
~ APPLIED 
" ~  NUMERICAL 

MATHEMATICS 
ELSEVIER Applied Numerical Mathematics 26 (1998) 203 216 

Adaptive algorithms for scalar non-convex variational problems 

Cars t en  Ca r s t ensen  a,*, Pe t r  Plechfi6 b,1 

a Mathematisches Seminar, Christian-Albrechts-Universitiit zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany 
b Department of Mathematics, Heriot-Watt Universio, Riccarton, Edinburgh, EHI4 4AS, UK 

~ b s t r a c t  

Since direct numerical solution of a non-convex variational problem (P) yields rapid oscillations, we study 
the relaxed problem (RP) which is a degenerate convex minimization problem. The classical example for such 
a relaxed variational problem is the double-well problem. In an earlier work, the authors showed that relaxation 
is not linked to a loss of information if our main interest concerns the macroscopic displacement field, the 
stress field or the microstructure. Furthermore, a priori and a posteriori error estimates have been computed 
and an adaptive algorithm was proposed for this class of degenerate variational problems. This paper addresses 
the question of efficiency and considers the ZZ-indicator, named after Zienkiewicz and Zhu, and discusses its 
performance compared with the rigorous indicator introduced by the authors. © 1998 Elsevier Science B.V. 

Keywords: Non-convex minimization; Young measures; Microstructure; A posteriori error estimates; Adaptive 
algorithms; ZZ-estimator 

1. I n t r o d u c t i o n  

In the variational approach to the modeling of  phase transitions in certain crystalline alloys fine 
mixtures of  phases are described by minimizing sequences of  the stored elastic energy. The minimizing 
sequences develop rapid oscillations of  the deformation gradient. Similar patterns are also observed in 
micromagnetism and in optimal design. The variational f ramework is based on the minimization of  an 
energy functional with a n o n - c o n v e x  integrand (energy density). We refer to the literature and mention 
the Er icksen-James energy as a vectorial example (i.e., the deformation is a vector-valued function as, 
e.g., in elasticity) [2,3,10,12,16]. The numerical analysis of  the scalar problem with similar non-convex 
integrands has been also studied in [9] and we refer to this paper for further details about mathematical 
models behind this type of  variational problems. The non-convex nature of  the integrand yields lack 
of  lower semicontinuity of  the functional and consequently the infimum is not necessarily attained. 
The substitute for a minimizer (a classical solution) is a minimizing sequence and its characteristic 
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properties, which are identified with the observed microstructure. We give precise meaning to this 
description in the next section. 

The scalar double-well problem, originally due to Young, serves as a model example in the de- 
scription of  such non-convex variational problems which lack classical solutions. The energy density 
is defined as 

W(F) := IF - F~ L 2. IF - F212 (F  c I~(~), (1.1) 

where F l ,  F :  c IR a, Ft ~ F2, are given vectors. Note that the function W satisfies certain coercivity 
and growth conditions: W >~ O, W(F) ~ c(1 + IFI 4) and it is non-convex with precisely two global 
minima F1, F2 with W ( F i )  ~- 0. The variational problem (P) consists in minimizing the energy 
functional 

(P) i n f E ( ~ z ) : - - l [ W ( V ~ z ) + c ~ ] z t  f]2 ~ ] d x  
./1. - -  - - g "  

(1.2) 
~ t  

(2 

amongst tt ~ ,A ~ tto + W~'4(~) .  Here, c~ ~> 0, /2 C IRd is a bounded Lipschitz domain with the 
boundary F ,  tto C W 1'4(~2) are given Dirichlet data and f ,  g C L2(~ )  are given functions. We use the 
standard notation Ilullp (respectively I1 11 J,p) for the norm in the space of integrable functions LP(32), 
respectively in the Sobolev space W1,P(~) and KT'u denotes the gradient of u. The choice of p ---- 4 is 
due to the growth in (1.1). 

It is well known for d = 1 and it has been analyzed in [10] for general functions W that there 
are cases where the minimization problem allows an infinite number of minimizers. However, the 
interesting situation occurs when there is no classical solution. 

Example  1.1. Let /2 = (0, 1), F1,2 = z~ 1, O~ = 0 ,  f = 0 = g, then every Lipschitz function u with 
u'  -- z~l almost everywhere on (0, 1) gives E ( u )  = 0 and therefore solves (P). 

