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Abstract

The article aims to provide a transparent introduction to and a state-of-the-art review on the mathematical theory of a posteriori error
estimates for an operator equation Au = f on a one- (or two-) dimensional boundary surface (piece) I'. Symm’s integral equation and a
hypersingular equation serve as master examples for a boundary integral operator of the first kind. The non-local character of the involved
pseudo-differential operator A and the non-local Sobolev spaces (of functions on I') cause difficulties in the mathematical derivation of
computable lower and upper error bounds for a discrete (known) approximation u,, to the (unknown) exact solution u. If E denotes the norm
of the error u — u;, in a natural Sobolev norm, subtle localization arguments allow the derivation of reliable and/or efficient bounds
n= (Zf’:l nf)llz. An error estimator 7 is called efficient if C;n = E and reliable if £ = C,7 holds with multiplicative constants C; and
C,, respectively, which are independent of underlying mesh-sizes, of data, or of the discrete and exact solution. The presented analysis of
reliable and efficient estimates is merely based on elementary calculus such as integration by parts or interchange of the order of integration
along the curve I

Four examples of residual-based partly reliable and partly efficient computable error estimators n; are discussed such as the weighted
residuals on an element F] the localized residual norm on Fj, the norm of a solution of a certain local problem, or the correction in a
multilevel method.

Since the error estimators can be evaluated elementwise, they motivate error indicators 7; (better be named refinement-indicators) in
adaptive mesh-refining algorithms. Although they perform very efficiently in practice, not much is rigorously known on the convergence of
those schemes. © 2001 Elsevier Science Ltd. All rights reserved.
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1. What is it all about? be introduced in detail in Section 3; for the sake of the
introduction and the presentation of the main results, it

Boundary integral equations on a one-dimensional arc I’ suffices to know that certain spline functions #'(J) of
in the plane (or surface I' C R?) read in abstract form: given (globally continuous or discontinuous, respectively) -
a right-hand side f and a bounded linear operator A, seek u piecewise polynomials based on a partition 7 =
satisfying (T),...,Ty} of I are included, i.e. #(7) C H*"**, and

that an integration of f multiplied with an (7 )-function

Au=7. (. over I' is meaningful. Then, the Galerkin discretization of

In the context of boundary value problems for partial differ- Eq. (1.1) reads: seek the Galerkin solution u, € #(J)

ential equations, the operator which satisfies

A:H(ID) — H(I) (1.2) J Auyv, ds = J fopds  forallv, € (7).  (1.3)
r r

is a pseudo-differential operator of order 2a € R between
Sobolev—Slobodeckij spaces (examples of A will be given at
the end of this section). These spaces H'(I") in Eq. (1.2) will

With f and u; at hand, the residual R :=f — Ay, can (in
principle) be evaluated to compute lower and upper bounds
for the unknown error e := u — u;,. The following sections
mon ding author. Wil'l be devoted.to the design f)f error indicators 1My, ..., Ny

E-mail addresses: cc@numerik.uni-kiel.de (C. Carstensen), which are functions of the residual R, the mesh 7 > and the
bf @numerik.uni-kiel.de (B. Faermann). index j which reflects an element Fj (or a neighborhood of
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it). Error indicators steer the mesh-refinement within adap-
tive algorithms such as in Step (iv) of Algorithm 1.

Algorithm 1.

(i) Start with an initial mesh .7 and set m = 0.

(ii) Compute Galerkin solution u,, for current mesh J,, =
{ry,....I'y}.

(iii) Compute error indicators 7; and choose @ with 0 =
0=1.

(iv) Refine I'; provided m; = @ max{ny,..., My}

(v) Generate the new mesh .7+, and update m. Stop or
go to (ii).

Remarks 1.1.

(1) The usage of the phrase ‘error indicator’ (better named
as refinement-indicator) is not specified to quantities
which satisfy certain properties; 7; := 1 is an error indi-
cator as well (and will uniformly refine a mesh when
employed in the adaptive algorithm).

(i) The intention in the design of error indicators,
however, is that (a) n; is a measure of the error near the
element I'; and that (b) refining the element I'; reduces
the error as the error indicator there.

(iii) Task (a) is discussed rigorously in a global form in
the remainder of this paper; a local form is not available
for refined meshes, but there is some hope owing to the
pseudo-locality of the operators in Examples 1.1 and 1.2
below.

(iv) There is not even hope for task (b) at the moment!
The corresponding question for the finite element method
(and the local differential operators) has a positive answer
[14]: under some additional assumptions the adaptive
algorithm will generate a sequence of meshes whose
discretization errors are eventually smaller than a given
tolerance. The question remains open for boundary inte-
gral equations.

(v) Numerical experience predicts that the schemes will
generate convergent discretizations which are far superior
to uniform refinements when singularities occur.

To keep the discussion on a posteriori error estimators on
the lowest level of technicality, we focus on two typical
examples for integral operators of the first kind on one-
dimensional arcs which equivalently describe solutions to
the Laplace equation in a (bounded or unbounded) domain
in the plane.

Example 1.1. The Dirichlet problem for the Laplace
equation in the interior or exterior of I is equivalently
related to Symm’s integral equation (1.1), where A =V

reads
Vu(x) = — 1 J log|x — ylu(y) ds, xe D, (1.4)
2w Jr

(ds, denotes an integration along y € I" with respect to the
arc-length and the variable y). The single-layer potential
operator V is of order 2aa=—1 and 0<s<1 in
Eq. (1.2). If the domain is small enough, e.g. included in
the unit disc, V is a continuous bijection (i.e. surjective and
one-to-one) between H* '(I) and H*(I). The discrete
space H (T ) = 30(3‘ ) consists of the (globally possibly
discontinuous) 7 -piecewise constant functions and
Eq. (1.3) has a unique solution. With f € H l(1"), the resi-
dual R belongs to H L according to the mapping proper-
ties of V on closed Lipschitz boundaries [13]. Consequently,
we may evaluate R and its derivative dR/ds with respect to
the arc-length along I" to compute error indicators.

