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Abstract

Mixed ®nite element methods such as PEERS or the BDMS methods are designed to avoid locking for nearly incompressible

materials in plane elasticity. In this paper, we establish a robust adaptive mesh-re®ning algorithm that is rigorously based on a reliable

and e�cient a posteriori error estimate. Numerical evidence is provided for the k-independence of the constants in the a posteriori error

bounds and for the e�ciency of the adaptive mesh-re®ning algorithm proposed. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we investigate ®nite element solutions of the Lam�e system in linear elasticity and consider a
plane elastic body with reference con®guration X � R2 and boundary oX � C � CD [ CN , CD 6� ;,
CN � C n CD. Given a volume force f : X! R2 and a traction g : CN ! R2, we seek (an approximation to)
the displacement ®eld u : X! R2 and the stress tensor r : X! M2�2

sym :� fs 2 R2�2 : s � stg satisfying

ÿ divr � f ; �1:1�
r � Ce�u� in X; �1:2�
u � 0 on CD; �1:3�
rn � g on CN ; �1:4�

where e�v� � 1
2
�rv� �rv�t� is the linearized Green strain tensor and

r � k tr�e�u��Id� 2le�u� �1:5�
is the Cauchy stress tensor (under the plain strain hypothesis). For positive Lam�e constants k and l, the
fourth-order elasticity tensor C is symmetric, bounded, and positive de®nite; tr�A� � A11 � A22 is the trace
of the matrix A and Id is the 2� 2 unit matrix. As a consequence of Korn's inequality and the Lax±
Milgram lemma, Problem (1.1)±(1.4) has a unique solution �r; u� 2 L2�X; M2�2

sym � � H 1�X�2.
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For nearly incompressible materials, i.e., for a Poisson ration m near to 1=2, the Lam�e constant k is very
large and the standard computation of a ®nite element solution uh which is based on a displacement for-
mulation (where (1.5) is used to substitute r in (1.1) and (1.4)) fails: The constant C�k� in the error estimate

jjC1=2e�uÿ uh�jj2;X6C�k�ha �1:6�

(for small mesh-sizes h) tends to in®nity as k!1. To illustrate this locking effect, Fig. 1 displays the
energy error vs mesh-size of numerical results for six sequences of uniform meshes with six different Poisson
ratios m. For each m, an entry � is given at the position � ����N

p
; jj C1=2e�uÿ uh� jj2;X� for a mesh with N degrees

of freedoms. The description of the underlying test example will be given below in Section 6. Note that we
have a logarithmic scaling on both axes and so we observe from Fig. 1 that the empirical convergence rate a
is approximately 0:5445 which is the (negative) slope of the af®ne interpolation of the data points. This is in
agreement with theoretical predictions because the exact solution has a singularity at the re-entering corner
of the domain X. The dependence of the constant in (1.6) suggests C�k� / 1=�0:5ÿ m� / k: Multiplication
of k by 10 increases the error by a factor 3:16 � �����

10
p

.
Mixed ®nite element formulations are designed for a robust approximation, i.e., the constant C�k� in an

error estimate as (1.6) is then k-independent. Stable numerical schemes are obtained by relaxing the
symmetry of the discrete stress tensor rh [3,8,19,21]: We seek (an approximation to) u : X! R2,
r : X! R2�2 and c : X! M2�2

skew :� fg 2 R2�2 : g� gt � 0g satisfying

r � C�ruÿ c�; r � rt; ÿdivr � f in X; u � 0 on CD; rn � g on CN : �1:7�

We refer to Section 2 for a variational formulation and its discretization which yields the approximation
�rh; uh; ch� 2 Rg;h �Uh �Wh with respect to PEERS (plane elasticity element with reduced symmetry) [3]
and a modi®cation of the BDM element BDMk due to Stenberg which we will therefore refer to as BDMSk

element.
The practical performance of the PEERS is robust in the sense that, at least for very small mesh-sizes, the

error is (almost) independent of the crucial parameter m! 1=2. This is supported by Fig. 2 where we
display numerical results for the lowest order PEERS in Example 6.1 (compare with Fig. 1).

In the example, a corner singularity reduces the convergence rate from the optimal value 1 to a � 0:5445.
This paper aims to improve such a poor convergence rate by proposing a robust mesh-re®ning algorithm
for an e�cient automatic mesh-design. In contrast to the ansatz in [6], our algorithm is rigorously based on
an e�cient and reliable a posteriori error estimate in natural norms established in [12] and proved with
methods from [2,10].

