MERGING THE BRAMBLE-PASCIAK-STEINBACH AND THE CROUZEIX-THOMÉE CRITERION FOR H^{1}-STABILITY OF THE L^{2}-PROJECTION ONTO FINITE ELEMENT SPACES

CARSTEN CARSTENSEN

Abstract

Suppose $\mathcal{S} \subset H^{1}(\Omega)$ is a finite-dimensional linear space based on a triangulation \mathcal{T} of a domain Ω, and let $\Pi: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ denote the L^{2}-projection onto \mathcal{S}. Provided the mass matrix of each element $T \in \mathcal{T}$ and the surrounding mesh-sizes obey the inequalities due to Bramble, Pasciak, and Steinbach or that neighboring element-sizes obey the global growth-condition due to Crouzeix and Thomée, Π is H^{1}-stable: For all $u \in H^{1}(\Omega)$ we have $\|\Pi u\|_{H^{1}(\Omega)} \leq C\|u\|_{H^{1}(\Omega)}$ with a constant C that is independent of, e.g., the dimension of \mathcal{S}.

This paper provides a more flexible version of the Bramble-PasciakSteinbach criterion for H^{1}-stability on an abstract level. In its general version, (i) the criterion is applicable to all kind of finite element spaces and yields, in particular, H^{1}-stability for nonconforming schemes on arbitrary (shape-regular) meshes; (ii) it is weaker than (i.e., implied by) either the Bramble-Pasciak-Steinbach or the Crouzeix-Thomée criterion for regular triangulations into triangles; (iii) it guarantees H^{1}-stability of Π a priori for a class of adaptively-refined triangulations into right isosceles triangles.

1. The L^{2}-projection in a finite element space

Suppose the bounded Lipschitz domain Ω in \mathbb{R}^{d} is partitioned into a triangulation \mathcal{T}, i.e., $\bar{\Omega}=\bigcup \mathcal{T}$ for a finite set \mathcal{T} of elements T which are closed and whose interiors are Lipschitz domains. The intersection of two distinct elements has zero d-dimensional Lebesgue measure. To describe nonconforming finite elements, let H be a closed subset of $H^{1}(\mathcal{T})$,

$$
\begin{equation*}
H_{0}^{1}(\Omega) \subseteq H \subset H^{1}(\mathcal{T}):=\left\{u \in L^{2}(\Omega): \forall T \in \mathcal{T},\left.u\right|_{T} \in H^{1}(T)\right\} \tag{1}
\end{equation*}
$$

closed with respect to the semi-norm $\left\|\nabla_{\mathcal{T}} \cdot\right\|$, where $\|\cdot\|$ denotes the $L^{2}(\Omega)$-norm and $\nabla_{\mathcal{T}}$ is the \mathcal{T}-piecewise action of the gradient ∇ (different from the distributional gradient for discontinuous arguments). For instance, in the conforming setting, the choice of $H=H_{0}^{1}(\Omega)$ or $H=H^{1}(\Omega)$ is a typical example.

Suppose that $\mathcal{S} \subset H$ is an n-dimensional subspace with a (not necessarily nodal) basis $\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right)$, and let Π denote the $L^{2}(\Omega)$-projection defined, for all $u \in H$,

[^0]by
\[

$$
\begin{equation*}
\Pi u \in \mathcal{S} \quad \text { and } \quad \int_{\Omega}(u-\Pi u) \varphi_{j} d x=0 \quad \text { for all } j=1, \ldots, n \tag{2}
\end{equation*}
$$

\]

In this context, the L^{2}-projection Π is called H^{1}-stable if there exists a constant $c_{1}>0$ with

$$
\begin{equation*}
\left\|\nabla_{\mathcal{T}} \Pi u\right\| \leq c_{1}\left\|\nabla_{\mathcal{T}} u\right\| \quad \text { for all } u \in H \tag{3}
\end{equation*}
$$

Two sets of parameters, the n positive parameters $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ and the \mathcal{T} piecewise constant weight $h_{\mathcal{T}}$, defined on $T \in \mathcal{T}$ by $h_{T}>0$, will provide the link between the triangulation \mathcal{T} and the discrete space \mathcal{S}. Their choice is arbitrary up to the severe restriction of inequality (7) below.

