
IMA Journal of Numerical Analysis (2000) 20, 461–480

Coupling of mixed finite elements and boundary elements
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The symmetric coupling of mixed finite element and boundary element methods is
analysed for a model interface problem with the Laplacian. The coupling involves a
further continuous ansatz function on the interface to link the discontinuous displacement
field to the necessarily continuous boundary ansatz function. Quasi-optimal a priori error
estimates and sharp a posteriori error estimates are established which justify adaptive
mesh-refining algorithms. Numerical experiments prove the adaptive coupling as an
efficient tool for the numerical treatment of transmission problems.

1. Introduction

The combination of finite element methods and boundary element methods was introduced
by engineers and later mathematically justified in the 1970s with papers by Brezzi,
Johnson, Nédélec, Bielak, MacCamy among others. Quasi-optimal a priori error estimates
for the coupling of finite and boundary elements were then obtained for Lipschitz
boundaries, systems of equations, and nonlinear problems (approximated by finite
elements), e.g. in Gatica & Hsiao (1995) and Wendland (1988) (see also the literature
quoted therein); the symmetric coupling, which is modified here, was introduced
mathematically by Costabel (1987), see also Han (1990).

Automatic adaptive algorithms provide efficient discretizations if based on a rigorous
a posteriori error analysis. For the coupling of boundary elements with the standard
displacement-oriented version of finite elements, efficient and reliable a posteriori error
bounds are derived in Carstensen (1996a) and Carstensen & Stephan (1995). It is the aim
of this paper to establish reliable and efficient a posteriori error estimates for the coupling
with mixed finite elements and so continue the work in Carstensen & Funken (1999a, b) on
the coupling with nonconforming finite elements. Independent similar theoretical results
for the lowest-order Raviart–Thomas element will appear in Gatica & Meddahi (1999).

Mixed methods are of particular interest in elasticity where incompressibility locking
phenomena can be circumvented (cf. Brink et al., 1996), or in micromagnetics (Carstensen
& Funken, 1999d). We refer to Brink et al. (1996) for a stability and a priori error analysis
and numerical examples in elasticity. The error indicator used in Brink et al. (1995) is
not based on a reliable and efficient a posteriori error estimate in natural norms. It seems
that certain jump conditions are responsible which also arise in a corresponding Laplace
problem (Braess & Verfürth, 1996). This motivates our investigations in the coupling of
mixed finite element methods and conform boundary element methods for the Laplace
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problem. Ongoing research will cover robust reliable and efficient error control in elasticity
problems based on the techniques presented here (Carstensen & Funken, 1999c).

In this paper we analyse a model problem (cf. Carstensen, 1996a; Carstensen &
Funken, 1999a; Gatica & Hsiao, 1995; Wendland, 1988) which involves the Laplacian
in a bounded two-dimensional Lipschitz domain Ω with boundary Γ = ∂Ω and exterior
domain Ωc := R

2 \Ω . Given jump conditions u0 ∈ H1(Γ ), t0 ∈ L2(Γ ) and a right-hand
side f ∈ L2(Ω), we seek functions u ∈ H1(Ω), uc ∈ H1

loc(Ωc) and real constants a and
b satisfying

−∆u= f in Ω, (1.1)

∆uc= 0 in Ωc, (1.2)

lim|x |→∞ {uc(x)− b log(x)}= a, (1.3)

u= uc + u0 on Γ, (1.4)

∂u/∂n= ∂uc/∂n + t0 on Γ. (1.5)

Here, ∆ denotes the Laplacian and n is the exterior unit normal on Ω .
It is known that the interface problem (1.1)–(1.5) has a unique solution if we specify

a = 0 (see, e.g., Carstensen, 1996a; Carstensen & Funken, 1999a; Gatica & Hsiao, 1995;
Wendland, 1988). In the mixed formulation in Ω we split equation (1.1) into

p=∇u in Ω, (1.6)

−div p= f in Ω, (1.7)

and recast condition (1.6) using integration by parts. The equivalent weak form obtained
in Section 2 reads: Seek (p, u, ξ) ∈ H (div;Ω) × L2(Ω) × H1/2

0 (Γ ) such that for all

(q, v, η) ∈ H (div;Ω)× L2(Ω)× H1/2
0 (Γ )

a(p, ξ ; q, η)+ b(u; q, η)=〈g1, q · n〉 + 〈g2, η〉, (1.8)

b(v; p, ξ)=−( f, v), (1.9)

where we are given data g1 := u0 + 1
2Vt0 ∈ H1/2(Γ ), g2 := 1

2 (K∗ + 1)t0 ∈ H−1/2(Γ ),
and f ∈ L2(Ω), and bilinear forms a and b defined by

a(p, ξ ; q, η) := (p, q)+ 1
2 〈V(p · n)− (K + 1)ξ, q · n〉 (1.10)

+ 1
2 〈Wξ + (K∗ + 1)(p · n), η〉,

b(u; q, η) := (u, div q), (1.11)

for p, q ∈ H (div;Ω), u ∈ L2(Ω), ξ, η ∈ H1/2
0 (Γ ) ≡ H1/2(Γ )/R, and with certain

boundary integral operators and Sobolev spaces (described in Section 2). The L2(Ω) scalar
product is written as (·, ·) while 〈·, ·〉 denotes the duality pairing between Hs(Γ ) and
H−s(Γ ) (defined by extending the scalar product in L2(Γ )). We remark that ξ := uc|Γ .

