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SUMMARY

The quasi-static evolution of an elastoplastic body with a multi-surface constitutive law of linear kine-
matic hardening type allows the modelling of curved stress–strain relations. It generalizes classical
small-strain elastoplasticity from one to various plastic phases. This paper presents the mathematical
models and proves existence and uniqueness of the solution of the corresponding initial-boundary value
problem. The analysis involves an explicit estimate for the e�ective ellipticity constant. Copyright ?
2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Solid bodies undergo deformations when subjected to forces. Usually, the response is elastic
for su�ciently small stresses. Moreover, many materials begin to exhibit plastic �ow when
the stresses reach a regime of critical values, given by the so-called yield surface. The precise
relation between stress and strain is speci�ed by the constitutive law. In mechanics, a large
variety of constitutive laws has been developed in order to describe the elastoplastic behaviour
of solid materials in a phenomenologically correct manner. We refer in particular to the books
[1,2] and the surveys [3,4].
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Many of those models feature certain non-linearities in their de�ning equations, and the
solvability of the corresponding initial-boundary value problems are open questions. On the
other hand, several models can be transformed into a variational formulation for which a
mathematical existence and uniqueness theory is known. This is true in particular for vis-
coplasticity, because the presence of viscosity regularizes the problem, and for models which
attempt only to describe a purely increasing loading (like Hencky’s model and its variants),
because the situation becomes much simpler if one neglects the memory phenomena induced
by cyclic loading. For elastoplastic (that is, rate-independent) models which encompass cyclic
loading, in particular models of kinematic hardening, results are sparse. Basic results are due
to Johnson [5].
In this two-part article we consider the quasi-static initial-boundary value problem for small

strain elastoplasticity with a multi-surface constitutive law of linear kinematic hardening type.
The main goal is the construction and error analysis of a discrete solution method which takes
care of the multi-surface aspect of the constitutive law. This will be done in the second part.
In the �rst part, we present the precise formulation of the initial-boundary value problem and
prove existence and uniqueness of its solution.
Indeed, the existence of such solutions in the quasi-static case has been obtained by Visintin

[6], chapter VII, Theorem 2.3, using the theory of variational inequalities. He proves �rst
that the dynamic problem has a unique solution, and then considers the quasi-static case as
a singular limit. Thus, he obtains existence with regularity L∞(0; T ;L2(�)) for the strain
�=(Du + DuT)=2 (the strain rates �t being Radon measures), but not uniqueness, the latter
stated as an open problem in Reference [6]. Our approach di�ers from his in that we use the
functional framework of Reference [7] which has been already used extensively for numerical
approximation and analysis of problems in elastoplasticity [7,8]. For the case of a single
yield surface, it is shown there how to obtain unique solvability of the quasi-static problem
from a suitable variational inequality formulation, with regularity H 1(0; T ;H 1(�)) for the
displacement u. We extend these results to the multi-surface case. In particular, we also
derive an estimate for the ellipticity constant whose size is critical for the performance of
numerical methods based on the variational formulation.

2. THE CONSTITUTIVE LAW

The constitutive law furnishes the relationship between the stress tensor � and the strain tensor
�. The classical law of kinematic hardening goes back to Melan [9] and Prager [10]. It is
local in the sense that any given material point x it involves only the time histories �=�(t)
and �= �(t) at that point. It is given by the following system of equations and an evolution
variational inequality:

�= e+ p (1)

�= �b + �p

�=Ce (2)

�b =Hp (3)

�p ∈Z; ṗ : (� − �p)60 for all �∈Z (4)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1697–1710
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Equation (1) represents the additive decomposition of the strain � into its elastic part e and
its plastic part p as well as of the stress � into the backstress �b and the plastic stress �p.
Equation (2) denotes a linear elastic law, in the isotropic case one has

C�=2��+ �(tr �)I (5)

where the (positive) coe�cients � and � are called Lam�e coe�cients. Here I denotes the
second order identity tensor (an identity matrix) and tr :Rd×d →R de�nes the trace of a
matrix, tr � :=

∑d
j=1 �jj, for �∈Rd×d, where d is the problem dimension. Equation (3) couples

the backstress �b and the plastic strain p through a linear mapping with a positive de�nite
hardening matrix H. For this reason, the model (1)–(4) is also called linear kinematic hard-
ening. A typical choice will be H= hI, where h¿0 is a hardening coe�cient. Variational
inequality (4) formalizes the Prandtl-Reu� normality rule, also called the principle of maxi-
mal dissipation. The set Z ⊂Rd×d

sym describes the admissible (plastic) stresses, its boundary @Z
is called the yield surface. We will exclusively use the standard von Mises cylinder with yield
stress �y