To verify H^{1}-stability of the L^{2}-projection (3) we suppose that there exist a (possibly nonlinear) mapping $P: H \rightarrow \mathcal{S}$ and a constant $c_{2}>0$ that satisfy, for all $u \in H$,

$$
\begin{equation*}
\left\|\nabla_{\mathcal{T}} P(u)\right\|+\left\|h_{\mathcal{T}}^{-1}(u-P(u))\right\| \leq c_{2}\left\|\nabla_{\mathcal{T}} u\right\| \tag{4}
\end{equation*}
$$

Remark 1. In Sections 4,5 , and $6, h_{T}$ will be the element-size and d_{ℓ} a measure for the size of $\operatorname{supp} \varphi_{\ell}$.

Remark 2. Approximation operators which satisfy (4) for $h_{T}=\operatorname{diam}(T)$ can be found in [Ca, CF, Cl].

2. Mass matrices and Two inequalities

To define the mass matrix for a given $T \in \mathcal{T}$, let $\ell(T, 1), \ell(T, 2), \ldots, \ell(T, m(T))$ denote exactly those indices of basis functions whose restrictions $\psi_{T, j}:=\left.\varphi_{\ell(T, j)}\right|_{T} \in$ $H^{1}(T), 1 \leq j \leq m(t)$, on T are nonzero. Then the shape functions $\left(\psi_{T, j}: j=\right.$ $1, \ldots, m(T))$ on T satisfy an inverse inequality (by equivalence of norms),

$$
\begin{align*}
& \left\|\sum_{j=1}^{m(T)} \xi_{j} \nabla \psi_{T, j}\right\|_{L^{2}(T)} \leq c_{3} h_{T}^{-1}\left\|\sum_{j=1}^{m(T)} \xi_{j} \psi_{T, j}\right\|_{L^{2}(T)} \tag{5}\\
& \quad \text { for all }\left(\xi_{1}, \ldots, \xi_{m(T)}\right) \in \mathbb{R}^{m(T)} .
\end{align*}
$$

The (local) $m(T) \times m(T)$-dimensional mass matrix $M(T)$ and the diagonal matrix $\Lambda(T)$,
$\Lambda(T)_{j k}=\frac{h_{T}}{d_{\ell(T, j)}} \delta_{j k} \quad$ and $\quad M(T)_{j k}=\int_{T} \psi_{T, j} \psi_{T, k} d x \quad$ for all $j, k=1, \ldots, m(T)$,
$\left(\delta_{j k} \in\{0,1\}\right.$ denotes Kronecker's symbol) are supposed to satisfy, for constants $c_{4}, c_{5}>0$,

$$
\begin{equation*}
c_{4}^{2} x \cdot \Lambda(T)^{2} M(T) \Lambda(T)^{2} x \leq x \cdot M(T) x \leq c_{5} x \cdot \Lambda(T)^{2} M(T) x \quad \text { for all } x \in \mathbb{R}^{m(T)} \tag{7}
\end{equation*}
$$

Remark 3. Inverse estimates [BS, Ci] provide (5) for a size-independent constant c_{3} if $h_{T}=\operatorname{diam}(T)$.

Remark 4. The first inequality of (7) merely reflects a proper scaling of $d_{\ell(T, j)}$ and h_{T}.

Remark 5. The second inequality of (7) implies that $\Lambda(T)^{2} M(T)$ has positive definite symmetric part. This is the crucial condition and relates the mass-matrix $M(T)$ to neighboring mesh-sizes.

Remark 6. We stress that (7) can always be satisfied even with $c_{4}=c_{5}=1$ if we let $h_{T}=d_{\ell(T, j)}$ be equal to a global discretization parameter. For quasi-uniform meshes this implies (7).

Remark 7. In the original version $\left[\mathrm{BPS},[\mathrm{S}], d_{j}\right.$ is fixed as the arithmetic mean of all h_{T} with $T \subset \operatorname{supp} \varphi_{j}$, where h_{T}^{d} is the d-dimensional volume of an element $T \in \mathcal{T}$. Then, the Bramble-Pasciak-Steinbach criterion BPS (4.2)] implies the crucial second inequality in (7) (and is, in particular situations, equivalent).

3. A modified Bramble-Pasciak-Steinbach criterion for H^{1}-stability

Under the present assumptions (11)-(21) and (4)-(7) we have H^{1}-stability of Π.
Theorem 1. We have (3) with $c_{1}=c_{2} \max \left\{1, c_{3} c_{5} / c_{4}\right\}$.
The proof is a review of arguments in BPS in an abstract setting, and is included here for completeness. Theorem 1 implies the Bramble-Pasciak-Steinbach criterion [BPS] for a special choice of h_{T} and d_{j} (of Remark 7).

