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Summary. Enhanced strain elements, frequently employed in practice, are
known to improve the approximation of standard (non-enhanced)
displacement-based elements in finite element computations. The first con-
tribution in this work towards a complete theoretical explanation for this
observation is a proof of robust convergence of enhanced element schemes:
it is shown that such schemes are locking-free in the incompressible limit,
in the sense that the error bound in the a priori estimate is independent of
the relevant Lamé constant. The second contribution is a residual-based a
posteriori error estimate; the L2 norm of the stress error is estimated by a
reliable and efficient estimator that can be computed from the residuals.

Mathematics Subject Classification (2000): 65N30

1 Introduction

This work is devoted to rigorous a priori and a posteriori error analyses of
enhanced strain finite element schemes for the boundary value problem of
linear elasticity. The robust a priori error estimates are derived for a class of
triangulations into refined parallelograms and parallelepipeds. Given a piece-
wise bilinear displacement uh with affine Green strain ε(uh), the enhanced
strain finite element method is obtained by adding an enhancement ah. The
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resulting stress approximation reads σ h = C(ε(uh) + ah) with C being the
elasticity tensor.

Introduced by Simo and Rifai [19], enhanced strain methods are nowa-
days a popular tool in computational mechanics and are designed to over-
come two problems experienced with standard low-order quadrilaterals: (a)
they lead to poor results when coarse meshes are used in the solution of
bending-dominated problems; and (b) locking is encountered for nearly in-
compressible materials.

We can prove uniform convergence of the strains, but we cannot prove the
same for the spherical part of the stresses. This corresponds to the fact that
the constant in the inf-sup condition corresponding to an equivalent mixed
method (see (3.8)) is not independent of the Lam’́e constant λ. The only trial
functions available for the stresses are modifications of those derived from
the assumed strains. The situation would be different – and more favourable
– if, for example, mixed methods with the PEERS elements are used, because
of their λ-uniform convergence in practice [8].

Simo and Rifai [19] investigated enhanced strains for plane and geomet-
rically linear problems. The method was subsequently extended to nonlin-
earproblems in two and three dimensions by Simo, Armero, and Taylor
[17,18]. Extensive computational studies indicate that the method provides a
successful approach for overcoming the aforementioned difficulties (a)-(b).

An analysis of the enhanced strain method has been carried out for affine-
equivalent meshes by Reddy and Simo [15]. They established an a priori
error estimate which confirms convergence at the standard linear rate,

‖u − uh‖V ≤ c1h‖f ‖0.(1.1)

Braess [5] has re-examined the sufficient conditions for convergence, in par-
ticular relating the stability condition to a strengthened Cauchy inequality,
and elucidating the influence of the Lamé constant λ.

The issue of uniform convergence in the incompressible limit, that is, as
λ → ∞, is not satisfactorily addressed in those works, and is given a proper
treatment in this contribution. The a priori analysis of Section 4 guarantees
λ-independent asymptotic convergence of the displacement error u − uh in
V := [H 1

0 (�)]2 for a class of meshes. The constant c1 in (1.1) is independent
of λ. The arguments involve a stable pair of spaces for an auxiliary Stokes
problem, and are thus available for triangulations allowing for an extraction
(or filtering) of checkerboard instability modes.

The second contribution in the present paper is the derivation of a resid-
ual-based a posteriori error estimate for a wider class of meshes and enhanced
elements. The analysis of Section 5 establishes a reliable and efficient error
estimate
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‖σ − σ h‖0 ≤ c2

(∑
T ∈T

h2
T ‖f + div σ h‖2

0

+
∑
E∈E

hE‖[σ h · nE]‖2
L2(E)

+ ‖2µah‖2
0

)1/2

.(1.2)

Here, hT is the diameter of the element T ∈ T , and hE is the length of an
edge E ∈ E ; [σ h ·nE] denotes the jump of the normal stress vector across the
inner edge E. The constant c2 > 0 depends on the aspect ratio of the elements
and on �, but neither on the mesh size nor on the Lamé constants λ and µ.
The right-hand side of (1.2) may serve as a refinement indicator within an
adaptive algorithm. The class of meshes covered by the present a priori error
estimates, however, does not include those meshes arising from local mesh
refinements.

The rest of the paper is organised as follows. The model problem in lin-
ear elasticity with pure homogeneous boundary conditions is introduced in
Section 2. The finite element method with enhanced assumed strains is de-
scribed in Section 3, and a first a priori estimates of the error are presented.
Section 4 establishes the λ-independent estimate (1.1). The main argument is
the construction of an interpolation operator which preserves the divergence-
free property of the displacement. Our a priori estimates are restricted to
special grids, while the reliable and efficient a posteriori error estimate (1.2)
is addressed in Section 5 for more general meshes and enhanced schemes.