Fig. 1. Energy norm of P1-displacement FE approximation error on the uniform mesh in Example 6.1 vs degrees of freedom N.
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Given the discrete solution �rh; uh; ch� and an element T in the triangulation Th, we compute

g2
T :� h2

T

l2
kf � divrhk2

2;T � h2
Tkcurl�Cÿ1rh � ch�k2

2;T �
1

l2
kAs�rh�k2

2;T

� hEk �Cÿ1rh

� � ch�tE

�k2
2;oTnC � hEkg ÿ rhnk2

2;oT\CN
� hEk �Cÿ1rh

� � ch ÿruD�tE

�k2
2;oT\CD

: �1:8�
Here, hT is the diameter of T and E is an edge of T with length hE and ��� denotes the jump of the in-

dicated quantity over an inner-element edge E. (See Section 3 for a detailed notation.) Notice that all terms
are residuals: f � divrh is the residual of (1.1), curl�Cÿ1rh � ch� and �Cÿ1rh � ch�tE

� �
are residuals of

Cÿ1r� c � ru (since the curlru � 0 and ou=os � ru � tE � 0), As�rh� is the residual to Asr � 0, and the
remaining terms are their modi®cations on the boundary of the domain. Then the proposed mesh-re®ning
algorithm generates a sequence of meshes and related Galerkin solutions. The corresponding errors are
shown in Fig. 2.

Adaptive algorithm (A)

(a) Start with coarse mesh T0.
(b) Solve discrete problem w.r.t. Tk.
(c) Compute gT for all T 2Tk.

(d) Compute error bound
P

T2Tk
g�T �2

� �1=2

and terminate or goto (e).

(e) Mark element T red i� g�T �P 1
2

maxT 02Tk g�T 0�.
(f) Perform red±green±blue-re®nement to avoid hanging nodes, update mesh and goto (b).

We refer to [4,18,23] for details on red±green±blue re®nement procedures and corresponding data
handling.From the numerical results in Fig. 2, we conclude that our algorithm is e�cient (because the
experimental convergence rate is improved to the optimal value 1) and robust (because the errors are almost
independent of k!1).

The remaining part of the paper is organized as follows. The discrete subspaces as well as the weak form
to (1.7) are described in Section 2. The underlying a posteriori error estimate is given in Section 3. The proof
is given in Section 4 for convenient reading and because, compared to [12], we use di�erent scalings with the
Lam�e constant l. This leads to an a posteriori estimate

jjC1=2 r� ÿ rh�jj2;X6 c1

X
T2Th

g2
T

 !1=2

�: c1g�r;Th�; �1:9�

Fig. 2. PEERS approximation error on uniform and adaptive meshes in Example 6.1 vs degrees of freedom (energy norm of the stress

errors).
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where the constant c1 is independent of k and l. Since PEERS appears to be not very frequently used in
practice, we give some details of our realization in Section 5. The experimental results are presented and
discussed in Section 6. In particular, we will see that the convergence behavior in Example 6.1 can indeed be
optimized by Algorithm (A).

2. Mixed ®nite elements

In the mixed variational formulation one seeks �r; u; c� 2 Rg �U�W such that

a�r; s� � b�s; u; c� � 0 and b�r; v; g� � ÿ�f ; v� �2:1�

for all �s; v; g� 2 R0 �U�W. Here, the linear and bilinear forms and the function spaces Rt, U, W are
de®ned for t � 0 and t � g by

a�r; s� �
Z

X
Cÿ1r : sdx;

b�r; u; c� �
Z

X
u � divr� � r : c�dx;

�f ; v� �
Z

X
f � vdx;

Rt � fr 2 L2�X; R2�2� : divr 2 L2�X; R2�; rn � t on CNg;
U�W � L2�X; R2� � L2�X; M2�2

skew�:

In this approach, the symmetry of the stress tensor r is relaxed and only imposed by means of the Lagrange
multiplier c. For Rt;h, Uh, Wh ®nite dimensional spaces approximating Rt, U, and W we de®ne the discrete
solution �rh; uh; ch� 2 Rg;h �Uh �Wh by

a�rh; sh� � b�sh; uh; ch� � 0 and b�rh; vh; gh� � ÿ�f ; vh� �2:2�

for all �sh; vh; gh� 2 R0;h �Uh �Wh. In this formulation, rh satis®es only the weak symmetry condition, i.e.,
for all ch 2Wh,Z

X
rh : ch dx � 0; �2:3�

which does not imply rh � rt
h if rh ÿ rt

h 62Wh. In two dimensions, existence, uniqueness, and a priori es-
timates for several choices of discrete spaces have been proven in [21] which include the low order PEERS
(plane elasticity element with reduced symmetry) constructed by Arnold et al. [3] and a modi®cation of the
Brezzi±Douglas±Marini element BDMk due to Stenberg (which we will refer to as BDMSk element).

