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Abstract 

The quasi-static viscoplastic resp. elastoplastic evolution problem with isotropic or kinematic hardening is considered with emphasis on 
optimal convergence and adapted mesh-refining in the spatial discretization. Within one time-step of an implicit time-discretization, the finite 
element method leads to a minimisation problem for non-smooth convex functions on discrete subspaces. For piecewise constant resp. affine 
ansatz functions, the stress resp. displacement approximations are experimentally and theoretically shown to converge linearly. An a 
posteriori error estimate then justifies an automatic adaptive mesh-refining algorithm. Numerical examples support the superiority of the 
adapted mesh. © 1999 Published by Elsevier Science S.A. All rights reserved. 

I. Introduction 

In the engineering literature, the elastoplastic evolution problem is usually modelled with yield functions and 
flow rules written in terms of admissible stresses. In the discretization of this, Han and Reddy [1] call dual 
formulation, displacement and stress approximations are computed simultaneously. The elastoplastic material 
behaviour can equivalently be modelled by what Han and Reddy [1] call primal formulation where the strains 
are the primary variables and so a discretization requires the simultaneous approximation of the displacement 
and plastic strain field. 

In this paper, we study the primal formulation and present a refined a priori and a posteriori error analysis for 
the spatial discretization. For a convenient reading, we outline both, the strain and stress formulation of 
plasticity, and their duality in Section 2. Within each time-step of the primal formulation in Section 3, we have 
to minimise a Lipschitz-continuous, but non-smooth convex functional over a linear space (not merely a convex 
set as in the dual method). The spatial Galerkin discretization in Section 4 is simple: replace the linear space by 
a conform FE-space. 

Notice that the stress related dual model results in a minimisation of a quadratic problem over a convex set 
and so raises the question of the conform or non-conform approximation of sets. In particular, this is 
problematic for hp-methods (with higher order polynomial ansatz functions) where the discrete stress field 
satisfies the yield conditions in a finite set of discrete points rather than almost everywhere. 

The error analysis of the time-discretized primal formulation, also called Hencky plasticity, time-independent 
plasticity, or holonomic plasticity, is the main topic of this paper. In the simplest spatial FE-discretization 
(piecewise affine displacements) with (largest) mesh-size h, the a priori error estimates in the literature (see e.g. 
[2] and the survey [1]) predict a convergence as ©(x/h). Since the functional to be minimised is non-smooth, we 
cannot expect a better convergence rate in general. However, in the dual stress formulation, the convergence 
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estimate is O(h) [3,4,23] which seemingly indicates superiority of the latter and more popular model. Since the 
two models are equivalent on the continuous level, their discrete counterparts are related and so we should 
expect a higher convergence rate of the discrete primal formulation. 

The aim of this paper is to present theoretical and experimental evidence that the convergence rate in the 
primal formulation is, indeed, O(h). The proof is based on Jensen's inequality in Section 5. This result supports 
that the primal formulation is equally accurate as the dual formulation but favourable for higher order schemes. 
In a subsequent mathematical paper [5], we aim to prove this O(h) result also for the case of non-homogeneous 
data which, according to the subtle argument here, will be a laborious technical task. 

Because of the limited regularity of the solution [6-9], adaptive mesh-refining appears to be a necessary tool 
for the efficient numerical treatment of elastoplastic problems [ 10,11]. In Section 6, we introduce an a posteriori 
error estimate which yields a computable upper error bound in the discrete primal formulation. The estimate is 
similar to the standard residual based a posteriori error indicator according to the hardening. 

The numerical treatment of the discrete non-smooth problem is discussed in Section 7. We suggest a 
Newton-Raphson scheme which performs (sometimes) well in practise although we only offer little theoretical 
support for that. Numerical model examples in Section 8 confirm the improved convergence estimates and 
provide experimental evidence that the adaptive mesh-refining algorithm proposed leads to a more efficient 
computation. 

The analysis of the fully numerical time-dependent problem with a complete refined error analysis will be the 
subject of a forthcoming paper [12]. 

2. Primal model of elastoplasticity 

The strong formulation of small strain elastoplasticity with kinematic or isotropic hardening from the 
engineering literature is outlined and recast to the primal formulation under question here. 

The elastoplastic body under consideration occupies a bounded Lipschitz domain g2 in ~J. Local (quasi- 
static) equilibrium for the stress field 0- E L2(~2; ~d×d) demands 

T 0-=0-  and d i v e r + f = 0  in ,Q,  (2.1) 

where f is the vector field of given body forces and we understand the divergence in (2.1) in the sense of 
distributions. The boundary F is split into a Dirichlet boundary FD, a closed subset of F with positive surface 
measure, and the remaining (relatively open and possibly empty) Neumann part F N : = / ~ F  D. We pose essential 
and static boundary conditions, namely, 

u = 0 on /~D and 0-" n = g on F N , (2.2) 

where g is a given applied surface force. With the displacement field u E HD(/2 ) := {u E H~($2) d : u = 0 on FD} 
we associate the linear Green strain tensor 

~(u) := (Vu + (Vu)t)/2 a.e. in O ,  (2.3) 

the symmetric part of the gradient of u. In the context of small strain elastoplasticity, the total strain e'(u) is split 
additively into two contributions 

e'(u) = C-Io" + p a.e. in ~2. (2.4) 

The elasticity operator is C : ~J×d___) Rd×d, 

Cy = A tr yI d + 21~y (y E ~d×d~ for A, /z > 0 (2.5) - - s y r n  z 

with the d × d-unit matrix I d and C -  ~ 0" is the elastic and p is the plastic part of the total strain o-'(u). Note that 
the elastic material behaviour is characterised by p = 0 and that we need another material law to determine p. 
Moreover, there are restrictions on the stress variables prescribed by a dissipation functional ~p which is convex 
and non-negatiwe but may be +2 .  The first restriction is 

q~(0", a) < :z a.e. in O .  (2.6) 
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In this way, the hardening parameter a ~ R m steers the set of  admissible stresses; the couple (o-, a)  is named 
generalised stresses and is called admissible if ~p(o', a )  < oe. 

The evolution of p and a is given by the Prandtl-Reug normality law which states, for all other generalised 
stresses (7, fl), that there holds 

fi : (r  - ~r) - 5 : (f l  - a )  ~< ~p(~-, fl) - ~(o-, a )  a.e. in /2 .  (2.7) 

Here, the dot denotes time derivatives, e.g. ,6 := OplOt, and colon is a scalar product of  matrices such that 
a AjkBjk if A, B E RJxa; the Euclidean length I1 is defined by Ia[ := , /X: A. A :B = Ej.~=~ 

R E M A R K  2.1. According to the normality rule (2.7) the problem is time-dependent and so we are seeking 
variables (u, p, ~r, a )  in a time interval [0, T] that satisfy consistent initial conditions at time t = 0 and 
(2.1)-(2.7)  for almost all times in (0, T). We refer to the mathematical literature [1,6-9] for details, existence 
and (non-) uniqueness, and for (poor) regularity properties of  solutions. 

REMARK 2.2. In the examples below, there is a given convex yield function @ such that the admissible 
generalised stresses are characterised by 

45(o; a )  ~< 0 in /2 (2.8) 

and q~ is the characteristic functional of  the set of  admissible generalised stresses, i.e. 

(O if *(o-, a ) ~  < 0, (2.9) 
q~(~ a )  := if 4~(tr, a)  > 0 .  