Example 1.2. The Neumann problem for the Laplace
equation in the interior or exterior of I is equivalently
related to Eq. (1.1), when A = W is the hypersingular
integral operator,

W) IJ 0% loglx — y|
ux)= — | —/——m——
r on,adn,

o xerl), (15

u(y) ds,

(n, is the unit normal on I" at x) of order 2a = 1 and —1 <
s < 0in Eq. (1.2). Even for a domain of capacity smaller
than 1 (e.g. I' is included in the unit disc) the hypersingular
integral operator W is not a bijection between H*"'(I") and
H*(I) since W1 = 0. However, W is a continuous bijection
between modified spaces H''(I) and H(I) where func-
tions have vanishing integral mean. Then, one can prove
that discrete solutions exist, the residual R belongs to
L*(D), and satisfies ) rRe; ds = 0 for each hat-function ¢;
which forms the discrete space (). Hence, we may
merely use R, but not its derivative, on I and possibly
weaker seminorms to compute error indicators.

In the sequel we will refer to the two examples by writing
A =V or A= W, respectively, and then implicitly assume
that a, s, #' (), and R are defined according to Examples
1.1 and 1.2, respectively.

The plan for the remainder of this paper is as follows.
Section 2 reviews some notation on elements and patches
and then defines the four error indicators which are analyzed
in the remaining sections. Difficulties arising within mathe-
matics illustrate in Section 3 why we should be very careful
(in dealing with different but essentially equivalent notions
of fractional-order Sobolev spaces required to define errors
and residuals). This entire paper appears to be the first where
a thorough analysis is based on a single explicit definition of
those spaces by the explicit Sobolev—Slobodeckij norm
(cf. Eq. (3.2) below for its definition) based on the second
author’s earlier work [17-19].

Consequently, every estimate proven in Sections 4—7 is
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an implication of integration by parts (merely in one dimen-
sion) and interchanging the order of integration (Fubini’s
lemma)! Technicalities are kept at the lowest level possible
and so the analysis is often restricted to real intervals in
order to make it, in principle, easy to read.

Section 4 concentrates on the localization property of the
non-local Sobolev—Slobodeckij norm as the main auxiliary
result. The subsequent sections concern local double-
integral seminorms as error estimators (Section 5),
Babuska—Rheinboldt-type error estimates (Section 6),
weighted-residual error estimators (Section 7), and multi-
level error estimators (Section 8). Connections of related
efficient and/or reliable error estimates are drawn for the
master situations of Examples 1.1 and 1.2 and links are
provided to more general cases and higher dimensions.

2. Reliable and efficient a posteriori error estimators

This section introduces various error indicators whose
reliability and efficiency is then studied in the remainder
of this paper. Although focus is on Galerkin boundary
element schemes for Symm’s or the hypersingular integral
equation (cf. Examples 1.1 and 1.2), some error estimates
are available for collocation and qualocation.

2.1. Elements and neighborhoods

Let y:[0,L] — I be the arc-length parameterization of
an open or closed Lipschitz curve I' C R* and let 0 = &, <
& < § <. < €&y =L be a partition of the parameter
interval. Then, I'; := {y(s) : §;- = s = §} and x; :== Y§))
define the mesh, i.e. a collection of elements, J =
{I'},...,I'y} and the nodes A" := {xg,x,...,xy}. If I" is
closed, xy = xy and I'y and I'y are neighbors. In any case,
v:(0,L) — I'is an injective Lipschitz mapping with |y/| =
1 almost everywhere.

For a node x; and an element I'; we define their

J
neighborhoods

(l)]:U{Fk.XJEFk} andf]:U{FkF]ka¢@}
2.1

2.2. Weighted-residual error indicators

Given a residual R € Hk(D we could calculate the
derivative 9 “R/as" and its L>norm [[9*R/as"|| 2, I Over one
element I'; of length h; = [I'j] and so the error indicators

;= B0 RIS oy 2.2)

The weighted-residual error indicators (2.2) are applicable
for Example 1.1 with k = 1 and 0 < s < 1 for error control
in H*~! and in Example 1.2 with k = 0 and 0 < s < 1 for
error control in H*.

The error indicators (2.2) were established in
Refs. [4,5,7], for the hp-method in Refs. [1,8], and for
three dimensions recently in Refs. [9,12]. In practice, a

(e.g. Simpson’s) quadrature rule is required to approximate
the L*(I';)-norm [7].

2.3. Local double-integral seminorm error indicators

Local double-integral seminorms arose in Refs. [18,19] as
error indicators for Example 1.1. Their computation
requires a double integration over the parameter domain

(-1, &+1) X (-1, &j+1)s

= RP ::fm &1 [R(y(x) — RO
P e e e — o)

dx dy,

(2.3)
(7y is the parameterization of I') approximated, e.g. by
Simpson’s tensor product rule.

2.4. Babuska—Rheinboldt-type error indicators

The Babuska—Rheinboldt-type error indicators, based on
an idea in the finite element literature [2], are suggested in
Refs. [15-17], read (with hat-function ¢; of node x;)

|| Revds]
TIB,j = Sup (24)
veEH*(I ||§Djv||a,F
@v#0

for Example 1.2 and, besides numerical integrations, require
further numerical computations (cf. Remark 6.1 (i) for
details).