We assume that X is a simply connected bounded domain in R2 with polygonal boundary. Let Th be a
regular triangulation of X in the sense of Ciarlet [17], which satis®es the minimum angle condition, i.e.,
there exists a constant c2 > 0 such that cÿ1

2 h2
T 6 jT j6 c2h2

T . Here, jT j is the area and hT is the diameter of
T 2Th. The set of all element sides in Th is denoted by Eh and hE is the length of the edge E 2 Eh. We
assume in addition that CN is a ®nite union of connected components Ci, i � 0; . . . ;M , and that CD has
positive surface measure. Thus we have Eh � EX [ ED [ EN where EX is the set of all interior element sides
and ED and EN are the collection of all edges contained in CD and CN , respectively. We write E0

h � EX [ EN .
It is useful to de®ne a function hTh on X by hTh jT � hT and a function hEh on the union of all element sides
by hEh jE � hE.

The de®nition of the ®nite element spaces involves the bubble function bT � k1k2k3 on a triangle T 2Th,
where ki are the barycentric coordinates on T. The PEERS is based on the following function spaces:
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Uh � fvh 2 U : 8T 2Th vhjT 2 P0�T �2g;
Wh � fch 2W \ C0�X; M2�2

skew� : 8T 2Th chjT 2 P1�T ; M2�2
skew�g;

Rh � frh 2 L2�X; M2�2� : divrh 2 U; 8T 2Th rhjT 2 RT0�T � � B0�T �g;
Rt;h � frh 2 Rh : rhn � ~t on CNg;

where ~t is the L2�E�-projection of t onto P0�E�2 for all edges E � CN . Here, RT0 is the Raviart±Thomas
space of lowest degree, and

RT0�T � � fr 2 L2�T ; M2�2� : r � s� a
 x; s 2 M2�2; a 2 R2g;
B0�T � � fr 2 L2�T ; M2�2� : r � a
 CurlbT ; a 2 R2g;

BDMk�X� � frh 2 L2�X; M2�2� : divrh 2 U; rhjT 2 Pk�T ; M2�2�g:

The higher order methods BDMSk are de®ned for k P 2 by

Uh � fvh 2 U : 8T 2Th vhjT 2 Pkÿ1�T �2g;
Wh � fch 2W : 8T 2Th chjT 2 Pk�T ; M2�2

skew�g;
Rh � frh 2 L2�X; M2�2� : divr 2 U; 8T 2Th rhjT 2 Pk�T ; M2�2� � Bkÿ1�T �g;

Rt;h � frh 2 Rh : rhn � ~t on CNg;

where ~t is the L2�E�-projection of t onto Pk�E�2, i.e., ~tjE :� RE t ds=meas�E� if k � 0, and

Bkÿ1�T � � fr 2 L2�T ; M2�2� : r � Curl�bT w�; w 2 Pkÿ1�T �2g:

3. A posteriori error estimate

Let L2�X� denote the standard Lebesgue space with norm k � k2;X, H 1�X� the Sobolev space with norm
k � k1;2;X and seminorm j � j1;2;X, and L2�X; S� :� fv 2 L2�X�jv : X! Sg. We write u 2 L2�Th� (resp.

v 2 H 1�Th�) and w 2 L2�Eh� if ujT 2 L1�T � (resp. vjT 2 H 1�T �) for all T 2Th and wjE 2 L2�E� for all E 2 Eh.
For each E 2 Eh we ®x a normal nE to E such that nE coincides with the exterior normal to oX if E � oX.
Then,

�v�jE :� �vjT��jE ÿ �vjTÿ�jE

if E � �T� \ �Tÿ and nE is the exterior normal to T� on E and

�v�jE � �vjT �jE
if E � �T \ oX. Finally we de®ne

CurlU � �U;2;ÿU;1� for U 2 H 1�X�;

Curlu � u1;2 ÿu1;1

u2;2 ÿu2;1

� �
; curlu � u2;1 ÿ u1;2;

curlr � r12;1 ÿ r11;2

r22;1 ÿ r21;2

� �
; divr � r11;1 � r12;2

r21;1 � r22;2

� �
:
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Theorem 3.1. Let Th be a shape-regular triangulation of X � R2 and let �rh; uh; ch� be the solution of (2.2) for
the PEERS or the BDMSk element. Then there exists a k- and l-independent constant c3, which depends only
on X;CN ;CD and the polynomial degree of the elements, such that

kCÿ1=2�rÿ rh�k2;X6 c3g�r;Th� :� c3

X
T2Th

g2
T

 !1=2

:

Remark 3.1 (Displacement estimate). A more general estimate is given in [12]:

kuÿ uhk2;X �kcÿ chk2;X�kCÿ1=2�rÿ rh�k2;X6 c4 g�r;Th�2
 

�
X

T2Th

h2
T inf

vh2Uh

kCÿ1rh� chÿrvhk2
2;T

!1=2

:

�3:1�

Remark 3.2 (Efficiency). Assume in addition to the hypotheses of Theorem 3.1 that curl�Cÿ1rh � ch�jT is a
polynomial for all T 2Th and �rÿ rh�njE for all E � CN . Then there exists a constant c5, which depends
only on X, l, and the polynomial degree of the elements, such that

g�r;Th�6 c5 ku
�
ÿ uhk2;X � kCÿ1�rÿ rh� � cÿ chk2;X � krÿ rhk2;X � khTh�f � divrh�k2;X

�
:

Remark 3.3 (Volume contributions). As explained in [11], a Cl�ement-type weak interpolation can be used to
re®ne Theorem 3.1. Indeed, the contributionX

T2Th

h2
Tkcurl�Cÿ1rh � ch�k2

2;T

could be replaced by a higher-order term [15].