Proof. Given $u \in H$, define $q_{h}:=P(u)-\Pi u=\sum_{\ell=1}^{n} q_{\ell} \varphi_{\ell} \in \mathcal{S}$ and $p_{h}:=$ $\sum_{\ell=1}^{n} q_{\ell} d_{\ell}^{-2} \varphi_{\ell} \in \mathcal{S}$ so that

$$
\begin{equation*}
\left.q_{h}\right|_{T}=\left.\sum_{\ell=1}^{n} q_{\ell} \varphi_{\ell}\right|_{T}=\sum_{j=1}^{m(T)} \xi_{T, j} \psi_{T, j} \quad \text { on } T \in \mathcal{T} \tag{8}
\end{equation*}
$$

for certain coefficient vectors $x_{T}=\left(\xi_{T, 1}, \ldots, \xi_{T, m(T)}\right)=\left(q_{\ell(T, 1)}, \ldots, q_{\ell(T, m(T))}\right)$. The triangle inequality for $\Pi u=P(u)-q_{h}$ and (4)-(5) show that

$$
\begin{equation*}
\left\|\nabla_{\mathcal{T}} \Pi u\right\| \leq\left\|\nabla_{\mathcal{T}} P(u)\right\|+\left\|\nabla_{\mathcal{T}} q_{h}\right\| \leq c_{2}\left\|\nabla_{\mathcal{T}} u\right\|+c_{3}\left\|h_{\mathcal{T}}^{-1} q_{h}\right\| \tag{9}
\end{equation*}
$$

According to direct calculations with coefficients from (8), the second inequality in (7) yields

$$
\begin{align*}
c_{5}^{-1}\left\|h_{\mathcal{T}}^{-1} q_{h}\right\|^{2} & =c_{5}^{-1} \sum_{T \in \mathcal{T}} h_{T}^{-2} x_{T} \cdot M(T) x_{T} \leq \sum_{T \in \mathcal{T}} h_{T}^{-2} x_{T} \cdot \Lambda(T)^{2} M(T) x_{T} \\
& =\sum_{T \in \mathcal{T}} \sum_{j=1}^{m(T)} \frac{q_{\ell(T, j)}}{d_{\ell(T, j)}^{2}} \int_{T} \varphi_{\ell(T, j)} q_{h} d x=\int_{\Omega} p_{h} q_{h} d x \tag{10}\\
& =\int_{\Omega} p_{h}(P(u)-u) d x \leq c_{2}\left\|h_{\mathcal{T}} p_{h}\right\|\left\|\nabla_{\mathcal{T}} u\right\|
\end{align*}
$$

because of (2), Cauchy's inequality, and (4). Similar arguments and (7) lead to

$$
\begin{aligned}
c_{4}^{2}\left\|h_{\mathcal{T}} p_{h}\right\|^{2} & =c_{4}^{2} \sum_{T \in \mathcal{T}} h_{T}^{-2} x_{T} \cdot \Lambda(T)^{2} M(T) \Lambda(T)^{2} x_{T} \\
& \leq \sum_{T \in \mathcal{T}} h_{T}^{-2} x_{T} \cdot M(T) x_{T}=\left\|h_{\mathcal{T}}^{-1} q_{h}\right\|^{2}
\end{aligned}
$$

Utilizing this in (10), we obtain a bound of $\left\|h_{\mathcal{T}}^{-1} q_{h}\right\|$, which we need in (19) to see (4).