2.5. Multilevel error indicators

Given Symm’s integral equation (1.1) with A =V and a
mesh 7~ we introduce new finer ansatz functions x; with
support on I'; which are +1 along the first and equal to —1
on the second half of Fj Then, the multilevel error estimator
reads

_ L

.j = 72>
Vx)x; ds
(L‘_,- V0 )

for j=1,...,N. The reliability of this estimator depends
very much on the saturation condition (cf. Eq. (8.5) for a
definition). The indicator was introduced in Refs. [23,25]
and performs very efficiently in practice.

(2.5)

2.6. Other suggested error indicators

At least three other error indicators are certainly worth
mentioning which are, for different reasons, not analyzed in
this paper.

2.6.1. Rank—Wendland—Yu error indicators
The earliest suggestions for error indicators and adaptive
boundary element methods in the engineering [27,28] and
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mathematical literature [33-35], respectively, were based
on the notion of an influence index and utilize strengthened
Cauchy inequalities. They are known to be equivalent to the
error indicators mp ; of Section 6 but are more complicated
to define and to compute. We refer to Refs. [16,17] for
proofs and details.

2.6.2. Feistauer—Hsiao—Kleinmann error indicators

The error indicator in Ref. [20] for Example 1.1 treats the
outer integration in the Sobolev—Slobodeckij norm of
the residual for each element and the inner integration on
the entire boundary. Thereby, the computational costs are
doubled and those indicators are not fully local. Since we
regard the error indicators ny ; of Section 5 as a more local
and cheaper improvement, we omit a detailed presentation
of the Feistauer—Hsiao—Kleinmann error indicators.

2.6.3. Recovering techniques for error indication

Superconvergence properties or gradient recovery tech-
niques for the purpose of adaptive mesh-refinements are
employed in Ref. [31] and suggested for error indication.
However, corners and lack of smoothness of the exact solu-
tion deserve further investigations [29].

2.6.4. Correction methods for error indication

An integral equation of the first kind provides another
identity for the residual and characterizes the error u — uy,.
Based on a Neumann series, a sequence of improved error
approximations can be computed [24,30,32]. The norms of
those error terms might serve as error indicators. Since this
new and promising approach is completely different from
the other more residual-based estimates and works for the
direct method (where the aforementioned identities are
known), we omit a detailed presentation in this paper.

2.7. Efficiency and reliability

Up to this point, error indicators such as 7); were defined,
which are based on the information of the discrete solution
and the right-hand side plus some numerical quadrature or
other local computations. We speak of error indicators 1; in
the context of adaptive algorithms.

The sum of all of those error indicators n = (Z]}’:] nf)” 2
might be regarded as an approximation of the norm of the
unknown error u — u;, in which context we speak of error
estimators.

If there exists a constant ¢; such that

llw = wpllggecry = c1m (2.6)

then the error estimator m is called reliable and if there
exists a constant ¢, such that

e = [lu — wyllgecry 2.7

the error estimator 7 is called efficient. In this context the
constants should depend neither on the mesh-sizes nor on u,
uy, or fbut possibly on I' and «. They might depend in a
mild and computable form on 7 such as through ()
defined below.

2.8. Comparison of the error indicators

Throughout this paper, we will prove that 0 is efficient
and reliable under mild conditions on the mesh and that,
even in a more local form,

3Ny = Mp = Mg (2.8)

for Symm’s integral equation A = V. The efficiency of 7y is
widely open and the reliability of m,, is not guaranteed
a priori.

2.9. Assumptions on the mesh

Although highly graded meshes are considered, i.e. the
mesh-sizes ;= I :== & — &_y, || := length(), may vary
for different j, some assertions require that the difference in
size of two neighboring elements is not too big.

Definition 2.1. The local mesh ratio «(.7") of a mesh 7 is
the smallest number « that satisfies

_ r

k= M =k 2.9)
|75l

for all j,k € {1,...,N} such that I'; and I'; are neighbors.

Example 2.1. Note that even a geometric mesh-refinement
{=0and ¢ = Lg" 7 forj=1,...Nand 0 < ¢ < 1 leads
to a local mesh ratio k() = 1/q if I is an open arc (while
otherwise (7)) = max{1/q,(1 — ¢)g" N, 4"~ '1(1 — ¢)} is
unbounded as N — o).

3. Good reasons for caution

Partial differential equations and therefore related (essen-
tially equivalent) integral equations have weak solutions
exactly in Sobolev spaces. Second-order elliptic differential
equations have solutions in Sobolev spaces of integer order
k = 0 such as H*(I) on a domain I" which consists of all
functions u : I'— R with weak derivatives u, Du, ...,Dku,
which are square integrable over I'; the norm in H K is
then given by

12

k
””‘HH"(D = Z||Dj”||L22([) ) 3.1
=0

and D/u denotes the matrix of all partial derivatives of exact
order j. The weak solutions of related integral equations are
usually the traces (i.e. the values on the boundary or an
interface of the domain) of Sobolev functions of integer



C. Carstensen, B. Faermann / Engineering Analysis with Boundary Elements 25 (2001) 497-509 501

order and so they naturally belong to a much more com-
plicated trace space H2(ID), k = 1. One direct way to
define the most prominent trace space H Y2(I) utilizes the
Sobolev—Slobodeckij norm (also denoted as double-integral
norm in view of Eq. (3.3))

lels.r = (udl oy + ki)™ (3.2)

of a function u : I'— R with 0 < s < 1 (instead of only s =
1/2 for H "2(IN) and the seminorm

2
sF'—J J Ju) = u(y)l ds, ds,. (3.3)

|d+2s

(The notation [ ds, means that we integrate over I" with
respect to the Varlable x.) The seminorm |u|, - is defined for
a domain I'C R and for a d-dimensional manifold I" C
R, respectively. The elements in H*(I) are all measur-
able functions u : I'— R (such as piecewise continuous
functions) with |jul|, r < oo.