2 Boundary value problem of elasticity

Consider an isotropic linear elastic material body which occupies a bounded
domain � in R

d (d = 2 or 3) with Lipschitz boundary �.
For a prescribed body force f , the governing equilibrium equation in �

reads

− div σ = f(2.1)

for the symmetric Cauchy stress tensor σ . The infinitesimal strain tensor ε is
defined by

ε(u) := 1
2 (∇u + [∇u]T )(2.2)

for the displacement vector u. It is assumed to satisfy the homogeneous Di-
richlet boundary condition

u = 0 on �.
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With the fourth-order elasticity tensor C, the elastic constitutive equation
reads

σ = Cε = λ(tr ε)1 + 2µ ε,(2.3)

and has the inverse relation

ε = C−1σ = 1

2µ
σ − λ

2µ(dλ + 2µ)
(tr σ )1.(2.4)

Here, 1 is the identity, and λ and µ are the homogeneous Lamé constants.
Pointwise stability of C is clear for positive Lamé constants λ and µ [14].
This work is devoted to the incompressible limit λ → ∞.

We will make use of the space L2(�) of square-integrable functions de-
fined on � with the inner product and norm being denoted by (·, ·)0 and ‖·‖0,
respectively. We recall also the definition of the Sobolev spaces Hm(�), with
m being a non-negative integer, as equivalence classes of functions with gen-
eralised derivatives of order ≤ m in L2(�). The Sobolev spaces are Hilbert
spaces with inner product and associated norm

(u, v)m :=
∫

�

∑
|α|≤m

Dαu(x)Dαv(x) dx and ‖v‖m := (v, v)1/2
m .(2.5)

Here α = (α1, . . . , αd) is a multi-index whose components αj are nonneg-
ative integers, |α| := α1 + · · · + αd , and as usual Dα = ∂ |α|/∂x

α1
1 · · · ∂x

αd

d .
The seminorm | · |m on Hm(�) is defined by

|v|2m :=
∫

�

∑
|α|=m

Dαv(x)Dαv(x) dx.(2.6)

The space H 1
0 (�) consists of functions in H 1(�) which vanish on the bound-

ary in the sense of traces. The space H−1(�) is the dual space of H 1
0 (�).

Finally, we denote by L2
0(�) the subspace of functions in L2 with zero mean;

that is,

L2
0(�) :=

{
v ∈ L2(�) :

∫
�

v dx = 0

}
.(2.7)

We now define the standard variational problem in linear elasticity. For
this purpose, V := [H 1

0 (�)]d will be the space of admissible displacements,
V ′ its dual, and we define the bilinear form a(·, ·) and linear functional �(·)
by

a : V × V → R, a(u, v) :=
∫

�

Cε(u) : ε(v) dx,(2.8)

� : V → R, �(v) :=
∫

�

f · v dx.(2.9)
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Problem S Given � ∈ V ′, find u ∈ V that satisfies

a(u, v) = �(v) for all v ∈ V.(2.10)

The present assumptions on C guarantee that a(·, ·) is symmetric, continu-
ous, and V -elliptic: there exist positive constants c3 and c4(λ), the latter being
dependent on λ, such that, for all u, v ∈ V ,

|a(u, v)| ≤ c3‖u‖1‖v‖1, and c4(λ)‖v‖2
1 ≤ a(v, v).(2.11)

It is known (see, for example, [4]) that Problem S has a unique solution u

and

‖u‖1 ≤ 1/c4(λ) ‖f ‖−1 .(2.12)

3 Enhanced strain finite element approximations

In this section we introduce the finite element space with enhanced assumed
strains on a polygonal or polyhedral domain for d = 2 or d = 3, respectively.
Let Th be a regular triangulation of parallelograms (resp. parallelipipeds) on
� with mesh parameter h := maxT ∈Th

hT . A typical element T in Th is gen-
erated by an affine map F from the reference element (−1, 1)d . Let Q1(T ) be
the space of bilinear (resp. trilinear) polynomials on T ; that is, polynomials
p in Q1 have the form p(x) = ∑

|α|≤1 aαxα. Set

V h := {vh ∈ C(�)d : vh = 0 on �, vh|T ∈ Q1(T ) for all T ∈ Th }.(3.1)

We define the discrete strain εh by

εh = ε(vh) + bh;(3.2)

that is, the strain comprises the conventional or consistent part ε(vh) by (2.2),
and, in addition, the enhanced assumed strain bh. The finite element spaces
Ẽh for enhanced strains are subspaces of the space � of symmetric d × d

matrix-valued functions in L2,0(�): that is,

Ẽh ⊂ � := L2,0(�; R
d×d
sym )

:= {b ∈ L2(�; R
d×d
sym ) : Cijklbkl ∈ L2,0(�)}.