The discretization of (1.8)–(1.9) consists essentially in replacing the above Sobolev
spaces by finite dimensional subspaces M ⊂ H (div;Ω), L ⊂ L2(Ω), and S ⊂ H1/2

0 (Γ )

and so involves finite element spaces M named after Raviart–Thomas, Brezzi–Douglas–
Marini and Brezzi–Douglas–Fortin–Marini.
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A complete a priori and a posteriori error analysis is presented in this paper, which
is organized as follows. The Sobolev spaces and the related boundary integral operators
are recalled from the literature with their relevant mapping properties in Section 2. We
also quote some basic facts about the representation formula which is required to recast
the exterior part of the interface problem and to establish the mixed weak formulation
(1.8)–(1.9). The discretization is described in Section 3 where quasi-optimal convergence
is shown in an a priori error analysis. An a posteriori error analysis is given in Section 4
which provides a reliable and efficient computable error bound. The proof is based on a
Helmholtz-decomposition as in Alonso (1996) and Carstensen (1997a), but here we omit
orthogonality: the interface conveys Dirichlet and Neumann conditions simultaneously and
so additional considerations are necessary that rely on the positive definiteness of the
single-layer potential and hypersingular integral operator. The upper error bound can be
evaluated elementwise and so serves as an error indicator in an adaptive mesh-refining
algorithm proposed in Section 5, where we also sketch our numerical implementation.
Numerical examples are reported in Section 6 which confirm our theoretical convergence
results and illustrate the practical performance of the scheme.

We finally stress that the model situation could be generalized to other operators, e.g.
to inhomogeneous elliptic operators such as linear elasticity (Brink et al., 1996), or other
dimensions (with adopted radiation conditions (1.3)). Moreover, we might add Dirichlet,
Neumann or mixed boundary conditions or further right-hand sides.

2. Preliminaries

Let Hs(Ω) denote the usual Sobolev spaces (Lions & Magenes, 1972) with the trace spaces
Hs−1/2(Γ ) (s ∈ R) for a bounded Lipschitz domain Ω with boundary Γ . Let ‖ · ‖Hk (ω)

and | · |Hk (ω) denote the norm and semi-norm in Hk(ω) for ω ⊆ Ω and an integer k. The
space

H (div;Ω) := {q ∈ L2(Ω)2 : div q ∈ L2(Ω)}
is equipped by its natural norm

‖ · ‖H(div;Ω) := (‖ · ‖2
L2(Ω)

+ ‖div · ‖2
L2(Ω)

)1/2.

Given v ∈ H1/2(Γ ) and φ ∈ H−1/2(Γ ), the boundary integral operators in (1.10)–
(1.11) are defined, for z ∈ Γ , by

(Vφ)(z) := − 1

π

∫
Γ

φ(ζ ) log |z − ζ | dsζ ,

(Kv)(z) := − 1

π

∫
Γ

v(ζ )
∂

∂nζ

log |z − ζ | dsζ ,

(K∗φ)(z) := − 1

π

∫
Γ

φ(ζ )
∂

∂nz
log |z − ζ | dsζ ,

(Wv)(z) := 1

π

∂

∂nz

∫
Γ

v(ζ )
∂

∂nζ

log |z − ζ | dsζ .



464 C. CARSTENSEN AND S. A. FUNKEN

The linear boundary integral operators are continuous when mapping between the
following Sobolev spaces

V : Hs−1/2(Γ )→ Hs+1/2(Γ ),

K : Hs+1/2(Γ )→ Hs+1/2(Γ ),

K∗ : Hs−1/2(Γ )→ Hs−1/2(Γ ),

W : Hs+1/2(Γ )→ Hs−1/2(Γ ),

where s ∈ [− 1
2 , 1

2 ] (Costabel, 1988). The single-layer potential V is symmetric, the double-
layer potential K has the dual K∗ and the hypersingular operator W is symmetric. Both V
and W are strongly elliptic in the sense that they satisfy a Gårding inequality (in the above
spaces with s = 0) (Costabel, 1988).

Let Hs
0 (Γ ) := {φ ∈ Hs(Γ ) : 〈1, φ〉 = 0} ≡ Hs(Γ )/R. Then, it is known that V :

H−1/2
0 (Γ ) → H1/2(Γ ) and W : H1/2

0 (Γ ) → H−1/2(Γ ) are positive definite. Assuming
that the capacity of Γ is smaller than one, the single-layer potential V is positive definite
on H−1/2(Γ ). See, e.g., Costabel & Stephan (1985), Costabel (1988), Gaier (1976), Sloan
& Spence (1988), Stephan & Wendland (1976) and Stephan et al. (1979) for more details.

There is an infinite set of formulae which characterize the Cauchy data (uc, ∂uc/∂n)|Γ
of a function uc with (1.2)–(1.3) and we quote only one from the literature.

LEMMA 1 (Costabel & Stephan, 1985) Let uc ∈ H1
loc(Ωc) satisfy (1.2) and (1.3), then

(ξ, φ) := (uc, ∂uc/∂n)|Γ ∈ H1/2(Γ )× H−1/2(Γ ) satisfies

2

(
ξ

φ

)
=

(
1+K −V
−W 1−K∗

) (
ξ

φ

)
+

(
2a
0

)
. (2.1)

Conversely, for each (ξ, φ) ∈ H1/2(Γ )× H−1/2(Γ ) there exists a function uc ∈ H1
loc(Ωc)

with (1.2)–(1.3) if and only if (2.1) holds. The function uc is given by the representation
formula, for x ∈ Ωc,

uc(x) = 1

2π

∫
Γ

φ(z) log |x − z| dsz − 1

2π

∫
Γ

ξ(z)
∂

∂nz
log |x − z| dsz + a. (2.2)

The problem (1.1)–(1.5) has a unique solution and so the equivalent problem (1.8)–
(1.9) has a unique solution also.

To our knowledge the following result is not available in this precise form. For related
modifications we refer to Brink et al. (1996), Cartensen & Funken (1999a) and Gatica &
Hsiao (1995) and the references quoted therein.

THEOREM 1 The interface problem (1.1)–(1.5) and the weak formulation (1.8)–(1.9) are
formally equivalent: If (u, uc) solves (1.1)–(1.5) then p = ∇u, u, and ξ = uc|Γ solve
(1.8)–(1.9). If (p, u, ξ) solves (1.8)–(1.9), then, given φ = ∂u/∂n − t0, (2.2) defines a
function uc such that (u, uc) solves (1.1)–(1.5).