In this case, (2.7) means that 4~(tr, a )  ~ 0 and, for all (r, fl) with ~(~, fl) ~ 0, there holds 

/ ~ : ( r - o - ) - a : ( f l - a ) ~ 0  a.e. i n / 2 .  (2.10) 

An equivalent formulation, dual to (2.7), is obtained by using the dual ~0" of ~o, defined by 

q~*(b) := sup {a" b - q~(a)}. (2.11) 
a 

In terms of convex analysis, with 0 denoting the subgradient, a ~; O~o(b) is equivalent to b ~ Oq~*(a). Therefore, 
the dual form to (2.7) reads 

o - : ( q - 1 5 ) + a : ( f l + d ~ ) < - ~ * ( q ,  f l ) - ~ * ( t ~ , - r i )  a.e. in /2 .  (2.12) 

In the primal formulation under question here, we employ the normal rule (2.12) and require the dual q~* of the 
dissipation functional. 

DEFINITION 2.1 (Problem (P)). Seek (u, p, o~, a )  satisfying consistent initial conditions and, in some time 
interval (0, T), (2 .1)-(2.4)  and (2.12). 

EXAMPLE 2.1 (Isotropic harding). Let m = 1, i.e. a is a scalar, and define 

qb(o-, a ) : =  Idev o-[ - o-v(1 + Ha)  (2.13) 

d in case a / >  0 (and q~(o-, a )  = ~c if a < 0 which, thereby, is not allowed). With the trace tr A : = Z j= j A~j and the 
d x d-unit matrix 1 d, the deviatoric part of  a matrix is 

1 
d e v A : = A - - ~ ( t r A ) l  d (A ~ IRJx"). 

The material constant O-y > 0 is the yield stress and the constant 1t > 0 is the modulus of  hardening. Then, there 
exists a unique solution of Problem (P) provided the exterior load f is slightly more regular (and then there 
holds Johnson's  safe-load assumption) [3,4]. The dual functional is known (see e.g. [13] for a proof); for all 

d × d  A@N~y~ a n d B E I R ,  
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{~J AI if tr A=O/xB + Ho:vlA[ ~O, 
~*(A, B) = if tr A ~ 0 v B +/4GIAI > 0.  (2.14) 

EXAMPLE 2.2 (Kinematic hardening). Let m = d(d + 1)/2 and identify ~m ~ ~syrndXd"= {A E R Jxd : A = AT}. 
rc~d×d Like the stress tr we consider a (pointwise) as a eXsy m -matrix and define 

,/)(o', a ) : =  Idev o" - dev a I - tZ~.. (2.15) 

Then, there exists a unique solution of Problem (P) provided the exterior load f is slightly more regular (and 
then there holds Johnson's safe-load assumption) [1,3,4]. The dual functional equals (see e.g. [13] for a proof). 
for all A, B E ~dxd 

" ~ s y r n  

~*(A'B):={~ ~lAI iftrAC0vB~iftrA=0/"B=-A'-a. (2.16) 

EXAMPLE 2.3 (Perfect plasticity). In the case m = 0 of no hardening, i.e. the internal variables are absent, the 
von-Mises yield condition is given by 

~(o-) := ]dev o-1- o:~. (2.17) 

Although the resulting problem is covered in this section, the missing hardening leads to a different functional 
analytic frame. There exist solutions of Problem (P) in a much weaker sense (space of bounded deformation 
BD(g2)) if Johnson's safe-load assumption holds [8,9]. For any A E [~d×a 

~ s y m ,  

[ ~ ] a l  i f t r A = 0 ,  
q~*(A) t ~'  i f t r A # 0 .  (2.18) 

EXAMPLE 2.4 (Viscoplasticity). In Examples 2.1, 2.2 and 2.3 the dissipation functional (2.8) is non-smooth, 
but may be approximated by a smoother functional. The Yosida-regularisation leads to a viscoplastic material 
description in the sense of Perzyna where, given a viscosity /~ > 0, for all preceding examples of @ we define 

I d×d ~m ~o(~r, a ) : - -  ~ - i n f { l ( o ' -  r, a - # ) 1 2  : ( r , /3)~R~ym x with q5(7, fl)~<0}. (2.19) 

For # > 0 there exists a unique solution of Problem (P) [8]. The dissipation functional (2.19) is, in some sense, 
converging towards (2.9) as /z  ---> 0 [8]. Some calculations verify formulae for the dual functional, e.g. in perfect 
plasticity of Example 2.3, we obtain 

~p*(A)= JAI+~-IAI 2 i f t r A = 0 ,  (2.20) 

, i f t r A ~ 0 .  

3. Discretization in time 

An implicit time-discretization (such as the implicit Euler method or the Crank-Nicholson scheme) yields in 
each time-step a spatial problem where we are given the variables (u(t), p(t), ~r(t), a(t)) at time t = t o as initial 
values, denoted as (u 0, Po, °'o, %),  and seek corresponding approximations (u~, p~, o- l, a~) to (U(tl), p(t~ ), 
o ' ( t j ) ,  a( t t )  ) at time tj = to + k. Therein, time derivatives such as//(t~) are replaced by backward difference 
quotients as (p j -po) /k ,  k : = t ~ - t o > 0 .  Rewriting (2.1)-(2.2) with o ' = C [ ~ u ) - p ]  in the standard weak 
form, known as the principle of virtual work in mechanics, we deduce the following time-discretized problem. 

2 dXd DEFINITION 3.1 (Variational Problem (P1))" Seek (u l, p,, cq ) E I-IJD(I~) X L (~)~ym X L 2 ( f ~ )  ~ satisfying, for 
all (v, q, f l )  E H~([2) X L(~)~dy xJ X L(~)  '~, 

f C[~(u~)-P~[:~v)dx=f  f v d x + f r s g v d s ,  (3.1) 
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f a { C [ ~ ( U l ) - P l ] : ( k q - p l  +Po) + ch :(kfl cq Olo)}dx + 

~ k  fa  ~o*(q, f l ) d x -  k fa  ~o*((p, - po)/k, (a o - a , ) / k ) d x .  (3.2) 

The variational problem (P1) is equivalent to the following minimisation problem. 

DEFINITION 3.2 (Minimisation Problem (M 2 )). Seek a minimiser (u I, p j, a I ) ~ H~($2) × L 2(~,~)symd×d × L 2(~2)m 
of 

-~ CIe ' ( u~ ) -p ,  +po]: (e ' (Ul ) -p ,  +po)  dx + ~- ]Ofll2 dx 

, -~ dx - fu,  dx - gu t ds - Po : C[e(u,)  - p , ]  dx.  (3.3) 

REMARK 3.1. The problem (3.3) is local in aj in the sense that it can be solved separately for each material 
a ' - n d X d  

point [13]. Indeed, for each p :=  p~ - P o  = ~sym, direct calculations show that the condition for c~ in (3.2) resp. 
(3.3) is equivalent to the minimisation 

rain { 2 1 a l 2 +  k q ~ * ( p / k , ( a o - a ) / k ) } = j ( x , p ) + ~ l p ] 2 - +  ' v 2 -~ I•ol , (3 .4)  
a E ~  m 

where the minimum is attained for a = a~. Here, r / ~ O  is some hardening constant and j(x, .) is a convex 
functional which depends on x through So(X ). In the examples of  this paper, j (x , . )  has the form 

j ( x , p ) = { m ( x ) ] p ] + M ( x ) : p  i f t r p = 0 ,  ,a×d 
i f t r p ¢ 0 ,  ( X E O ; p E N , ~ y m ) ,  (3.5) 

with functions m and M shown in Table 1. (For isotropic hardening, we suppose a o i> 0.) 
A change of  variables p : =  P l - P o ,  u :=  u~, and employing (3.4), we obtain an equivalent minimisation 

problem [13]. 

