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EACH AVERAGING TECHNIQUE
YIELDS RELIABLE A POSTERIORI ERROR CONTROL

IN FEM ON UNSTRUCTURED GRIDS.
PART I: LOW ORDER CONFORMING, NONCONFORMING,

AND MIXED FEM

CARSTEN CARSTENSEN AND SÖREN BARTELS

Abstract. Averaging techniques are popular tools in adaptive finite element
methods for the numerical treatment of second order partial differential equa-
tions since they provide efficient a posteriori error estimates by a simple post-
processing. In this paper, their reliablility is shown for conforming, noncon-
forming, and mixed low order finite element methods in a model situation:
the Laplace equation with mixed boundary conditions. Emphasis is on possi-
bly unstructured grids, nonsmoothness of exact solutions, and a wide class of
averaging techniques. Theoretical and numerical evidence supports that the
reliability is up to the smoothness of given right-hand sides.

1. Introduction

Error control and efficient mesh-design in finite element simulations of computa-
tional engineering and scientific computing finite element simulations is frequently
based on a posteriori error estimates. One of the more popular techniques is local
or global averaging, e.g., in form of the ZZ-error indicator [ZZ]. Efficiency and reli-
ability of this estimator were known only for very structured grids and for solutions
of higher regularity and then we have even asymptotic exactness [V]. Numerical
experiments in [Baetal] showed that averaging techniques were quite more reliable
on irregular meshes than expected. For homogeneous Dirichlet conditions and con-
forming finite element methods, the reliability and efficiency of the ZZ-estimator is
proven on unstructured, merely shape-regular grids [R2].

This work is devoted to give theoretical and numerical support for the robust
reliability of all averaging techniques, robust with respect to violated (local) sym-
metry of meshes and superconvergence and robust with respect to other boundary
conditions or other finite element methods.

For a more precise description of averaging techniques, let us discuss a discreti-
sation of a conservation equation

f + div p = 0(1.1)
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946 CARSTEN CARSTENSEN AND SÖREN BARTELS

with a given right-hand side f ∈ L2(Ω) and a known approximation ph ∈ L2(Ω)d

to the unknown exact flux p ∈ H(div ; Ω) in the bounded Lipschitz domain Ω ⊂ Rd
with piecewise flat boundary. The test function finite element space should include
the continuous piecewise affines S1

D(T ) (with homogeneous Dirichlet boundary con-
ditions) based on a regular (in the sense of [Ci], cf. Section 2) triangulation T of
Ω. Suppose a Galerkin property for p− ph with S1

D(T ), i.e.,∫
Ω

ph · ∇vh dx =
∫

Ω

fvh dx for all vh ∈ S1
D(T ).(1.2)

What can be said about the error ‖p− ph‖L2(Ω) when we regard p as an unknown
and ph as a known variable?

In averaging techniques, the error estimator is based on a smoother approxima-
tion, e.g., in S1(T )d, the continuous T -piecewise linears, to the (components of the)
discrete solution ph. For instance,

ηZ := min
qh∈S1(T )d

‖ph − qh‖L2(Ω)(1.3)

may serve as a computable error estimator and the elementwise contributions as
local error indicators in an adaptive mesh-refining algorithm.

The triangle inequality shows that ηZ is efficient with constant 1 up to higher
order terms of the exact solution p, indeed,

ηZ ≤ ‖p− ph‖L2(Ω) + min
qh∈S1(T )d

‖p− qh‖L2(Ω).(1.4)

The last term converges as O(h2) (provided p is smooth enough and h denotes
the maximal mesh–size in T ) and so, generically, is of higher order than the error
‖p−ph‖L2(Ω) = O(h) in the lowest order finite element method. If the second term
in the right-hand side of (1.4) fails to be of higher order, one can still prove efficiency
of ηZ using equivalence of global and local averaging (cf. Theorem 3.2) and that
local averaging is equivalent to weighted jumps across interelement boundaries. An
efficiency estimate with higher order terms that depend on local smoothness of
right-hand sides but with unknown constants then follows as in [V].

In practise, we may apply an averaging operator A : L2(Ω)d → S1(T )d to ph
and compute the upper bound ‖ph − Aph‖L2(Ω) of ηZ . Then, efficiency depends
strongly on the approximation properties of A and deserves further investigation.

In this paper, the focus is on the reliability of ηZ , i.e., we investigate under which
conditions an estimate

‖p− ph‖L2(Ω) ≤ c1 ηZ + h.o.t. ≤ c1 ‖ph −Aph‖L2(Ω) + h.o.t.(1.5)

holds, we study what the constant c1 > 0 depends on, what affects the higher-
order contributions “h.o.t.”, how to modify the definition of ηZ in the presence of
mixed boundary conditions, and how to modify the general setting presented for
nonconforming and mixed lowest order finite element methods.

Recall from (1.5) that any averaging technique, described by A, then is reliable
up to higher order terms. We also prove equivalence to local modifications of ηZ
where the minimisation is over smaller domains, e.g., patches of nodes or edges.

The outline of the paper is as follows. Preliminaries and notation are introduced
in Section 2 where we state and prove stability and first order estimates for a cer-
tain approximation operator J : H1

D(Ω) → S1
D(T ) essentially designed to yield

further local orthogonality properties as in [CV, C2]. Basic estimates are provided
in Section 3 for a local and global averaging technique and their equivalence. The
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subsequent Sections 4, 5, and 6 display the consequences to averaging techniques
in a posteriori error control for first order conforming, nonconforming and mixed
finite element schemes. Numerical evidence, reported in Section 7, supports the
theoretical results for adaptively refined and evenly perturbed meshes. Although
asymptotic exactness is not claimed in this paper, our numerical experiments il-
lustrate that ηZ is a very good approximate to ‖p − ph‖L2(Ω) even on perturbed
grids.

The proofs are given for a simple elliptic model example with mixed bound-
ary conditions for conforming, nonconforming, and mixed finite elements in two
dimensions for notational simplicity. More interesting examples such as higher-
order schemes, the application to the Stokes problem or the Navier-Lamé equations
without incompressibility-locking will appear elsewhere [BC, CF2, CF3, CF4, CF5].

2. Approximation in finite element spaces

The Lipschitz boundary Γ = ∂Ω of the bounded domain Ω is split into a closed
Dirichlet part ΓD with positive surface measure and a remaining, relatively open
and possibly empty, Neumann part ΓN := Γ \ ΓD. Suppose T be a regular tri-
angulation of the domain Ω ⊆ Rd, d = 1, 2, 3, in the sense of Ciarlet [BS, Ci] (no
hanging node, domain is matched exactly) with piecewise affine Lipschitz boundary
Γ = ∂Ω = ΓD ·∪ΓN , i.e., T consists of a finite number of closed subsets of Ω, that
cover Ω = ∪T . Each element T ∈ T is either an interval T = conv {a, b} if d = 1,
a triangle T = conv {a, b, c}, or a parallelogram T = conv {a, b, c, d} if d = 2. The
extremal points a, b, c are called vertices, the faces E ⊆ ∂T , e.g., E = conv {a, b},
are called edges. The set of all vertices and all edges appearing for some T in T are
denoted as N and E . Two distinct and intersecting T1 and T2 share either an entire
edge or a vertex. Each edge E ∈ E on the boundary Γ belongs either to ΓD, written
E ∈ ED, or to ΓN , written E ∈ EN . Therefore the set of edges is partitioned into
EΩ := {E ∈ E : E 6⊂ Γ}, ED, and EN . We stress that ∪E , the union of all egdes,
denotes the skeleton of egdes in T , i.e., the set of all points x that belong to some
boundary x ∈ ∂T of some element T ∈ T . Finally, K := N \ ΓD denotes the set of
free nodes.

We do not explicitly distinguish between nodes and vertices when we consider
conforming finite elements (and avoid these concepts for nonconforming or mixed
finite element schemes).