Problem Eh Find (uh, ah) ∈ V h ×Ẽh such that, for all (vh, bh) ∈ V h ×Ẽh,∫
�

C(ε(uh) + ah) : (ε(vh) + bh) dx =
∫

�

f · vh dx.(3.3)
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Throughout the a priori error analysis in Section 4 we focus on the fol-
lowing standard example, but comment on other possibilities in Remark 1.
In two dimensions, the original choice of Simo and Rifai [19] reads

Ẽh := {bh ∈ � : bh|T ∈ L(T ) for all T ∈ Th},
(3.4)

L(T ) := span

{(
x 0
0 0

)
,

(
0 0
0 y

)
,

(
0 x

x 0

)
,

(
0 y

y 0

)}
.

Here, x and y are the (local) coordinates in the reference element.

Remark 1 The method introduced by Simo and Rifai is advantageous also
in the case of shear locking. In this paper we restrict our attention to effects
which are related to volume locking; in this context, the set Ẽh may be reduced
to the first two contributions of L(T ) in (3.4). That is, Ẽh may be replaced
by

{bh ∈ � : bh|T ∈ span {diag(x, 0), diag(0, y)} for all T ∈ Th} .(3.5)

This reduction does not require any changes in the analysis that follows.
There is another reduction in the same spirit. It suffices that the enhanced

strains apply only to the volumetric part of the stored energy. Thus, the vari-
ational problem (3.3)–(3.4) may be replaced by

2µ

∫
�

ε(uh) : ε(vh) dx + λ

∫
�

(div uh + tr ah) (div vh + tr bh) dx

=
∫

�

f · vh dx for all (vh, bh) ∈ V h × Ẽh.(3.6)

The reductions above are of interest when nonlinear problems are treated.
Then the softening induced by the enhanced strains is to be kept as small
as possible since it is reported [16,19] that numerical solutions may exhibit
instabilities such as checkerboard modes in the incompressible limit.Whether
such effects are possible for linear problems, in unclear from the existing
literature. 	


Problem Eh is equivalent to a mixed method [5,23], [4, p.152] and was
in fact first posed as a mixed problem [19]. The corresponding discrete stress
space Sh consists of all τ h in C(ε(V h) + Ẽh) that are L2 orthogonal to Ẽh,
i.e.,

Sh ⊂ C(ε(V h) + Ẽh) with Sh⊥Ẽh.(3.7)



Convergence and a posteriori error estimators for the EAS method 467

Theorem 1 ([5,23]) Problem Eh is equivalent to the following saddle point
problem: Find (uh, σ h) ∈ V h × Sh such that

(C−1σ h, τ h)0 − (τ h, ε(uh))0 = 0 for all τ h ∈ Sh ,

(σ h, ε(vh))0 = (f , vh)0 for all vh ∈ V h.
(3.8)

Here (·, ·)0 denotes the L2 inner product, for scalar-, vector-, or matrix-
valued functions on �.

Proof Let uh, ah be a solution of (3.3) and set σ h := C(ε(uh) + ah). It fol-
lows from (3.3) that (σ h, bh)0 = 0 for all bh ∈ Ẽh. We conclude from (3.7)
that σ h ∈ Sh. Moreover, (3.3) implies (3.8)2 , and (3.8)1 is a consequence of
the orthogonality relation in (3.7). 	


The variational formulation (3.8) is also obtained when a discretization
is based on the Hellinger-Reissner principle.

Remark 2 The space Sh associated with (3.4) is easily described for rectan-
gular grids [2]. It can be chosen as those stresses which have on each rectangle
the form

τ11 = α11 + γ11 y, τ12 = α12, and τ22 = α22 + β22 x.(3.9)

Remark 3 There is also another interpretation of the mixed formulation (3.8).
The displacement vectors vh ∈ V h lead to strains with piecewise linear
traces. The enhancements specified above ensure that the L2 projections onto
piecewise constant traces are included. This causes a softening of the energy
function that is appropriate for λ → ∞. The internal energy is not directly
taken from the strain but from its projection onto C−1Sh. The projection is
orthogonal with respect to the energy norm. Although this property assists in
understanding the softening influence of the enhanced strains (cf. [4, Chapter
III.5]), the dependence of C−1Sh on the Lamé parameter λ is a complication
of its applicability.

���������

�
�

�
�

�
�

�
�

�
����

�
�
�
�
�
�
�
�
��

Ẽh

ε(V h)

Eh = C−1Sh

Fig. 1. C-orthogonal decomposition of ε(V h) to illustrate the relationship between the
spaces V h, Ẽh, and Sh through C−1σ h = ε(uh) + ah.
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The pairing Sh and V h must satisfy an inf-sup condition in order to guar-
antee stability of the formulation (3.8). This corresponds to a strengthened
Cauchy inequality for the finite element spaces ε(V h) and Ẽh with respect
to the energy norm [4, Chapter III.5].