DEFINITION 3.3 (Minimisation Problem (M2)). Seek a minimiser (u, p) of  

if,, f(u, p ) : =  -~ C[~u)  - p ] "  (8(u) - p )  dx + ~ flip] 2 dx + j (p)  dx - l(u, p) (3.6) 

in H ~ ( / 2 )  2 d×d × L (O).~rm, where the linear functional l is defined by 

l(u, p) := f~, (fu + po : C[e(u) - p]) dx + f t ,  gu ds . (3.7) 

A variation of  u resp. p in the problem (M2) leads to an equivalent variational inequality similar to (P~). 

Table 1 
Parameter m and M in Eq, (3.5) and r/, v in Eq. (3.4) 

b' 2 fix, p) = m(x)lp I + M(x) : p + ~lolol 

m M r I v 

Isotropic hardening (1 + H%)K 0 H:~o'~ 1 
Kinematic hardening o-. oz 0 1 1 
Perfect plasticity ~. 0 0 0 
Viscoplasticity 07, 0 tz/k 0 



180 J. Alberty et al. I Comput. Methods Appl. Mech. Engrg. 171 (1999) 175-204 

DEFINITION 3.4 (Variational Problem (P2))- Seek (u, p)@HD(a'-2)×L2(O) d×a satisfying, ~--~sym 
H~,(.O) X 2 a×a L (~(~) sym ' 

fa c[e'(u) - p] ~(v) dx = l(v, 0) ,  D 

fa {ce'(u) - (C + r/)p} : (q - p )  dx + l(O, q - p )  ~< f {j(q) - j ( p ) }  dx. 
1 

for all (v, q) E 

(3.8) 

(3.9) 

4. Discretization in space 

L 2 ( O )  dxa  The discretization of Problem (P2) consists of replacing H~(d2) X _ ,__,.~y,~ by a discrete subspace Y( x ~. 
In the simplest example we study conform piecewise affine resp. constant finite element test and trial functions. 

Let 3- be a regular triangulation in triangles, tetrahedrons, parallelograms or quadrilaterals in the sense of 
Ciarlet [14,15], i.e. if d = 2, 3- is a finite partition of ~ in closed triangles or parallelograms; two distinct 
elements T~ and T z in 3- are either disjoint, or T~ fq T 2 is a complete edge or a common node of both T~ and T 2. 
With 3- let g denote the set of all edges, and we assume that E ~ g either belongs to ~ or the surface measure 
of E 71F D vanishes, so there is no change of boundary conditions within one edge E C/2. Define by 6P°(if) the 
J-piecewise constant and by 5e~(3-) the continuous and ff-piecewise affine functions. Then, let 

69~:=oqal(3-)aAHl(,(2) and ~%f:=dev(;T°( axa ~ )  sym ) (4 ,  l ) 

and notice that nodal bases of Y( and ~Lf can be implemented very easily. 

DEFINITION 4.1 (Discrete Problem (P21 Y( X ~) ) .  

fa  C[e(U) - P] : e(V) dr = l(V. 0) ,  

fa  {Co,'(U) - (C + r/)P} : (Q - P) dx + l(0, Q - P) <~ fa  {J(Q) - t iP )}  dx. (4.3) 

REMARK 4.1. The discrete problem (P21~ x ~) is equivalent to a minimisation of (3.6) in Yg x G~? and 
therefore has unique solutions if 77 > 0. 

Seek (U, P) E Y( X ~ satisfying, for all (V, Q) E Y( X ~,  

(4.2) 

5. A priori error analysis 

2 d×d 
Suppose that (u, p) E HD(O) × L (~"~)sym solves Problem (P2) and that (U, P) E Yt" × ~cC solves the discrete 

Problem (P2 ] Y( x ~5~). Let 

o ' : = C [ a ' ( u ) - p - p o ]  resp. 2 : = C [ e ( U ) - P - p - 0 0 ]  

be the exact resp. discrete stress field. Here, ffoo E ~° (3- )  is defined by Poolr := fr  Po dx/meas(T). Notice that 

I IC-"2(  o" -- ~)llL-,(s~)2 : f , ~  C - '  [o- - 2 ]  : (o- - 2 )  dx (5.1) 

defines the energy norm of the stress error. 

THEOREM 5.1. Suppose that j is given as in (3.5). We have 

I } C - " 2 (  o - ~)J),~-,(.~,) + 211 . "~ [p  - P i l l % . , ,  

~<2 inf [[C'/2e(u 2 0 2 - w)IIL2,,,, + inf [ I p -  ILL2.,, 

+ 2 inf J IM-  gl l ;=. , ,  + 2 inf IIm " - KIlL,,e,, + 4# inf [[C'/2[po 2 - K i l l , - - , , , , .  ( 5 . 2 )  K~Ed¢ K~,~f {h, 3-) KEY' 
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PROOF. The proof relies on Jensen's inequality for the convex functional fix, .): The integral mean pit  :---- 
fr P(Y)dy/meas(T) of p over the domain T E 3-yie lds  a dissipation j(x,p) which is smaller than the integral 
mean of the dissipation f r  j(x, p(y)) dy/meas(T). The resulting elementwise inequality 

frJ(X,~)dy<~ frJ(x, p(y))dy (5.3) 

(where p E 6e°(3-) is constant on T) is caused by the convexity ofj(x,  .) for each parameter x E/2 .  Indeed, PIT 
is a (limit of) convex combinations Zj ,~jpj which, owing to the concept of convexity, fulfil j(x, E k akp ,) ~< 
Ek ;tkj(x, Pk). These inequalities then prove (5.3) for simple functions if we interpret Aj as meas({y E T] p(y) = 
pfi)/meas(T). A passage to the limit proves (5.3) for all L2-functions. We refer to standard literature in 
mathematical analysis for further details. 

Integrating (5.3) over x ~ T we infer 

fr {J(x,~) -j(x, p(x))} dx <- fr fr {j(x, p(y)) -j(x, p(x))} dx dy/meas(T) . (5.4) 

Assuming (3.5) and writing q(x) := [p(x)[ with integral mean ~ := fr q(x) dx/meas(T),  we recast the right-hand 
side in (5.4) as 

frfrm(x){q(Y)-q(x)}dxdy/meas(T)+frfrM(x):{P(Y)-P(x)}dxdy/meas(T) 

= frm(x)f~-q(x)}~+ frM(x):~-p(x)}d~. (5.5) 

Writing m resp. M for the integral means of m resp. M on T we make use of f r  M : ~ - p(x)} dx = 0, etc. and so 
deduce that (5.5) equals 

f r  {m(x)-m}{q - q(x)} dx + f r  {M(x)-M} : ~ - p(x)} dx 

~<llm -~/IL2(n,llq -~IIL2.~, ÷ IIM --MI[L2,n)I]P --P[]L~m. (5.6) 

According to the triangle inequality, we conclude ]]q-~IIL=,~) :<-lip-~11~=.,, and so finally obtain 

fT{J(x,  fi) -- j(x,  p(x))} dx ~< lip -fill~2,.~,(lIM -~11~2.~, + lira -m[l~=.,)) • (5.7) 