For T ∈ T , let P kT := Pk(T ) if T is a triangle or P kT := Qk(T ) if T is a paral-
lelogram. Here, Pk(K), resp. Qk(K), denotes the set of algebraic polynomials in
d variables on K of total, resp. partial, degree ≤ k. The space Lk(T ) of (possibly
discontinuous) T -piecewise polynomials of degree ≤ k is the set of all U ∈ L∞(Ω)
with U |T ∈ P kT for all T in T . Set

Sk(T ) := Lk(T ) ∩ C(Ω) and S1
D(T ) := {uh ∈ S1(T ) : uh|ΓD = 0}.

Let (ϕz |z ∈ N ) denote the nodal basis of S1(T ), i.e., ϕz ∈ S1(T ) satisfies ϕz(x) = 0
if x ∈ N \ {z} and ϕz(z) = 1. Note that (ϕz |z ∈ N ) is a partition of unity and the
open patches

ωz := {x ∈ Ω : 0 < ϕz(x)}(2.1)

form an open cover (ωz : z ∈ N ) of Ω with finite overlap.
In order to define a weak interpolation operator J : H1

D(Ω)→ S1
D(T ), we modify

(ϕz|z ∈ K) to a partition of unity (ψz |z ∈ K). For each fixed node z ∈ N \ K, we
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948 CARSTEN CARSTENSEN AND SÖREN BARTELS

choose a node ζ(z) ∈ K and let ζ(z) := z if z ∈ K. In this way, we define a partition
of N into card (K) classes I(z) := {z̃ ∈ N : ζ(z̃) = z}, z ∈ K. For each z ∈ K set

ψz :=
∑
ζ∈I(z)

ϕζ(2.2)

and notice that (ψz |z ∈ K) is a partition of unity. It is required that

Ωz := {x ∈ Ω : 0 < ψz(x)}(2.3)

is connected and that ψz 6= ϕz implies that ΓD∩∂Ωz has a positive surface measure.
For g ∈ L1(Ω) and z ∈ K let gz ∈ R be

gz :=

∫
Ωz
gψz dx∫

Ωz
ϕz dx

,(2.4)

and then define

J g :=
∑
z∈K

gzϕz ∈ S1
D(T ).(2.5)

The local mesh-sizes are denoted by hT and hE , where hT ∈ L0(T ) denotes the
element-size, hT |T := hT := diam (T ) for T ∈ T , and the edge-size hE ∈ L∞(∪E) is
defined on the union or skeleton ∪E of all edges E in E by hE |E := hE := diam (E).
The patch-size hz := diam (Ωz) is defined for each node z ∈ K separately.

Theorem 2.1. There exist (hT , hE)-independent constants c2, c3, c4, c5 > 0 such
that for all g ∈ H1

D(Ω) and f ∈ L2(Ω) there holds

‖∇J g −∇g‖L2(Ω) ≤ c2‖∇g‖L2(Ω),(2.6) ∫
Ω

f(g − J g) dx ≤ c3‖∇g‖L2(Ω)

(∑
z∈K

h2
z min
fz∈R

‖f − fz‖2L2(Ωz)

)1/2
,(2.7)

‖h−1
T (g − J g)‖L2(Ω) ≤ c4‖∇g‖L2(Ω),(2.8)

‖h−1/2
E (g − J g)‖L2(ΓN ) ≤ c5‖∇g‖L2(Ω).(2.9)

The constants c2, c3, c4, c5 only depend on Ω, ΓD, ΓN and the shape of the elements
and patches (not on their sizes).

Remark 2.1. The assertion of the theorem holds verbatim for three space dimen-
sions where T consists of tetrahedra or parallelepipeds with the same proof.

Proof. In this proof and at similar occasions, . abbreviates an inequality ≤ up to
a constant (hT , hE)-independent factor. Also, ‖ · ‖p,K abbreviates ‖ · ‖Lp(K) and we
neglect K if Ω is meant, i.e., ‖ · ‖2 := ‖ · ‖2,Ω. Hence, e.g., (2.6) could be phrased
as ‖∇J g −∇g‖2 . ‖∇g‖2.

The key estimate for the stability and the approximation property of J will be

‖gzϕz − gψz‖2,Ωz . hz‖∇g‖2,Ωz (z ∈ K).(2.10)

For the proof of (2.10), let gz denote the integral mean of g on Ωz. Then, using the
definition (2.4) for the coefficients gz, Cauchy’s and Young’s inequality, we infer,
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with c6 := ‖1‖2,Ωz/‖ϕ
1/2
z ‖2,Ωz ,

‖ϕ1/2
z (gz − gz)‖22,Ωz =

∫
Ωz

ϕz(gz − g)(gz − gz) dx+
∫

Ωz

(ψz − ϕz)g(gz − gz) dx

≤ 1
4
‖ϕ1/2

z (gz − gz)‖22,Ωz + ‖g − gz‖22,Ωz +
1

4c26
‖gz − gz‖22,Ωz

+ c26‖(ψz − ϕz)g‖22,Ωz .

(2.11)

Absorbing 1
4c26
‖gz − gz‖22,Ωz ≤

1
4‖ϕ

1/2
z (gz − gz)‖22,Ωz , we deduce

‖ϕ1/2
z (gz − gz)‖22,Ωz . ‖g − gz‖

2
2,Ωz + ‖(ψz − ϕz)g‖22,Ωz .(2.12)

A Poincaré inequality yields

‖g − gz‖2,Ωz . hz‖∇g‖2,Ωz .
Note that (ψz − ϕz)g is nonzero only if ΓD ∩ (∂Ωz) has positive surface measure.
Since g vanishes there, Friedrichs’ inequality shows

‖g‖2,Ωz . hz‖∇g‖2,Ωz .
Therefore, (2.12) results in

‖ϕ1/2
z (gz − gz)‖2,Ωz . hz‖∇g‖2,Ωz .(2.13)

To prove (2.10), we use the triangle inequality, (2.13), and again Cauchy’s and
Friedrichs’ inequality to verify

(2.14) ‖gzϕz − gψz‖2,Ωz ≤ ‖(gz − gz)ϕz‖2,Ωz + ‖(g − gz)ϕz‖2,Ωz
+ ‖(ψz − ϕz)g‖2,Ωz . hz‖∇g‖2,Ωz .

To prove (2.7), we use that (ψz|z ∈ K) is a partition of unity and obtain with (2.10),
(2.4) for any fz ∈ R that

(2.15)∫
Ω

f(g − J g) dx =
∑
z∈K

∫
Ωz

f(gψz − gzϕz) dx =
∑
z∈K

∫
Ωz

(f − fz)(gψz − gzϕz) dx

.
∑
z∈K
‖f − fz‖2,Ωzhz‖∇g‖2,Ωz .

(∑
z∈K

h2
z‖f − fz‖22,Ωz

)1/2‖∇g‖2,Ω.
In the last step we used that (ϕz |z ∈ K) has a finite overlap that depends on the
shape of the elements only. This concludes the proof of (2.7).

The remaining part of the proof uses standard arguments and is therefore
sketched for brevity. To prove (2.8) we let f := h−2

T (g − J g) and fz = 0, z ∈ K,
in (2.7). To verify (2.6) we use

∑
z∈K ψz = 1 and

∑
z∈K∇ψz = 0 and repeat the

triangle inequality several times for

‖∇g −∇J g‖22 .
∑
z∈K
‖∇(ψzg − ϕzgz)‖22.(2.16)

With Friedrichs’ and Poincaré’s inequality we infer

(2.17) ‖∇(gψz − gzϕz)‖2,Ωz ≤ ‖(ψz − ϕz)∇g‖2,Ωz + ‖∇(ϕz(gz − gz))‖2,Ωz
+ ‖∇(ϕz(gz − g))‖2,Ωz + ‖g∇(ψz−ϕz)‖2,Ωz . ‖∇g‖2,Ωz + ‖∇(ϕz(gz − gz))‖2,Ωz .
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It remains to estimate ‖∇(ϕz(gz− gz))‖2,Ωz with (2.10), Friedrichs’ inequality, and
the above arguments. A trace inequality [BS, Cl, CF1] of the form

‖w‖2,E . h−1/2
E ‖w‖2,T + h

1/2
E ‖∇w‖2,T(2.18)

for E ∈ EN and T ∈ T with E ⊂ ∂T ∩ ΓN together with (2.6) and (2.8) implies
(2.9).