Example  1.2. Let /2 = (0, 1), /71, 2 = ±1,  ~ ~ 1, f = 0 = g, then, taking hat functions with 
small amplitudes and with u ~ -- ±1 almost everywhere on (0, 1) we make the energy arbitrarily 
close to 0 = inf E.  However, a function on which the infimum inf /~ = 0 was attained would satisfy 
simultaneously ~z / = + 1 and u -- 0 almost everywhere in (0, 1). Clearly, there is no such a function 
in the space of admissible functions (W1,4((0, 1))). This example demonstrates the principle obstacle 
for attainment in this problem: although we know how to construct a minimizing sequence {uj } (e.g., 
the hat functions), which converges weakly in W1'4((0, 1)) to u -- 0, we cannot pass to the limit in 
the functional since the functional is not weakly lower semicontinuous. 

Numerical simulations started with analyzing the finite element method for the variational prob- 
lem (P). Since the discrete subspace Sh C ,A has a large but still finite dimension, E attains its 
minimum on Sh due to coercivity of the discrete functional. The minimizers indeed exhibit oscilla- 
tions, that are related to the characteristic behaviour of minimizing sequences, which we describe by 
a Young measure u. This has been proved for d --- 1 in [6,7], and for special vectorial cases in [12]. 
Because of discrete local minimizers of E]Sh it is obviously extremely difficult to approximate the 
global minimizer. As the discrete problem is a non-convex minimization problem the minimization 
itself is necessarily dependent on an initial guess and minimization algorithms. 
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Since the problem (P) may not have a classical solution we have to modify the formulation to obtain 
a problem which is well-posed for numerical computations. To overcome the lack of a minimizer we 
have two possibilities: either to modify the functional, i.e., to replace the original problem by its 
relaxation or to enlarge the set of the admissible functions. The relaxation is particularly simple in the 
scalar case as it requires only construction of the convex envelope W** of the non-convex integrand 
W (see [8]). The relaxed minimization problem (RP) 

(RP) min E** (u) := / [W** (Vu) +c t lu  - f]2 - - 9  .u] dx (1.3) 
.4 J 

f2 

is a (degenerate) convex minimization which attains its infimum in .4. 
On the other hand, when the space of the admissible functions is enlarged we get a link between 

statistical properties of minimizing sequences and averaged values of macroscopic quantities. The 
statistical properties of oscillations in the minimizing sequences are described by a parametrized 
family of probability measures, which is generated by a weakly convergent sequence of gradients 
{Vuj}.  The modified variational problem (GP) is then minimization over the set of functions u E .4 
and Young measures u E YM: 

(GP) inf ~[[[147(A)dux(A)+c~lu-f ,2-g.u]dx; Vu(x)=[Aduz(A)~.  (1.4) 
.,4× YM $2 [ J L J  J J ] 

We discuss the connection between (RP) and (GP) in Section 2. The Young measures provide a 
mathematical tool which allows us to compute weak limits of nonlinear quantities. As an example of 
such a quantity, which is important from the practical point of view, is the stress field a ( F )  = DW(F). 
If uj ~ ft in W I'p we can characterize the weak limit of cr(Vuj) using the Young measure u = (Ux)xcn 
generated by the sequence {Vuj} (provided a is a continuous function satisfying appropriate growth 
conditions): 

cr(Vuj) ~ *  6-:= fo-(A)dux(A). (1.5) 

Rd 

It will be explained in Section 2, how the macroscopic quantities u, cr and the Young measure 
u = (Ux)xcn, are related to the relaxed variational problem (RP) (see, e.g., [8,16] for more details). 

Due to its convex nature the relaxed problem (RP) is the most suitable setting for numerical com- 
putations. In Section 3 we sketch the numerical analysis of (RP) and recall a priori and a posteriori 
error estimates from [5] in Section 4. Although there are no general results concerning regularity of 
solutions u to (RP) we may still expect that the stress field a (Vu)  is smooth. When we choose the 
discrete space Sh to be the space of piecewise linear finite elements, the discrete stress ~7 h is only 
piecewise constant, and we consider an improved stress field ~h by averaging oh and piecewise linear 
interpolation. This is obviously rather a heuristic approach but we shall compare the efficiency of this 
approach with rigorous estimates presented in [5]. The interpolated stress ~h is continuous and we 
could assume that 