The remaining arguments are standard: A subtraction of (3.8) by (4.2) yields the Galerkin orthogonality 

f (o, - 2:) : e (u  - w)  dx = 0 (5.8) 
2 

for all W ~ ~. Further, (3.9) and (4.3) lead to 

f , ,  ( g -  "P ) :  (P - P) dx ~< f,n {j(x,P)-j(x, p)} dx,  (5.9) 

f,, ( z -  , , ) :  , ,  ax_< f,, {j(x. - ,3) (,.,o3 

Utilising (5.7)-(5.10) in the identity 

I [ c - " : [ ~  : = f , ,  - X ] l [ ~ m  (o- - .~)  : e(u - U )  dx 

-f~:(po-po)ax+f~:(P-p)a~+f,~ 2 : (/5 - P )  dx (5.11) 

(because fr X :Po dx = fr .S : Po dx for X E 0°°(3-)) we deduce: 
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- Z]ll~=.~, + [[r/l/2[p ~< e-'(u w)  dx - or : (Po Po) dx - e ] l l L = ( . o )  (o"  - 2 ) :  - 

+lip -~I[~.~,(IIM-M[I~.~) + Jim - ~ 1 1 ~ , )  (5.12) 

Writing ~" resp. p for the elementwise integral mean of  o- resp. p, we have 

- f ~ : tlpo - ~ )  ~ = - f a  (~  - ~ )  : (po - ~ )  a~ 

~< i[cl/2(p ° - -  - , ,2 

With (5.13) and Cauchy's  inequality, we infer that the right-hand side of  (5.12) is upper bounded by 

lie 1'2( °0 - -  z ) l l ~ , ~ , ( l l c ' % ( .  - w ) l l ~ . ~ ,  + IIC"2(p0 - b-;)l[~.~,) 

(Notice that, since tr Po = 0 = t r p  o, C(po - Po) = 2/Z(Po - P0).) With Young's inequality, ab <- (a 2 + b2)/2, 
and subtracting [[C- ' /2[o " -  s]11~=.~,/2 we finally conclude (5.2). []  

REMARK 5.1. The a priori error estimate (5.2) is quasi-optimal and shows linear convergence if u and p as 
well as the data are smooth. 

REMARK 5.2. Notice that the constants in front of  the right-hand side in (5.2) are independent of the hardening 
and so (5.2) holds for perfect plasticity as well. In the latter case 7/= 0, the upper bound in (5.2) may be infinity 
if u is only in BD(12) rather than in H~(/2). 

REMARK 5.3. For Hencky plasticity or if the initial values are given on a coarser mesh (if the mesh is only 
allowed to be refined--no coarsening), Po and % are constant on each element. Then, the preceding analysis 
results in 

l i e -  ]'2(00 - X)[l~2,.~> + 211~"=(p - P)IIL=~o, ~< inf [1C~/24u 2 . 2 - W)I[L2(a , (5.14) 
g" E 9'~ 

REMARK 5.4. At first glance, it seems to be a surprising consequence of  (5.14) that the approximation error of  
the plastic strain p does not affect the stress error. Notice that we used a mesh for the displacement field which 
is coarser than (in our analysis indeed equal to) the mesh for the plastic strain approximations. From (5.14) we 
observe that any h-, p, or hp-refinement of the mesh for the plastic strains is pointless. This overrules a 
consequence of  the prior analysis [1,2]: the strain approximations need not to be further improved. 

REMARK 5.5. From (5.2), we easily derive error estimates for the total strain field which relies on the 
hardening. Indeed, from the triangle inequality and CJ/2~(u - U) = C lI2(o- - 2 )  + C1/2(p - P)  + C1/2(po - 

Po) we infer 

I I C " 2 ~ .  - u)llE2,. . ,-< 2(1 +/~/~)(1lc-"=(00 - ~)11~2.~, 

+ [ ] T / I / 2 ( P  - -  e) l122(~r2,  + I l c l / 2 ( p o  - Po)l/~.2(~,). (5.15) 

REMARK 5.6. For an a priori analysis of  the time-discretization error, we refer to [1,12]. 

6. A posteriori  error  analysis  and adaptive mesh-ref ining 

For each T E ~,, let h r denote its diameter and define 

71r = hr If  + dive-X[ 2 dx + hEIJ(X" r/E)[ 2 ds 
T 

+ inf I[Po - al iEn, r )  + inf IIM 2 2 - Q[lc2(r) + inf [In " - NIIL2,T> ~ dXd dXd N ~  
(6.1) 
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Here, J(~.  ne) is the jump of  the discrete stress field_~ ~ along an edge E E ~ with normal n e and size h E with 
the usual modification J ( 2 "  hE) :=  ~ "  n E - g if E C F  N. 

THEOREM 6.1. There exists an ~7-depending constant C(rl) > 0 such that 

~ u)IIL2,~, ~ C(r/) "~', r/r (6.2) 110.- 21IZ2.~, + lip - PIIZ2.~, + l i eu  - 2 2 .  
T ~  ,~ 

PROOF. From (5.12) and (5.13) we have, for all W ~  ~,  

- 2 ]11L2 .~ ,  + I1~' - P]l12~=.,,  ~< (o- - 2 )  : ~ u  - w )  d x  - (o- - ~ - ) -  ( P o  - P o )  d~  

+ lip -pll~=¢a,([ lM - M I I ~ , ~ ,  + Ilm -ml l~= .~ , )  • (6.3) 

Since o" - S is symmetric we have (0. - 2 )  e'(u - W) = (0. -- 2 )  : tT(u - W), and an elementwise integration 
by parts shows 

(0 . -  : - W) x = f, R(u-  fo ~ J ( u  - W ) d s  , (6.4) 

where U ~ is the skeleton of all edges in J.. The volume residual is 

R :=  f + divv- ~ E L2(~2), (6.5) 

where dive denotes the elementwise divergence. Recall that the jump residual J E L2( U ~)  is defined by 

[!"nL.] if E ~_ F ,  

J]E :=  if E C_ I '~ ,  (E E ~ ) .  (6.6) 

- 2 " n  i f E C K N ,  

For some weak interpolation W to u, the error u - W obeys estimates of  the form 

]lh~'(u - W)]I2L2(e~) + Hh~l /2(u  - W ) H 2 2 ( u ~ ) ~  c~[[V(u - U)[  22(0 ) . (6.7) 

Here, h~ 7 and hu. are piecewise constant, h.rlr = h r and hvl~ = h~. We refer to [16-19] for details. Employing 
(6.7) in (6.4) shows, with Cauchy's  inequality, 

(6.8) 

Since F D has a positive surface measure, Korn's inequality shows 

IIV(u - u)11~21.~1 ~ c2I]CI'2~ u - u)ll~=,~,. (6.9) 

Hence, from (6.3), (6.8) and (6.9), we have 

i i c - 1 , = ] o . _ 2 1 1 1 2  ÷11 ,,2[p 2 
2 1/2 2 ) 1 / 2  

~< ~ C l C 2 1 1 c  1 ' 2 ~ u  - f)[l~lO,(llh~RIl~=.,, + I[h~.r JIl~=~o ~, 

+ 1 1 c - 1 ' 2 ( 0 -  - 2 ) 1 1 ~ . , , 1 1 ¢ '  ' 2 ( p o  - Yo)l l~2, .~,  

+ lip - ~IIL=.~,(IIM - MII~=. ,I  + [ Im  - m l l ~ , o > )  • (6.10) 

With Young's inequality and some r/-depending constants Cl(r/), c207), and c3(r/) we deduce from (5.15) 

IIc '/=(0. - S)l l ,~.~, + ]lrf l '2(p - e ) l l , ~ : , s , ) +  I [ C l ' : o " ( u  - u)ll~=,.,, 
1 l /2  2 2 1/2 2 

+ ~-IIC -(0. - 2)11,~2,., + c 2 O T ) [ [ c " Z ( p o  - pZ)ll2~.,, ÷ ~ I1~ (p - P) I I~ . , t  

÷ e ~ ( n ) ( l l M  - MIIL~,,~ + lira -m l l L= ,m)  ~ • [ ]  (6 . l  1) 
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REMARK 6.1. If p0 and a o are constant on T, for instance in time-independent problems (Po = 0 = do) or if the 
mesh is refined successively (Po, ao E 5e°(3-)), the error indicator fir reduces to 

J 2 = h T  r T ° ~TT If  + div~ ~:l ~ ax + h~lJ(.~ ne)l 2 ds (6.12) 

and so is the same as in pure elasticity (utilising the stress field from a discrete elastoplastic problem). 