4. Proof of a posteriori error estimate

The proof is in the spirit of Alonso and Carstensen [2,10,12] and based on a Helmholtz decomposition of
rÿ rh � sym�rÿ rh� ÿ u where sym��� :� ��� � ���t� �

=2 and u :� As �rh�. De®ne v 2 H 1
D�X� :�

fv 2 H 1�X�2 : v � 0 on CDg as the solution toZ
X

e�w� : Ce�v�dx �
Z

X
e�w� : �rÿ rh�dx �w 2 H 1

D�X��: �4:1�

Then, S :� rÿ rh ÿ Ce�v� � u 2 L2�X; M2�2
sym � satis®esZ

X
S : rwdx � 0 �w 2 H 1

D�X�� �4:2�

and so, for j � 1; 2, �Sj1; Sj2� is divergence-free. According to classical results in potential theory, �Sj1; Sj2�
is some Curlwj, i.e., S � Curlw for some w 2 H 1�X�2. We refer to [20,22] for details. Partial integration
of (4.2) shows

R
CN

w � Snds � 0. Since w is arbitrary on CN , Sn � 0, whence Curlwn � 0 with
t � �ÿn2; n1�. This is rw � t � 0, i.e., w is constant on each component of CN . Because S � Curlw is
symmetric, w1;1 � w2;2 � 0 and so w is divergence-free. Thus, w � CurlU for some U 2 H 2�X�. Altogether,
cf. [12, Section 3],

rÿ rh � Ce�v� � Curl CurlUÿ u; where u � As�rh�:
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Therefore, the stress error is decomposed asZ
X

Cÿ1�rÿ rh� : �rÿ rh�dx

�
Z

X
e�v� : �rÿ rh�dx�

Z
X

Curl CurlU : Cÿ1�rÿ rh�dxÿ
Z

X
u : Cÿ1�rÿ rh�dx �4:3�

and we have

kCÿ1=2�rÿ rh�k2;X6 kCÿ1=2CurlCurlUk2;X � kC1=2e�v�k2;X � kCÿ1=2uk2;X: �4:4�

Since Cÿ1r � e�u� and since CurlCurlU is symmetric we haveZ
X

CurlCurlU : Cÿ1�rÿ rh�dx �
Z

X
CurlCurlU : �ruÿ Cÿ1rh�dx: �4:5�

Let W 2 S1�Th� be constant on each component of CN and equal to w there. The assumption on the
trial space is sh :� CurlW 2 R0;h and so divsh � 0 and (2.2) leads toZ

X
Cÿ1rh : sh dx � ÿ

Z
X

sh : ch dx: �4:6�

Hence, Eq. (4.5) leads toZ
X

CurlCurlU : Cÿ1�rÿ rh�dx�
Z

X
Curl�wÿW� : �ÿchÿCÿ1rh�dx�

Z
X

CurlW : �ÿchÿCÿ1rh�dx

�ÿ
Z

X
Curl�wÿW� : �ch�Cÿ1rh�dx

�
Z

X
�wÿW� � curlh�ch�Cÿ1rh�dx�

Z
[Eh

�wÿW� � �ch

� �Cÿ1rh�tE

�
ds;

�4:7�
(curlh denotes the Th-piecewise curl operator). For any V 2S0�Th�2, i.e., V is Th-piecewise constant and
possibly discontinuous, we computeZ

X
e�v� : �rÿ rh�dx �

Z
X

e�v� : �rÿ rh �As�rh��dx �
Z

X
rv : �rÿ rh �As�rh��dx

�
Z

CN

v�g ÿ rhn�ds�
Z

X
rv : udxÿ

Z
X
�vÿ V � � div�rÿ rh�dx

6
Z

CN

v�g ÿ rhn�dsÿ
Z

X
�vÿ V � � div�rÿ rh�dx� kCÿ1=2uk2;XkC1=2rvk2;X: �4:8�

It follows from Korn's inequality that there is a constant c6 such that

kC1=2rvk2;X6 c6kC1=2e�v�k2;X:

From Eqs. (4.3), (4.7) and (4.8) (recall that hTh resp. hEh are mesh-sizes)

kCÿ1=2�rÿ rh�k2
2;X6 kCÿ1=2uk2;XkC1=2rvk2;X �

������
2l

p
khÿ1

Th
�vÿ V �k2;X1

������
2l

p
khTh

.
div�rÿ rh�k2;X

�
������
2l

p
khÿ1=2

Eh
�vÿ ~V �k2;CN

1
������
2l

p
kh1=2

Eh

.
�g ÿ rhn�k2;CN

� 1=
������
2l

p
khÿ1

Th
�wÿW�k2;X

������
2l

p
khTh curlh�ch � Cÿ1rh�k2;X

� 1
������
2l

p
khÿ1=2

Eh

.
�wÿW�k

2;
S

Eh

������
2l

p
kh1=2

Eh
��ch � Cÿ1rh�tE�k2;

S
Eh

� kCÿ1=2uk2;XkCÿ1=2�rÿ rh�k2;X: �4:9�
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By Poincar�e's inequality with V being the elementwise integral mean of v, and ~V jE the integral mean of
vjE for an edge E � CN ,

khÿ1
Th
�vÿ V �k2;X6 c7krvk2;X �4:10�

is bounded independently of the size of the elements. According to a weak interpolation operator due to
Cl�ement (see [5,7,11,16,17] and [13,14] for explicit bounds on c8 and c9) one can de®ne W such that

khÿ1
Th
�wÿW�k2;X � khÿ1=2

Eh
�wÿW�k

2;
S

Eh
6 c8krwk2;X � c8kCurlwk2;X; �4:11�

khÿ1=2
Eh
�vÿ ~V �k2;CN

6 c9krvk2;X �4:12�
are bounded independently of the size of the elements. From (4.9)±(4.12), we deduce with Young's in-
equality, ab6 a2=�2c� � b2c=2 for all a; b; c > 0,

kCÿ1=2�rÿ rh�k2
2;X6Cc10 kCÿ1=2uk2

2;X

�
� 2lkhTh curlh�ch � Cÿ1rh�k2

2;X � 1=�2l�kh1=2
Eh
�g ÿ rhn�k2;CN

� 2lkh1=2
Eh
��ch � Cÿ1rh�tE�k2

2;
S

Eh
� 1=�2l�khTh�f � divrh�k2

2;X

�
� c11=C kCÿ1=2e�v�k2

2;X

�
� kCÿ1=2�rÿ rh�k2

2;X � l=2kCurlwk2
2;X

�
�4:13�

with C :� 2c11c12 > 0 and constants c10c11 > 0. A closer inspection of kCÿ1=2Curlwk2;X adopting arguments
from [9, p. 199] shows

kCurlwk2
2;X6 c122lkCÿ1=2Curlwk2

2;X: �4:14�
From this, Eq. (4.4) yields the estimate

cÿ1
13 kCÿ1=2�rÿ rh�k2

2;X6 khTh curlh�Cÿ1rh � ch�k2
2;X � kh1=2

Eh
�Cÿ1rh

� � ch�tE

�k2
2;E0

h

� khTh div�rÿ rh�k2
2;X � kCÿ1=2As�rh�k2

2;X � khEh�g ÿ rhn�k2
2;CN

: �4:15�
This concludes the proof. �

5. Implementation of PEERS

In this section we describe the realization of PEERS. All numerical results in this paper are performed by
using a Matlab implementation of PEERS in spirit of Alberty et al. [1]. We emphasize on the sti�ness
matrices which result in the global linear system of equations Ax � b, namely

B C D E F
Ct 0 0 0 0
Dt 0 0 0 0
Et 0 0 0 0
F t 0 0 0 0

0BBBB@
1CCCCA

xr

xu

xc

xkE

xkF

0BBBB@
1CCCCA �

bD

bf

0
0
bg

0BBBB@
1CCCCA: �5:1�

The symmetric and positive de®nite matrix B corresponds to the bilinear form a, C and D result from the
bilinear form b. The continuity of stress vectors along inner edges is implemented through Lagrangian
multipliers in the matrix E for interior edges and F for edges on the Neumann boundary CN . (See [21] for
further details.) The components xr, xu, xc, xkE and xkF of the unknown vector x correspond to the basis of
Rh, Uh, Wh and to the Lagrange multipliers. The components bD, bf and bg re¯ect inhomogeneous Dirichlet
boundary conditions, the volume force and applied surface forces. To approximate the integrals of the
Dirichlet-conditions in the right-hand side a 3-point-Gauû-quadrature is used.