4. Examples for Courant triangles

Suppose \mathcal{T} is a regular triangulation (in the sense of Ciarlet $[\mathrm{BS}, \mathrm{Ci}]$) of the bounded Lipschitz domain Ω in the plane into triangles. Homogeneous Dirichlet conditions may apply on a (relatively closed and possibly empty) boundary part Γ_{D} (matched exactly by edges). Each node $z \in \mathcal{N}$ with nodal basis function φ_{z} involves a positive real number d_{z} such that $h_{T} / d_{z}+d_{z} / h_{T} \leq c_{6}$ for all triangles $T \in \mathcal{T}$ of diameter h_{T} with vertex z. Let $\mathcal{S}:=\operatorname{span}\left\{\varphi_{z}: z \in \mathcal{K}\right\}$, where $\mathcal{K}:=\mathcal{N} \backslash \Gamma_{D}$ denotes the set of free nodes, and for the preceding notation identify $\left(\varphi_{z}: z \in \mathcal{K}\right)$ and the parameters $\left(d_{z}: z \in \mathcal{K}\right)$ with $\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right)$ and $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, respectively.
Theorem 2. Suppose that $d_{z} / d_{\zeta} \leq \kappa<\sqrt{2}+\sqrt{3} \approx 3.1462$ for all vertices z and ζ of some triangle $T \in \mathcal{T}$. Then we have (3).
Proof. The mass-matrix of a fixed $T \in \mathcal{T}$ is a multiple of the 3×3 matrix M with $M_{j k}=1+\delta_{j k}$ and $\Lambda(T)$ has diagonal entries $\lambda_{1}, \lambda_{2}, \lambda_{3}>0$ with $\lambda_{j} / \lambda_{k} \leq$ κ. The eigenvalues of $\Lambda(T)^{-1} A \Lambda(T)^{-1}$ for $A:=\left(\Lambda(T)^{2} M+M \Lambda(T)^{2}\right) / 2$ can be calculated [BPS, $\left[\mathbf{S}\right.$, and their smallest value is $(5-\mu)$ for $\mu^{2}:=\sum_{j, k=1}^{3} \lambda_{j}^{2} / \lambda_{k}^{2}$. A straightforward analysis reveals that $\mu^{2} \leq 3+2\left(1+\kappa^{2}+1 / \kappa^{2}\right)<25$, which shows that A is positive definite. Therefore, $(x \cdot A x)^{1 / 2}$ defines a norm which is equivalent to $|x|$ in \mathbb{R}^{3}. This and $h_{T} / d_{z} \leq c_{6}$ yield (7).
Remark 8. The proof shows that $\sum_{j, k=1}^{3} \lambda_{j}^{2} / \lambda_{k}^{2} \leq \nu<22$ for some constant ν suffices for (3). Given d_{j} as in Remark 7, this is the a posteriori criterion of [BPS [S] for two dimensions.

The technical assumption on the artificial, extended triangulation in the following theorem merely reduces the consideration to interior triangles for brevity.
Theorem 3. Suppose $\mathcal{T} \subset \hat{\mathcal{T}}$ for some regular triangulation $\hat{\mathcal{T}}$ of a Lipschitz domain $\hat{\Omega} \supset \Omega$ such that $\hat{\mathcal{T}}$ consists of right isosceles triangles only, there are no hanging nodes, and each free node on the boundary is an interior node of $\hat{\Omega}$. Then we have (3).

Proof. Theorem 2 yields the assertion if we take

$$
d_{z}=\min \{|z-\zeta|: \zeta \in \mathcal{N}, \delta(z, \zeta)=1\}
$$

where $\delta(z, \zeta)=1$ characterizes neighboring vertices z and ζ, i.e., $z, \zeta \in T \cap \mathcal{N}$ for at least one $T \in \mathcal{T}$. Since (up to scaling, transition, and rotation) there are only

Figure 1: Part of a mesh as a smallest neighborhood of the reference triangle.

Figure 2: Reference mesh for comparisons in Example 1
a finite number of possible configurations, it can be checked by a finite number of figures that $d_{z} / d_{\zeta} \leq \sqrt{8}$. Figure 1 illustrates a deduction: Suppose T has the vertices $(0,0),(1,0)$, and $(0,1)$. Then, the patch $\operatorname{supp} \varphi_{z}$ of $z=(0,0)$ must include the polygonal domain with vertices $(0,1),(-.5, .5),(-.5,0),(0,-.5),(.5,-.5)$, $(1,0)$. This shows that $1 / \sqrt{8} \leq d_{(1,0)} \leq 1$. Similarly, the patch $\operatorname{supp} \varphi_{(1,0)}$ must include the polygon $(0,0),(.5,-.5),(1,-.5),(1.5,0),(1.5,3),(1,1),(0,1)$, whence $1 / \sqrt{8} \leq d_{(1,0)}, d_{(0,1)} \leq 1$. Consequently, $d_{z} / d_{\zeta} \leq \sqrt{8}$ for any choice of two vertices z and ζ of T.