REMARK 6.2. In perfect plasticity, Theorem 6.1 is expected to be false. A closer inspection then shows that it 
is required to follow the arguments in [11] and derive weaker estimates. Essentially it is because (5.15) is not 
available and so UV(u - U)llL~m cannot be absorbed. 

REMARK 6.3. Employing the arguments of  [16,17], we could sharpen the estimate of  Theorem 6.1 which 
shows that, generically, the volume contribution h 2 f r  I f +  div.~Z[2dx can be neglected (replaced by a 
higher-order term). 

REMARK 6.4. The reliable inequality is sharp in the sense that there holds the reverse inequality up to data 
approximations, i.e. 

2 2 2 " 
, 7 , -  < -  c ( , 1 ) ( l l o -  + - - ~tlL=¢~) lip + P[IL=(o,) I1,~. u)llz=,~, 

+ inf Hp0 2 N 2 , - ollL2¢o, + inf I IM-  2 Ol[L~o,) + inf lira - >¢~o,) (6.13) 

for each element T ~ 3- and its neighbourhood w :=  U {T' E 3- : T N T'  # 0} and for some ~7-depending 
constant C(r / )>  0. The proof is as in [19] and we refer to [5] for details. 

ALGORITHM 6.1. 
(a) Start with a coarse mesh 3- o, k = 0. 
(b) Solve the discrete problem with respect to the actual mesh ~ .  
(c) Compute r/r for all T ~ ~ .  
(d) Compute a given stopping criterion and decide to terminate or to continue and then go to (e). 
(e) Mark the element T for (red) refinement provided 

1 
r/r -~-" ~- max r/T,. 2 r'~.% 

(f) Mark further elements (within a red-green-blue refinement) to avoid hanging nodes. Define the resulting 
mesh as the actual mesh T~_ j, update k and go to (b). 

Details on the so-called red-green-blue refinement strategies may be found in [19]. 

REMARK 6.5. In the numerical examples below, the volume contributions to the error indicator ~Tr in (6.12) 
vanish according to f =  0, Polr is constant and UIT affine. Hence, we may argue as in [19] and obtain 
equivalence of  the edge contributions to the ZZ-estimator. In this way, we justify the popular ZZ-estimator in 
viscoplasticity and plasticity with hardening (in cases where the influence of  l i p -  ~o[IL21T) is negligible). 
According to Remark 6.3, this argument is valid also in case that f is non-zero but smooth. The authors are 
unaware of  any other justification of  the reliability of  the ZZ-estimator in the context of  plasticity. However, the 
constants are ~7-depending and so the reliability of  the ZZ-estimator in perfect plasticity remains as an open 
question. 

7. Numerical solution algorithms 

The numerical treatment of  (P21 Y( x ~Lf) is simplified by the elimination of  the variable P. Indeed, given ~ U )  
we can solve (P2 I Yg X ~ )  elementwise. 
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d x d  d x d  
Given A E ~sym and b > 0 there exists exactly one P E R~y~ with tr P = 0 that satisfies 

(7.1) 

PROPOSITION 7.1. 

{ a  - ( C  + r/)P} : ( Q  - P )  <~ b{ ]QI  - IP]} 

for  all Q E ~a×a with tr Q = 0. This P is characterised as the minimiser o f  " -syrn 

1 
(C + rl)P : P - P : a + blP I (7.2) 

(amongst trace-free symmetric d X d-matrices) and equals 

( I d e v a  l - b ) +  devA 
21x + ~7 Idev a I ' (7.3) 

where (.)+ := max{0, .} denotes the non-negative part. The minimal value o f (7 .2 )  (attained for  P as in (Z3))  is 

- l ( I d e v A  I b 2 - ) + / ( 2 / z  + ~ 7 ) .  (7 .4)  

PROOF. In convex analysis, (7.1) states that 

a - (C + 7q)P E bOl.l(P) (7.5) 

where 01. I = sign denotes the subgradient of  the modulus function, and only trace-free arguments are under 
consideration. The modulus function is convex and so is (7.2). Identity (7.5) is equivalent to 0 belonging to the 
subgradient of  (7.2), which characterises the minimisers of  (7.2). If  P = 0, (7.1) states 

a : Q <~ blQ I (7.6) 

d×d 
for all Q E R,y m with tr Q = 0. Hence, Idev a I ~< b. I f  Idev A I >. b we conclude P ~ 0 and obtain oI'I(P) = {P/ 
IPI}. Hence, (7.5) yields 

dev A - (C + r/)P = bP/]P[. (7.7) 

Notice that tr CP  = 0 as tr P = 0, and only trace-free arguments are under consideration. Since then CP  = 21zP 
we obtain 

devA = (b + (212 + 71)IP[)P/IP I (7.8) 

and so Idev A I = b + (2/~ + r/)lP I, whence 

[PI = (I dev AI - b)/(Z/x + r/). (7.9) 

Using this in (7.8) we deduce 

( I d e v a [ - b ) +  d e v a  
P =  2#  + r /  [dev a[ " (7.10) 

The formula (7.10) holds also for P = 0. Taking (7.10) in (7.2) we calculate the minimal value (7.4). [] 

DEFINITION Z1. For any x ~  $2, K(x) :=  dev Cpo(x ) + devM(x), M(x), m(x) and rl from Table 1, and 
d x d  

A E ~*ym let 

1 1 
~p(x, A) := ~ A : CA - ~ (Idev CA - K(x)l - m(x))Z+/(2/x + *l)- 

~ d x d  n d X d  PROPOSITION 7.2. For any x ~ 1 2 ,  q~(x,') is ~1 and D~p(x,.): ,ym "-'~/~ym is uniformly convex and 
Lipschitz, i.e. there exist positive hardening depending constants a and L such that, for  all x E ~ and 
A, B E ~a×d "~syrn ~ 

a l A  - BI 2 + Oq~(x,A) : (B - A) < - ~ (x ,B)  - q~(x,A), (7.11) 

IDa(x,  B )  - O ~ ( x ,  A)I ~< L I B  - A [ . (7.12) 
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PROOF. A discussion of  the two cases Idev CA - K(x) I <~ re(x) or not leads to 

( ( ]devCA-K(x) l -m(x))+ d e v C A - K ( x ) )  
D~(x, A) = C, a -(2tx~-~) Idev CA K(x)] (7.13) 

and, at least for the two cases ]dev CA - K(x)l < m(x) resp. >re(x), we have D2~(x, A) = C resp. 