Condition (a) in the following lemma is called a strengthened Cauchy
inequality.

Lemma 1 ([5, Lemma A]) Let X be a Hilbert space with inner product (·, ·)
with closed subspaces V and W . Let the constant c5 satisfy 0 < c5 < 1.
Then, the following assertions (a), (b), and (c) are pairwise equivalent:

(a) (v, w) ≤ c5‖v‖ ‖w‖ for all v ∈ V and w ∈ W ;

(b) ‖v + w‖ ≥
√

1 − c2
5 ‖v‖ for all v ∈ V and w ∈ W ;

(c) ‖v + w‖ ≥
√

1
2 (1 − c5) (‖v‖ + ‖w‖) for all v ∈ V and w ∈ W . 	


The spaces V h and Sh defined by (3.1) and (3.4) satisfy a strengthened
Cauchy inequality. Specifically,

(∇vh, bh)0 ≤ c5‖∇vh‖0 ‖bh‖0 for all vh ∈ V h and ηh ∈ Ẽh(3.10)

was established with c5 < 1 in [5,15]. The Lamé constant λ is not pres-
ent in the constant c5 since the finite element spaces and the L2 norm are
independent of λ by definition.

Remark 4 A uniform strengthened Cauchy inequality does not hold for the
energy norm. That is, the inequality

(C∇vh, bh)0 ≤ c6(λ)‖C1/2∇vh‖0 ‖C1/2bh‖0

for all vh ∈ V h and bh ∈ Ẽh(3.11)

is not valid for c6 independent of λ. Here, V h, Ẽh ⊂ � and � is endowed with
the energy scalar product (C·, ·)0. Lemma 1 permits a heuristic interpretation
for a degenerating constant c6(λ) in case of the energy norm: The locking of
the Q1 element has its origin in the fact that

λ1/2 ‖ div vh‖0

is too large for most functions [5, Theorem 3]. On the other hand, by adding
an appropriate enhanced strain bh,

λ1/2 ‖ div vh + tr bh‖0

becomes small. It follows from Lemma 1(b) that this is only possible if the
constant c6(λ) is close to 1. Hence, c6(λ) → 1 holds for λ → ∞.
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(a) (b) (c) (d)

Fig. 2 a–d. Restrictions of the basis functions of Mh to the macro-elements with values
±1 according to the sign indicated inside the elements

The failure of the uniform strengthened Cauchy inequality (3.11) is proved
as follows: Let pch be the scalar checkerboard mode function (generated by
the functions in Fig. 2d). Set

vh,x |T := pch xy in each quadrilateral T

where x and y are local coordinates as in (3.4) and vh,y := 0. Then we have

div vh|T = pch y in each quadrilateral T ,

and div vh ∈ tr Ẽh. If λ → ∞, the volume term dominates the energy func-
tional, and a nontrivial constant c5(λ) in the strengthened Cauchy inequality
(3.11) cannot be independent of λ and h.

We will make use of the strengthened Cauchy inequality for the L2 norm
as in [5], or in a slightly different context in [13].

Lemma 2 Assume that the spaces ε(V h) and Ẽh satisfy a strengthened
Cauchy inequality (3.10). Then, Problem Eh has a unique solution (uh, ah) ∈
V h × Ẽh and

‖u − uh‖1 + ‖ah‖0 ≤ c7

(
inf

vh∈V h
‖u − vh‖1 + c8h ‖ε(u)‖0

)
.(3.12)

The constant c7 is (λ, µ)-independent and c8 = (1 + λ/µ) 2
c4(1−c5)

. 	

Although not stated in this form, Lemma 2 was first proved by Reddy

and Simo [15]; the explicit form of the constant c8 is due to Braess [5]. It
is clear from the expression for c8 that (3.12) does not guarantee uniform
convergence in the incompressible limit λ → ∞. The remedy in the next
section will be more involved.

4 Uniform convergence in the incompressible limit

This section is devoted to an a priori estimate which is uniform in λ as
λ → ∞. For convenience, we confine our attention to plane problems. Let
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� be a polygonal domain and suppose that T2h is a regular triangulation of
� into parallelograms. Further let Th be a refinement of T2h, i.e., each par-
allelogram T ∈ T2h is partitioned into four congruent sub-parallelograms to
generate Th.