Proof. The Cauchy data (uc, ∂uc/∂n)|Γ =: (ξ, φ) of a function uc which satisfies (1.2)–
(1.3) with a = 0 are characterized in Lemma 1 to satisfy (2.1), namely

2uc|Γ = (1+K)ξ − V(p · n − t0), (2.3)

0 =Wξ + (1+K∗)(p · n − t0). (2.4)
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Note that ξ = uc|Γ = u|Γ − u0 and φ = ∂uc/∂n|Γ = ∂u/∂n|Γ − t0 = p · n − t0.
Multiplying (1.6) by q ∈ H (div;Ω) and integrating by parts we obtain

(p, q)+ (div q, u) = 〈u|Γ , q · n〉 = 〈uc|Γ + u0, q · n〉. (2.5)

Substitution of uc by (2.3) shows (1.8) for η = 0. The weak form of (2.4) gives (1.8) for
q = 0 and arbitrary η ∈ H−1/2(Γ ). Finally, the weak form of (1.7) is (1.9).

Notice that W1 = 0 = (1 + K)1 (proved by (2.1) for (ξ, φ) = (1, 0) and a = 1).
Thus the variable ξ is determined in (2.3)–(2.4) up to an additive constant and we fix this
constant by 〈ξ, 1〉 = 0, i.e. ξ ∈ H1/2

0 (Γ ). (uc is unique because of a = 0 while ξ acts as a
layer in the boundary integral operators and is non-unique, but ξ − uc|Γ is constant.)

The preceeding calculations establish (1.8)–(1.9) and the same arguments yield the
reverse implication and so prove equivalence. ✷

3. Discrete problem and a priori error analysis

Assume that the triangulation T of the domain Ω with polygonal boundary Γ is regular
in the sense of Ciarlet (cf. Brenner & Scott, 1994; Ciarlet, 1978) and that each T ∈ T
is a closed triangle with interior angles greater than the (universal) constant cθ > 0 and
diameter hT > 0. On the boundary Γ there is a mesh G := {E ∈ E : E ⊂ Γ } induced
by the set of edges E of triangles in T . The length of an edge E ∈ E is hE := diam(E).
On the boundary Γ , we consider continuous ansatz functions that include the G-piecewise
affines, i.e.,

S1(G) :={w ∈ C(Γ ) : ∀ E ∈ G, w|E affine}, (3.1)

S := S1(G)/R :={w ∈ S1(G) : 〈w, 1〉 = 0} ⊂ H1/2
0 (Γ ). (3.2)

Let L ⊆ L2(Ω) and M ⊆ H (div;Ω) be finite element spaces subordinated to T (Brezzi
& Fortin, 1991) which satisfy the LBB-condition, i.e.,

inf
V∈L\{0}

sup
Q∈M\{0}

(div Q, V )

‖Q‖H(div;Ω)
‖V ‖L2(Ω)

� β > 0. (3.3)

For each V ∈ L, Q ∈M, and T ∈ T we suppose that V |T and Q|T are polynomials and
that L includes T -piecewise constant functions. Then the discrete interface problem reads:
Seek (P, U, Ξ) ∈M× L× S satisfying, for all (Q, V, Θ) ∈M× L× S,

a(P, Ξ ; Q, Θ)+ b(U ; Q, Θ)=〈g̃1, Q · n〉 + 〈g̃2, Θ〉, (3.4)

b(V ; P, Ξ)=−( f, V ). (3.5)

Here, g̃1 := u0 + 1
2V t̃0 ∈ H1/2(Γ ) and g̃2 := 1

2 (K∗ + 1)t̃0 ∈ H−1/2(Γ ) for some

approximation t̃0 ∈ H−1/2
0 (Γ ) to t0 (e.g., the G-piecewise integral mean of t0 ∈ L2(Γ )).

THEOREM 2 There exists a constant C which depends only on β in (3.3) and on Ω such
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that we have

‖p − P‖H(div;Ω) + ‖u −U‖L2(Γ ) + ‖ξ −Ξ‖H1/2(Γ )

� C

{
inf

Q∈M
‖p − Q‖H(div;Ω) + inf

L∈L
‖u − V ‖L2(Ω)

+ inf
Θ∈S

‖ξ −Θ‖
H1/2

0 (Γ )
+ ‖t0 − t̃0‖H−1/2(Γ )

}
. (3.6)

Proof. Let ( p̃, ũ, ξ̃ ) ∈ M × L × S approximate the exact solution (p, u, ξ) and let Z
denote the kernel of b, i.e., Z := {q ∈ H (div;Ω) : div q = 0} × H1/2

0 (Γ ). The bilinear
form a is Z -elliptic according to

a(p, ξ ; p, ξ) = ‖p‖2
L2(Ω)

+ 1
2 〈V(p · n), p · n〉 + 1

2 〈Wξ, ξ〉, (3.7)

for all p ∈ H (div;Ω) and ξ ∈ H1/2(Γ ), and the positive definiteness of V and W . Because
of this and (3.3), we conclude with the theory of mixed finite element schemes (Brezzi &
Fortin, 1991) that there exist (Q, V, Θ) ∈ M × L × S with ‖Q‖H(div;Ω)

+ ‖V ‖L2(Ω) +
‖Θ‖H1/2(Γ ) � 1 and

C(Ω, β){‖ p̃ − P‖H(div;Ω) + ‖ũ −U‖L2(Γ ) + ‖ξ̃ −Ξ‖
H1/2

0 (Γ )
}

� a( p̃ − P, ξ̃ −Ξ ; Q, Θ)+ b(ũ −U ; Q, Θ)+ b(V ; p̃ − P, ξ̃ −Ξ)

= a(p − P, ξ −Ξ ; Q, Θ)+ b(u −U ; Q, Θ)+ b(V ; p − P, ξ −Ξ)

+ a( p̃ − p, ξ̃ − ξ ; Q, Θ)+ b(ũ − u; Q, Θ)+ b(V ; p̃ − p, ξ̃ − ξ). (3.8)

The constant C(Ω, β) > 0 depends on β and the norms of a and b. By the definition of
g̃j , there is a constant c1 that depends on the norms of V and K with