3. Basic estimates

In this section we first derive with the approximation operator J a global error
estimate for a posteriori error control by averaging processes in an abstract setting.
We then show the equivalence of local and global averaging techniques. The esti-
mates of this section are then specified, and thereby proved to be substantial, in
the subsequent sections to conforming, nonconforming, and mixed finite element
methods.

Theorem 3.1. Suppose p, q ∈ H(div ; Ω) and ph ∈ Lk(T )d with p ·n, q ·n ∈ L2(ΓN )
and ∫

Ω

(p− ph) · ∇wh dx = 0 for all wh ∈ S1
D(T ).(3.1)

Then there holds

sup
w∈H1

D(Ω)
‖∇w‖L2(Ω)=1

∫
Ω

(p− ph) · ∇w dx

≤ c2‖ph − q‖L2(Ω) + c3
(∑
z∈K

h2
z min
fz∈R

‖div (p− q)− fz‖2L2(Ωz)

)1/2
+ c5‖h1/2

E (p− q) · n‖L2(ΓN ).

(3.2)

Proof. According to (3.1), (2.6), Cauchy’s inequality, and an integration by parts
we have, for each w ∈ H1

D(Ω) with ‖∇w‖L2(Ω) = 1, that

(3.3)
∫

Ω

(p− ph) · ∇w dx =
∫

Ω

(p− ph) · ∇(w − Jw) dx

=
∫

Ω

(p− q) · ∇(w − Jw) dx +
∫

Ω

(q − ph) · ∇(w − Jw) dx

≤
∫

ΓN

(w − Jw) (p− q) · n dx−
∫

Ω

(w − Jw) div (p− q) dx + c2‖ph − q‖2,Ω

since w and Jw vanish on ∂Ω \ ΓN . Owing to (2.7) and (2.9) in Theorem 2.1, we
conclude (3.2) from (3.3) and Cauchy’s inequality.

The second result justifies local averaging. For each edge E ∈ EΩ, let ωE :=
int (T1 ∪ T2) and TE := {T1, T2} for the two distinct elements T1, T2 ∈ T with
E = T1 ∩ T2 and for each edge E ∈ EN , let ωE := int (T ) and TE := {T } for the
element T ∈ T with E = T ∩ ΓN . Let Lk(EN ) denote the (possibly discontinuous)
EN -piecewise polynomials of degree ≤ k on ΓN and let Sk(TE) := Lk(TE)∩C(ωE).

Theorem 3.2. There exists an (hT , hE)-independent constant c7 > 0 which de-
pends on the shape of the elements in T and on the polynomial degree k ≥ 1,
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c8 = maxT∈T card {E ∈ EΩ∪EN : E ⊆ ∂T }, such that, for all (ph, gh) ∈ Lk−1(T )d×
Lk(EN ), we have

c7 min
qh∈Sk(T )d

(
‖ph − qh‖2L2(Ω) + ‖h1/2

E (gh − qh · n)‖2L2(ΓN )

)
≤

∑
E∈EΩ∪EN

min
qE∈Sk(TE)d

(
‖ph − qE‖2L2(ωE) + hE‖gh − qE · n‖2L2(E∩ΓN )

)
≤ c8 min

qh∈Sk(T )d

(
‖ph − qh‖2L2(Ω) + ‖h1/2

E (gh − qh · n)‖2L2(ΓN )

)
.

(3.4)

Proof. The upper estimate follows from qE := qh|ωE ∈ Sk(TE)d for all qh ∈ Sk(T )d

and a rearrangement of the sums over edges and elements. To verify the lower
estimate in (3.4) we consider a subspace S̃k(T ) of Sk(T ),

S̃k(T ) := {
∑
z∈N

qzϕz : qz ∈ Sk−1(Tz)} ⊆ Sk(T ),

where Tz = {T ∈ T : T ⊆ ωz} denotes the restriction of the triangulation T to ωz.
Since {(qh, qh · n|ΓN ) : qh ∈ S̃k(T )d} is a closed convex subset of L2(Ω)d ×L2(ΓN ),
the best-approximation problem

min
qh∈S̃k(T )d

(
‖ph − qh‖22 + ‖h1/2

E (gh − qh · n)‖22,ΓN
)

(3.5)

defines an orthogonal relation, namely, for all qz ∈ Sk−1(Tz)d,∫
Ω

(ph − q̃h) · qzϕz dx+
∫

ΓN

hE(gh − q̃h · n) qz · nϕz ds = 0,(3.6)

where q̃h =
∑
z∈N q̃zϕz ∈ S̃k(T )d, q̃z ∈ Sk−1(Tz)d, denotes the minimiser in (3.5).

From
∑

z∈N ϕz = 1, (3.6), and Cauchy’s inequality we deduce, for arbitrary qz ∈
Sk−1(Tz)d,

‖ph − q̃h‖22 + ‖h1/2
E (gh − q̃h · n)‖22,ΓN

=
∑
z∈N

(∫
Ω

(ph − q̃h)ϕz(ph − q̃z) dx+
∫

ΓN

hE(gh − q̃h · n)ϕz(gh − q̃z · n)ds
)

=
∑
z∈N

(∫
Ω

(ph − q̃h)ϕz(ph − qz)dx+
∫

ΓN

hE(gh − q̃h · n)ϕz(gh − qz · n) ds
)

≤(‖ph − q̃h‖2 + ‖h1/2
E (gh − q̃h · n)‖2,ΓN )

×
(∑
z∈N

(
‖ϕ1/2

z (ph − qz)‖22,ωz + ‖h1/2
E ϕ1/2

z (gh − qz · n)‖22,ΓN
))1/2

.

(3.7)

For each z ∈ N , we consider the semi-norms on a finite dimensional subspace of
L2(ωz)d × L2((∂ωz) ∩ ΓN)

|‖(ph, gh)‖|z,1 := min
qz∈Sk−1(Tz)d

(
‖ϕ1/2

z (ph − qz)‖2,ωz + ‖ϕ1/2
z h

1/2
E (gh − qz · n)‖2,ΓN

)
,

|‖(ph, gh)‖|z,2 :=
(∑
E∈E
z∈E

min
qE∈Sk(TE)d

(
‖ph − qE‖22,ωE + hE‖gh − qE · n‖22,ΓN∩E

))1/2

.
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Then, (3.7) and S̃k(T ) ⊆ Sk(T ) yield

min
qh∈Sk(T )d

(
‖ph − qh‖22 + ‖h1/2

E (gh − qh · n)‖22,ΓN ) .
∑
z∈N
|‖(ph, gh)‖|2z,1.(3.8)

We claim |‖ · ‖|z,1 . |‖ · ‖|z,2. For a proof, suppose |‖(ph, gh)‖|z,2 = 0. Then, for
each E that is an inner edge of ωz, we have ph = qE on the open set ωE for some
qE ∈ Sk(TE)d. Since ph ∈ Lk−1(T )d, we find that ph|ωE ∈ Sk−1(TE). The set of all
such ωE is a cover of ωz and there is a sequence E1, ..., Em of inner edges such that
ωEj ∩ ωEj+1 6= ∅, so that we deduce ph|ωz ∈ Sk−1(Tz). Moreover, gh = ph · n on
each edge E ⊆ ΓN with z ∈ E, while for edges E ⊆ ∂ωz ∩ ΓN with z 6∈ E we have
ϕz|E = 0. Altogether, we deduce |‖(ph, gh)‖|z,1 = 0. A compactness and scaling
argument then shows our claim

|‖ · ‖|z,1 . |‖ · ‖|z,2 on Lk−1(Tz)d × Lk({E ∈ E : E ⊆ ∂ωz}).(3.9)

Utilizing (3.9) in (3.8), we conclude

min
qh∈Sk(T )d

(
‖ph − qh‖22 + ‖h1/2

E (gh − qh · n)‖22,ΓN )

.
∑
z∈N
|‖(ph, gh)‖|2z,1 .