Theorem 2 There exists a constant c9 > 0 independent of λ, Th, f , and u

such that

‖u − uh‖1 + ‖ah‖0 ≤ c9h‖f ‖0.(4.1)

The essential point in the proof will be the design of an interpolant to the
solution of the continuous problem for which the trace of the discrete strain,

div vh + tr bh,

is small. We will deduce this from the fact that a Q1 finite element is con-
structed for which the mean value of div vh in each element is small. Set

divhwh := div vh + tr bh for each wh = (vh, bh) ∈ V h × Ẽh.(4.2)

The crucial tool is a lemma hidden behind the analysis in [3, p. 231] and
based on a regularity result in [22] plus a property of the divergence operator
[1].

Lemma 3 Let � be a polygonal domain. Assume that there is a linear oper-
ator

�h : (H 2(�) ∩ H 1
0 (�))2 −→ V h × Ẽh

such that, for all v ∈ (H 2(�) ∩ H 1
0 (�))2, we have

‖(v, 0) − �hv‖H 1(�)2×L2(�)2×2 ≤ c10 h‖v‖2(4.3)

and

divh(�hv) = 0 whenever div v = 0.(4.4)

If u ∈ V is the solution of the variational problem (2.1)–(2.3), we have

λ ‖ div u − divh�hu‖0 ≤ c11 h‖f ‖0.(4.5)

Proof For homogeneous boundary conditions, a regularity result due to Vog-
elius [22] shows that

‖u‖2 + λ‖ div u‖1 ≤ c12‖f ‖0.(4.6)

Since � is polygonal, Theorem 3.1 in [1] asserts the existence of u1 ∈
(H 2(�) ∩ H 1

0 (�))2 with

div u1 = div u and ‖u1‖2 ≤ c13‖ div u‖1.(4.7)
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By (4.3), (4.6), and (4.7),

‖divh((u1, 0) − �hu1)‖0 ≤ c10h‖u1‖2 ≤ c10c13h‖ div u‖1

≤ c10c13h

λ
‖f ‖0.(4.8)

From (4.4) and div(u − u1) = 0 it follows that divh(�h(u − u1)) = 0 and

divh((u, 0) − �hu) = divh((u1, 0) − �hu1).

Hence, (4.8) reads

‖divh((u, 0) − �hu)‖0 ≤ c10c13h

λ
‖f ‖0. 	
(4.9)

Construction 1 We establish an interpolation operator �h with the proper-
ties (4.3)–(4.4) in two steps, by considering an appropriate Stokes problem.

Step 1 Let Mh ⊂ L2
0(�) be the set of piecewise constant functions with

respect to the grid Th. The aim is to construct a function vh ∈ V h such that

(div vh, qh)0 = (div v, qh)0 for all qh ∈ Mh ,(4.10)

at least if div v = 0. Since the Q1-P0 finite element is known to suffer from
checkerboard instabilities, we apply a filter as in [11, p.167]. The restrictions
of the functions in Mh to a macro-element are spanned by the four func-
tions depicted in Fig. 2 a-d. Let Ah be the subspace of Mh spanned by the
checkerboard modes shown in Fig. 2d (on all macro elements), and set

Ṽ h := {vh ∈ V h : (div vh, qh) = 0 for all qh ∈ Ah},
(4.11)

M̃h := Mh ∩ A⊥
h .

The pair (Ṽh, M̃h) is known to be stable for the Stokes problem (see, for
example, [11, p.167]).

Given v ∈ (H 2(�) ∩ H 1
0 (�))2, we perform Fortin interpolation; that is,

we choose (vh, ph) ∈ Ṽ h × M̃h by

(∇vh, ∇zh)0 + (div zh, ph)0 = (∇v, ∇zh)0 for all zh ∈ Ṽ h,

(div vh, qh)0 = (div v, qh)0 for all qh ∈ M̃h.
(4.12)

The resulting function vh satisfies (4.10) whenever div v = 0. Indeed, the
relations that are not covered by (4.12)2 are directly built into the formula-
tion of the space Ṽ h by (4.11)1.
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An error estimate is obtained in the usual way. Let v2h,0 ∈ V 2h ⊂ Ṽ h

be the nodal interpolant to v. Standard scaling arguments combined with the
Bramble–Hilbert lemma lead to ‖v − v2h,0‖1 ≤ c14h|v|2. Hence,

‖ div(v − v2h,0)‖0 ≤
√

2 ‖v − v2h,0‖1 ≤ c14

√
2 h|v|2.(4.13)

By subtracting (∇v2h,0, ∇zh)0 and (div v2h,0, qh)0, resp., on both sides of
(4.12) we obtain a discrete Stokes problem for vh −v2h,0. The stability of the
Stokes problem asserts that

‖vh − v2h,0‖1 + ‖ div(vh − v2h,0)‖0 ≤ c15‖v − v2h,0‖1 ≤ c14c15h |v|2
and with the triangle inequality