〈g1 − g̃1, Q · n〉 + 〈g2 − g̃2, Θ〉 � c1‖t0 − t̃0‖H−1/2(Γ ). (3.9)

The last line of (3.8) is bounded by the right-hand side of (3.6) and the penultimate line is
equal to the left-hand side of (3.9). From this resulting estimate and the triangle inequality,
we conclude the proof. ✷

4. A reliable and efficient a posteriori error estimate

Let (u, uc) ∈ H1(Ω) × H1
loc(Ωc) solve (1.1)–(1.5) and define p := ∇u, and

ξ := u|Γ − u0 = uc|Γ . Given a solution (P, U, Ξ) to (3.4)–(3.5), define Jτ ∈ L2(∪E) on
each edge E ∈ E by

Jτ |E :=
{

[P · τE ] if E �⊂ Γ ,

2P · τE − ∂/∂s(2u0 + (K + 1)Ξ − V(P · n − t̃0)) if E ⊂ Γ .
(4.1)

Here, nE denotes the normal and τE the tangential unit vector along the edge E , the square
brackets denote the jump of the piecewise Lipschitz continuous quantities.
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TABLE 1

Element M|T L|T
RT P

2
k × x · Pk Pk

BDM P
2
k+1 Pk

BDFM {q ∈ P
2
k |(q · n)|E ∈ Pk(E), E ⊆ ∂T } Pk

As a key observation in mixed finite element methods, e.g., for Raviart–Thomas
elements, Brezzi–Douglas–Fortin elements, or Brezzi–Douglas-Fortin–Marini elements
(cf. Table 1 and Brezzi & Fortin, 1991 for details) we have (see Carstensen, 1997a)

Curl B ∈M for all T -piecewise affine B ∈ C(Ω). (4.2)

THEOREM 3 Suppose Ω is simply connected and assume (4.2). Then there exists a
positive constant C which depends only on cθ and Ω , such that there holds

‖p − P‖2
L2(Ω)

+ ‖p · n − P · n‖2
H−1/2(Γ )

+ ‖ξ −Ξ‖2
H1/2

0 (Γ )/R

� C

{∑
T∈T

h2
T

∫
T
(|curl P|2 + | f + div P|2) dx +

∑
E∈E

hE‖Jτ‖2
L2(E)

+
∑
E∈G

hE‖WΞ + (K∗ + 1)(P · n − t̃0)‖2
L2(E)

+ ‖t0 − t̃0‖2
H−1/2(Γ )

}
. (4.3)

If, in addition, Ω is H2-regular (e.g. Ω convex or Γ is C2) and (M,L) are the
discrete spaces obtained from Raviart–Thomas elements or Brezzi–Douglas–Fortin–
Marini elements, then

‖u −U‖2
L2(Ω)

� C

{
‖p · n − P · n‖2

H−1/2(Γ )

+
∑
T∈T

h2
T

∫
T
(|P − ∇V |2 + | f + div P|2) dx

}
, (4.4)

where V is an arbitrary element in L (possibly V = U ).

REMARK 1 The proof of a posteriori estimates for BDM finite elements involves a
further approximation error since property (4.35) below does not hold for these elements.
For simplicity it is not presented in this paper.

REMARK 2 As shown in the proof below (cf. equation (4.24)), ‖t0 − t̃0‖H1/2(Γ ) can be
replaced by c6‖hG(t0 − t̃0)‖L2(Γ ) if t̃0 is the G-piecewise integral mean of t0 and hG is
the G-piecewise constant mesh-size, hG |E = hE for E ∈ G. Furthermore, if t0 is G-

piecewise smooth, ‖hG(t0 − t̃0)‖L2(Γ ) = O(h3/2
max) which is a higher-order approximation

term since we expect at most linear convergence for the lowest-order schemes. Thus, we
could generically neglect this higher-order contribution.
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REMARK 3 The use of t̃0 as a piecewise constant simplifies the calculation of 〈Vt0, q ·
n〉, 〈K ∗t0, η〉 in (3.4) and the pointwise evaluation of the integral operators Vt0, K ∗t0 in
the a posteriori estimate (4.3). These terms can be calculated analytically for piecewise
polynomials (Carstensen & Funken, 1999a, b).

REMARK 4 For f smooth, ‖ f + div P‖L2(T ) � hT ‖∇ f ‖L2(T ) according to a Poincaré
inequality (div P is constant and f + div P has integral mean 0). Hence, for the lowest-
order schemes we could generically neglect the contribution hT ‖ f + div P‖L2(T ) =
O(h2

T ).

REMARK 5 Hence, for smooth data f and t0 and RT finite elements (k = 0), the error
indicator consists of edge contributions only.

Proof of Theorem 3. For simplicity, set d := p − P , e := u − U , and δ := ξ − Ξ . The
local mesh-sizes hT ∈ L∞(Ω) and hE ∈ L∞(∪E) are piecewise constant functions with
(hT )|T := hT := diam(T ), T ∈ T , and (hE )|E := hE := diam(E), E ∈ E . According to
(1.8), (2.4), and (3.4)

� :=Wδ + (K∗ + 1)(d · n)+ 2(g̃2 − g2) ⊥ S1(G) (4.5)

= −WΞ − (K∗ + 1)(P · n − t̃0)

with⊥ denoting orthogonality in L2(Γ ). (Note that 〈�, 1〉 = 0 by W1 = 0 and K1 = −1.)
Define a function g ∈ H1(Ω), for z ∈ Ω ,

g(z) := − 1

2π

∫
Γ

δ(ζ )
∂

∂nζ

log |z − ζ | dsζ + 1

2π

∫
Γ

(d · n)(ζ ) log |z − ζ | dsζ , (4.6)

with trace and trace estimate (according to the mapping properties of the single- and
double-layer potential operators)

g|Γ = 1
2 {(K + 1)δ − V(d · n)} ∈ H1/2(Γ ), (4.7)

‖g‖H1/2(Γ ) � c2(‖d · n‖H−1/2(Γ ) + ‖δ‖H1/2(Γ )). (4.8)

The constant c2 as well as the constants c3, . . . , c16 throughout this proof depend on Ω ,
Γ and cθ only.

