk ∩ Γc)1/2·‖ ∂

∂s
{(1/2− K )(u0 − γuh)−Vφh} ‖L2(Γk ;IR 2).

Note the error indicator in our adaptive algorithm is then given as in (36).
In our numerical example we neglect the body forces, i.e.f = 0 in Ω and the
load densityg = 2Ncm−1 on Γt . Our coupling procedure was performed with
piecewise linear finite elements inΩ and piecewise constant boundary elements
on Γc. We start the adaptive algorithm with 10 subsquares of equal size. The
resulting displacements and a sequence of meshes are shown in Fig. 5.

In Fig. 5 the sum of node-coordinates and node-displacements is plotted. The
meshes are refined at corners with mixed boundary conditions and on the loaded
side. The resulting displacements at the coupling boundaryΓc are almost zero.
As Fig. 5 shows both the refinement ot the mesh and the resulting displacements
are symmetric to a parallel of they-axis. Hence, the adaptive algorithm is a
robust procedure which produces well refined meshes.

6.5. Conclusion

From the numerical experiments reported in the previous subsections, we claim
that adaptive methods are important tools for an efficient numerical solution of
transmission or interface problems via a coupling of finite elements and boundary
elements. The asymptotic convergence rates are improved as well as the quality
of the Galerkin solutions corresponding to only a few degrees of freedom.

Acknowledgement.The authors would like to thank the DFG Forschergruppe at the University of
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5. Costabel, M. (1987): Symmetric methods for the coupling of finite elements and boundary
elements. In: C.A. Brebia et al. (Eds.), Boundary Elements IX, Vol. 1, 411–420, Springer–Verlag,
Berlin

6. Costabel, M. (1988): Boundary integral operators on Lipschitz domains: Elementary results.
SIAM J. Math. Anal.19, 613–626

7. Costabel, M., Stephan, E.P. (1985): A direct boundary integral equation method for transmission
problems. J. Math. Anal. Appl.106, 367–413

8. Costabel, M., Stephan, E.P. (1988): Coupling of finite and boundary elements for inhomoge-
neous transmission problems in IR3. in Mathematics of Finite Elements and Applications VI, ed.
Whiteman, J.R., 289–296, Academic Press

9. Costabel, M., Stephan, E.P. (1990): Coupling of finite and boundary element methods for an
elastoplastic interface problem. SIAM J. Numer. Anal.27, 1212–1226

10. Dunvant, D.A. (1985): High degree efficient symmetrical Gaussian quadrature rules for the
triangle. Int. J. Num. Meth. Eng.21, 1129–1148

11. Eriksson, K., Johnson, C. (1988): An adaptive finite element method for linear elliptic problems.
Math. Comp.50 361—3883

12. Gatica, G.N., Hsiao, G.C. (1990): On a class of variational formulations for some nonlinear
interface problems. Rendiconti di Mathematica Ser. VII10, 681-715

13. Gatica, G.N., Hsiao, G.C. (1992): On the coupled BEM and FEM for a nonlinear exterior
Dirichlet problem inR2. Numer. Math.61, 171-214

14. Gwinner, J., Stephan, E.P. (1991): A boundary element procedure for contact problems in plane
linear elastostatics. Preprint Institut für Angewandte Mathematik Universität Hannover

15. Hsiao, G.C., Kopp, P., Wendland, W.L. (1984): Some applications of a Galerkin–collocation
method for boundary integral equations of the first kind. Math. Methods Appl. Sci.6, 280–325

16. Hsiao, G.C., Stephan, E.P., Wendland, W.L. (1991): On the Dirichlet problem in elasticity for a
domain exterior to an arc. J. CAM34, 1–19

17. Hsiao, G.C., Wendland, W.L. (1985): On a boundary integral method for some exterior problems
in elasticity. Proc. Tbilisi Univ.257, 31–60

18. Han, H. (1990): A new class of variational formulations for the coupling of finite and boundary
element methods. J. Comput. Math.8, 223–232

19. Johnson, C., Hansbo, P. (1992): Adaptive finite element methods in computational mechanics.
Comput. Meth. Appl. Mech. Engrg.101, 143–181

20. Lions, J.L., Magenes, E. (1972): Non-homogeneous boundary value problems and applications,
Vol. I. Berlin–Heidelberg–New York: Springer

21. Maischak, M. (1992): Eine Randelement-Diskretisierung und projiziertes SOR-Verfahren für ein
Kontaktproblem der Elastostatik. Diplomarbeit Institut für Angewandte Mathematik, Universität
Hannover
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