Example 1. Let \mathcal{T} be the mesh of Figure 2 that consists of 8 triangles in a regular pattern that match the square $\Omega:=(0, H)^{2}$ for positive $H=1+\lambda$, where nondiagonals' lengths are either $\lambda<1$ or 1 . For the nodes 1,2 , and 3 of Figure 2 the choice of $\left(d_{1}, d_{2}, d_{3}\right)$ from [BPS], mentioned in Remark 7 is

$$
\left(\left(\lambda+2 \lambda^{1 / 2}\right) / 3,\left(\lambda^{2}+\lambda^{1 / 2}+1\right) / 3, \lambda\right) / \sqrt{2}
$$

The conditions of the Bramble-Pasciak-Steinbach criterion (cf. Remark 8) and those of Theorem 22 are violated for $\lambda<.1349$, which corresponds to an aspect ratio larger than 7.4122 However, Theorem 1 with the parameters from Remark 6 guarantees (31) for any positive λ (with a λ-dependent constant $c_{1}=c_{1}(\lambda)$).

Example 2. Take a scaled copy of Ω and the mesh from Example 1 and extend it by reflection about the x_{1}-axis, the x_{2}-axis, and about the anti-diagonal through the origin to $h(-1,1)^{2}$; and then extend it $2 h$-periodically to the entire plane. The calculations of Example 1 remain valid and we conclude that, for a fixed $\lambda<.1349$, the Bramble-Pasciak-Steinbach criterion is not applicable, but Remark 6 (or the Crouzeix-Thomée criterion) guarantees (3) with an h-independent constant $c_{1}=c_{1}(\lambda)$.

The nonconforming Crouzeix-Raviart finite element (cf., e.g., [BS, Ci]) concludes our first series of applications.

Theorem 4. Suppose T is an arbitrary shape-regular triangulation into triangles and \mathcal{S} denotes the \mathcal{T}-piecewise affine functions which are continuous at midpoints of edges. Then we have (13).

Proof. The mass-matrices are diagonal, so (7) is a consequence of shape-regularity. The operator P can be chosen exactly as in the conforming case.

5. Weakening of the Crouzeix-Thomée criterion for H^{1}-Stability

Part of the Crouzeix-Thomée criterion CT is the existence of c_{7} and $1 \leq \kappa:=$ $\sqrt{\alpha}<\sqrt{2}+\sqrt{3}$ such that

$$
\begin{equation*}
\left|T_{1}\right| /\left|T_{2}\right| \leq c_{7} \alpha^{l\left(T_{1}, T_{2}\right)} \quad \text { for all } T_{1}, T_{2} \in \mathcal{T} \tag{11}
\end{equation*}
$$

Here, $\left|T_{j}\right|$ is the area of $T_{j} \in \mathcal{T}$ and the neighbor-index $l\left(T_{1}, T_{2}\right)$ might be defined via a metric δ on the nodes \mathcal{N} : For two distinct nodes z and $\zeta, \delta(z, \zeta)$ is the smallest integer j such that there exists a polygon $\left(z_{1}, z_{2}, \ldots, z_{j}\right)$ of nodes $z_{1}, \ldots, z_{j} \in \mathcal{N}$ which connects $z=z_{1}$ with $\zeta=z_{j}$ along edges, i.e., $\left\{z_{i}, z_{i+1}\right\} \subset \partial T_{i}$ for some $T_{i} \in \mathcal{T}$ and all $i=1, \ldots, j-1 ; \delta(z, z):=0$. For any $T, K \in \mathcal{T}$ and $z \in \mathcal{N}$, let $\delta(z, T):=\min _{\zeta \in T \cap \mathcal{N}} \delta(z, \zeta)$ and $\delta(K, T)=\min _{z \in K \cap \mathcal{N}} \delta(z, T)$. Then, $l\left(T_{1}, T_{2}\right)=$ $\delta\left(T_{1}, T_{2}\right)+1$ if $T_{1} \neq T_{2}$, while $l\left(T_{1}, T_{2}\right)=0$ if and only if $T_{1}=T_{2}$.