Let α ∈ H1(Ω) be the unique solution of the Dirichlet problem

∆α = div d in D′(Ω) and α|Γ = g|Γ . (4.9)

Then d − ∇α is divergence free and, since Ω is simply connected, there exists a function
β ∈ H1(Ω)/R := {w ∈ H1(Ω) :

∫
Ω

w dx = 0} with

d = ∇α + Curl β. (4.10)

Throughout this paper, we define

curl a = a2,1 − a1,2 resp. Curl b =
(

b,2
−b,1

)
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for a vector a and a scalar b.
The function β in (4.10) can be characterized by a Neumann problem and so we may

prescribe

∂β

∂n
= d · t − ∂g

∂s
(4.11)

where ∂g/∂s ∈ H−1/2(Γ ) is the derivative of g|Γ along Γ with respect to the arc length
while d · t is defined in a weak sense according to Stokes theorem. We refer to Girault &
Raviart (1986) for details and proofs and mention

‖∇α‖L2(Ω) + ‖Curl β‖L2(Ω) � c3{‖d‖L2(Ω) + ‖g‖H1/2(Γ )}
� c4{‖d‖L2(Ω) + ‖δ‖H1/2(Γ ) + ‖d · n‖H−1/2(Γ )}. (4.12)

By (4.9), (4.10), and an integration by parts, we deduce

‖d‖2
L2(Ω)

= −(α, div d)+ 〈g, d · n〉 + (Curl β,∇u)− (P, Curl β). (4.13)

Since (1.9) and (3.5) imply that (α, div d) = (α− A, div d) for any A ∈ L, it follows from
a Poincaré inequality that

−(α, div d) = (A − α, div d) � c5‖∇α‖L2(Ω) ‖hT ( f + div P)‖L2(Ω). (4.14)

Let B be a continuous T -piecewise affine approximation to β, e.g. the Clément
interpolation (Clément, 1975; Verfürth, 1996). By assumption (4.2), Curl B ∈ M, and
because of div Curl B = 0, (3.4) yields

(P, Curl B) = 1
2 〈2g̃1 − V(P · n)+ (K + 1)Ξ, ∂ B/∂s〉. (4.15)

Then, an integration by parts leads to

(Curl β,∇u)− (P, Curl β) = (P, Curl (B − β))

− 1
2 〈2g̃1 − V(P · n)+ (K + 1)Ξ, ∂ B/∂s〉 + 〈u, ∂β/∂s〉. (4.16)

An elementwise integration by parts of the first term on the right-hand side of (4.16) shows
that (4.16) equals (writing ∪E \ Γ for the union of inner edges (∪E) \ Γ )

− (β − B, curl T P)+
∫
∪E\Γ

[P · t](β − B) ds

+ 〈P · t, β − B〉 1
2 〈∂/∂s(2g̃1 − V(P · n)+ (K + 1)Ξ), B〉 − 〈∂u/∂s, β〉. (4.17)

In the last terms, we integrated by parts on Γ , i.e. 〈a, ∂b/∂s〉 = −〈∂a/∂s, b〉 for a, b ∈
H1(Γ ) (note that the functions u0, VΦ, (K + 1)Ξ , etc, belong to H1(Γ )). The terms on
Γ in (4.17) can be recast with (1.4), (2.3), (4.1), (4.7), and the definition of g̃1 into

1

2
〈Jτ , β − B〉 −

〈
β,

∂

∂s
g

〉
+ 1

2

〈
β

∂

∂s
V(t̃0 − t0)

〉
. (4.18)
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Integrating by parts on Γ again, we deduce from (4.16)–(4.18) the identity

(Curl β,∇u)− (P, Curl β) = −(β − B, curl T P)+ 〈∂β/∂s, g〉
+

∫
∪E\Γ

[P · t](β − B) ds + 1

2
〈Jτ , β − B〉 + 1

2

〈
β

∂

∂s
V(t̃0 − t0)

〉
. (4.19)

According to (4.10), we have

〈∂β/∂s, g〉 = 〈g, Curl β · n〉 = 〈g, d · n〉 − 〈g, ∂α/∂n〉. (4.20)

Since g = α on Γ we infer with Green’s formula

‖∇α‖2
L2(Ω)

− 〈g, ∂α/∂n〉=−(α, ∆α) = −(α, div d)

� c5‖∇α‖L2(Ω)‖hT ( f + div P)‖L2(Ω) (4.21)

as in (4.14). According to (4.5), (4.7), and since (K∗ + 1) is dual to (K + 1),

2〈g, d · n〉= 〈(K + 1)δ − V(d · n), d · n〉
=−〈V(d · n), d · n〉 − 〈Wδ, δ〉 + 〈� + 2(g2 − g̃2), δ〉. (4.22)

We quote from Theorem 2 of Carstensen (1997b) that � ∈ L2(Γ ) being L2(Γ )-orthogonal
to continuous and G-piecewise affine functions (according to (4.5)) is sufficient for the
estimate

‖�‖H−1/2(Γ ) � c6‖h1/2
E �‖L2(Γ ). (4.23)

(The constant c6 depends weakly on the ratio of two neighbouring edges along Γ and so
is bounded in terms of cθ .) Similarly, if t̃0 is the G-piecewise integral mean of t0, we have

‖t0 − t̃0‖H1/2(Γ ) � c6‖h1/2
G (t0 − t̃0)‖L2(Γ ). (4.24)

Gathering (4.13), (4.14), (4.19)–(4.21), and (4.23) together, we obtain with Cauchy’s
inequality

‖d‖2
L2(Ω)

+‖∇α‖2
L2(Ω)

+ 〈V(d · n), d · n〉 + 〈Wδ, δ〉
� c7

{
‖∇α‖L2(Ω)‖hT ( f + div P)‖L2(Ω)

+‖δ‖H1/2(Γ )

(‖h1/2
E �‖L2(Γ ) + ‖g2 − g̃2‖H−1/2(Γ )