∑
z∈N
|‖(ph, gh)‖|2z,2

.
∑
E∈E

min
qE∈Sk(TE)d

(
‖ph − qE‖22,ωE + hE‖gh − qE · n‖22,ΓN∩E

)
.

(3.10)

Remark 3.1. The assertions of Theorems 3.1 and 3.2 hold verbatim for three space
dimensions where T consists of tetrahedra or parallelepipeds with the same proofs.

4. Applications to conforming finite element schemes

Given right-hand sides f ∈ L2(Ω), g ∈ L2(ΓN ), and uD ∈ H1(ΓD), let u ∈ H1(Ω)
denote the unique weak solution to

−∆u = f in Ω,(4.1)

u = uD on ΓD,(4.2)

∂u/∂n = g on ΓN .(4.3)

Suppose a finite element scheme, based on a regular triangulation T , provided a
discrete flux ph := ∇uh to the exact flux p := ∇u ∈ H(div ; Ω) such that uh ∈
S1(T ), uh(z) = uD(z) for all z ∈ N ∩ ΓD and∫

Ω

∇uh · ∇wh dx =
∫

Ω

fwh dx+
∫

ΓN

gwh ds for all wh ∈ S1
D(T ).(4.4)

Theorem 4.1. There exists an (hT , hE)-independent constant c9 > 0 (that depends
on k and the shape of the elements and patches) such that

(4.5)

‖∇(u− uh)‖L2(Ω) ≤ min
qh∈Sk(T )d

(
c9‖∇uh − qh‖L2(Ω) + 2c5‖h1/2

E (g − qh · n)‖L2(ΓN )

)
+ inf
v|ΓD=uD

‖∇(uh − v)‖L2(Ω) + 2c3
(∑
z∈K

h2
z min
fz∈R

‖f − fz‖2L2(Ωz)

)1/2
.

In the infimum, “v|ΓD = uD” stands for all v ∈ H1(Ω) with v = uD on ΓD.
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Proof. Abbreviate e := u − uh and let qh ∈ Sk(T )d. Assume that v ∈ H1(Ω)
satisfies v = uD on ΓD and ‖∇(uh − v)‖2 ≤ ‖∇e‖2. Recall p = ∇u and ph = ∇uh.
Then (4.1)-(4.4) imply (3.1). Hence, we may choose q = qh and w = u − v in
Theorem 3.1 to obtain with Cauchy’s inequality for the second term that

‖∇e‖22 =
∫

Ω

∇e · ∇w dx+
∫

Ω

∇e · ∇(v − uh) dx

≤ ‖∇w‖2
(
c2‖ph − qh‖2 + c5‖h1/2

E (g − qh · n)‖2,ΓN

+ c3
(∑
z∈K

h2
z min
fz∈R

‖f + div qh − fz‖22,Ωz
)1/2)

+ ‖∇(uh − v)‖2 ‖∇e‖2.

(4.6)

Since ‖∇w‖2 ≤ ‖∇e‖2 + ‖∇(uh − v)‖2 ≤ 2‖∇e‖2, we can divide (4.6) by ‖∇e‖2 to
verify

(4.7) ‖∇e‖2 ≤ 2c2‖ph − qh‖2 + 2c5‖h1/2
E (g − qh · n)‖2,ΓN + ‖∇(uh − v)‖2

+ 2c3
(∑
z∈K

h2
z min
fz∈R

‖f + div qh − fz‖22,Ωz
)1/2

.

Let div T denote the T -piecewise action of the div -operator. The triangle inequality
in the last summand in (4.7) and hz . hT for z ∈ T∩N and T ∈ T and a summation
over elements show∑

z∈K
h2
z min
fz∈R

‖f + div qh − fz‖22,Ωz

. ‖hT div T (ph − qh)‖22 +
∑
z∈K

h2
z min
fz∈R

‖f + div T ph − fz‖22,Ωz .
(4.8)

Note that div T ph = ∆T uh = 0 for our choices of uh ∈ S1(T ). A T -elementwise
inverse estimate shows ‖hT div T (ph − qh)‖2 . ‖ph − qh‖2 (with a constant that
depends on the shape of the finite elements only). Utilising this in (4.7)–(4.8), we
deduce (4.5).

Remark 4.1. In the proof of Theorem 4.1 we used the assumption that uh is of
lowest order, i.e., ∇uh ∈ L0(T )d, for the purpose of estimating ‖hT div qh‖L2(Ω)

by ‖qh −∇uh‖L2(Ω). We refer to [BC] for related error estimates for higher order
methods.

The subsequent lemma shows that infv|ΓD=uD ‖∇(uh−v)‖L2(Ω) is a higher order
term.

Lemma 4.1. Suppose that uh(z) = uD(z) for all z ∈ N ∩ ΓD. Then there exists
an hE-independent constant c10 > 0 (that depends on the shapes of the elements
only) such that

inf
v|ΓD=uD

‖∇(uh − v)‖L2(Ω) ≤ c10‖h1/2
E ∂(uh − uD)/∂s‖L2(ΓD).(4.9)

If uD ∈ H2(ED) := {v ∈ L2(ΓD) : ∀E ∈ ED, v|E ∈ H2(E)}, we have

inf
v|ΓD=uD

‖∇(uh − v)‖L2(Ω) ≤ c10‖h3/2
E ∂2

EuD/∂s
2‖L2(ΓD).(4.10)
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Proof. Let E ∈ ED belong to some T ∈ T and denote γ := ΓD ∩∂T . We determine
w ∈ H1(T ) by extending the boundary values w|γ = uh−uD and w|∂T\γ = 0. Note
that w is continuous on ∂T since uh interpolates uD = v at each node on ΓD. An
harmonic extension of w|∂T to w ∈ H1(T ) yields

‖∇w‖2,T . ‖w‖H1/2(∂T ) . ‖w‖
1/2
2,∂T ‖∂w/∂s‖

1/2
2,∂T ,(4.11)

where we applied an interpolation estimate. A one-dimensional integration argu-
ment shows ‖w‖2,∂T ≤ hT ‖∂w/∂s‖2,∂T . Consequently,

‖∇w‖2,T . h1/2
T ‖∂w/∂s‖2,∂T = h

1/2
T ‖∂(uh − uD)/∂s‖2,γ.(4.12)

A scaling argument guarantees that the constant in (4.12) is hT -independent. Defin-
ing v by uh − w on elements on ΓD and by zero on other elements then shows the
lemma. The second estimate follows from ‖w‖2,∂T ≤ h2

T ‖∂2w/∂s2‖2,∂T .

Lemma 4.2. Suppose g ∈ H1(EN ) and, for each node z ∈ N ∩ΓN where the outer
unit normal n on ΓN is continuous (hence constant in a neighbourhood of z as ΓN
is a polygon), let g be continuous. Then, the set

S1
N (T , g) := {qh ∈ S1(T )d : ∀E ∈ EN ∀z ∈ E ∩ N , qh(z) · nE = g(z)}(4.13)

is nonvoid and, for each qh ∈ S1
N (T , g),

‖h1/2
E (g − qh · n)‖L2(ΓN ) ≤ ‖h3/2

E ∂Eg/∂s‖L2(ΓN ).(4.14)

Proof. Elementary estimates on each edge on ΓN verify (4.14); the proof of
S1
N (T , g) 6= ∅ follows from an explicit construction in Example 4.1.

Example 4.1. We define an operator A : L2(Ω)2 → S1
N (T , g) by

Ap :=
∑
z∈N

pzϕz ,(4.15)

where pz := −
∫
ωz
p dx := 1

|ωz|
∫
ωz
p dx ∈ R2 for z ∈ N \ ΓN while we incorporate

Ap(z) · nE = g(z) for z ∈ N ∩ ΓN . In case z = E1 ∩ E2 for two distinct edges
E1, E2 ∈ EN with distinct outer unit normals nE1 , nE2 on E1, E2 at a corner z we
choose pz ∈ R2 to be the unique solution of the 2× 2 linear system

nE1 · pz = g|E1(z) and nE2 · pz = g|E2(z).(4.16a)

In the remaining cases z ∈ E1 ∩ ΓD for E1 ∈ EN or z = E1 ∩ E2 with two parallel
edges E1, E2 ∈ EN with the unit tangent vector tE1 let pz ∈ R2 solve

nE1 · pz = g|E1(z) and tE1 · pz = −
∫
ωz

tE1 · p dx.(4.16b)

The following corollary is (1.5) with a constant c1 = c9 as in Theorem 4.1 and
with specified higher order terms from Lemma 4.1 and 4.2 and a Poincaré inequality.