-  hl14 < q "  - crhll4 (1.6) 

for q < 1. Straightforward calculations yield 

- Crhl]4 ~< II 'h - -   hl[4 -t- - ~hll4 ~< IlCrh -  hl[4 -Jr- q. - crhll4, (1.7) 
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and we obtain a computable error estimate 

1 
- c h, ll4 II t,-  t ll4. (1.8) | - q  

If the assumption (1.6) were based on super-convergence results, q would converge to zero and the 
constant in (1.8) to 1. Since no super-convergence results are available for (RP), we have only a 
relative error control and we apply (1.8) for a self-adaptive mesh-refinement strategy in Section 5. 
We present numerical examples in Section 6 to compare the reliable but potentially inefficient error 
indicator from [5] with the ZZ-indicator which is a particular example motivated by (1.8). 

2. R e l a x a t i o n  v e r s u s  d irect  m i n i m i z a t i o n  

In this section we point out very briefly the connection between formulations (P), (RP) and (GP). 
To keep the presentation as comprehensive as possible we focus only on the particular example (1.1) 
with the double-well structure of W. We recommend the reader look at references, e.g., [8,16], for 
more details on the abstract background. 

Although the minimization problem (P) may have no solution, there exist minimizing sequences 
{uj} C ,,4 which, according to the growth conditions satisfied by W, are bounded in W1'4(.(2). Thus, 
we may extract a weakly convergent subsequence {~tja } which converges to some u C A weakly in 

The functional (1.2) is n o t  weakly-lower semi-continuous, because W is n o t  convex. Consequently, 
we cannot prove (see Example 1.2) that the weak limit u minimizes E. However, the weak limit '~L 
turns out to be a minimizer of the relaxed problem (RP) and it contains information about behaviour 
of the minimizing sequence. 

As we mentioned in the previous paragraph the lower semicontinuous envelope E** of the functional 
E is obtained by replacing W by its convex envelope W**. We also recall the well-known fact that 
(RP) has a solution and rain E** -- inf E, see [8]. 

For the particular choice of W given by (1.1) the lower convex envelope is 

W**(F) = I ( I f  B I 2 -  IA{2)+] 2-+-4(IA]- I F -  BI 2 -  I A T ' ( F  - B)J2),  (2.1) 

for all F C R cz and with A : ( F 2 - F 1 ) / 2  ¢ 0, /3 := (F1 + F 2 ) / 2 ,  and (s)+ : max{s,0} for 
any real s. We denote 1? the orthogonal projection onto span{A} ±, i.e., I? = ~ - A0 6, A0, where ]I is 
the identity operator and A0 = [A] 1n. Observe that the function I/V** is not strictly convex due to 
double-well structure of W, therefore we cannot apply standard results known for uniformly elliptic 
problems. 

To answer the question how the solution ~ to (RP) is related to the behaviour we observe in the 
problem (P), we have to investigate properties of the weakly convergent minimizing sequence {u j} 
and characterize obstacles which prevent the sequence from being strongly convergent. 

Oscillation of {itj} represents such an obstacle and is characterized by a weak-convergence result 
for Radon measures. Let .A4(K) be the Banach space of Radon measures supported in /g c R d and 
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let L,~(ff2;.A,4(IRd)) denote the Banach space of families of measures (Ux)~cs? with Ux E .£4(IR ~*) for 
a.a. x E g2 and such that 

~-+ (v,:~,g} := ~ g(A)du:~(A) (2.2) .'?c 

J 

R d 

is a measurable function in x for each g C C0(IR~), where C0(R ~) is the Banach space of all 
continuous functions g" IRd --' R with liml~l~ ~ g(u) = 0. We denote by YM(g?;IR ~) the set of all 
u c L~(~2;AA(R~))  which are probability measures (i.e., Ux ~> 0 and []uxlla4 -- 1 for a.a. x E £2). 

It is proved in [1] that a subsequence {Vujk } of the minimizing sequence generates a (gradient) 
Young measure u C Y M ( ~ ;  IR '~) in the sense that 

(9(Vuk))  ~ *  @,g) (weak-star) in L°~(f2) for all 9 E C0(Rn).  (2.3) 

It can be shown that in the case of a double-well problem the Young measure generated by a 
minimizing sequence is compactly supported on the wells, see, e.g., [3]. 