On a triangle T 2Th with vertices P1, P2, P3 and center of mass s :� �P1 � P2 � P3�=3 any discrete stress
rh in R̂h,

R̂h :� frh 2 L2�X; M2�2� : 8T 2Th rhjT 2 RT0�T � � B0�T �g;
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is of the form

rh�x� � p � q
 �xÿ s� � r 
 Curlbt �
X8

j�1

ajgj�x� �x 2 T �:

Here p 2 R2�2 and q, r are coef®cient vectors in R2. The basis g1; . . . ; g8 we implemented is shown in Table 1.
The spaces for the Lagrangian multipliers are de®ned by

Mh � fk : kjE 2 P0�E�2; E � oT ; T 2T; kjE � 0 for E � CDg;
Nh � fj : jjE 2 P0�E�2; E � CN ; jjE � 0 for E � CDg:

We chose �l1; l2� as a basis of Vh. The basis functions of Mh and Nh for the Lagrange multipliers equal f1,
f2 on the edge E and vanish elsewhere. The basis of the rotations in Wh is de®ned by mk, where, for each node
zj, the hat function uj is given by

uj�zk� � djk �k � 1; . . . ; card �K��; �5:2�
card�K� denotes the cardinality of the nodes K. The components of the resulting sti�ness matrix B,

Bjk :�
Z

T
�Cÿ1gj� : gk dx �j; k � 1; . . . ; 8�;

are shown in

B � jT j

2�a� 2b� 0 0 0 0 0 0 0

0 2a 0 0 0 0 0 0

0 0 2a 0 0 0 0 0

0 0 0 2a 0 0 0 0

0 0 0 0 B55 B56 0 ÿ b
30

0 0 0 0 B56 B66
b
30

0

0 0 0 0 0 b
30

B77 B78

0 0 0 0 ÿ b
30

0 B78 B88

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
;

Table 1

Basis functions

R̂h g1 � 1 0
0 1

� �
g2 � 1 0

0 ÿ1

� �

g3 � 0 1
1 0

� �
g4 � 0 ÿ1

1 0

� �

g5 � 1
1

� �
�xÿ s�t g6 � 1

ÿ1

� �
�xÿ s�t

g7 � 1
1

� �
Curlbt g8 � 1

ÿ1

� �
Curlbt

Uh l1 � 1
0

� �
l2 � 0

1

� �
Mh;Nh f1 � 1

0

� �
f2 � 0

1

� �
Wh

mk �
0 uk

ÿuk 0

0@ 1A �k � 1; 2; 3�
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while the remaining coe�cients are

B55 � a
6

X3

`�1

jP` ÿ sj2 � b
12

X2

j;k�1

X3

`�1

�P`j ÿ sj��P`k ÿ sk�t;

B56 � b
12

X3

`�1

��P`1 ÿ s1�2 ÿ �P`2 ÿ s2�2�;

B66 � 2a� b
12

X3

`�1

jP` ÿ sj2 ÿ b
6

X3

`�1

�P`1 ÿ s1��P`2 ÿ s2�;

B77 � �2a� b�
180

X3

j�1

X2

k�1

k2
j;k

 !
ÿ b

90

X3

j�1

kj;1kj;2

 !
;

B78 � b
180

 
ÿ
X3

j�1

k2
j;1 �

X3

j�1

k2
j;2

!
;

B88 � �2a� b�
180

X3

j�1

X2

k�1

k2
j;k

 !
� b

90

X3

j�1

kj;1kj;2

 !
:

(Here, P`k (` 2 f1; 2; 3g; k 2 f1; 2g) denotes the kth component of the `th vertex of a triangle T 2Th.)
The bilinear form b�gi; lj; mk� results into two matrices C and D, with components

Cjk �
Z

T
lk � divgj dx �j � 1; . . . ; 8; k � 1; 2�;

Djk �
Z

T
gj : mk dx �j � 1; . . . ; 8; k � 1; 2; 3�:

We obtain the local sti�ness matrices

C � 2jT j

0 0
0 0
0 0
0 0
1 1
1 ÿ1
0 0
0 0

0BBBBBBBBBB@

1CCCCCCCCCCA
and D �

0 0 0
0 0 0
0 0 0

ÿ 2
3
jT j ÿ 2

3
jT j ÿ 2

3
jT j

D51 D52 D53

D61 D62 D63

D71 D72 D73

D81 D82 D83

0BBBBBBBBBB@

1CCCCCCCCCCA
;

where for j � 1; 2; 3

D5j � jT j
12
�Pjy ÿ s2 ÿ Pjx � s1�;

D6j � jT j
12
�Pjy ÿ s2 � Pjx ÿ s1�;

D71 � 1

120
�P2y ÿ P3y � P3x ÿ P2x�;

D72 � 1

120
�P3y ÿ P1y � P1x ÿ P3x�;

D73 � 1

120
�P1y ÿ P2y � P2x ÿ P1x�;

D81 � 1

120
�P2y ÿ P3y ÿ P3x � P2x�;

D82 � 1

120
�P3y ÿ P1y ÿ P1x � P3x�;

D83 � 1

120
�P1y ÿ P2y ÿ P2x � P1x�:
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The Lagrangian multipliers contribute to the matrices E and F, given by

Ejk � Fjk � ÿ
Z

E
gj � nE � fk ds

for j � 1; . . . ; 8; k � 1; 2 and an edge E � convfP1; P2g � �E1;E2�. Two neighboring elements T1; T2 with
common edge E result in two matrices ET1

;ET2
, where

ET1
� ÿE2 ÿE2 E1 ÿE1 ÿc ÿc 0 0

E1 ÿE1 ÿE2 ÿE2 ÿc c 0 0

� �t

with c � �E2;ÿE1� � �P1 ÿ s�. The matrix ET2
is then computed by ET2

� ÿET1
and using the center of mass of

the triangle T2 instead of T1. For the Lagrangian multipliers corresponding to the Neumann boundary only
one matrix F of the form F � ET1

is necessary for every E � CN and neighboring element T.