The reader is assured that typical solutions of integral
equations on open surface pieces, e.g. I'= [0, 119 % {0}
(which is not the boundary of a bounded domain), fail to
belong to H*(I' for k = 0 or k = 1 but they belong to H*(I
for all 0 < s < 1 which may be regarded as spaces between
HO(I) = L*(I) and H' (D).

As a consequence we need to estimate the residual R :=
f — Auy, in spaces like H*(I). One difficulty is the non-
locality of those spaces which we illustrate with the simple
observation that

Mzsry = D M, forany v € HAWD, (3.4)

=1

whenever = {I'},...,I'y} is a partition of I" and k is a
non-negative integer. For the double-integral norm, we still
have

N
> vlr, = Mo 3.5)
=1

but the reverse inequality does not even hold in the more
general form

Mler = CZ ME r, (3.6)

This section is concluded with two results to show that
Eq. (3.6) fails for general functions and meshes. In the
subsequent sections we study sufficient conditions on v
and 7, which guarantee an assertion similar to Eq. (3.6).

The first negative result indicates that Eq. (3.6) may fail
even for 7 -piecewise functions with respect to a uniform
mesh 7

Theorem 3.1. Let T be the uniform mesh on I' = [0, 1]
with 2N elements, ie. I y={I" NI = 1,...,2N} with
= [(j — 1)h, jhl, and with mesh-size h == 1/(2N). For

O < s < 1/2 there exists a sequence of T -piecewise
constant functions vy € H*(I') with

|| N”st
lim ———— = . 3.7

N—oo 2N

Z [N

Proof. The discontinuous piecewise constant function

0 forx & FJ ~ With j even,
vy (x) =
N 1 forx € I'; y with j odd,

satisfies vy € H*(I') for 0 < s < 1/2 and the denominator
in Eq. (3.7) is given by

ON 5 N R 2N ik
> lwkr, = Yl = > [0 rar=1
j=1 j=1 j=t JU=Dh
Jj odd
(3.8)

The double-integral norm |-, i is equivalent to the Fourier
norm defined by

Il

> | Femllef

LE\0}

B (D) = = |7, +

four

with the Fourier coefficients 7 p(v) = f(l) v(x) e 2™

(see, e.g. Ref. [21, Corollary 8.6]). By explicit computations
(see Ref. [17, Satz 3.1] for more details) one can prove

(o)
vl () = NE L pe3 > @e+1)*h,
£=1
Hence, [vyllz: (1) as the equivalent norm [|vyll; - tend with
Ntooo. [

The second negative result indicates that Eq. (3.6) may
fail even for k(7)) — oo.

Theorem 3.2. Let 0 < &< 1 and set v, € H'(—1,1) by

0 forx € I'} ==[—1,0],
ve(x) = xle forx € I, :=]0,¢],
1 forx € I';:=[g,1].
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Then we have

tim el

-0 3 )
Z ||Vs||1/2,rj
J=1

= 00, 3.9

Proof. The proof is given by explicit calculations and
elementary estimations in Ref. [17, Appendix] where
Sicilvelme, =2 while —log(2e)+
2 log(1l + &) — log(e). O

”%”?1”2(71,1) =

4. Heart of the matter: localization of Sobolev—
Slobodeckij norms

In view of Theorems 3.1 and 3.2 we need further assump-
tions on the local domains and on the functions to establish a
valid modification of Eq. (3.6).

Theorem 4.1.
forallj=1,...,

Suppose v € H°(I) satisfies jpj vds=0
N. Then,

Misr = e Z|v|m (4.1)

with a (v, N)-independent constant cs that depends only on
0<s<l1,TI,and (7).

The proof of Theorem 4.1 is divided into three lemmas.
Set By (y) = (y — d;,y + d)) for y € R and

d; = dist(I;, T\T")). 4.2)

Lemma 4.2. For any function v € H*(I') and all meshes
T, we have

Mir = cs Z (v, + &5 > IME2cry) (4.3)
j=1

with a (v, 7 )-independent constant cg that depends only on
0<s<landT.

Proof. For simplicity, we focus on I'= [0, 1] (the proof
for a general boundary I' = 942 with a domain (2 QA[R‘HI
can be found in Refs. [18,19]). Abbreviate D; := I'\I'; and

v(x) — v(y)|®
JF’ ,[I‘” JF/ JF” x_ l+25 d‘Xdy and

Jo=J ),

for ', " cr.

Then

|V|§F:JFJF :,—iJ’FJ‘ Jr

S L L]
=am [, _,

J J |V(x)__ Y&?' dx dy.

|
I J I

+(1/2)j jwj

<Z|v|m,

(4.4)

Note that D; C [R’Ngdl_(y) fory € I; (since d; = dist(I}, D)))
and so

J' |x_)’|71723dx5J’ |x_y|7172sdx
D; R\B; (v)

= zjd xR de=d s 4.5)
J

Therefore,

s [ BOR( [ ot ) o = 7
(4.6)

We infer with the characteristic function y; := Xp, of D;

N N
D= J Vool J ke —y| " dy | dx
j=1 =17D; I;
g 2 —1-2
= Z JFXJ'(X)|V(X)| (,[F |x — y| g dy) dx
Jj=1 J
2 S -1-2
(S b Ya
j=1 i

~)

Letk,j € {1,...,N} and x € I. Then, X0 =1 is equiva-
lenttox € D;=I\[I;, UI;UIj],and sotoj & {k —
1,k,k + 1}. Consequently,

f(X): Z J |x_y|71 2v

es[k 1kk+1
- 45 _
ZJ e — 72 dy 2 ar2s
Dy

and so

[\/]2

1 N
=52k M. @7

.
Il
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Young s 1nequa11ty in Eq. (44) (e |v@x) — vyl =
2(v@)|* + [v(»)[*)) and Eqs. (4.6) and (4.7) show that

4 X
o= Zlvlm, + > a7 M. O
j=1

For s =1 (and |v|; ) replaced by |[v|y ), the follow-
ing estimate is known as a Poincaré inequality (cf. e.g.
Ref. [26], Theorem 1.3).