Example  2.1. If ~2 = (0, 1), F1,2 = ± l ,  ct = 1, f = 0 = g, the oscillations of minimizing sequences 
are described by the Young measure u = (ux)~s? with u.,: = ½(~-l + 6+1). 

In the case given by (1.1), the Young measure u is defined 

u.~ = A ( V u ( x ) )  @+(w,,(x)) + ( 1 -  A ( V u ( x ) ) ) 5 s  (w,(z)), (2.4) 

where, for any F E IR d with I F - / 3 1  < IAI, A(F) E [0, 1] and S±(F) are defined by 

A(F) :=  1(1 + A T. ( F -  B ) .  (IAI 2 - I I ? ( F -  B)12)-'/2), (2.5) 

m + (IAI 2 - I (f- m12) '/2 A0,  if I f - e l  IAI, S--(F) (2.6) [ F, if IAI < IF - BI, 

and @ is the Dirac measure with the centre of mass F (see [5] for proofs). One can notice that 
the Young measure u is nontrivial, i.e., different from 6vu(x), for gradients which belong to the set 

{ F  C IRd; I F - B I  < IAI} = { F  E Rd; W**(F) < W ( F ) } .  This is not a coincidence and the structure 
of the measures ux is connected to more general characterization of the support spt u (see, e.g., [16]). 

To demonstrate the connection between the solution of the relaxed problem and minimizing se- 
quences to the original problem we consider a particular case of stress fields. We obviously want to 
know how the sequences of functions csj := DW(Vuj )  generated by the minimizing sequence {uj} 
are related to the stress ~ := DW**(Vu) evaluated at the solution of the relaxed problem (RP) and 
to cr := f DW(A) du , (A) .  We have already mentioned that ~j ~ *  ~ (see (1.5)). More precisely (see 
[5,10]), if {uj} is a minimizing sequence to (P) and u denotes a minimizer of (RP) then 

cyj =__ DI~V(Vuj) --+ cr = DW**(u) in measure, 

and 

/ DW(A)dux(A) = cr -- DW**(u). cr 

Although the solution of (RP) may not be unique, we proved in [5] that the stress field ~ -- DW** (Vu) 
is uniquely determined and does not depend on the choice of a solution u. We can think about ~j as 
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microscopic stress fields, whereas the field cr describes the averaged value of  the stress over oscillations 
in the minimizing sequences. 

To summarize, (P), (RP) and (GP) are essentially equivalent, i.e., there is no loss of  information 
if we consider the relaxed problem (RP) instead of  minimizing (P), provided we are only interested 
in the macroscopic variables u, o-, and we describe the actual microstructure only by a corresponding 
Young measure u. Given any solution u to (RP), we compute cr and u from expressions given above. 

Remark 2.1. The situation is, however, intrinsically more complicated in the vectorial case (i.e., for 
deformations u : 1R " --~ R '~ if m, n ) 2). While the relaxation is again possible using the quasi-convex 
envelope W ~ of W (as in (1.1)), W ~ is explicitly known only in a few cases. As proved in [11], it is 
not possible to characterize quasiconvex functions by local conditions (like, e.g., the condition on the 
Hessian matrix for convexity) and therefore we cannot expect a general algorithm for computation of 
quasiconvex envelopes. 

3. Numerical  analysis 

In numerical simulations, we replace A in (P) (respectively (RP)) by a finite dimensional subspace 
Sh. In our computations, we used standard Pl-finite elements (continuous and piecewise affine trial 
functions) defined on a regular triangulation T .  The discretization leads to finite dimensional variational 
problems (Ph) (respectively (RPh)). 

According to common numerical experience (see [12] it is extremely difficult to compute the discrete 
absolute minimizer of (Ph) because descent methods run into local minimizers of (Ph). On the other 
hand, minimization of convex large-scale problems is a well-developed subject. 

In the numerical simulation we are interested in approximating the global displacements u by the 
solution uh of (RPh). In a post-processing step, we calculate {t~ :=  (IVuh - BI 2 - [AI2)+ and Y2,~h :=  
{x E Y2: ~h(x) = 0}. It was shown in [5] that ~h and Y2,,#~ approximate { := (IVu - BI 2 - ]A[2)+ 
and the microstructure zone Y2,~, i.e., the subdomain £2,rr, := {x C Y2: ~(x) = 0}, where minimizing 
sequences to the problem (P) exhibit rapid oscillations. 