‖vh − v‖1 + ‖ div(vh − v)‖0 ≤ c14(
√

2 + c15)h |v|2.(4.14)

Step 2 Let πh : L2(�) → Mh be the L2 orthogonal projection. Having vh

from the construction in Step 1, we will construct bh ∈ Ẽh such that

div vh + tr bh = πh(div vh),

ε12(vh) + bh,12 = πh(ε12(vh)).
(4.15)

As vh ∈ V h, all components of ε(vh) are affine functions on each T ∈ Th ,
and we find bh ∈ L(T ) from (3.4) such that

div vh + tr bh and ε12 + bh,12 are constant on each T ∈ Th,(4.16)

that is, constant on each quadrilateral in the fine grid. Moreover, the mean
value of bh on each T ∈ Th vanishes. This observation and (4.16) indeed
imply (4.15).

Now we set

�h(v) := (vh, bh) ∈ V h × Ẽh.(4.17)

Notice that, in the case div v = 0, (4.10) implies that div vh ⊥ Mh, and
the mean value of div vh vanishes on each element. Hence, divh �h(v) =
πh(div vh) = 0, and (4.4) holds.

From the usual approximation argument combined with (4.14)–(4.15) we
conclude that

‖ tr bh‖0 = ‖πh(div vh) − div vh‖0

= ‖πh(div vh − div v) + (πh(div v) − div v) + div(v − vh)‖0

≤ 2‖ div vh − div v‖0 + c16h‖ div v‖1 ≤ c17h‖v‖2 .

Similarly, the off-diagonal entries of bh can be estimated, and it follows that

‖bh‖0 ≤ 4c17h‖v‖2 . 	
(4.18)
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Remark 5 When Ẽh is the smaller set suggested in (3.5), then (4.10)2 can be
ignored during the construction. This will indeed be appropriate for verifying
Theorem 2 for the modified set (3.5).

Proof of Theorem 2 We start the proof in the spirit of the lemma of Berger,
Scott, and Strang that is often quoted as the second Strang lemma, but later
we will make use of special properties.

For convenience, we introduce the bilinear form

(ε, η)C :=
∫

�

ε : Cη dx.(4.19)

The original Problem S may be formulated as

(ε(u), ε(v))C = (f , v)0 for all v ∈ H 1
0 (�),(4.20)

while the discretisation with Problem Eh may be rewritten as

(ε(uh) + ah, ε(v))C = (f , v)0 for all v ∈ V h,
(4.21)

(ε(uh) + ah, η)C = 0 for all η ∈ Ẽh.

Now we make use of Construction 1. Let

(wh, bh) := �hu,(4.22)

and set σ := Cε(u) and τ h := C(ε(wh) + bh). From Lemma 3 and (4.18)
we know that

‖u − wh‖1 + ‖bh‖0 + λ‖ div u − div wh − tr bh‖0 ≤ c18h‖f ‖0(4.23)

and thus

‖σ − τ h‖0 ≤ c19h‖f ‖0 .(4.24)

By subtracting ε(wh) + bh from the first argument in (4.21) and recalling
(4.20), it follows that, for all vh ∈ V h and all ηh ∈ Ẽh,

(ε(uh − wh) + ah − bh, ε(vh))C = (ε(u − wh) − bh, ε(vh))C,
(4.25)

(ε(uh − wh) + ah − bh, ηh)C = −(ε(wh) + bh, ηh)C .

We look at the right-hand side of (4.25)2 in more detail:

(ε(wh) + bh, ηh)C = 2µ

∫
�

(ε11(wh)ηh,11 + ε22(wh)ηh,22) dx

+2µ

∫
�

(bh,11ηh,11 + bh,22ηh,22) dx

+4µ

∫
�

(ε12(wh) + bh,12) ηh,12dx

+2λ

∫
�

(div wh + tr bh) tr ηh dx .
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The first integral vanishes since L(Th) has been chosen such that the functions
in the integral are orthogonal on each element. It follows from (4.16) that the
third and the fourth integral also vanish. Hence, only the second integral may
be nonzero and

|(ε(wh) + bh, ηh)C| ≤ 2µ‖bh‖0‖ηh‖0 .(4.26)

Now we choose the test functions vh := uh −wh and ηh := ah − bh, add
the equations above, and obtain, by eventually applying (4.24) and (4.18),

2µ‖ε(uh − wh) + ah − bh‖2
0

≤ (ε(u − wh) − bh, ε(uh − wh))C − (ε(wh) + bh, ah − bh)C

≤ (σ − τ h, ε(uh − wh))0 + 2µ‖bh‖0‖ah − bh‖0

≤ c20h‖f ‖0

(
‖ε(uh − wh)‖0 + ‖ah − bh‖0

)
.(4.27)

The strengthened Cauchy inequality (3.10) and Lemma 1(c) show, with (4.27)
in the final step, that

√
(1 − c5)/2

(
‖ε(uh − wh)‖2

0 + ‖ah − bh‖2
0

)
≤ ‖ε(uh − wh) + ah − bh‖2

0

≤ c20/2µ h‖f ‖0

(
‖ε(uh − wh)‖0 + ‖ah − bh‖0

)
.