Lemma 4.3. Fora<b,0<s<1, and v € H*(a,b) we
have

||v||i2(a,b) =

1 b 2
20— W + m(j V00 dx) . (48)

Proof. Elementary calculations with the binomial

theorem yield
b 2
2(J v(x) dx)

b b b b
=J J v(x)zdxdy-i-J J v(y)* dx dy

b (b
- ZJ’ J' v(x)v(y) dx dy

2(b —

= Jb jb () = v()? dr dy

PMRTE J Jb o) —vo)P

|1+25

= —a) +2X|V|s (@b)-

Lemma 4.4. Suppose v € H'(I) satisfies | rV ds = 0 for

all j=1,...,N. Then,

Y 2s 2 ul 2

D d My = e > b (4.9)
j=1 j=1

with a (v, N)-independent constant c; that depends only on
0<s<l1,TI, and k(7).

Proof. For simplicity, we focus on I'= [0, 1] and obtain

from Lemma 4.3 that

2s

N s 2.9) Kk
I Y= zd P, TZMJ
j=1

O

Proof of Theorem 4.1.
44. 0O

Combine Lemmas 4.2 and

Remarks 4.1.

(1) If I' is (part of) a Lipschitz boundary, we have for
sufficiently close x = y(a) and y = y(b) on I' that
Cla—b|=|x—y|=|a—b| (4.10)
Therefore, our calculations with Sobolev—Slobodeckij
norms can essentially be reduced (by cut-off, transforma-
tions and resolution of periodicity for closed arcs) to
calculations on the parameter interval. As a consequence,
we may and will illustrate our proofs for the case I' C R.
(i1) Theorems 4.1 and 4.4 are formulated for functions
v € H'(IY which are Lz-orthogonal to #%7). The
results also hold for functions which are L*-orthogonal
to quite arbitrary finite element spaces # (") [18,19].

5. Local double-integral seminorms as error estimators

Theorem 4.1 establishes that local Sobolev—Slobodeckij
semmorms Nr.; = Rl of the residual R:=f — Vu, €
H'(I') serve as efﬁc1ent and reliable local error indicators
for Symm’s integral equation (1.1) where A=V, u €
H N TI") and u, € £°(7) satisfy Egs. (1.1) and (1.3),
respectively.

Theorem 5.1. For some (N, u,f, u,)-independent positive
constants cg and cy we have

il r = C9Z|R|m (.1)

AR
cs > IRlcw, = u—
j=1

The constant cg depends on 0 <s <1, I, but not on 7,
while cg depends also on k().

Proof. Since {w;: j even} is (almost) pairwise disjoint, we
conclude as in Eq. (3.5) that

Z ”R”sw - ||R||s U{w;ij even} — HR” (52)

J even
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A similar estimate holds for > 44 |R|f,wj and their sum
yields

N
SIRES = > IR, + IR, = 2lR[ (5.3)
j=1

J even Jj odd

By continuity of V, we have a bounded operator norm ¢y :==
||V||L(H“"1(D;H“'([)) < oo with

IRls.r = IV — wp)lls.r = crolle — wplls—1.1- 5.4

The combination of Egs. (5.3) and (5.4) proves the
efficiency estimate in Eq. (5.1).

The linear and bounded operator V : H*~'(I) — H*(I) is
a bijection and so its inverse V ! : HS(I) — H* () exists
and furthermore is bounded owing to the open mapping
theorem in functional analysis. By continuity of V™', we
have a bounded operator norm ¢y, = |Vl <
oo and deduce, similarly to Eq. (5.4),

e = uplls—1.r = V'V = w11 = en |V = uplls.r

= cplIRll. -
(5.5)

Since v, = 1 on I'; and v, = 0 elsewhere defines an admis-
sible test function in Eq. (1.3), we have

J RdS:J (f—Vuh)ds:J (f — Vu,)v,ds=0.
I; I; r

5.6)
Therefore, Theorem 4.1 shows that
2 AR
IRl = e5 > RIS, (5.7)
j=1

The combination of Egs. (5.5)—(5.7) proves the reliability
estimate in Eq. (5.1).

Remarks 5.1.

(i) If a residual R is generally lacking any kind of L*-
orthogonal condition (because it is generated by a method
totally different from a Galerkin scheme), then

N, = |R|s,w,» + d;”R”LZ(F_,) (5.8

still defines a reliable error estimator. (The proof is ana-
logous to that given for Theorem 5.1, but merely employs
Lemma 4.2.)

(i1) In case of a Galerkin scheme, Eq. (5.8) defines a
reliable and efficient error estimate. (The latter follows
from Lemma 4.4.)

(iii) The results carry over to any bounded, linear, and
bijective operator A : H**>*(I" — H*(I") for 0 < s < 1
provided s + 2a < 1/2.

(iv) The results of Theorem 5.1 can be generalized to
Galerkin discretizations where (") consists of quite
arbitrary finite element functions [18,19].