)
+‖h1/2

E Jτ‖L2(∪E)‖h−1/2
E (β − B)‖L2(∪E)

+‖hT curl T P‖L2(Ω)‖h−1
T (β − B)‖L2(Ω)

+‖t0 − t̃0‖H−1/2(Γ )‖V∂β/∂s‖H1/2(Γ )

}
. (4.25)

From the mapping properties of the single-layer potential operator and (4.8), we deduce∥∥∥∥V ∂β

∂s

∥∥∥∥
H1/2(Γ )

� c8‖d · n − ∇α · n‖H−1/2(Γ )

� c9(‖d · n‖H−1/2(Γ )+
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‖g‖H1/2(Γ ) + ‖∇α‖L2(Ω))�c10(‖d · n‖H−1/2(Γ ) + ‖δ‖H1/2(Γ ) + ‖∇α‖L2(Ω)).(4.26)From the well-established
properties of the Clément approximation, we quote from Carstensen (1997c), Carstensen
& Verfürth (1997), Clément (1975) and Verfürth (1996) the estimate

‖h−1
T (β − B)‖L2(Ω) + ‖h−1/2

E (β − B)‖L2(∪E) � c11‖∇β‖L2(Ω). (4.27)

Note also that ‖∇β‖L2(Ω) = ‖Curl β‖L2(Ω) � ‖∇α‖L2(Ω)+‖d‖L2(Ω). Hence and because
of the positive definiteness of the single-layer potential and hypersingular integral operator,
we can absorb the terms ‖d · n‖H−1/2(Γ ), ‖δ‖H1/2(Γ ), ‖∇α‖L2(Ω), and ‖d‖L2(Ω) after
employing (4.26) and (4.27) in (4.25). This concludes the proof of (4.3).

In the second part of the proof, we study the displacement error. For e := u − U ∈
L2(Ω) there exists a unique η ∈ H1(Ω)/R with

∆η = e in Ω and ∂η/∂n = 0 on Γ. (4.28)

Assuming an H2-regular domain Ω we have ∇η ∈ H1(Ω) and the a priori estimates

‖η‖H2(Ω) � c12‖e‖L2(Ω). (4.29)

In particular, we can utilize the Fortin operator, s > 2,

Π : H (div;Ω) ∩ Ls(Ω)2 →M (4.30)

which satisfies the error estimate

‖h−1
T (∇η −Π∇η)‖L2(Ω) � c13‖D2η‖L2(Ω), (4.31)

a commuting diagram property

(div(∇η −Π∇η), V ) = 0 for all V ∈ L, (4.32)

and is defined along the edges E to fulfil∫
E

V (∇η −Π∇η) · nE ds = 0 for all V ∈ L and all E ∈ E . (4.33)

We refer to Brezzi & Fortin (1991) for details and proofs.
According to (4.28), an integration by parts, and (4.32) we obtain

‖e‖2
L2(Ω)

= (u, ∆η)− (U, ∆η) = −(p,∇η)− (U, div Π∇η). (4.34)

Since Π∇η ∈M, (3.4) and (4.33) show

(U, div Π∇η) = −(P, Π∇η). (4.35)

(The boundary terms dissappear because of Π∇η · n = 0 owing to ∇η · n = 0 and (4.33)
for Raviart–Thomas and Brezzi–Douglas–Fortin–Marini elements.) From (4.32) and (4.33)
we infer, for each V ∈ L, with an elementwise integration by parts that

(∇T V,∇η −Π∇η) = 0. (4.36)
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Evaluating (4.35) and (4.36) in (4.34) we deduce (with another integration by parts
involving d)

‖e‖2
L2(Ω)

= (∇T V − P,∇η −Π∇η)− (d,∇η)

= (∇T V − P,∇η −Π∇η)+ (div d, η)− 〈d · n, η〉
� c14 ‖hT (P − ∇T V )‖L2(Ω)‖e‖L2(Ω) + c15 ‖d · n‖H−1/2(Γ )‖e‖L2(Ω)

+c16‖hT ( f + div P)‖L2(Ω)‖e‖L2(Ω). (4.37)

Here we used (4.14), (4.29) and (4.31). This concludes the proof of (4.4). ✷

Theorem 3 yields the a posteriori error estimate

‖p − P‖2
L2(Ω)

+ ‖(p − P) · n‖2
H−1/2(Γ )

+ ‖ξ − Ξ‖2
H1/2

0 (Γ )
� C ·

∑
T∈T

η(T )2, (4.38)

where (recall that E is the set of all edges)

η(T )2 := h2
T

∫
T
(|curl P|2 + | f + div P|2) dx

+
∑

E∈E∧E⊂∂T

hE
(‖Jτ‖2

L2(E)
+ ‖WΞ + (K∗ + 1)(P · n − t̃0)‖2

L2(E)

+‖t0 − t̃0‖2
L2(E)

)
. (4.39)

This global reliable estimate is sharp in the sense that, up to higher-order approximation
errors, the reverse inequality is true in a local form.

Let N (T ) denote the union of all triangles that share (at least) one vertex with T ∈ T .

THEOREM 4 Suppose P is a T -piecewise polynomial and let fT denote the integral mean
of f on T ∈ T . Then, there is an hT -independent constant c17 > 0 (which depends only
on cθ and the piecewise polynomial degrees) such that for each T ∈ T

c17 η(T )2 � ‖p − P‖2
L2(N (T ))

(4.40)

+ h2
T ‖( f − fT )‖2

L2(N (T ))
+ hT ‖t0 − t̃0‖2

L2(Γ∩∂T )

+ hT ‖W (ξ −Ξ)‖2
L2(Γ∩∂T )

+ hT ‖(K ∗ + 1)(p − P) · n‖2
L2(Γ∩∂T )

+ hT

∥∥∥∥ ∂

∂s
V (p − P) · n

∥∥∥∥
2

L2(Γ∩∂T )

+ hT

∥∥∥∥ ∂

∂s
(K + 1)(ξ −Ξ)

∥∥∥∥
2

L2(Γ∩∂T )

.