After dividing by the sum of the two norms from the last line and applying
Young’s inequality we arrive at

‖ε(uh − wh)‖0 + ‖ah − bh‖0 ≤ c21h‖f ‖0.(4.28)

This inequality together with (4.23) and the triangle inequality yields finally

‖ε(u − uh)‖0 + ‖ah‖0 ≤ c22h‖f ‖0. 	
(4.29)

Remark 6 We do have uniform convergence of the strains, but we do not have
uniform convergence for the spherical part of the stresses. This corresponds
to the fact that we do not get an inf-sup condition for the mixed method
(3.8) that is independent of λ; cf. the discussion in Remark 4. In contrast to
PEERS elements, we only have available trial functions for the stresses that
are modifications of stresses of the form Cε(v), v ∈ V h, that are derived from
the assumed strains.
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5 A posteriori error estimates

This section is devoted to computable upper error bounds for reliable error
control. In the first step we justify our choice of norms on the spaces

L := {σ ∈ L2(�; R
d×d
sym ) :

∫
�

tr(σ )dx = 0} and V := H 1
0 (�)d,

namely, the L2-norm on L and the H 1-norm in V . Recall that C is the fourth-
order elasticity tensor which depends on the two material parameters µ and
λ in (2.3).

The restriction on the traces in the definition of the space L is satisfied
by all σ = Cε(u) whenever u ∈ V . Indeed, from tr(σ ) = (2µ + dλ) div u

and u = 0 on � it follows by the divergence theorem that∫
�

tr(σ ) dx = (dλ + 2µ)

∫
�

div u dx

= (dλ + 2µ)

∫
∂�

u · n ds = 0.(5.1)

Theorem 3 The operator A : L × V → (L × V )′ defined by

〈A(σ , u), (τ , v)〉 := (C−1σ , τ )0 − (σ , ε(v))0 − (τ , ε(u))0

for all σ , τ ∈ L and u, v ∈ V , is bounded and bijective, and the operator
norms of A and A−1 are λ-independent.

Remark 7 (a) The operator A in the theorem belongs to a bilinear form asso-
ciated with the Hellinger-Reissner principle; compare with Problem Eh when
recast in terms of stresses.

(b) The discrete situation involves σ h := C(ε(uh) + ah), and Cε(uh)

belongs to L because of (5.1) while Cah belongs to L by assumption (as
every component in (3.4) has integral mean zero over each element, hence
over �).

(c) The theorem asserts that the chosen norms provide a λ-robust isomor-
phism and so motivates our choice of norms. An analogous result for energy
norms (e.g., take the norm induced by the scalar product (C−1σ , τ )0 on L) is
unknown.

Proof of Theorem 3 A proof is given for completeness. For this purpose we
refer to the general theory of mixed formulations [4,6]. The continuity and
inf-sup condition on (σ , ε(u))0 are well established, with λ-independent con-
stants. The kernel of this bilinear form reads

Z := {σ ∈ L : div σ = 0}
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(where div is understood in the distributional sense). From the representation
(2.4) we infer that the continuity bound of the bilinear form (C−1σ , τ )0 is
λ-independent as well. Next, we need to check the ellipticity of the quadratic
form (C−1τ , τ )0 only on the kernel Z. (It is no drawback that ellipticity on
the larger set L holds only with a λ-dependent constant).

To verify uniform Z-ellipticity, we follow ideas from the proof of Lemma
4.1 in [7]. Given τ ∈ Z ⊂ L, we know that

∫
�

tr(τ )dx = 0. By Proposition
IV.3.1 in [6] we have

‖τ‖0 ≤ c23(‖ dev τ‖0 + ‖ div τ‖0).

Here, div τ = 0 holds. Since the deviatoric parts and the traces are L2 orthog-
onal, it follows from dev C−1τ = 1

2µ
dev τ and tr(C−1τ ) = 1

2µ+dλ
tr(τ ) that

‖ dev τ‖2
0 = 2µ (dev τ , dev(C−1τ ))0 ≤ 2µ (τ , C−1τ )0 .

By combining the last two inequalities we obtain

(τ , C−1τ )0 ≥ 1

2µ
‖ dev τ‖2

0 ≥ 1

2µc2
23

‖τ‖2
0 . 	