Corollary 4.1. Under the conditions of Theorem 4.1 and Lemmas 4.1 and 4.2 we
have for f ∈ H1(Ω) that

(4.17) ‖∇(u− uh)‖L2(Ω) ≤ c9 min
qh∈S1

N (T ,g)
‖∇uh − qh‖L2(Ω)

+ c11

(
‖h3/2
E ∂2

EuD/∂s
2‖L2(ΓD) + ‖h3/2

E ∂Eg/∂s‖L2(ΓN ) + ‖h2
T ∇f‖L2(Ω)

)
.
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The (hT , hE)-independent constant c11 > 0 depends on the shape of the elements
and patches only.

Remark 4.2. Let us emphasise that the derivatives along Γ are required only E-
piecewisely while f needs to be patch-wise (not only elementwise) in H1 and so
f ∈ H1(Ω). For a nonsmooth right-hand side f , ‖h2

T ∇f‖L2(Ω) may be replaced by
a patch-wise L2–best approximation error in the approximation through constants
of f (cf. (2.7)).

The global averaging process might be too expensive or its approximation may
be inefficient and hence a local averaging process of interest. Recall that ωE is the
(interior of the) union of all elements in T that share the edge E ∈ E .

Corollary 4.2. Under the conditions of Theorem 4.1 and Lemmas 4.1 and 4.2 we
have for f ∈ H1(Ω) that

‖∇(u− uh)‖L2(Ω) ≤ c12

(∑
E∈E

min
qE∈S1(TE)d

(
‖∇uh − qE‖2L2(ωE)

+ hE‖gh − qE · n‖2L2(E∩ΓN )

))1/2

+ c11

(
‖h3/2
E ∂2

EuD/∂s
2‖L2(ΓD)

+ ‖h3/2
E ∂Eg/∂s‖L2(ΓN ) + ‖h2

T ∇f‖L2(Ω)

)
.

(4.18)

The (hT , hE)-independent constant c12 = max{c9, 2c5}/c7 depends on the shape of
the elements and patches only.

Proof. Theorem 4.1, Lemma 4.1, an approximation gh of g as in Lemma 4.2, and
a Poincaré inequality show

‖∇(u− uh)‖2
. min
qh∈S1(T )d

(‖∇uh − qh‖2 + ‖h1/2
E (gh − qh · n)‖2,ΓN ) + ‖h3/2

E ∂Eg/∂s‖2,ΓN

+ ‖h3/2
E ∂2

EuD/∂s
2‖2,ΓD + ‖h2

T∇f‖2.

(4.19)

This and the first inequality of Theorem 3.2 imply the assertion.

Remark 4.3. The results of this section hold also in three dimensions where T
consists of tetrahedra or parallelepipeds. The proofs of some details as Lemma 4.1
or Lemma 4.2 require much more technical preparations and so are omitted in this
overview.

Remark 4.4. It is shown in [CV, C2] that the edge-contributions (jump differences
in the normal fluxes components across edges) dominate in standard residual a
posteriori error estimates [BaR, B, BS, CF1, EEHJ, V]. Arguing as in [R1, R2,
DMR], one can hence derive alternative proofs of (4.18) and then of (4.17).

Remark 4.5. In an L∞-estimate of [HSWW] it is suggested to average over a domain
of size O(h log(1/h)) instead of merely over patches or the entire domain to obtain
asymptotic exact results.
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5. Applications to nonconforming finite element schemes

In the Laplace problem with mixed boundary conditions (4.1)–(4.3), we suppose
that the discrete flux ph := ∇T uh ∈ L0(T )d, where ∇T denotes the T -piecewise
application of the gradient, satisfies∫

Ω

∇T uh · ∇wh dx =
∫

Ω

fwh dx+
∫

ΓN

gwh ds for all wh ∈ S1
D(T ).(5.1)

The usual conformity conditions read for all E ∈ EΩ ∪ ED,∫
E

[uh] ds = 0,(5.2)

where [uh]|E denotes the jump of uh across E ∈ EΩ and denotes uD − uh on ΓD.
Those conditions are satisfied by construction for Crouzeix–Raviart finite elements
of lowest order.

Remark 5.1. It is stressed that S1
D(T ) is a conforming test function space which

is included in the nonconforming finite element spaces for triangles or tetrahedra.
For parallelograms, (5.1) means that the polynomial degrees are at least of second
order to include the conforming term x1 x2. This technical detail could actually
be dropped since the contribution from an enhanced finite element space leads to
a higher order term [KS]. We restrict our analysis to triangles or tetrahedra for
simplicity.

Theorem 5.1. Suppose that ΓN is connected and that ΓD belongs to only one
connectivity component of ∂Ω. Then, there exists an (hT , hE)-independent constant
c13 > 0 (that depends on k ≥ 1 and the shape of the elements and patches) such
that

‖∇T (u− uh)‖L2(Ω)

≤ min
qh∈Sk(T )d

(
c13‖∇T uh − qh‖L2(Ω) + c5‖h1/2

E (g − qh · n)‖L2(ΓN )

+ c5‖h1/2
E (qh · t− ∂uD/∂s)‖L2(ΓD)

)
+ c3

(∑
z∈K

h2
z min
fz∈R

‖f − fz‖2L2(Ωz)

)1/2
.

(5.3)

Here, t ∈ L0(ED)d denotes the unit tangent vector on ΓD.

Remark 5.2. The following lemma is based on the Helmholtz decomposition of a
vector field. The decomposition is available in three dimensions as well (cf., e.g.,
[GR]) but the notation is more involved so we restrict the discussion to the two-
dimensional setting for brevity.

Lemma 5.1. For all p− ph ∈ L2(Ω)2, there exist α, β ∈ H1(Ω) that satisfy bound-
ary conditions α|ΓD = 0 and β|ΓN is constant such that

p− ph = ∇α+ Curlβ and ‖p− ph‖2L2(Ω) = ‖∇α‖2L2(Ω) + ‖∇β‖2L2(Ω).(5.4)

Proof. The lemma follows from the Helmholtz decomposition where α ∈ H1
D(Ω)

solves ∆α = div (p− ph) and ∆β = curl (p− ph) with proper boundary conditions
(cf., e.g., [GR]).
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Proof of Theorem 5.1. For p = ∇u and ph = ∇T uh, Lemma 5.1 yields

‖p− ph‖22 =
∫

Ω

(p− ph) · ∇αdx +
∫

Ω

(p− ph) · Curlβ dx.(5.5)

Since ΓN is connected, we may and will assume without loss of generality that
β = 0 on ΓN . According to (4.1)–(4.3) and (5.1), we infer (3.1) and hence may
choose q = qh ∈ Sk(T )d and, in case α 6≡ 0, w = α/‖α‖2,Ω in Theorem 3.1 to
obtain

(5.6)
∫

Ω

(p− ph) · ∇α dx ≤ ‖∇α‖2
(
c2‖ph − qh‖2 + c5‖h1/2

E (g − qh · n)‖2,ΓN

+ c3
(∑
z∈K

h2
z min
fz∈R

‖f + div qh − fz‖22,Ωz
)1/2)

.