D2~o(x, A) = C 1 - m(x)/]B I C dev ®C dev re(x) 2#  + 7/ (2/z + w)IB[ C signB ® C  s ignB ,  (7.14) 

d × d  where B :=  dev CA - K(x), sign B = n/Inl, and P : (C dev ® C  dev)Q = 4/x 2 dev P : dev Q for all P, Q E I~y m . 
Since r / >  0, IBI/> m(x) in the second case, and C dev = 2p~ dev, 

rt 4p, 2 
- -  - -  <<-D2~(x, A) ~< C (7.15) r / +  2/x C~<qC 2/~ + r/ 

d × d  where ~ ~< [13 means P : ~ ~< P : BP for all P E ~ y m '  Hence, the second derivative D2~o(x, A) is discontinuous 
but bounded. Then, (7.11) and (7.12) follow from integrations along lines connecting A and B; we refer to [20] 
for details. [-] 

According to Definition 7.1 and Proposition 7.2 we may consider an equivalent variational problem. 

DEFINITION 7.2 (Minimisation Problem (M3)). Seek the minimiser u in H~(g2) of 

f~ ~ ( x , ~ u ) ) ~ -  f ,  (fu + p , , : C ~ u ) ) ~ -  f r  guds .  (7.16) 

THEOREM 7.1. For 7/> 0, there exists a unique minimiser u of (7.16) and u, 0- : = Dq~(x, e-'(u)), and p : = e'(u) - 
C- lo" solve Problem (P1), (P2) and (M 1 ). 

PROOF. Substituting Definition 7.1 for A = dev C~(U) into (7.16) and using (7.2) and (7.3) we eventually 
obtain (M2). Tile unique solvability of  (M 2) follows from standard arguments for uniformly monotone operators 
(see e.g. [20]). [] 

On the discrete level, we replace m(x) and K(x) by their elementwise integral means and result in the 
following discrete problem. 

DEFINITION (Minimisation Problem (M 3 ] ~) ) .  Seek the minimiser U in Y{ of  

f~ ~ ( x , , ~ U ) ) d x - f ~  ( f U + p o : C s ( U ) ) d X - f l  gUds  

where, for x E T E 3- and A E ff~a×d, 

1 1 
~r(x, A ) : =  ~ A : CA - ~ (Idev CA - ~'(x)] -~(x))2+/(2/z + 7/) 

and K :=  fT K(x) dx/meas(T) resp. m :=  ST m(x) dx/meas(T) denote integral means over T. 

(7.17) 

REMARK 7.1. The discrete problem (P2 ] ~ >(~) is equivalent to the minimisation problem (M 3 ] ~).  

REMARK 7.2. The functional ~¢ satisfies (7.1 1) and (7.12) with the same constants. In particular, an a priori 
and a posteriori effor analysis can also be based on these properties (but includes some implicit perturbation 
argument on K - K ,  etc.). 

DEFINITION Z4 (Quasi-Newton-Raphson Scheme). Let C,(x), x E ~,  be a globally elliptic and bounded 
fourth-order tensor, i.e. for two positive constants a n and ce,--~ we have 
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o~]A] 2 <~A : C~(x)A ~ - -  2 ii~d×d a.lAI ( A E  x E g 2 )  (7.18) ~sym ' 

Then, for p, > 0 and U, ~ ~ ,  define U, + ~ C ~ as the unique solution to 

f .  - . = { f o ~ x , ~ < ) ) : ~ v ) ~  e(u.+, v,,) C,e(V)dx -p .  

- f~ (iv + ~:c~v))dr- frNgVas ) (v~e) (7.19) 

We have the following global, but only linear convergence result. 

THEOREM Z2. Let oe and L as in Proposition Z2. I f  p, = a , / L  then, any sequence (Un) generated by the 
quasi-Newton-Raphson scheme satisfies 

O[ 

<,+,)ILL=.,,  + ao , 2(1 + c) 118(U - z + ~< q 8  (7.20) 

for  q :=  c/(1 + c) < 1 with 1/2(1 + -'~nnn[Oln)2L2/ol 2 ~ C  and 

PROOF. The proof follows from standard arguments given, e.g. in [20] for an abstract framework; we give a 
proof here for the convenience of  the reader. According to (7.11) we have, for e, :=  I I ~ ( e -  <)11~=,.,. 

z f n ~ £ ae,, + i + D ~ ( x ,  ~(U, + 1 )) : ~(U - U, + j ) dr <- ~,7(x, e~IU)) dr - ~.~(x, e(U,, 4 , )) dr 
2 

= - a . , + ,  + f. ( f (u -u .+ , l+po:C~g-u .+ , ) )dr  + ~ g(U-U,,+l)dS. (7.22) 
. v  N 

Owing to (7.12), this shows 

2 £ ae.+, +6.+, ~ D~(x.e(U.)):e ' (U.+,-U)dr 

-- f~ f(Un+ I - U ) + p o ' e ~ ( U n +  1 - U ) ) d x - d l  f g ( U n + l - U ) d s  

+ t l l ~ u . , + ,  - U)II~=,.,II~Un+, -- U~)II~,~,  - (7.23) 

Taking (7.19) for V=  U - U,+l, we obtain in (7.23) that 

~ e ° + ,  -< ~ g ° + ,  - No) : c ° ~ u  - S ° + l ) a X  + LII~u°+ ,  - v ) l l ~ , ~ , l l ~ u o + ,  - uo)l l~2. , ,  

<~ (L + 7,/p,)l[e(U,+ ~ - u,)IIL~o~IIe(u,,+, -13')llL2,n ~ . (7.24) 

(In the last step we used Cauchy's  inequality with respect to C,, and (7.18).) In the same way, we apply (7.11), 
(7.12) and (7.19), to infer 

< l ~ u . , + l  - ~ f .  U,,)llL2{n ) <~ D~o4x, ~U.+, )) : ~U,, , - U,) dr  ) + 

ao a,+, + f. (f(U. -- U,+,)  + P o '  CaU,,  - Un+l) ) dr  
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'L = ~ . - ~ . + , - ~  ~ u . + l - w . ) : c ~ u . + , - u . ) d r  

+ f a  {Dq~x, e-'(U. +, ) - D~o.(x, e-'(U.)} : e-(U~ +~ - U.) dr  

~< 6,,  - 6 . + ,  - ~ . / p . j l e ( u ~ + ,  - + LIl u.+, - u . ) l l b , . ,  

= 6, - ¢5,,+ 1 (7.25) 

because of p,, = %/L. Using this in (7.24) with Young's  inequality, ab <~a2/2 + bZ/2, we deduce 

OZ 2 L2 - -  2 

2 + 6,+, ~< ~- e,,+l +-2~a2 (1 + an/ozn)(~,-6,+l) (7.26) O { e n + l  - -  " 

This shows (7.20) and concludes the proof. [] 

REMARK 7.3. The (non-damped) Newton-Raphson  method is defined for p, = 1 and C,  := DZ~j(x, o~(U,,)). 
Then, since ee/L < 1, Theorem 7.2 does not guarantee global convergence. Moreover, q may be very close to ! 
if hardening is small. 