6. Babuska—Rheinboldt-type error estimates

This section is devoted to the analysis of the error indi-
cators mp ; for the errors in the hypersingular equation (1.1)
with A = W. Given a mesh 7 and the nodes ./" we define
the hat-functions ¢y,...,oy € & WT) as T -piecewise
affine and continuous mappings (with respect to the para-
meterization ) characterized by support ;

1 forj=k,
¢;(x) = ) 6.1)
0 forj #k,

which form a partition of unity,

N

de=1 onl (6.2)
j=1

Depending on I" open or closed, we define Sobolev—Slobo-
deckij spaces and discrete subspaces thereof. If f € H (I
is continuous, then f € Hy(I) if and only if f(xg) =0 =
f(xy) and I is open or [f ds =0 and I is closed. (For a
function f € H*(I') that is discontinuous at the endpoints of
an open arc the conditions for f € Hj(I") are complicated if
s = 1/2, they are as above for 1/2 < s < 1 and there are
none if 0 <s < 1/2 [22]). In any case, hat-functions are
continuous and so it makes sense to define

S NT) = {v, € SNT) v, € Hy(D)}. (6.3)

It is known that the discrete problem (1.3) has exactly one
solution u;, € ,9’(])(9') and so the residual R := f — Wu,, is a
well-defined function in L>(I). Recall the mapping property
W H' "D —H %I for 0<a<1 and that the
Babuska—Rheinboldt-type error indicators are defined by

Rojv ds
MNp; = Sup S A 6.4)
vernny  |lepvller
@70

Theorem 6.1 ([15,16]). For some (N,u,f,uy)-indepen-
dent positive constants ¢y, and c;3 we have

N N
12 Z 7]%3,,' = flu— Mh||127a,r =cp3 Z 77123,,‘- (6.5)
= =

The constant ¢y, depends on 0 < a < 1, I', but not on 7,
while in addition c3 depends on k(7).

Remarks 6.1.

(i) The values of np ; cannot be obtained by an analytical
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formula, they need to be calculated. If #; denotes the
space of algebraic polynomials of order (=k, we could
solve a k X k-system of linear equations and compute

Rejvy ds

) . @i
max —r—m—— = 7jp ;. 6.6
IS el ™ @0

In case of the energy norm a = 1/2 we could replace
levilla.r by [rW(ev)@v, ds. Note that Eq. (6.6)
provides lower bounds of the exact value. Upper bounds
are available with Theorem 7.1 below.

(i1) In practice, all (double) integrals are approximated
with proper quadrature rules.

The proof of Theorem 6.1 is split into four lemmas.

Lemma 6.2. Forv € Hs(a)j) we have

|QDJV|S r—= C14(|V|5 ; '73||V||L2(wj)) (6.7)

with an (N,v)-independent positive constant ci4 which
depends on 0 < s < 1, I', and «(T").

Proof. Suppose, for simplicity, I'= [0, 1] as the general
case will follow with similar arguments. Set 2, := U{I :

I, NIy # &) and notice that |, = 5k(T ) hy.
Splitting domains of integration we infer

oo
|QDjV|S2,F - |‘Pjvliw,» = ZI J j71+2_v dy dx. (68)
' o J o |x =y

For x € I', C w; and with ¢;(x) = Lip(¢)|x — y| for y €
IMw; we infer as in Eq. (4.5) that

2 2
J |¢j(x>1|+2v dy :J |(PJ(X)1|+25dy
Moy Jx — y[ 7 20 [x =yl

2
N J leeof

r\a, |x _ y|l+2s

= Lip(goj)2 JQ . e — y|' " dy + di s
K\W;

= Lip(e)*| " 011 = 5) + d *s. (6.9)

Young’s inequality with the additive split ¢;(x)v(x) —
G (V) = g)x) — v(y) + v(y)(g(x) — ¢;(y)) shows

that

_ 2
Igo,vlm, J J |V(x)_ Y?;' dx dy

J J |90,(x) R dx dy

|1+2s
= |V|f,wj + Lip(goj)zj J v(y)2|x _ y|1*2s dx dy

= e, + Lip(e) |10 = )[M2(oy-
(6.10)

Combining Egs. (6.9) and (6.10) with estimates of neighbor-
ing element-sizes (e.g. h; = K(f)zdk or Lip(¢)) = k(T )/h;)
verifies Eq. (6.7). O

Lemma 6.3. For some (N,u,f,uy,)-independent positive
constant ¢z we have

||u Mh||1 ol =

cmZnB, (6.11)
The constant ci3 depends on 0 < a < 1, I', and k(7).

Proof. Notice that W' exists as a linear bounded operator
between the Hilbert spaces H, “(I) and H, “(I") with the
a-depending operator norm c5. Hence

[loe — Mh”Hl apy = W™ 1R”Hl o = 015||R||H «I)- (6.12)

The definition of the negative norm in H~ *(I) by duality on

a closed arc I reads

IR|_or= sup J Rv ds. 6.13)
Mlr=1 J T

Since [ rRe; ds = 0 we may choose the integral mean v;
f oV ds of v and obtain with Egs. (6.2), (6.4), and Cauchy S
1nequahty that

N N
J Rvds = Z J’ R(v —vj)g;ds = Z nB,jH(v - Vj)@,'”oz,r
r Sr =

N 1/2 N 1/2
s(Zm%,j) (ZII(v—v,w,»llir) . (614)
j=1

With Lemma 6.2 (with v replaced by v — v; which has the
same seminorm) and Lemma 4.3 (to estlmate the L*-norm
of v — v;) we infer

[ = v)@llar = clalVlaw + (craly  + Dy — Vj”Lz(w/)

= ¢16V]aa,. (6.15)
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Arguing as in Eq. (5.3) we deduce from Egs. (6.14) and
(6.15)

N 12
,[FRV ds = ( m%,j) \/§C16|v|a,F'
j=1

Since |||, =1 in Eq. (6.13), the assertion follows from
Egs. (6.12) and (6.16). U

(6.16)

To show efficiency, we require a modification of Eq. (3.6).