Further post-processing leads to an approximation of the Young measure u and the stress field or, 

= ( 1 -  = (3.1) 

Note that (3.1) requires only simple evaluations within a cheap post-processing. 

4. A priori and a posteriori error estimates 

We summarize the main results from [5] concerning a priori and a posteriori error estimates. The 
following term 

- ~hll4/3 + II~ - ~1~1]2 (4.1) 

+ IlpDist(S±(Vu);s±(vuh))l122 + I1(  +  h)l12 (4.2) 

is bounded by the best-approximation error 

c inf ] ] u -  vhl]l,4 (4.3) 
vh E,-qh 
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(p and c are positive). Note that the stress estimate seems to be optimal while, e.g., the estimate for 
V ( u  - uh) has a weight which vanishes in the intersection of the discrete and exact microstructure 
zone. We refer to [5] for details, in particular on the weight p in (4.2) and the relaxed definition of 
the distance Dist of sets. In summary, we have convergence of the stress field (4.1), of the domain of 
microstructure and of the Young measure (4.2). 

Although this a priori error estimate states convergence of the scheme, we have no direct error 
control since nothing is known about the regularity of u. Consequently the approximation error (4.3) 
is not controlled (see [15] for some results if d = 1). This motivates the error control via a posteriori 
error estimates. Indeed, the same set of error terms (4.1)-(4.2) is bounded by the term constant r/R, 

(z / r/R = rlr R , (4.4) 
\ T6T " 

where for each T E T, 

I]R = ,/4/3~T I [div ah 4- 9 4- 2o!(f - Uh)[ 4/3 dx 4- I hEIJ(crh • nE)l 4/3 ds.  (4.5) 
- 1 "  

T 0 T  

The first term is the strong form of the residual in the Euler-Lagrange equations related to the 
variational problem (RP) and the second term counts jumps J(cr s • nE) of the discrete stress field 
along edges E C OT with normal vectors hE. Besides the exponents, the bound (4.5) appears as 
expected in the context of a posteriori error estimators. Since the sharp estimation of the constant in 
the upper a posteriori error bound is involved, we do not have the absolute error control, however, we 
do have the relative error control. 

Remark 4.1. For the case of uniformly convex functionals, it has been proved that bounds of the form 
(4.5) are sharp (see, e.g., [17]); here the local estimate (4.5) has lost a factor h 1/2 because no higher 
regularity is available. Hence, the estimate is reliable but may not be sharp if the solution is smooth. 
This observation motivates the study of other approaches for adaptive mesh-refinement algorithms. 

5. The ZZ-error indicator and adaptive algorithms 

Based on super-linear convergence results, Zienkiewicz and Zhu suggested the use of the ZZ- 
indicator which we adopt here although there are no proofs of super-convergence results for (RP). 

Let cr h := DW**(Vuh)  and we define an averaging operator In on the triangulation T 

1 
/ V h ( y )  dy, with ~-x = U{Ti  C T: x E Ti}, 1by(x)- I -xl 

Tm 

where we denote Ti adjacent (to x) triangles with their boundaries. Let Ph denote the piecewise linear 
nodal interpolation on the triangulation T. We define a new approximation ~h of crh by applying 
Ph(Ih(Th). Then ~h is a piecewise linear continuous approximation of cr h, which is obviously only 
piecewise constant (recall cr h = DW** (VUh)). 
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Given ~h we follow similar arguments as in (1.6)-(1.8) and we define a local error indicator 

:=  / l ~ T h  -- ~hl4/3 d:c ( Z  E "1-) (5.1) r/z 
, J  

T 

and compute 

: =  (5.2) 

as an error estimate. Of course, since we have no proof for (1.6), this yields no reliable upper error 
bound. Nevertheless, the error indicator is not affected by a loss of the factor h 1/2 as (4.5) and therefore 
it may be expected to be more efficient. 

Algorithm 1 (Algorithm for adaptive mesh refinement). 
1. Start with a coarse initial mesh T and define a discrete subspace Sh, of ,A. 
2. Compute the minimizer uh of E~* on Sh. 
3. Compute ~lr for each T in T. 
4. Compute the error bound ~lR and decide to stop (then terminate computation) or to refine (then 

go to Step 5). 
5. Refine (i.e., halve the largest edge of) T E T provided 

~lT >~ ½" max rJr,. (5.3) 
T'CT -- 

6. Refine further triangles to avoid hanging nodes and thereby create a new mesh T and subspace 
Sh and go to Step 2). 

For the residual-based error indicator (4.5) we replace tiT by the R-indicator @ (defined in (4.5)) 
and refer to the meshes generated as R-adapted meshes, and for the ZZ-indicator we replace 1IT by 
~0 z defined in (5.2). 