At first glance, the local Bramble-Pasciak-Steinbach and the global CrouzeixThomée criteria appear incomparable: a large constant c_{7} prohibits a direct application of (11) in the spirit of Theorems 2 and 3 (as $d_{z} / d_{\zeta} \leq c_{8}\left(\left|T_{1}\right| /\left|T_{2}\right|\right)^{1 / 2} \leq$ $c_{7}^{1 / 2} c_{8} \kappa \nless \sqrt{2}+\sqrt{3}$ for $\left.\delta(z, \zeta)=1\right)$. However, all necessities are provided by

$$
\begin{equation*}
d_{z}:=\min _{T \in \mathcal{T}} h_{T} \kappa^{\delta(z, T)} \quad \text { for all } z \in \mathcal{N} \quad \text { and } \quad h_{T}:=|T|^{1 / 2} \quad \text { for all } T \in \mathcal{T} \tag{12}
\end{equation*}
$$

Theorem 5. Suppose (11)-(12) hold for a planar regular triangulation \mathcal{T}. Then, the conditions of Theorem 2 are satisfied and we have (3).

Proof. Given $z \in K \in \mathcal{T}$, we have $d_{z} \leq h_{K}$ (K is allowed in the minimization (12), and $\delta(z, K)=0$) and $l(T, K)-\delta(z, T) \leq 1$. With a minimizing $T \in \mathcal{T}$ in (12), (11) shows that

$$
\begin{equation*}
h_{K} / d_{z}=\frac{h_{K}}{h_{T} \kappa^{\delta(z, T)}}=\frac{|K|^{1 / 2}}{|T|^{1 / 2}} \kappa^{-\delta(z, T)} \leq \sqrt{c_{7}} \kappa^{l(T, K)-\delta(z, T)} \leq \sqrt{c_{7}} \kappa . \tag{13}
\end{equation*}
$$

To bound d_{z} / d_{ζ} for $z, \zeta \in \mathcal{N}$ with $\delta(z, \zeta)=1$, let $K \in \mathcal{T}$ satisfy $d_{\zeta}=h_{K} \kappa^{\delta(z, K)}$. The definition (12) and $\delta(z, K)-\delta(\zeta, K) \leq 1$ show that

$$
\begin{equation*}
d_{z} / d_{\zeta}=\frac{d_{z}}{h_{K} \kappa^{\delta(\zeta, K)}} \leq \frac{h_{K} \kappa^{\delta(z, K)}}{h_{K} \kappa^{\delta(\zeta, K)}}=\kappa^{\delta(z, K)-\delta(\zeta, K)} \leq \kappa \tag{14}
\end{equation*}
$$

Example 3. There exists an adaptively-refined mesh [CV, Figure 1] of right isosceles triangles where the modified Bramble-Pasciak-Steinbach criterion guarantees H^{1}-stability (cf. [S] or Theorem 3) while the Crouzeix-Thomée criterion is not applicable.

References

[BPS] J. H. Bramble, J. E. Pasciak, O. Steinbach: On the stability of the L_{2}-projection in $H^{1}(\Omega)$. Math. Comp. (this journal, previous article).
[BS] S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts Appl. Math. 15, Springer, New-York (1994). MR 95f:65001
[Ca] C. CARSTENSEN: Quasi-interpolation and a posteriori error analysis in finite element method. M2AN Math. Model. Numer. Anal. 33 (1999) 1187-1202. MR 2001a:65135
[CF] C. Carstensen, S. A. Funken: Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods. East-West Journal of Numerical Analysis 8 (2000) 153-175.
[CV] C. Carstensen, R. Verfürth: Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 365 (1999) 1571-1587. MR 2000g:65115
[Ci] P. G. Ciarlet: The finite element method for elliptic problems. North-Holland, Amsterdam (1978). MR 58:25001
[Cl] P. Clément: Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér. 9, R-2 (1975) 77-84. MR 53:4569
[CT] M. Crouzeix and V. Thomée: The stability in L^{p} and $W^{1, p}$ of the L^{2}-projection onto finite element function paces. Math. Comput. 48 (1987) 521-532. MR 88f:41016
[S] O. Steinbach: On the stability of the L_{2} projection in fractional Sobolev spaces. Numerische Mathematik (2000) published online October 16, 2000.

Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel Ludewig-MeynStr. 4, D-24098 Kiel, Germany

E-mail address: cc@numerik.uni-kiel.de

[^0]: Received by the editor January 11, 2000 and, in revised form, May 30, 2000.
 2000 Mathematics Subject Classification. Primary 65N30, 65R20, 73C50.
 Key words and phrases. Finite element method, L^{2}-projection, H^{1}-stability, adaptive algorithm, nonconforming finite element method.