Proof. As all the terms can be evaluated with inverse inequalities and approximation errors
of higher order as indicated in Verfürth (1996), we may refer to Alonso (1996), Carstensen
(1996a, b, 1997a) and Carstensen & Funken (1999b) and omit the details. ✷

REMARK 6 Summing (4.40) over all elements yields a global estimate in which the
integral operator errors can be recast as in Carstensen (1996a) and Carstensen & Funken
(1999b) adopting the arguments of Carstensen (1996b) for quasi-uniform meshes on the
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boundary. This shows

c18

∑
T∈T

η(T )2 � ‖p − P‖2
L2(Ω)

(4.41)

+ ‖hT ( f − fT )‖2
L2(Ω)

+ ‖h1/2
E (t0 − t̃0)‖2

L2(Γ )

+ hΓ,max/hΓ,min ·
(
‖ξ −Ξ‖2

H1/2
0 (Γ )

+ hΓ,max‖ ∂

∂s
(ξ − ξ̃ )‖2

L2(Γ )

)

+ hΓ,max/hΓ,min ·
(
‖(p − P) · n‖2

H−1/2(Γ )
+ hΓ,max‖p · n − φ̃‖2

L2(Γ )

)
.

Here, hΓ,max (resp. hΓ,min) denotes the maximal (resp. minimal) mesh size of the boundary
elements in G and φ̃ denotes the G-piecewise constant integral mean of p · n, and
the G-piecewise affine ξ̃ approximates ξ in H1(Γ ). This inequality establishes that the
error indicator is generically efficient for triangulations with quasi-uniform meshes on
the boundary. Indeed, for smooth data and solutions, the terms ‖hT ( f − fT )‖L2(Ω),

‖h1/2
E (t0 − t̃0)‖L2(Γ ), h1/2

Γ,max‖ ∂
∂s (ξ − ξ̃ )‖L2(Γ ) and h1/2

Γ,max‖p · n − φ̃‖L2(Γ ) on the right-

hand side of (4.41) are of higher order, O(h3/2
max). Hence, we generically obtain the reverse

inequality for quasi-uniform meshes G on Γ , namely

c19

∑
T∈T

η(T )2 � ‖p − P‖2
L2(Ω)

+‖ξ −Ξ‖2
H1/2

0 (Γ )
+ ‖(p − P) · n‖2

H−1/2(Γ )
+ O(h3/2

max) (4.42)

(with an h-independent constant c19 that depends on hΓ,max/hΓ,min).

REMARK 7 The estimate (4.40) shows that η(T ) is a local estimator. Even for T at the
interface Γ , the boundary contributions may be regarded as pseudo-local (according to the
pseudo-locality of pseudo-differential operators).

5. An adaptive algorithm and its implementation

Given a local error indicator η(T ) which is (even locally) related to the local error (in
Theorem 4), we may follow the standard approach in residual-based adaptive mesh-refining
algorithms and employ the following scheme.

ALGORITHM 1

(a) Start with a coarse mesh Tk , k = 0.

(b) Solve the discrete problem for the actual mesh Tk .

(c) Compute η(T ) for all T ∈ Tk .

(d) Evaluate stopping criterion and decide whether to terminate or goto (e).

(e) Refine the element T (red refinement) provided

1
2 maxT ′∈Tk η(T ′) � η(T ).
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(f) Refine further elements (red-green-blue refinement) to avoid hanging nodes. Define
resulting mesh as actual mesh Tk , update k and goto (b).

REMARKS 8
(i) We refer to Verfürth (1996) for details on the red-green-blue refinement we employed.
(ii) The heuristic of Algorithm 1 is that a refinement of T with large η(T ) lowers the
error near T . This is not strictly supported by Theorems 3 and 4 since the estimate (4.3)
is global and the local estimate (4.39) includes nonlocal operators and so the error on the
entire boundary Γ .

The adaptive algorithm is implemented using Matlab and we conclude this section with
some remarks on the numerical Matlab realization before we report on numerical examples
to illustrate the practical performance in the next section.

The dualities on the left-hand side, e.g. (P, Q), (U, div Q), 〈VP · n, Q · n〉 and
〈KΞ, Q · n〉 where P, Q, U, Ξ are piecewise constant or piecewise linear (scalar or vector
valued) functions can be calculated almost analytically. On the right-hand side for given
functions f ∈ L2(Γ ), u0 ∈ H1(Γ ), and t0 ∈ L2(Γ ) we compute

∫
Ω

f ηj dx via a
mid-point quadrature rule on any triangle T and the integrals 〈Q · n, u0〉, 〈t0, V 〉 and the
integral mean t̃0 of t0 are approximated by an eight-point Gaussian quadrature formula.
(See Carstensen & Funken (1999a, b) and the literature quoted therein for terms with
integral operators.)

In the first numerical example in the next section the potentials u and uc and hence
the gradient p = ∇u are known explicitly. Hence the L2(Ω)-norms of u − U and p − P
can be calculated via the seven-point quadrature rule of order six from Abramowitz &
Stegun (1984, formula 25.4.63c) on any triangle and the H1/2

0 (Γ )-norm of ξ − Ξ (resp.
H−1/2(Γ )-norm of (p−P)·n) by its equivalent quantity ‖ξ−Ξ‖2

W := 〈W(ξ−Ξ), ξ−Ξ〉
(resp. ‖(p− P) · n‖2

V := 〈V(p− P) · n, (p− P) · n〉). This gives an approximation of the
left-hand sides in (3.6) and (4.3).

The calculation of the integrals for the residuals in (4.38) over the finite element T and
the boundary element Γk is performed as follows.