We conclude this section with a discussion of the local convergence properties of the Newton-Raphson 
scheme to indicate superlinear convergence observed in practice. Suppose U, E ~ is an approximation to 
U @ ~t ~ and U, +1 E ~ is generated by 

fao2~.~X, e'(U,); e '(U,. ,  - U.), ~V))  dx 

= - f~ D~°~(x' ~U'); °"(V)) dx + L,2 ( fV + p° : C~V)) aX + fr~ gV ds (V ~ ~C) . (7.27) 

With the (discrete) stress deviator resp. its approximation 

o - : = d e v C [ e ' ( U ) -  K] resp. o ' , , : = d e v C [ e ( U , ) -  K] (7.28) 

we define the discrete plastic (and elastic) zone resp. its approximation by 

a , : =  (x I I (x)l & resp. / 2 p  := {x E o I (7.29) 
le )  (e) 

Thus, the prediction of U,, about the plastic or elastic zone is correct on 

(I2p n .Onp) U (.O~ N ~(2,, e ) (7.30) 

and incorrect on the remaining part of  Z2..i:= (Z2p\/2 p) U ( Z 2 \ / 2 )  of  the domain. We will work under the 
hypothesis that~ first, Ije'(U - u,,)llL~m is small and, second, meas (Z2.,~) is very small. Our analysis is based on 
the fact that 

d,(x) := D Z ~ x ,  e'(U,)(x); e'(U - U,)(x)) + D~.~(x, ~U,)(x)) - Dq~x, e'(U)(x)) (7.31) 

and (7.27) lead, for V := U,, + 1 - U, to 

fa D 2 ~ x '  e'(U.); e'(U,,+, - U). e'(U.+ 1 - V ) ) d r  = - f , ,  d . :  e(U,,+, - U ) d r .  (7.32) 

This, Cauchy 's  inequality and the uniform positive definiteness of D 2 ~  from (7.15) yield, with some 
r/-depending constant Cl( r / )>  0, that 

II~s - s,, +1)11~=,'~/~ cl (n)lld°ll~,,,, (7.33) 
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and it remains to analyse (7.31). Recalling the proof of Proposition 7.2 we find 

Id,(x)[ ~< cz(T1)I~(U - U )(x)[ for almost all x E 12, (7.34) 

2 since D ~.~ is bounded, D~oj is Lipschitz. Furthermore, D2~pj( ., ~U,,)) is constant C in 12n.,, and so 

d (x )  = 0 for almost all x E 12e 71 12,,,~. (7.35) 

, ~d×d I dev  C [ C  -- Next,_ consider x E 12p (3/2,, p and A = e'(U.)(x) and B = e'(U)(x). We have A, B G {C E --.~r., 
K(x)] > ~(x)} =:  .~ and, although cony{A, B} may leave 9 ~, we can always find a smooth curve 7 : [0. l] ~ 
with y ( 0 ) =  A and 3,(I)= B of length 

l <~ c31a - B I . (7.36) 

2 Since D ~.~- is smooth in .@ and O3q~ is bounded (cf. the derivative of (7.14)), we obtain (with y parameterised 
by the arc-length, and so I Ks)] = 1) 

d.(x) = D2~j (A;  B - A) + D~o~(A) - D~o~,-(B) 

fo ° 
= O 2 ~,AA; B - A) - ~s D ~  y(s)) ds 

Jo' = { D ~ . ~ A ;  Ks)) - O~q,O,(s); Ks))} ds 

I O ~ ( A )  - D ~,~(~,(s))l ds 

fo'lfo I fo'[ = ~ D'~o3(y(t)) dt ds <<- ID3¢~y(t))J  dt d s .  (7.37) 

According to the boundedness of  O3cfl and (7.36), (7.37) verifies 

U '~ ,, . Id,,(~)[ ~ c 4 ( n ) l ~ u  - °)(~)[~ for almost all x ~ ~ ,  n 12,~ (7.38) 

To summarise, the above arguments show 

-~- 2 C 4 ( ~ ) 1 1 ° ° ( U  - -  u, , ) l l~, . .~, , , , , l l~(u -uo)ll~.~,.~.~,, ,.,. ( 7 . 3 9 )  

Thus, if Ile"(U - U,)[[L~m) ~< S << 1 and meas(~2,.;) ~< 6 z", with 0 < ce ~ 1, then, 

II~(v - u .  +,)11~=¢~, = 0(~ '  + °) (~ -~ 0 ) .  (7.40) 

R E M A R K  7.4. Under the present assumptions on e'(U - U,) we can, in general, only expect II~(u - u,,)ll~=,~, = 
0(6), and so (7.40) indicates superlinear convergence of Newton-Raphson 's  scheme. 

R E M A R K  7.5. Although (7.40) may suggest that the local convergence of Newton-Raphson 's  method is 
superlinear, it seems to be a non-obvious task to base a rigorous proof on (7.38). The difficulty arises from the 
fact that, within a proof by mathematical induction, we have to verify that [ [e(U-  U,,+~ )liLy,a)= O(~ '+") and 
meas(Y2~ + i,, ) = 0(62or( 1 + a ) ) .  

R E M A R K  7.6. In our practical experience, the Newton-Raphson scheme often showed quadratic convergence. 

R E M A R K  7  ̀7. It is conjectured that damping is necessary in the first steps of the iteration and may be omitted 
in subsequent iterations. 
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8. Numerical experiments 

Three examples provide numerical evidence of the linear convergence of the lowest order scheme and of the 
superiority of the adaptive algorithm. 

8.1. Plastic ring with known solution 

The first example involves kinematic hardening for the geometry shown in Fig. 1 which represents the 
two-dimensional section of a long tube with inner radius of  1 and an outer radius of  2, where we have no 
volume force ( f = 0 )  but radially applied surface forces g , ( r , O , t ) = t e ~  and g:(r, ck, t ) = - t / 4 e ~ ,  e r =  
(cos ~b, sin 4)). 

The lack of Dirichlet boundary conditions is compensated by requiring that $2 keeps centred at the origin and 
rotation is prohibited. The rotational invariant system and applied loads allow the solution 

u(r, ~b, t) -- u,(r, t) " e r , 

tr(r, (h, t) = o'r(r, t)e r ® er + o',t,(r, t)e 6 ® e ~ , 

p(r, dp, t) = P~(r, t)" ( e r i e  r - e~ Q e e , ) ,  

(see [21] for details) with e r = (cos ~b, sin ~b), e,~ = ( - s i n  ~b, cos$ )  and 

t 1 4a 

3 
for r ~ e ( t )  , 

' ( 4--~r) 21zr 3 KI(R(t)) 4r + + Kl(r)" r for r < R(t) ,  

t 8 1 1 
°'r(r, t) = r 2 3 a K I ( R ( t ) ) ( - ~ - - - ~ )  for r >~ R(t) , 

, 8  ( ÷ )  
r 2 3 aKl(R(t)) 1 -- + 2aKl(r) for r < R ( t ) ,  

2 

Fig. 1. Geometry in Example 8.1. 
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Fig. 2. Evolution in time of the plastic boundary R(t) in Example 8.1. 

o%(r, t) = O(r . o" ) /  Or , 

I~ for r >~ R(t)  , 

P,(r,  t) = try /~(a~-+H2) ( l  - R 2 / r  2) for r < R ( t ) ,  

I(r) - x /2 (ax  + He)  (In r + 1 /2(R2 / r  2 - R2)). 
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Fig. 3. Initial mesh in Example 8.1. 
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Fig. 4. Uniform mesh after 4 red-refinements in Example 8.1. 
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Here, a =/I, + ,~, K = 2/.t/(2/z + A). The radius of  the circular plastic boundary R(t) is determined as the positive 
root of  

f(R)=-2alnR +(a-1)R 2 - a +  
~F2 

t ,  

where ce = 4aK/(3(aK + H2)). Fig. 2 displays R(t) versus t and illustrates for t ~< o:~/x/2 that the body reacts 
purely elastic (as the inner radius of  the domain is 1). 
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Fig. 5. Exact and discrete solution f o r  t h e  m e s h  shown in Fig. 4 along A - B  in Example 8.1. 
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For material parameters with Lame constants # - - E / ( 2 ( 1  + t,)) and h - -  ~E/((1 + ~,)(1 - 2 ; 0 ) ,  Young's 
modulus E = 7 0 0 0 0  and Poisson's ratio ~, = 0.33, yield stress ~. = 243 and hardening modulus 7/= 1 for 
kinematic hardening, the inner part of  the body becomes plastic at t = 171.8269. As a typical time-step we 
realized the time-increment from t o = 274.9231 to t~ = 276.6414. According to the symmetry, only a quarter of  
the domain is discretized as shown in Fig. 3 with symmetric boundary conditions. 

