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Adaptive Discretisation of Shell Problems

A seven parameter Reifiner-Mindlin shell kinematic is employed for a elastoplastic material with hardening. The
resulting nonlinear minimization problem is discretised within a finite element method on the mid surface of the
shell. A posteriori error estimates are discussed and related adaptive algorithms are presented. Numerical examples
illustrate the theoretical results.

1. Model Problem

The model problem investigated is a cylindrical shell with the thickness t. It occupies the domain S(z,¢,r) =
{{(0+r)cosp,—(1+r)sing,2)}, —-t/2 < r<t/2, 0< 2 < L, 0 < ¢ < 27 and r being the distance from shell
mid surface S(r = 0). The displacement U3P on S is given in terms of functions on the mid surface. The resulting
displacement is used in elastoplasticity for small displacements. The displacement U3P is described by a set of 7
functions, or a 7 parameter kinematics,

USP = (u—ré)e, + (v—rd)e, + (w—ry — r’n)e,. (1)

2. Principle of Virtual Work

For an arbitrary material law, the principle of virtual work reads
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As the testfunctions obey the kinematics, this yields to a strong formulation consisting of seven partial differential
equations,

/2 4 t/2 4
/ —(f: + 022,z + x03¢'¢)df =0, / "(sz ~1Czz,5 — 'XOzp,p0 + a:r) dr = 0,
~tf2 X -t/2 X
t/2 1 t/2 1
/‘/2 ‘)‘c‘(fw +0ps,s + XOpp,p + XOpr)dr =0, / P ;("fw —Ops,s = TXOyppp + (1 - rX)0yr)dr =0,
- -t

t/2 1 t/2 1
/ =(fr + Orz,s + XOrp,p — XOpp)dr =0, / =(rfr = r0rs,2 — rXOre,p + rX0pp + orr) dr =0,
-tf2 X ~tf2 X

t2
/ / ;"(rsz - 2roer + "2(0'7':,: - XOpp + X”w#)) dr = 0.
-tf2

3. A Posteriori Error Indicator

A residual-based a posteriori error estimate can be obtained from the strong formulation above with element con-
tributions nr and edge contributions ng. The constants in this reliable a posteriori error estimate depend on the
thickness, and efficiency is still open. The local contributions are chosen as error indicator for the adaptive refinement
algorithm. Both 5y and ng are given for arbitrary discrete stresses &
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4. Numerical Experiments

We discretised the model problem with Q1 finite elements on rectangular grids aligned both to the - and z-axis. Due
to the adaptive refinement algorithm the discretisation allows hanging nodes. We have done numerical experiments
with a point load, a radial load as well as a load tangential to the midsurface. Shown here are one example with
point load as well as one example with radial load.

point load
radial load

The brightness indicates van Mises stresses ||devE||. The radial load is given by f = (22 — 1)*cos(2¢)e,. It can be
seen that for both loads the adaptive refinement algorithm results in finer meshes at areas with high changes in
stresses.

Further work will be done in applying the a posteriori error indicator to more general material laws in elastoplasticity
and a broader range of finite element discretisations.
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