Since P is piecewise affine and since f = 0 in the numerical examples, the terms∫
T | f + div P|2 dx ,

∫
T |curl P|2 dx , and the jumps across the interior element boundaries

in Jτ can be calculated exactly. The L2(Γk)-norm of

2P|T · tE − ∂

∂s

(
2u0 + (K + 1)Ξ − V(P · n − t̃0)

)
,

is approximated via a three-point Gaussian quadrature formula on each boundary element
Γk . For xj ∈ Γk and g ∈ C(Γk) the derivative (∂/∂s) g(xj ) is replaced by its central
difference operator [g(xj+1) − g(xj−1)]/|xj+1 − xj−1| with a distance of nodes |xj+1 −
xj−1| = |Γk |/20. The terms

∫
Γk

|WΞ + (K∗ + 1)(P · n − t̃0)|2 ds and
∫

Γk

|t0 − t̃0|2 ds

are also approximated with a three-point Gaussian quadrature rule.
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6. Numerical examples

The following examples provide numerical evidence of the superiority of the adaptive
mesh-refining Algorithm 1 in comparison with quasi-uniform mesh-refinement.

EXAMPLE 1 Let us consider the interface problem (1.1)–(1.5) on the L-shaped domain
in Fig. 1 with exact solution

u(r, θ) = r2/3 sin(2θ/3) and v(x, y) = log(|(x + 1
2 , y − 1

2 |)
given in polar (resp. Cartesian coordinates) (r, θ) (resp. (x, y)).

✻

✲�
�

��

❅
❅

❅❅

�
�

��

✟✟
�

�

�

�
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1−1

1

x

y

θ

FIG. 1. L-shaped domain.

The solution has a typical corner singularity such that the convergence rate of the h-
version with a uniform mesh does not lead to the optimal convergence rate even though the
right-hand side is smooth.

Table 2 (resp. Table 3) displays the numerical results for a sequence of uniform meshes
(resp. meshes generated by Algorithm 1). We show the number of degrees of freedom N ,
the energy-norm of the corresponding error

|||eN ||| := (‖p − P‖2
L2(Ω)

+ ‖(p − P) · n‖2
V + ‖ξ −Ξ‖2

W )1/2,

the experimental convergence rate

γN := − log(eNj /eNj+1)/ log(
√

Nj/
√

Nj+1)

of two subsequent meshes Tj , Tj+1, the estimated error ηN and the ratio |||eN |||/ηN .
The experimental convergence rate α, i.e. convergence as O(hα) with a mesh size h =
O(N−1/2), is approximately α = 2/3 for uniform meshes. The adaptive Algorithm 1
leads to a quasi-optimal linear convergence rate. The ratio |||eN |||/ηN has an upper bound
(� 0.27) in our numerical example which provides experimental evidence for the estimate
(4.3).

EXAMPLE 2 As a more practical example, we consider u0 = 0 and t0 = 0 in (1.4) and
(1.5). The unknown exact solution models the potential of a capacitor in an unbounded
domain. The charge at boundaries ΓD,1 and ΓD,2 are ±1, respectively. The geometry of
Ω , Ωc, ΓC and ΓD is depicted in Fig. 2, where the coarse grid is also shown.
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TABLE 2
Errors |||eN |||, convergence rates γN , error estimates ηN and
ratio |||eN |||/ηN in Example 1 for a sequence of uniform
meshes

N |||eN ||| γN ηN |||eN |||/ηN

38 0.071278 1.1730 0.190
141 0.043649 0.724 0.5454 0.254
545 0.021398 0.652 0.3239 0.269

2145 0.011122 0.632 0.2117 0.264
8513 0.005977 0.628 0.1379 0.261

33921 0.003316 0.632 0.0887 0.261
135425 0.001895 0.636 0.0566 0.263

TABLE 3
Errors |||eN |||, convergence rates γN , error estimates ηN
and ratio |||eN |||/ηN in Example 1 for meshes generated by
Algorithm 1

N |||eN ||| γN ηN |||eN |||/ηN

38 0.2117324 1.1730 0.190
141 0.1316732 0.724 0.5454 0.254
463 0.0929464 0.584 0.3891 0.246
774 0.0664472 1.306 0.2832 0.244

1138 0.0513531 1.336 0.2359 0.228
1495 0.0414916 1.562 0.2034 0.214
2821 0.0286142 1.170 0.1376 0.220
3516 0.0247449 1.318 0.1255 0.211
6662 0.0178850 1.014 0.0936 0.203
9906 0.0143884 1.096 0.0751 0.205

15847 0.0112419 1.050 0.0594 0.202
25853 0.0087725 1.012 0.0469 0.200
40553 0.0069174 1.054 0.0370 0.201
64223 0.0054651 1.024 0.0295 0.199

100888 0.0043591 1.000 0.0236 0.198
160217 0.0034432 1.018 0.0187 0.198

Algorithm 1 produces a sequence of unstructured meshes as shown in Fig. 5. For the
coarse mesh the problem behaves like a crack problem and as the mesh is increasingly
refined around ΓD, j , it models a domain with re-entrant corners of the Dirichlet boundary.
The solution for this problem with N = 51724 (9th grid) is shown in Fig. 3 and a
magnification of the adaptively refined mesh around ΓD,1 is provided in Fig. 4. The
meshes are highly refined at the corners of the Dirichlet boundary as expected. There is
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FIG. 2. Configuration of Example 2.
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FIG. 3. Mesh T9 generated by Algorithm 1.
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FIG. 4. Zoom view of the mesh near an inner
corner of Fig. 3.

no additional refinement on the coupling boundary due to the coupling compared with
pure FEM-modelling. As shown in Fig. 3 the refinement is symmetric around the x- and
y-axes. The streamlines displayed provide knowledge about the gradients of the potential.
Although we are using mixed finite elements in Ω the streamlines appear smooth, even
near the coupling boundary.

In Fig. 6 we plot the a posteriori error estimate ηN for uniform and adaptive meshes
(from Fig. 5). The convergence rate of ηN is approximately 1 for the adaptive meshes and
0.7 for uniform meshes. (A slope of − 1

2 in 6 corresponds to an experimental convergence
rate of 1 owing to N ∝ h−2 in two dimensions.) As expected, the a posteriori error
estimate ηN decreases considerably faster for adaptively refined meshes with quasi-optimal
convergence rate. This provides support for the adaptive mesh being more efficient than a
uniform discretization.
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FIG. 5. Sequence of meshes Tk , (k = 1, . . . , 9) generated by Algorithm 1.
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