The mesh after 4 uniform refinement steps together with the boundary between the plastic and the elastic 
region at t o (solid line) and at t~ is shown in Fig. 4. The new nodes on the boundary are moved to the curved 
boundary within each refinement step and so Fig. 4 indeed corresponds to red-refinements. 
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Fig. 5. (Contd.) 
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Fig. 6. Exact and discrete solution for the mesh shown in Fig. 7 along A - B  in Example 8.1. 

Along the line A - B  the exact and the numerical solutions are compared in Figs. 5 and 6. 
The figures show the radial components of  the plastic strain Pr, the two components of  the stress o- r and o',b, 

and the displacement u r, each for different mesh sizes. The error of  the numerical solution seems to be 
uniformly distributed in radial direction in Figs. 5 and 6. Hence, no particular refinement of  certain regions 
appears to be necessary and so the automatic mesh-refinement leads to a mostly uniformly refined mesh, shown 
in Fig. 7. 
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Finally, the inverse of the relative energy error in o- over the square root of the degrees of freedom n (as a 
measure for the mesh size) is displayed in Fig. 8 in a double logarithmic plot. The rate of convergence for the 
uniform and the adaptive mesh-refinement can be deduced from Fig. 8 and so provides experimental evidence 
that the asymptotic is indeed O(h). Also, the convergence rate for the adaptive mesh-refinement with Algorithm 
6.1 (dashed line) shows optimal convergence in agreement with the discussion above. 
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Fig. 7. Adaptively refined mesh in Example 8.1 

8.2. Perforated tension strip 

The second experiment is part of  a benchmark in computational plasticity [22]. A two-dimensional squared 
plate with a hole is under a time-dependent tension g( t )  = 6 0 0 .  t with a surface load g( t )  = t as shown in Fig. 9. 
Only a quarter of  the domain, depicted in Fig. 10, is discretized. 

The problem models perfectly plastic material with Young's modulus E = 206 900, Poisson's ratio p = 0.29, 
yield stress 4. = 450, and with vanishing initial data for the plastic strain Po and hardening parameter a o. The 
finite element method is applied to a uniformly refined mesh with 31 744 elements and n = 32 226 degrees of  
freedom and a time integration from 0 to T = 5 with the implicit Euler method in 100 uniform time steps of  
length k = 1/20. In each time step, a Newton-Raphson method is employed which terminates if the Euclidean 
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Fig. 8. Convergence rate in Example 8.1. 
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Fig. 9. Perforated tension strip in Example 8.2. 
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~c 2 

~ /  Xo 

90 I 

100 

Fig. 10. Geometry of the problem in Example 8.2. 

norm of the residual is less than 1 0 - ' 1  In Fig. 11, we display the number of  iterations needed in each time-step. 

Since the material remains entirely elastic for 0 ~< t < 1.75, one iteration step is sufficient. The structure seems to 
fail for t > 4.8 where the plastic zone reaches the outer boundary and the Newton-Raphson scheme diverges. In 
Fig. 12 we display the two stress fields for time t = 0 . 3  resp. t = 4 . 4  in the deformed configuration 
(displacements are 10 times magnified), where the shading corresponds to ]dev ,SI. As a measure for the 
displacement on F ,  the curve in Fig. 13 shows the line integral of  u: versus t. Again, failure of  the structure is 
seen in the last four time-steps when the plastic region reaches: F x. 

3 0  

2 5  

2 0  

15  

1 0  

/ 7 

I I I I 

Fig. 11. Number of Newton iterates versus t, (I ~< t ~< 5 in Example 8.2. 
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Fig. 12. Modulus of deviatoric part of stress approximation for t = 0.3 (left) and t = 4.4 (right) in Example 8.2. 

Another quantity of  interest is the first component of  the stress tensor o-]](Xo), plotted in Fig. 14 (cf. Fig. 10 
for the location of  x o = (38.044, 38.044)). 

8.3. Adaptive treatment within one time-step 

In  t h e  f ina l  e x a m p l e ,  w e  c o n t i n u e  t h e  p r e c e d i n g  b e n c h m a r k  a n d  f o c u s  o n  o n e  t i m e - s t e p ,  i .e.  o n  H e n c k y  
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Fig. 13. J'j; u 2 ds versus t in Example 8.2. 
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415 
Fig. 14. o-,~(xo) versus t in Example 8.2. 

plasticity, with a constant surface load g = 450 on F~ (see Fig. 10 for g and the location of  Fg) and homogeneous 

initial data Po = 0 resp. a o = 0. 
Starting with the initial mesh T O plotted in Fig. 15, 30 adaptive steps of  Algori thm 6.1 lead to a final 

configuration with n = 8004 degrees of  freedom. The triangulations Ts, ~r~o, 3-~5, 3-2o, 3-z5 , and J.3o are 
displayed in Figs. 16-18. 

Although the mesh J-o is a priori refined near the hole (to approximate properly the curved boundary there), 
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Fig. 15. Initial mesh ~ with n =48 in Example 8.3. 
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Fig. 16. ~ with n = 150 (left). 3-,, with n = 340 (fight) in Example 8.3. 
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Fig. 17. J-~5 with n = 544 (left), "Y?2o with n = 854 (fight) in Example  8.3. 

the refinement starts in the plastic region. The elastic part of the body is refined for very fine meshes J-k- This 
behaviour is reflected by Fig. 19, where the stress component o-2z is evaluated at the point x~ (see Fig. 10 for the 
location of xj). The values oscillate up to a mesh with less than 4000 degrees of freedom and then reach a 
plateau. The values 0-22(xj) in the uniform refinement grow monotonously, but do not reach the approximate 
value 0-z2(x~ ) = -8.6253 (of the last adaptive step). Similar observations are made for the first component of the 
displacement at xj plotted in Fig. 20. Such oscillations of the (displacement and strain) values are not observed 
in the elastic regions of the domain in Figs. 21 and 22. 
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Fig. 18. J-~ with n = 1264 (left), ~ o  with n = 2030 (right) in Example 8.3. 
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Fig. 19. o'22(x~) versus degrees of freedom in Example 8.3. 

To investigate the effectivity of  the applied error indicator, we depicted the experimental convergence of the a 
posteriori error bound for approximations obtained with an adaptive mesh-refinement with Algorithm 6.1. In 
Fig. 23, we displayed the upper bound in (6.2), 

with 7/r from (6.1), versus the square root of  the number of degrees of  freedom ~ in ~k for ten sequences of 
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Fig. 20. u~(x~) versus degrees of freedom in Example 8.3. 

9000 

meshes generated adaptively (k = 0 . . . . .  50) corresponding to the depicted hardening parameters. The kinematic 
hardening leads to a relative raise of  coercivity r//(~? + 2/x). Although our a posteriori analysis is valid only for 
r / >  0, in all six sequences we observe the optimal asymptotic slope 1 which corresponds to linear convergence 
of  the a posteriori error bound. 
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Fig. 21. u,(x~) versus degrees of freedom in Example 8.3. 
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