The assumption on the triangulation and elements in previous sections
can be relaxed for our a posteriori error estimates. We suppose that uh ∈
V h ⊂ V and ah ∈ Ẽh ⊂ L are T -piecewise smooth functions (i.e., below,
divT σ h ∈ L2(�)2, and [σ h · nE ] ∈ L2(∪E)2), where T is a regular triangu-
lation of � into closed parallelograms. In terms of σ h := C(ε(uh)+ah), Eq.
(4.21)1 reads∫

�

σ h : ε(vh) dx =
∫

�

f · vh dx for all vh ∈ V h = S1
0 (T )

for the conforming Q1 finite element space S1
0 (T ) ⊂ H 1

0 (�) subordinated
to the triangulation T and ∫

�

tr(ah) dx = 0.

Together with symmetry of ah, this yields σ − σ h ∈ L.
To describe the a posteriori upper error bound of σ − σ h recall that divT

denotes the T -piecewise divergence on �, and let [σ h · nE ] denote the jump
of σ h on an edge E ∈ E with unit normal nE |E = nE . Let hT and hE denote
the sizes of the meshes on � and of the edges on ∪E , respectively.

Theorem 4 There exists a (λ, hT , hE)-independent constant c24 > 0 (that
depends on �, the aspect ratio of the elements, and µ) with

c24(‖σ − σ h‖0 + ‖u − uh‖1)

≤ µ‖ah‖0 + ‖hT (f + divT σ h)‖0 + ‖h1/2
E [σ h · nE ]‖L2(∪E).(5.2)
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Remark 8 (a) The reliable error estimate in Theorem 4 is efficient as well.
Adopting arguments from [20] one can prove [21] (with λ-independent
constant c25)

‖hT (f + divT σ h)‖0 + ‖h1/2
E [σ h · nE ]‖L2(∪E)

≤ c25‖σ − σ h‖0 + h.o.t.,(5.3)

where h.o.t. denotes higher order terms ‖hT (f −f T )‖0 for the T -piece-
wise constant integral means fT .

(b) The enhancement ah of the strain can be understood as a residue of (2.3),
ah = ε(u − uh) − C−1(σ − σ h) and

‖ah‖0 ≤ c26‖ σ − σ h ‖0 + ‖ u − uh ‖1.(5.4)

According to (2.4), the constant c26 is independent of λ.
(c) Inhomogeneous Dirichlet data and Neumann conditions can be included

as well. If Neumann conditions are present, we can omit the side restric-
tion in L; cf. [7] for arguments in this direction.

(d) The description is restricted to parallelograms, but the theorem is valid for
triangles or three dimensional elements as well. However, the enhanced
strain method is degenerate for triangular elements; cf. [15].

The proof of Theorem 4 requires weak interpolation of Clément type.

Lemma 4 ([10]) There exists an operator J : V → S1
0 (T )d such that, for

all v ∈ V ,

‖h−1
T (v − Jv)‖L2(�) + ‖h−1/2

E (v − Jv)‖L2(∪E) ≤ c27‖∇v‖L2(�). 	
(5.5)

Proof of Theorem 4 The stability of A in Theorem 3 asserts that A satisfies
an inf-sup condition. Since σ − σ h ∈ L and u − uh ∈ V , for some constant
c28, we find τ ∈ L and v ∈ V with

‖ τ ‖0 + ‖ v ‖1 ≤ c28(5.6)

and

‖ σ − σ h ‖0 + ‖ u − uh ‖1

= 〈A(σ − σ h, u − uh), (τ , v)〉
= (C−1(σ − σ h) − ε(u − uh), τ )0 − (σ − σ h, ε(v))0.

Owing to σ = Cε(u) and C−1σ h − ε(uh) = ah, the Galerkin orthogonality
yields

(σ − σ h, ε(vh))0 = 0 for vh := Jv.
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Elementwise integration by parts, and Cauchy’s inequality yields

〈A(σ − σ h, u − uh), (τ , v)〉 = −(ah, τ )0 − (σ − σ h, ε(v − Jv))0

≤ ‖ ah ‖0 ‖ τ ‖0 − (f + div σ h, v − Jv)0 +
∫

∪E
[σ hnE ](v − Jv) ds

≤ c28‖ ah ‖0 + ‖ h−1
T (v − Jv) ‖0 ‖hT (f + divT σ h)‖0

+‖ h
−1/2
E (v − Jv) ‖L2(∪E)‖h1/2

E [σ hnE ]‖L2(∪E).

This inequality, Lemma 4, and (5.6) imply that

‖ σ − σ h ‖0 + ‖ u − uh ‖1

≤ c28‖ ah ‖0 + c27c28‖hT (f + divT σ h)‖0

+c27c28‖h1/2
E [σ hnE ]‖L2(∪E). 	
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