6. Numerical examples 

To demonstrate the performance of the ZZ- and R-indicators, we consider the following example 
with the non-convex integrand (1.1). Although this example may look artificial it inherits all the 
major features which we outlined in the preceding paragraphs. Moreover, for a particular choice of 
parameters we know an exact solution and therefore we are able to evaluate the actual performance of 
the refinement strategies. In view of the applications mentioned in the introduction the same formulation 
arises in modeling of martensite-austenite alloys and in optimal shape design when we confine to the 
anti-plane shear approximation. 

The example is based on a one-dimensional example of a relaxed double-well problem, which allows 
a non-smooth solution. Let f2 = (0, 1) 2 be a unit square. We consider the functional (1.2) with (1.1) 
and F1 = (-1.0),~ F:  = (1,0) and with f ( x , y )  = fo(x) = --3( xl28 ' - 1)5 - ~(x - _~_)3. From Tartar's 
one dimensional example, 

{ f0(x) ½)3 fo r0~<x~< ~, 
u(x ,y )  = f l ( x ) : =  2 ~ ( x -  + x -  ½ for 1 ~< x ~< 1, 



C. Carstensen, P. Plechdd / Applied Numerical Mathematics 26 (1998) 203-216 

ZZ-estimates 
4.2 . . . . .  

4 

3.8 

3.6 

3.4 

I 3.2 

3 

2.8 

2.6 

2.4 
0.9 

. . . . .  uniform / / S o  

i i lzi~dioat°r / 1 1 1 1 1 / /  

/ / / 

/ / / / / /  / / / / / /  

1 1. 12 1.3 14 1.5 1.6 
-log h 

Fig. 1. qz for uniformly, R- and ZZ-adapted meshes. 

1.7 

211 

0.95 

0.9 

0.85 

0.8 

oO~0.75 
I 

0.7 

0.65' 

0.6 

0.55 
0.9 

R-estimates 
i i i i i i i 

/ /  

/ / /  
/ / /  

/ /  
/ / /  

/ /  / /  

/ / / / / / /  

- - - uniform 

. . / / / / /  • x(R-indicator 

~ / ~ / /  o oZZ-indicator 

~ . 5 0  o o o 0 0 ~ 

' ' ' ', ' '. '6  1 1.1 1.2 13 1.4 15 1. 
-log h 

Fig. 2. r~ for uniformly, R- and ZZ-adapted meshes. 

1.7 



212 C. Carstensen, P.. Plechd( / Applied Numerical Mathematics 26 (1998)203-216  

E n e r g y  
6 . 5  , , , , , , , 

~ 5 . 5  
,,o, 

I UJ v 

I 
5 

4 . 5  

4 
0 . 9  

/ 
/ / /  

/ / / /  

- uni form 

" x ~ (R - ind ica tor  

~ o Z Z - i n d i o a t o r  
L I I I t I I 

1 1.1 1 .2  1 .3  1 .4  1 .5  1 .6  
- l o g  h 

Fig. 3. E - E0 for uniformly, R- and ZZ-adapted meshes. 

1.7 

H1 - e r r o r s  
2 , , , , , , 

1 .8  

1 .6  - - - uni form 

~_b 1 . 4  = R - i n d i c a t o r  

o 1. o Z Z - i n d i c a t o r  

0.8[ 5 

6 ~1 ~ ~ ~ L ~6 O ' v . 9  1 1. 1 .2  1 .8  1 .4  1 5 1, 
- l o g  h 

Fig. 4. Error in HI-norm for uniformly, R- and ZZ-adapted meshes. 

1.7 



C. Carstensen, P. Plechd( / Applied Numerical Mathematics 26 (1998) 203-216 

ZZ-estimates 
4.2 

4 

3.8 

o~3.6 o 
I 

3.4 

3.2 

3 
1.1 

/ 
/ 

/ 
/ 

/ 
/ 

I 

1.2 

i i ! i 

/ 
/ 

/ 

t 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ /  " 

~- . . . . .  +uniform 

= =R-indicator 

o oZZ-indicator 
1.0 

I I I I 

1.3 1.4 1.5 1.6 
-log h 

Fig. 5. ~/z for uniformly, R- and ZZ-adapted meshes. 