The estimate of the last term in (5.5) will follow from Theorem 3.1 as well once we
establish an analogy to (3.1), namely∫

Ω

(p− ph) · Curl wh dx = 0 for all wh ∈ S1
N (T ),(5.7)

where S1
N (T ) := {vh ∈ S1(T ) : vh = 0 on ΓN}. It is essential to notice that

∂wh/∂s is constant and [uh] has a vanishing integral on any edge. An elementwise
integration by parts on the left-hand side of (5.7) yields volume terms
(u − uh)div T Curl wh = 0 and edge terms [(u − uh)∂wh/∂s] = [uh]∂wh/∂s whose
integral vanishes on any E (the case E ∈ EΩ is indicated and the assertion is true
for E ∈ ED as well; wh = 0 on ΓN shows it for E ∈ EN). In this way we establish
(5.7).

To employ Theorem 3.1, we interchange components, writing in this proof
Q(a1, a2) := (−a2, a1) for vectors, and we interchange the role of the boundaries
and adopt Theorem 2.1 and (3.1) where Γ̃D = ΓN acts as the Dirichlet boundary
and Γ̃N = ΓD acts as the Neumann boundary. Writing p̃ = Qp and p̃h = Qph,
(5.7) reads

∫
Ω

(p̃− p̃h) · ∇wh dx = 0 for all wh ∈ S̃1
D(T ) = S1

N (T ) and this is (3.1).
Reading Theorem 3.1 in the present notation, we obtain∫

Ω

(p− ph) ·Curlβ dx

≤ ‖∇β‖2
(
c2‖ph − qh‖2 + c5‖h1/2

E (∂uD/∂s− qh · t)‖2,ΓD

+ c3
(∑
z∈K

h2
z‖curl T (qh − ph)‖22,Ωz

)1/2)(5.8)

with curl T (qh − ph) := div TQ(qh − ph). In the second last term, t = Qn denotes
the unit tangent vector and in the last term we used that curl T p = 0 = curl T ph.

The remaining arguments are similar to those in the proof of Theorem 4.1 and
hence are omitted.

In contrast to the conforming situation, Theorem 5.1 demands averaging func-
tions to satisfy some conditions on the Dirichlet boundary.

Lemma 5.2. Suppose uD ∈ H2(ED) and, for each node z ∈ N ∩ ΓD where the
outer unit normal n on Γ is continuous, let ∂uD/∂s be continuous. Then, the set

S1
D(T , uD) := {qh ∈ S1(T )d : ∀E ∈ ED ∀z ∈ E ∩ N , qh(z) · tE = ∂uD/∂s(z)}

(5.9)
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is nonvoid and, for each qh ∈ S1
D(T , uD),

‖h1/2
E (qh · tE − ∂uD/∂s)‖L2(ΓD) ≤ ‖h3/2

E ∂2
EuD/∂s

2‖L2(ΓD).(5.10)

Proof. Similar to (4.10) in Lemma 4.1 or 4.2.

Example 5.1. Assume the conditions of Lemmas 4.2 and 5.2 on the data g and
uD. We define an operator A : L2(Ω)2 → S1

N (T , g) ∩ S1
D(T , uD) by (4.15) and

pz := −
∫
ωz
p dx for z ∈ N \ Γ. In case z ∈ (N ∩ ΓN ) \ ΓD we preceed as in (4.16a),

resp. (4.16b). In case z ∈ (N ∩ ΓD) \ΓN we consider the analogous 2× 2 systems

tE1 · pz = ∂uD|E1/∂s(z) and tE2 · pz = ∂uD|E2/∂s(z)(5.11a)

(cf. (4.16a) and notation from Example 4.1), resp., as an analog to (4.16b),

tE1 · pz = ∂uD|E1/∂s(z) and nE1 · pz = −
∫
ωz

nE1 · p dx.(5.11b)

For z ∈ ΓD ∩ ΓN ⊆ N we require a compatibility condition if nE1 = tE2 , namely
g(z) = ∂uD/∂s(z). Then, we define pz ∈ R2 as in (5.11b) when E1 ⊆ ΓD (the case
E2 ⊆ ΓD is analogous). For nE1 6= ±tE2 , we need no further compatibility of the
data and solve the 2× 2 linear system

tE1 · pz = ∂uD|E1/∂s(z) and nE2(z) · pz = g(z).(5.12)

(Here E1 ⊆ ΓD; the case E2 ⊆ ΓD is analogous.)

The modification of (1.5) in the nonconforming setting is a direct consequence
of Theorem 5.1, Lemma 5.2 and Example 5.1. Note that Corollary 4.1 is a special
case apart from the different treatment of the Dirichlet boundary conditions.

Corollary 5.1. Under the conditions of Theorem 5.1 and Lemmas 4.2 and 5.2, we
have for f ∈ H1(Ω) that

(5.13) ‖∇T (u− uh)‖L2(Ω) ≤ c13 min
qh∈S1

N (T ,g)∩S1
D(T ,uD)

‖∇T (uh − qh)‖L2(Ω)

+ c14

(
‖h3/2
E ∂2

EuD/∂s
2‖L2(ΓD) + ‖h3/2

E ∂Eg/∂s‖L2(ΓN ) + ‖h2
T∇f‖L2(Ω)

)
.

The analog to Corollary 4.2 concludes this section on lowest order Raviart–
Crouzeix finite elements.

Corollary 5.2. Under the conditions of Theorem 5.1 and Lemmas 4.2 and 5.2,
there exists a constant c15 > 0 such that we have for f ∈ H1(Ω)

‖∇T (u− uh)‖L2(Ω)

≤ c15

(∑
E∈E

min
qE∈S1(TE)d

(
‖∇T uh − qE‖2L2(ωE)

+ hE‖gh − qE · n‖2L2(E∩ΓN ) + hE‖qE · t− u′D,h‖2L2(E∩ΓD)

))1/2

+ c14

(
‖h3/2
E ∂2

EuD/∂s
2‖L2(ΓD) + ‖h3/2

E ∂Eg/∂s‖L2(ΓN ) + ‖h2
T∇f‖L2(Ω)

)
.

(5.14)

Here, u′D,h denotes an approximation of ∂uD/∂s as in Lemma 5.2, i.e., u′D,h =
qh · tE on ΓD for some qh ∈ S1

D(T , uD).
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Remark 5.3. The results of this section can be generalised to three space dimensions
as all the required tools such as a Helmholtz decomposition are available then as
well. Details on the three-dimensional case are omitted for notational simplicity.

Remark 5.4. Arguing as in [CV, C2], one can prove that edge contributions (jumps
in the fluxes across edges) dominate the residual based error estimates from [DDPV,
C2, KS]. Arguing in the spirit of [R1, R2, DMR], one can hence derive alternative
proofs of (5.14) and then of (5.13).

6. Applications to mixed finite element schemes

In the Laplace problem with mixed boundary conditions (4.1)–(4.3), we suppose
that the discrete flux ph ∈ H(div ,Ω)∩Lk(T )2 and the displacement approximation
uh ∈ Lk(T ) satisfy, for all qh ∈ CurlS1(T ) with qh ·n = 0 on ΓN , and for all T ∈ T
and E ∈ EN that ∫

Ω
(ph · qh + uh div qh)dx =

∫
ΓD

uD qh · n ds,(6.1) ∫
T

(f + div ph)dx = 0,(6.2) ∫
E(g − ph · n)ds = 0.(6.3)

Remark 6.1. Standard mixed finite element methods of any order, such as Raviart–
Thomas (RT), Brezzi–Douglas–Marini (BDM), or Brezzi–Douglas–Fortin–Marini
(BDFM) elements (cf. [BF] for details), provide (6.1)–(6.3) [C1].

Theorem 6.1. Suppose that ΓN is connected and that ΓD belongs to only one
connectivity component of ∂Ω and let f ∈ H1(T ), i.e., f |T ∈ H1(T ) for all T ∈ T .
Then, there exists an (hT , hE)-independent constant c16 > 0 (that depends on k ≥ 1
and the shape of the elements and patches) such that

‖p− ph‖L2(Ω) ≤ min
qh∈Sk(T )2

(
c2‖ph − qh‖L2(Ω) + c5‖h1/2

E (∂uD/∂s− qh · t)‖L2(ΓD)

+ c3
(∑
z∈K

h2
z min
fz∈R

‖curl T qh − fz‖2L2(Ωz)

)1/2)
+ c16‖h2

T∇T (f + div ph)‖2,Ω + c16‖h1/2
E (g − ph · n)‖2,ΓN .