Lemma 6.4. Let s > 0. Then, any functions vy,...,vy €
H’(I) with pairwise disjoint support satisfy

m|? Moo

Sv| =52> Ivlor (6.17)
=1 |sr j=1

Proof. The arguments are similar as in the proof of
Lemma 4.2; cf. Ref. [17, Satz 3.26]. [

Remark 6.2. The reverse inequality of Eq. (6.17) is false:
let0 <e<landsetv,w, € Hl(—l, 1) as in Theorem 3.2
by w, (x) := v,(—x) for —1 = x = 1. Then we have v,w, =
0 and

lve + Ws”%/Z,(fl,l)

=0. (6.18)
&0 ||Va||%/2,(71,1) + ||Wa||%/2,<71,1)

(The proof is similar to that of Theorem 3.2 and can be
found in Ref. [17, Appendix].)

The point in this example is that a hat-function with
values 0, 1, 0 at the positions —a, 0, b (for positive a, b),
respectively, has an H 2(R)-seminorm which depends on
bl/a but not on max{a, b} and tends logarithmically to co as
max{b/a,alb} — oo. The situation is different on the smaller
domain (—a, b) and the H 1/2(_61, b)-seminorm of the hat-
function stays bounded. We refer to Ref. [7] for more
details.

Lemma 6.5. For some (N,u,f,u,)-independent positive
constant ¢, we have

N

C12 Z 7’129,j = b = wplla- 1.1
=

(6.19)

The constant cy, depends on 0 < a <1 and I', but not
onJ .

Proof. Notice that the supremum in Eq. (6.4) is attained
and so we find v; € H*(I) with positive norm ||¢;vi, r
and

nB,j”‘Pjija,F = J Rojv; ds. (6.20)

@j

A different scaling guarantees |@vjll,r = mp,; (the case
when this is zero is excluded at the moment).

Set Ip:={€ +3k:k=1,2,3,... with€ + 3k = N} for
£ =1,2,3. Since (wj : j € Ip) are pairwise disjoint with a
positive distance from each other,

> @y = e € HYID)

JEILe

and @;v; = p on w;.  (6.21)

Combining |¢v;|..r = mp,; with Egs. (6.20) and (6.21) we
infer that

Z 7]123’! = Z JmejVj ds = J(FRIIIE ds

JEIL, JEIL,

6.22)

With the a-depending operator norm cy; of W : H ! D) -
H “(I) we deduce

S b= | W= e ds = cull = wl-arfibelr
JElLe r

(6.23)
Lemma 6.4 and Eq. (6.21) show that

lellar =52 levllar=52 n3;.

JEIL, JEIL

(6.24)

Combining Egs. (6.23) and (6.24) and summing for £ =
1,2,3 we conclude the assertion. [

Proof of Theorem 6.1. Combine Lemmas 6.3 and
6.5. O

7. Weighted-residual error estimators

This section is devoted to the analysis of the weighted-
residual error estimators mp. The first estimate concerns
Example 1.2 and provides an upper estimate of the
Babuska—Rheinboldt-type error estimates together with
Theorem 6.1, the following estimate shows the reliability

of MR-

Theorem 7.1. For some (N, u,f,u,)-independent positive
constant ¢;g and j = 1,...,N we have

Mg = C18|(‘)j|a”R||L2(w/)' (7.1

The constant cig depends on 0 < o < 1 and I', but not on 5~
or w;.

In Example 1.1, we have R € H l(F) and obtain the
subsequent result which, together with Theorem 5.1,
shows the reliability of 1.

Theorem 7.2. For some (N, u,f,u,)-independent positive
constant cjg and j = 1,...,N we have

Nrj = C19|wj|lis||3R/aS||L2(wj)~ (7.2)
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The constant cyg depends on 0 < s < 1 and I', but not on I~
or (l)j

Remarks 7.1.

(i) The weighted-residual error estimators were estab-
lished by using the interpolation spaces [3] and employed
an interpolation estimate in Refs. [5,7-12]. The new
proofs given below are based on mp and 7.

(i1) The efficiency of the weighted-residual error estima-
tors is mainly an open and important question. Its only
answer is positive for quasiuniform meshes on closed
boundaries [6].

(iii) Practical experience underlines that the weighted-
residual error estimators, the simplest estimators
known, perform very efficiently in adaptive algorithms
and a posteriori error control.

The proof of Theorem 7.1 requires the following Friedrichs-
type inequality.

Lemma 7.3. For v € H'(I) which vanishes outside a
subarc w of length h < |I'|/3 of I we have

V2200) = c18h’Vls.r (7.3)

with a (v, w)-independent positive constant c;g which
depends on 0 < s < 1 and I

Proof. We prove the lemma for I'C R of length L.
Because of the side condition on the length of w there is
either space & to the left or to the right of w C I'. Without
loss of generality we suppose that = (—h,0) and
(—h,h) C I'. Given v with support in w, we define w(x) :=
—v(—x) for —h <x < h and extend w by zero outside.
Then, v and w are just reflections of each other and conse-
quently, their L*(D)-norms coincide while their H*(I)-
seminorms might differ because the contributions from the
integration on I'\(0,h) and I'\(—h,0) might differ.
However, their H*(—h, h)-seminorms coincide and we
know w € H*(—h, h).