/ 

1.7 

213 

0.4 

0.35 

0.3 

0.2. c 

05 

~, o.15 
q 

0.1 

0.05 

0 

-0.05 

-0.1 
1.1 

R-estimates 

. . . . .  +uniform 

/i / 

x xR-indicator 

o oZZ-indicator 

/ 
/ 

/ 

/ 

- ~ . ~  0.5 

~2 '4 1. 1.3 1. 115 1.6 
-log h 

Fig. 6. rm for uniformly, R- and ZZ-adapted meshes. 

~ +  

1.7 



214 C. Carstensen, P. Plechd( / Applied Numerical Mathematics 26 (1998) 203 216 

I n t e r f a c e  

I ~ ' J ~ / / / / / I / / / / / X X ~ K X X ~ X  

; /  / X ~ K > ~ / ~ / / / f / / / / / / / / × X X  / / / / / / ~ X X  / / × / / × / / / X X  
.~ X X / / Y l / / / / / Y / / Y X X  / / / / X X × / / ! / / × / / / / / / / > <  

× / / × / X > K / ¢ i X / × / / / / / × / /  ~" / / / × / > < × X  / / × / / × / / × / /  
/ / / / / / / x × > ~ ¢ / × / / / / / × / /  / / × / / × x ×  / / / / / / / × /  
/ / / / / / / / > < ~ < X  / / × / / / / /  / / × / / × / × ~ / × / / × / / × / /  

/ / / × / / / /  X / q × × × × × × × ×  / 
/ / / × / / / / / X ~ < ~ < / × / / × / /  

o ~ / / / / / / / / / / ~ < ~ @ X / / ' / / / / /  
0 

X--Axis 

Fig. 7. R-adapted mesh obtained from an uniform mesh 20 x 20. 
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Fig. 8. ZZ-adapted mesh obtained from an uniform mesh 20 × 20. 

is the solution o f  (P). We prescribe Dirichlet boundary condit ions on 0Y2 in agreement  with u(x, y). 
The minimal  energy is Eo ---- m i n E * *  -- 1409 and microstructure is present in J'2,,, = (0, 4) × (0, 1). --  30000 
The minimizer  is not smooth  and it exhibits a jump in 0 u / 0 y  across the line z = 0.5, which  is also 
the interface be tween  a microstructure zone  and a region o f  ellipticity. 

The minimizat ion algorithm is based on the standard truncated N e w t o n  method (see [13]) and 
implemented  with s o m e  improvements  a l lowing minimizat ion  o f  large-scale discrete problems. 

In the first case  study, where w e  do k n o w  the exact  solution, w e  start with a triangulation which  
does  not approximate the interface in the problem. We compare  three refinement strategies and report 
the behaviour o f  errors, a posteriori est imates and convergence  o f  the energy. The graphs show results 



c. Carstensen, P. Plechd( / Applied Numerical Mathematics 26 (1998) 203-216 215 

in the log-log scale, where the dependence on h of the quantities: r/z, r/R, the H 1-error and the energy 
E - E0, is plotted. The meshsize on h non-uniform meshes is defined as h = v/N, where N is the 
number of degrees of freedom. 

From Figs. 1 and 2 we conclude that the refinement strategy performs well in the sense that the 
ZZ-adaptive mesh leads to better ~/z-estimates than the R-adapted mesh, while the R-adaptive mesh 
leads to better r/R-estimates than the ZZ-adapted mesh. 

Note that the empirical convergence rate (i.e., the slope of the graphs shown in Figs. 1-6) is 1 for 
r/R and 1 (or even larger than 1) for r/z which underlines the overestimation mentioned in Remark 4.1. 

To compare the efficiency of the adaptive schemes, we consider the energy and the error in the 
H 1-norm in Figs. 3 and 4. While the adaptive schemes yield a large improvement of the H 1-errors, 
only the R-adapted mesh is a real improvement over the uniform mesh with respect to the min- 
imization of energy. It is remarkable that the Z-adapted meshes seems to be useless for efficient 
energy-minimization. 