6. Numerical examples

We investigate three model problems of two-dimensional plain strain to provide experimental evidence
of the robustness, reliability and e�ciency of the a posteriori error estimate as the superiority of Algorithm
(A) over a uniform mesh-re®ning.

6.1. L-shaped domain with analytic solution

The ®rst model example on the L-shaped domain shown in Fig. 3 models singularities arising at re-
entrant corners. Using polar coordinates �r; h�, ÿp < h6 p, which are centered at the re-entrant corner, the
exact solution u with radial component ur is

ur�r; h� � ra

2l
�ÿ�a� 1� cos��a� 1�h� � �C2 ÿ �a� 1��C1 cos��aÿ 1�h��;

uh�r; h� � ra

2l
��a� 1� sin��a� 1�h� � �C2 � aÿ 1�C1 sin��aÿ 1�h��:

Fig. 3. System and initial mesh in Example 6.1.
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The parameters are C1 � ÿ cos��a� 1�x�= cos��aÿ 1�x�; C2 � 2�k� 2l�=�k� l� where a �
0:54448373 . . . is the positive solution of a sin 2x� sin 2xa � 0 for x � 3p=4; the Young modulus is
E � 100000 and the Poisson ratio varies in the range 0:36 m < 1=2.

The standard FEM for the displacement formulation shows locking as shown Fig. 1 and discussed in
Section 1. The PEERS performs much better as shown in Fig. 2 for uniform meshes and in Fig. 2 for
automatically generated meshes by Algorithm (A).

In Table 2 the errors and the rates of convergence are displayed for m � 0:3. For a mesh with N degrees
of freedom, h :� ����

N
p

represents an averaged mesh-size and the energy error is jjjrÿ rhjjj �
jjCÿ1=2�rÿ rh�jj2;X. The experimental convergence rate (CR) is de®ned as a corresponding (negative)
slope in Fig. 2; CR is shown in Table 2 and computed with the entries of the current and the preceding
mesh.

We observe that the experimental convergence rate tends to a which is expected theoretically according
to approximation results on uniform meshes of singular functions like u. The quotient jjjrÿ rhjjj=g�r;Th�
of the energy norm of the stress error and the a posteriori error bound g�r;Th� :� �PT2Th

g2
T �1=2

is seen to
be nicely bounded from above and below. This con®rms numerically that the a posteriori error estimate is
h-independent.

Table 3 displays the ratio jjjrÿ rhjjj=g�r;Th� (which gives an estimate for c3) for di�erent values of
h! 0 and k!1 in Example 6.1.

In Figs. 2 and 4 and Table 4 we summarize the results of our computations with Algorithm (A). The ®nal
mesh after nine adaptive re®nements is shown in Fig. 5.

6.2. Cook's membrane problem

As a further test example we investigate a tapered panel clamped on one end and subjected to a shearing
load on the opposite end with f � 0 and g�x; y� � �0; 1000� if �x; y� 2 CN with x � 48 and g � 0 on the
remaining part of CN as shown in Fig. 6; E � 1 and m � 1=3. The linear elastic version of this simulation is
often referred to as Cook's membrane problem, and constitutes a standard test for bending dominated
response.

Within eight re®nement steps, Algorithm (A) generates a mesh and a stress approximation displayed in
Fig. 7.

Fig. 8 shows the vertical displacement of the top right corner vs the number of elements for two series of
meshes, namely for a uniform and and an adaptive mesh generated with Algorithm (A). We may conclude
that the adaptively re®ned discretization is more e�cient than the uniform one and so the re®nement to-
wards the top corner points appears reasonable.

In comparison with the numerical results reported in [6], both adaptive schemes are of equally good
performance. The exact solution is unknown to the authors (the value for the exact displacement in Fig. 8
was taken from [6]). To asses the quality of the meshes, we therefore compute the error estimator g�r;Th�
which is displayed in Fig. 9. We observe for uniform and adapted meshes an experimental convergence rate
1 which is independent of the Poisson ratio m. The adaptive Algorithm (A) is signi®cantly better than a
simple uniform discretization.