On the other hand, the integral mean of v + w vanishes by
design and so Lemma 4.3 (on (—h, h)) yields

AVl = v + wlizny = 12CH v+ wli - (7.4)
This and a triangle inequality show that
2Wlzay = @AY (Wleimnmy + Vs—nmn) = 20 V] )

= 220"l r- (7.5)
O

Proof of Theorem 7.1. For any v € H*(I) and j =

1,...,N, a Cauchy inequality and Lemma 7.3 lead to

| Rewas = IRl lopliae) = culonl IRl leplar
J

(7.6)
The theorem then follows by the definition of 1 ;. 0

The proof of Theorem 7.2 follows from the subsequent
imbedding estimate (where we omit the case of a curved
boundary).

Lemma 7.4. Forv € Hl(O, h) we have

17
Wlsom = croh’*|0v/ds| 2. (7.7
with a (v, h)-independent positive constant ci9 which
depends on 0 < s < 1.

Proof. It suffices to prove Eq. (7.7) for A = 1 and employ
a scaling argument afterward to deduce the right power of 4.
We will suppose in the sequel that 1/2 < s < 1 as this is the
hardest case. There are merely few modifications necessary
for 0 <s < 1/2 while the integration below results in
logarithmic terms which are similarly adapted. We omit
the calculations for the other cases (cf. Ref. [17] for them)
and focus on 1/2 < s < 1.

The main theorem on calculus and a Cauchy inequality
show, for g(z) := (v/(z))2 and x <y,

y 2 y
V) — v = (J v'(2) dz) =(@y-— x)J g(z)dz.  (7.8)

The symmetry in x and y in Eq. (3.3) and the estimate (7.8)
yield

Loy ry )
1200 = jo JO J ¢(2) dz(y — 0% dx dy. (7.9)

Note that (2s — 1)(y —x) > = d(y — x)! "*/dx and inte-
grate by parts in Eq. (7.9) with respect to the variable x.
The boundary term involves [} g(z) dz(y — 0 B forx=y
and x=0. Since the integral mean [3g(z)dz/(y — x)
converges for almost all y for x — y toward g(y), we infer
that the limit of [} g(z) dz(y —x)'™* vanishes for x — y
since s < 1.
Therefore, we obtain

2 Loy 1-2
(s — 12 = — JO JO 2(@) dzy' ™ dy

1 y
+ J J gy — )" Fdedy.  (7.10)
0Jo

The first term on the right-hand side of Eq. (7.10) is non-
positive and the second is integrated with respect to the
variable y after an exchange of the differentiation order to
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verify

I 1
(s — 1/2)|V|§,(0,1) = Jo g(x)J (y—x'"""dydr

1
= I g1 — x)* 72 dx/(2 — 2).
0

. 2-2
Since maxp<,~; (1 —x)° ~°

Eq. (7.7) with ¢;9 = 2711

= 1, the last estimate implies
- 's—127". O

8. Multilevel error estimators

Given Symm’s integral equation (1.1) with A =V and a
mesh 7, := .7 we compute a (coarse grid) Galerkin solu-
tion u, € A, = ¥°(7) and a residual R € H'(I. A finer
mesh 7 ,, is defined by halving (some or) all elements.
The additional fine-grid ansatz and test functions are
X; = 0y;/ds with support I'; defined as the derivatives of
the hat-functions ; with respect to the arc-lengths; the
fine hat-functions ¢;(x) = ;(v(s)) are defined as affine
functions in s on (§;—1, §—1/2) and on (§;— 5, &) with values
0,1,and 0 at &y, &_1p, and &;, respectively, where §;_,
and ¢ mark the parameter interval of I and &, =
(&—12 + £))/2 is their midpoint.

The multilevel error estimator (unaffected by a different
scaling of x;) reads

U Ry; ds
I;
12
Vxi)x d
(JF/( 0% S)

It is stressed that this solution on a finer mesh is not needed
in the calculation of the error estimator (8.1) which is effi-
cient.

M= forj=1,...,N. (8.1)

Theorem 8.1. With some (7 ,u,f,uy)-independent posi-
tive constant cyy (Which merely depends on I') we have

C20Mu,j = |R|1/2,F, = Mg (8.2)

Proof. For simplicity, we focus on I'; = [—h, h] such that
X;(x) = —sign(x)/h and so
2

J Rdes =h
I

JO R(x) dx — ﬂ RO) dy‘

0
_(RO) — RO dx dy‘

sj J |R(x) — R(y)| dx dy. (8.3)
I JT;

A Cauchy inequality on I'; X I'; with |[R(x) — R(y)|/|x — y|

and |x — y| shows

J J IR(x) — R(y)| dx dy
I JT;

12
( J J k@ = ROF dy)
be =yl
172
x(J J |x—y|2dxdy) = B8BRR|inr. (8.4)
r; JI; ’

A maple calculation shows fp (Vx)x; ds = 2/ log(2)
and so Egs. (8.3) and (8.4) prove the first inequality of the
theorem. The second follows from the definition of 7 ; and
I C o, O

Remarks 8.1.

(i) Theorem 8.1 is a modification of a result in Ref. [9]
with an elementary proof.

(i) The proof of reliability of m,, requires the strong
saturation assumption that a fine-grid solution u,
(with respect to the discrete space ), =
LT 1) = A, D span{xy, ..., xy}) is a much better
approximation to the (unknown) solution than the
known discrete solution uy, :

e = wiplly = Bl — wylly (8.5)

for a constant 0 < 8 < 1. On a quasiuniform mesh
(the proof requires an inverse estimate) this guaran-
tees [23,25]

N
e = wally < c21> s (8.6)

J=1

with a constant c¢;; which tends to infinity as 8 tends
to 1.

(iii) Since the saturation condition could be crucial in
particular for coarse meshes, we recommend handling
this estimator with care in practice, as the reliability
depends crucially on B < 1. It is therefore recom-
mended to employ my, ; as an error indicator in adap-
tive schemes but not necessarily as a reliable error
estimate (especially not for coarse meshes).
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