(6.4)

Proof. Lemma 5.1 provides (5.5), and we may and will assume without loss of
generality that β = 0 on ΓN . An integration by parts and (6.2)–(6.3) show for the
T -piecewise integral mean αT ∈ L0(T ) of α ∈ H1

D(Ω) that

(6.5)
∫

Ω

(p− ph) · ∇α dx =
∫

Ω

(f + div ph)αdx+
∫

ΓN

(g − ph · n)αdx

=
∫

Ω

(f + div ph) (α− αT ) dx+
∫

ΓN

(g − ph · n) (α− αT ) dx.

The second last term is estimated with an elementwise Poincaré inequality while
the last term in (6.5) involves a trace theorem [BS, CF1, Cl], namely

‖a‖2,E . h−1/2
E ‖a‖2,TE + h

1/2
E ‖∇a‖2,TE(6.6)

for a = α− αT ∈ H1(TE) on the triangle TE ∈ T and the edge E ∈ EN , E ⊂ ∂TE.
With a second application of Poincaré’s inequality, (6.6), and Cauchy’s inequality
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we show that∫
Ω

(p− ph) · ∇αdx . ‖hT (f + div ph)‖2 ‖∇α‖2

+ ‖h1/2
E (g − ph · n)‖2,ΓN‖h

−1/2
E (α− αT )‖2,ΓN

. ‖∇α‖2
(
‖h2
T∇T (f + div ph)‖2 + ‖h1/2

E (g − ph · n)‖2,ΓN
)
.

(6.7)

The second contribution on the right-hand side of (5.5) is analysed with Theorem
3.1, where, as in the proof of Theorem 5.1, we interchange components and the role
of the boundary conditions. As already employed in [C1, C2], Curlwh ∈ H(div ,Ω)
for all wh ∈ S1

N (T ). Moreover, Curlwh · n = ∂wh/∂s = 0 on ΓN . Hence, (6.1) and
an integration by parts for p yield (5.7) because of (4.2). Arguing as in the proof
of Theorem 5.1, we deduce for arbitrary qh ∈ Sk(T )2 that

(6.8)∫
Ω

(p− ph) · Curlβ dx ≤ ‖∇β‖2
(
c2‖ph − qh‖2 + c5‖h1/2

E (∂uD/∂s− qh · t)‖2,ΓD

+ c3
(∑
z∈K

h2
z min
fz∈R

‖curl T qh − fz‖22,Ωz
)1/2)

.

The remaining details are analogous to the proof of Theorem 5.1 and hence are
omitted.

The precise version of (1.5) for lowest order mixed finite element methods is
summarised as follows.

Corollary 6.1. Suppose that the discrete flux ph satisfies curl T ph = 0, div T ph ∈
L0(T ) and ph · n ∈ L0(EN ). Then,

(6.9) ‖p− ph‖L2(Ω) ≤ min
qh∈S1

D(T ,uD)
c17‖ph − qh‖L2(Ω)

+ c18

(
‖h3/2
E ∂2

EuD/∂s
2‖L2(ΓD) + ‖h3/2

E ∂Eg/∂s‖L2(ΓN ) + ‖h2
T∇T f‖L2(Ω)

)
.

Proof. Combine Theorem 6.1 and Lemmas 4.1 and 5.2, and use an inverse estimate
to prove ∑

z∈K
h2
z‖curl T qh‖22,Ωz =

∑
z∈K

h2
z‖curl T (qh − ph)‖22,Ωz

.
∑
z∈K
‖qh − ph‖22,Ωz . ‖qh − ph‖2.

Remark 6.2. The assumptions in Corollary 6.1 are satisfied for lowest order
Raviart–Thomas and Brezzi–Douglas–Fortin–Marini finite elements.

Example 6.1. Assume the conditions of Lemma 5.2 on the data uD. We define an
operator A : L2(Ω)2 → S1

D(T , uD) by (4.15) and pz := −
∫
ωz
p dx for z ∈ N \ ΓD. In

case z ∈ N ∩ ΓD we consider 2× 2 systems

tE1 · pz = ∂uD|E1/∂s(z) and tE2 · pz = ∂uD|E2/∂s(z)(6.10a)

(cf. (4.16a) and notation from Example 4.1), resp., as an analog to (4.16b),

tE1 · pz = ∂uD|E1/∂s(z) and nE1 · pz = −
∫
ωz

nE1 · p dx.(6.10b)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



AVERAGING TECHNIQUES YIELD RELIABLE ERROR CONTROL PART I 961

A local version follows from Theorem 3.2 and concludes this section on mixed
finite element methods.

Corollary 6.2. Under the conditions of Theorem 6.1 and Corollary 6.1 we have

‖p−ph‖L2(Ω) ≤ c19

(∑
E∈E

min
qE∈S1(TE)2

‖ph− qE‖2L2(ωE) +hE‖u′D,h− qE · t‖2L2(ΓD)

)1/2
+ c18

(
‖h3/2
E ∂2

EuD/∂s
2‖L2(ΓD) + ‖h3/2

E ∂Eg/∂s‖L2(ΓN ) + ‖h2
T∇T f‖L2(Ω)

)
.

Remark 6.3. The results of this section could be generalised to three space dimen-
sions. Details are omitted for brevity.

Remark 6.4. For related residual based a posteriori error estimates we refer to
[A, BV, C1, C2, HW].

7. Numerical experiments

The theoretical results of this paper are supported by numerical experiments.
In this section, we report on two examples of the problem (4.1)–(4.3) on uniform,
adapted, and perturbed meshes for conforming, nonconforming, and mixed finite
element methods.

Example 7.1. Let f := 0 on the L-shaped domain Ω := (−1, 1)2 \ [0, 1] × [−1, 0],
uD := 0 on the Dirichlet boundary ΓD := {0} × [−1, 0] ∪ [0, 1] × {0}, and on the
Neumann boundary ΓN := ∂Ω \ ΓD,

g(r, ϕ) := 2/3 r−1/3(− sin(ϕ/3), cos(ϕ/3)) · n

using polar coordinates (r, ϕ). The exact solution u(r, ϕ) := r2/3 sin(2ϕ/3) of (4.1)–
(4.3) has a typical corner singularity at the origin. In this example, the right-hand
sides are smooth, but the solution is not. The coarsest triangulation T0 consists of
three squares halved by diagonals parallel to the vector (1, 1) (cf. Figure 1).

Example 7.2. Let f := −∆u for the function

u(x, y) := x(1 − x)y(1− y) arctan(60(r − 1)), r2 := (x− 1.25)2 + (y + 0.25)2

on the unit square Ω := (0, 1)2 and set uD := 0 on the entire boundary ΓD := ∂Ω
(ΓN = ∅). The solution u to (4.1)–(4.3) is H2-regular but f (although theoretically
smooth) has huge gradients on the circle with radius 1 around (1.25,−0.25). The
coarsest triangulation T0 consists of four squares halved by diagonals parallel to the
vector (1, 1) (cf. Figure 3).

The following adaptive algorithm generates all the sequences of meshes
T0, T1, T2, ... in this paper which are uniform for Θ = 0 or adapted for Θ = 1/2
in (7.2). Since the resulting meshes might show local symmetries, we considered
meshes that are either unperturbed (relative to T0) for ϑ = 0 and randomly per-
turbed for ϑ = 1 in step (e). The implementation was performed in Matlab in the
spirit of [ACF] with a direct solution of linear systems of equations. For details on
the red-blue-green refinements we refer to [V].
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Algorithm (AϑΘ).
(a) Start with a coarse mesh T0, k = 0.
(b) Compute the discrete solution ph on the actual mesh Tk.
(c) Compute error indicators

ηZ,T := ‖ph −Aph‖L2(T )(7.1)

for all T ∈ Tk and plot energy error eN := ‖p − ph‖L2(Ω) and its estimator
η2
N :=

∑
T∈T η

2
Z,T versus the degree of freedom N of the triangulation Tk.

(d) Mark the element T for red-refinement provided

ηZ,T ≥ Θ max
T ′∈Tk

ηZ,T ′ .(7.2)

(e) Mark further elements (red-blue-green refinement) to avoid hanging nodes.
Generate a new triangulation T̃k+1 using edge-midpoints if ϑ = 0 and points
on the edges at a random distance at most 0.3 hE from the edge-midpoints if
ϑ = 1. Perturbe the nodes z ∈ Nk+1 of the mesh T̃k+1 at random with values
taken uniformly from a ball around z of radius ϑ 2−k/15. Correct boundary
nodes by orthogonal projection onto that boundary piece they are expected
such that Ω,ΓD,ΓN are matched by the resulting mesh Tk+1 exactly. Update
k and go to (b).