Table 2

Errors and convergence rates (CR) on uniform meshes in Example 6.1 for m � 0:3

N h jjjrÿ rhjjj CR kuÿ uhk2;X CR jjjrÿrh jjj
g�r;Th�

78 1.4142 0.007686 2.8676eÿ05 66.3309

317 0.7071 0.006166 0.3142 1.4955eÿ05 0.9286 69.6894

1281 0.3536 0.004503 0.4501 7.5946eÿ06 0.9704 72.2536

5153 0.1768 0.003159 0.5094 3.8188eÿ06 0.9878 72.4184

20 673 0.0884 0.002188 0.5284 1.9140eÿ06 0.9944 72.3607

82 817 0.0442 0.001508 0.5362 9.5799eÿ07 0.9974 72.3500
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6.3. Compact tension specimen

A compact tension specimen, shown in Fig. 10, is loaded with a surface load g � �100; 0� on CN (given by
jyj � 60 mm) and f � 0; E � 100 000 and m � 1=3. The specimen is subjected to a vertical elongation or
compression. As the problem is symmetric, one half of the domain was discretized. We ®xed the horizontal
displacement with the constraint that the integral mean of all horizontal displacements is 0.

Fig. 4. Error estimator g � g�r;Th� vs mesh-size
����
N
p

in Example 6.1.

Table 4

Terms of the error estimator for m � 0:3 and uniform mesh re®nement: g2
curl :�PT2T h2

T kcurl�Cÿ1rh � ch�k2
2;T ;

g2
As :�PT2T h2

T
1
l2 kAs�rh�k2

2;T ; g
2
E :�PE2E hE k �Cÿ1rh � ch�tE

� �k2
2;oTnC � k �Cÿ1rh � ch ÿruD�tE

� �k2
2;oT\CD

� kg ÿ rhnk2
2;CN

� �
N h gcurl CR gAs CR gE CR

78 1.4142 3.5342eÿ05 9.4257eÿ06 1.0995eÿ04

317 0.7071 3.8710eÿ05 ÿ0.1298 1.3661eÿ05 ÿ0.5293 7.8386eÿ05 0.4827

1281 0.3536 2.6029eÿ05 0.5684 1.0976eÿ05 0.3134 5.5559eÿ05 0.4929

5153 0.1768 1.7836eÿ05 0.5431 7.9072eÿ06 0.4712 3.9018eÿ05 0.5078

20 673 0.0884 1.2316eÿ05 0.5331 5.5175eÿ06 0.5180 2.7068eÿ05 0.5265

82 817 0.0442 8.4722eÿ06 0.5392 3.8165eÿ06 0.5312 1.8667eÿ05 0.5355

Table 3

Quotients for m � 0:49999 for PEERS on uniform mesh in Example 6.1

N h kjrÿrhkj
g�r;Th�

78 1.4142 94.1275

317 0.7071 79.8191

1281 0.3536 77.9129

5153 0.1768 76.4355

20 673 0.0884 75.9282

82 817 0.0442 75.7658
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Fig. 7. Deformed mesh (left, displacements magni®ed by factor 1=10) and von-Mises stress (right, with color bar) plus a magni®ed

detail of the neighborhood of the upper left corner after eight re®nements with Algorithm (A) for E � 1.

Fig. 5. Deformed mesh (left, displacements magni®ed by factor 2000) and von-Mises stress (right, with color bar) plus a magni®ed

detail of the neighborhood of the re-entering corner after nine re®nements (N � 12174) with Algorithm (A).

Fig. 6. Cook's membrane problem. System and initial mesh.
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Fig. 8. Vertical displacement of the top corner point B vs number of elements.

Fig. 9. Error estimator g � g�r;Th� vs mesh-size
����
N
p

in Example 6.1.

Fig. 10. System and initial mesh in Example 6.3.
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Fig. 11. Deformed mesh (left, displacements magni®ed by factor 1=100) and von-Mises stress (right, with color bar) after seven re-

®nements with Algorithm (A) for E � 1 in Example 6.3.

Fig. 12. Principle stress at point A vs number of elements in Example 6.3.

Fig. 13. Error estimator g � g�r;Th� vs mesh-size
����
N
p

in Example 6.3.
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Within seven re®nement steps, Algorithm (A) generates a mesh and a stress approximation displayed in
Fig. 11. We observe a re®nement towards the circular boundary near point A which appears reasonable as
we might expect a smoothened singularity there.

As a benchmark, we calculated the principal stress at point A displayed in Fig. 12 (see Fig. 10 for the
location of A). Since point A is a node, it is unclear which triangle should contribute to the approximation.
Hence, we displayed the values for the two triangles at that point and the approximation obtained by an
averaged stress approximation. The adapted discretizations perform much more ef®ciently than the uni-
form ones.

To asses the quality of the meshes, we displayed the error estimator g in Fig. 9 for various values of the
Poisson ratio. Again, uniform and adapted meshes show an experimental convergence rate 1 independently
of the Poisson ratio m. Also, the adaptive Algorithm (A) yields signi®cantly better results than a simple
uniform discretization (see Fig. 13).
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