For the second numerical example, we rotated the complete situation by an angle 4) = 7r/6, but 
kept the domain Y? = (0, 1) 2 fixed. So F1 = ( -  cos 4), - sin 4)), F2 = (cos 4), sin 4)) and f ( x , y )  := 
f o ( x  cos 4)+ 9 sin 4)). The Dirichlet boundary data are also transformed to u0(x, y) = fl  (xcos 4)+ 
y sin 4)). 

The estimators in the second example are depicted in in Figs. 5 and 6 and indicate the superiority of 
the adaptive algorithm. For Figs. 7 and 8 we used a rather coarse initial mesh to make the refinement 
process more transparent. We observe a refinement towards the boundary of g?,~ where the gradients 
are discontinuous. There, the thick line indicates an approximated boundary of Y?,~. 

The discontinuity dominates in the Z-indicator and there is no overall refinement in contrast to the 
R-adaptive mesh refinements. This is reasonable in view of Remark 4.1 because the R-indicator is 
expected to suffer from a missing factor h 1/2 and therefore is driven to refine everywhere. 

To summarize our numerical experience, the ZZ-indicator leads to rather local refinements while 
the R-indicator develops a tendency more to global refinements. Thus, a reasonable numerical method 
should employ ZZ-indicators for mesh refinement and the residual error bounds for the reliable error 
control. 

References 

[1] J.M. Ball, A version of the fundamental theorem for Young measures, in: M. Rascle, D. Serre and 
M. Slemrod, eds., Partial Differential Equations and Continuum Models of Phase Transitions, Lecture 
Notes in Physics 344 (Springer, Berlin, 1989) 207-215. 

[2] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100 
(1987) 13-52. 

[3] J.M. Ball and R.D. James, Proposed experimental tests of the theory of fine microstructure and the two-well 
problem, Phil. Trans. Roy Soc. Lond. Ser. A 338 (1992) 389-450. 

[4] S.C. Brenner and L.R. Scott, The Mathematical Theo~ of Finite Element Methods, Texts in Applied 
Mathematics 15 (Springer, New York, 1994). 

[5] C. Carstensen and E Plechfi6, Numerical solution of the scalar double-well problem allowing microstructure, 
Math. Comp. (1997). 

[6] M. Chipot and C. Collins, Numerical approximations in variational problems with potential wells, SlAM J. 
Nume~ Anal. 29 (1992) 1002-1019. 



216 C. Carstensen, P. Plechd( / Applied Numerical Mathematics 26 (1998) 203-216 

[7] C. Collins and M. Luskin, Optimal order error estimates for the finite element approximation of a solution 
of a non-convex variational problem, Math. Comp. 57 (1991) 621-637. 

[8] B. Dacorogna, Direct Methods in the Calculus of Variations (Springer, Berlin, 1989). 
[9] D. French, On the convergence of finite element approximations of a relaxed variational problem, SIAM J. 

Numer. Anal. 27 (1990) 419-436. 
[10] G. Friesecke, A necessary and sufficient condition for non-attainment and formation of microstructure almost 

everywhere in scalar variational problems, Proc. Roy Soc. Edinburgh Sect. A 124 (1994) 437-471. 
[11] J. Kristensen, On the non-locality of quasiconvexity, Annal. Inst. H. Poincar~, Anal. Non-lineare, to appear. 
[12] M. Luskin, On the computation of crystalline microstructure, Acta Numer. 5 (1996) 191-257. 
[13] S. Nash, Newton-type minimization via the Lanczos method, SIAM J. Numer. Anal. 21 (1984) 770-787. 
[14] R.A. Nicolaides and N.J. Walkington, Computation of microstructure utilizing Young measure 

representations, in: C.A. Rogers and R.A. Rogers, eds., Recent Advances in Adaptive and Sensory Materials 
and their Applications (Technomic Publishing Co., Lancaster, 1992) 131-141. 

[ 15] R.A. Nicolaides and N.J. Walkington, Strong convergence of numerical solutions to degenerate variational 
problems, Math. Comp. 64 (1995) 117-127. 

[16] T. Roubf6ek, Relaxation in Optimization Theory and Variational Calculus (Walter de Gruyter, Berlin, 1996). 
[17] R. VerfOrth, A posteriori error estimates for nonlinear problems. Finite element discretization of elliptic 

equations, Math. Comp. 62 (1994) 445-475. 