7.1. Results for conforming finite element methods. In the conforming finite
element scheme, we use operator A from Example 4.1 in (7.1) of Algorithm (AϑΘ)
and report on results obtained for (Θ, ϑ) = (0, 0) (uniform), (1/2, 0) (adaptive),
and (1/2, 1) (adaptive, perturbed).

Some meshes obtained for Example 7.1 are shown in Figure 1 and illustrate a
high automatic mesh-refinement of the adapted meshes towards the origin, which is
expected to improve the convergence rate of 2/3 possibly to the optimal value 1. The
result of the perturbation in step (e) of Algorithm (A1

1/2) is seen in the right half of

Figure 1. Adaptively refined meshes T0 (left upper) to T8 (right
lower) (left) and perturbed triangulation T16 with 1157 free nodes
(right) in Example 7.1 for the conforming finite element scheme.
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Figure 2. Error and error estimator for uniform, adaptive, and
perturbed adaptive mesh-refinement in the conforming finite ele-
ment scheme in Example 7.1.

Figure 3. Adaptively refined meshes T0 (left upper) to T8 (right
lower) (left) and perturbed triangulation T12 with 1909 free nodes
(right) for the conforming finite element scheme in Example 7.2.

Figure 1. We believe that the meshes generated by Algorithm (A1
1/2) have less local

symmetry than that by (A0
1/2). According to local extrapolation, symmetry could

cause superconvergence phenomena. To check the practical convergence behaviour,
we plotted in Figure 2 for each mesh Tk an entry (N, eN ) and (N, ηN ). A log-scaling
on both axes allows a slope −α of a straight line in the plot that connects two
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Figure 4. Error and error estimator for uniform, adaptive, and
perturbed adaptive mesh-refinement in the conforming finite ele-
ment scheme in Example 7.2.

subsequent entries for a series of meshes T0, T1, T2, ... generated by Algorithm (AϑΘ),
to be interpreted as an experimental convergence rate 2α (owing to N ∝ h−2 in two
dimensions). We observe experimental convergence rates 2/3, resp. 1, for uniform,
resp. adapted, meshes (generated by Algorithm (AϑΘ) for Θ = 0, resp. Θ = 1/2).
Furthermore, even for coarse meshes, ηN appears to be a very good approximation
to eN ; corresponding entries almost coincide for (Θ, ϑ) = (1/2, 0). If these meshes
are perturbed (cf. Figure 1), the quotient ηN/eN is almost a constant very close
to 1. Numerical checks with different numerical quadrature rules (used to evaluate
eN) convinced us that, in general, ηN behaves not asymptotically exact in practise
but is very accurate.

In Example 7.2 we obtained meshes and experimental convergence rates dis-
played in Figures 3 and 4. Although u belongs to H2(Ω) and we expect linear
convergence, u has huge second order derivatives along a circular arc where f is
steep. We observe high refinements in the adapted meshes towards this arc. In this
example the preasymptotic range is very large, an experimental convergence rate
1 can be observed only for N ≥ 300 for all refinement strategies. In this regime
the estimator ηZ appears as a good approximate for eN and the entries (N, eN )
and (N, ηN ) almost conincide for (Θ, ϑ) = (0, 0), (1/2, 0). This is not the case for
(Θ, ϑ) = (1/2, 1), but the quotient ηN/eN ≈ 0.9 is still close to 1.

7.2. Results for nonconforming finite element methods. The operator A
from Example 5.1 serves in (7.1) to define ηZ,T for first order Crouzeix–Raviart
finite elements (cf., e.g., [BS, Ci]) in Algorithm (AϑΘ). The generated meshes look
similar to those shown in Figure 1, resp. Figure 3, and therefore are not displayed
in this paper. The experimental convergence rates for Example 7.1, resp. 7.2, are
illustrated in Figure 5, resp. Figure 6. The overall picture appears similarly to
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Figure 5. Error and error estimator for uniform, adaptive, and
perturbed adaptive mesh-refinement in the nonconforming finite
element scheme in Example 7.1.
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Figure 6. Error and error estimator for uniform, adaptive, and
perturbed adaptive mesh-refinement in the nonconforming finite
element scheme in Example 7.2.

the above discussions and we draw the same conclusions. For uniform meshes, the
quotient ηN/eN is nearly constant 1.2 but significantly larger than 1.1 in Figure 2.
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Figure 7. Error and error estimator for uniform, adaptive, and
perturbed adaptive mesh-refinement in the mixed finite element
scheme in Example 7.1.
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Figure 8. Error and error estimator for uniform, adaptive, and
perturbed adaptive mesh-refinement in the mixed finite element
scheme in Example 7.2.

7.3. Results for mixed finite element methods. For the Raviart–Thomas fi-
nite element method (cf. [B, BF, BS]) we use the operator A from Example 6.1
to define ηZ,T . The adapted meshes look similar to those shown in Figures 1 and
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3 and therefore are not displayed in this paper. Figures 7 and 8 display the error
and the estimator for the mixed finite element scheme in Examples 7.1 and 7.2
obtained from Algorithm (AϑΘ) and (Θ, ϑ) = (0, 0), (1/2, 0), (1/2, 1). We obtain the
same experimental convergence rates as in the previous methods.

7.4. Remarks.
(i) Our overall experience with Algorithm (AϑΘ) and other (e.g., residual-based)

adaptive algorithms supports that all such adaptive algorithms yield a con-
siderable convergence improvement.

(ii) Although asymptotic exactness of ηN is not observed, the reliability constant
c1 in (1.5) and the efficiency constant are experimentally very close to 1 since
ηN is a very good approximation to eN for very fine meshes (i.e., when h.o.t.
is neglegible, say, for N ≥ 100).

(iii) Note that the efficiency constant is not known to be one as ηN (based on the
averaging operator A) is different from

ηZ := min
qh∈S1

N (T ,g)
‖ph − qh‖L2(Ω).(7.3)

For conforming linear triangular finite elements, the efficiency of ηN with an
averaging operator follows from [R1, R2].

(iv) Instead of the averaging operator A, we tested the error estimator ηZ ≤ ηN
from (7.3) and found that sometimes the performance is poorer than that of
ηN : In Figure 4, for instance, the results of ηZ are much smaller than those
of ηN ≈ eN . The averaging technique suggested in [HSWW]; average over a
domain of size O(h log(1/h)), is expected to give values between ηN and eN .

(v) The error estimation in Example 7.1 is very accurate even for very coarse
meshes. Hence the higher order terms do not seem to be important here
although u is nonsmooth. This agrees with our theoretical prediction in (1.5)
since f and uD are zero and g is piecewise analytic. For a generic corner
singularity of u, we expect

min
qh∈S1

N (T ,g)
‖p− qh‖L2(Ω) � min

qh∈L0(T )
‖p− qh‖L2(Ω) ≤ ‖p− ph‖L2(Ω)

and so the h.o.t. in (1.4) are not expected to be dominant even for coarse
meshes.

(vi) For coarse meshes in Example 7.2, higher order terms may cause the overall
observation that ηN is much smaller than eN . Assuming c1 ≈ 1 (which is seen
for fine meshes, whence for neglegible h.o.t.) nonsmooth data (∇f is large)
indicate that eN ≤ c1ηN + h.o.t cannot be improved to eN ≤ c1ηN .
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