Z = {�∈Rd×d
sym : ‖dev �‖6�y} (6)

Here,

‖a‖2 = a : a; a : b=
d∑

i; j=1
aijbij (7)

de�nes the (Frobenius) norm and the corresponding scalar product, and the deviator of � is
de�ned as dev � :=� − (1=d)(tr �)I. The decomposition

Rd×d
sym =XD ×XI ; XD = {� : tr �=0}; XI = {tI : t ∈R} (8)

is orthogonal with respect to the scalar product (7) and, according to (8), dev :Rd×d
sym →XD rep-

resents the orthogonal projection. The following lemma reformulates the variational
inequality (4) as a variational inequality with a dissipation function D (see Reference [7],
p. 90).

Lemma 1
Let (ṗ; �p)∈Rd×d

sym ×Rd×d
sym . Then

�p ∈Z; ṗ : (� − �p)60 for all �∈Z (9)

together with tr ṗ=0 hold if and only if

�p : (q − ṗ)6D(q)− D(ṗ) ∀q∈Rd×d
sym (10)

where D :Rd×d
sym →R ∪ {∞},

D(q)=

{
�y‖q‖ if tr q=0

+∞ otherwise
(11)

Proof
(⇒) We rewrite (9) as

�p : (q − ṗ)6�p : q − � : ṗ ∀q∈Rd×d
sym ;∀�∈Z

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1697–1710
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Figure 1. Prandtl-Ishlinskii model of play type.

Setting �=�y(ṗ=‖ṗ‖) if ṗ 	=0, we obtain
�p : (q − ṗ)6�p : q − D(ṗ) ∀q∈Rd×d

sym (12)

which obviously holds also for ṗ=0. Furthermore, if tr q=0 then

�p : q=dev �p : q6‖dev �p‖‖q‖6�y‖q‖=D(q)

which together with (12) proves (10).
(⇐) From (10) it immediately follows that tr ṗ=0. Setting q=2ṗ in (10) it follows that

dev �p : ṗ=�p : ṗ6D(ṗ), so for all q with tr(q)=0 we have dev �p : q=�p : q6D(q), thus
‖dev �p‖6�y, i.e. �p ∈Z . On the other hand, q=0 yields −�p : ṗ6−D(ṗ), so for any �∈Z
we get

ṗ : (� − �p)6� : ṗ − D(ṗ)6dev � : ṗ − D(ṗ)6(‖dev �‖ − �y)‖ṗ‖60
The standard model of linear kinematic hardening as described above introduces essentially

one additional internal state variable of tensor type, the plastic strain p, whose evolution
is governed by (4). In particular, ṗ(t) 	=0 only if �p ∈ @Z . More complicated models for
the constitutive law involve additional surfaces and internal state variables. We treat here a
speci�c model which goes back in the 1D case to Prandtl [11] and Ishlinskii [12] and in
the multi-dimensional case to Besseling [13] and Iwan [14]. The model discussed here is the
one called Prandtl-Ishlinskii model of play type [6,15] with �nitely many surfaces, whose
rheological structure is depicted in Figure 1. The plastic strain p is decomposed as

p=
∑
r∈I

pr; I = {1; : : : ; M} (13)

we have backstresses �br ,

�br =H rpr; r ∈ I

and plastic stresses �pr

�=�br + �pr ; r ∈ I

and a family of a variational inequalities

�pr ∈Zr; ṗr : (�r − �pr )60 ∀�r ∈Zr; r ∈ I (14)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1697–1710
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with convex restrictions Zr , r ∈ I . If one wants to have in�nitely many surfaces, a natural way
to do this is to replace (13) by

p=
∫
I
pr d�(r) (15)

where � is a (�nite) measure on some set I . In that case, (14) represents an in�nite system
of variational inequalities.

3. THE BOUNDARY VALUE PROBLEM

The elastoplastic continuum is assumed to occupy a bounded domain �⊂Rd, with a Lipschitz
boundary �= @�. The boundary � is split into a Dirichlet boundary �D, a closed subset of
� with a positive surface measure, and the remaining (relatively open and possibly empty)
Neumann part �N :=�\�D. We pose essential and static boundary conditions, namely

u=0 on �D and � · n= g on �N (16)

where g is a given applied surface force and n denotes the outer normal to the boundary
�N. Our analysis will be restricted to the study of a boundary value problem de�ned in these
functional spaces:

H 1
D(�)= {v∈H 1(�)d | v=0 on �D}

Q= {q : q∈ devRd×d
sym ; qij ∈L2(�)}

where H 1(�) and L2(�) are the usual Sobolev and Lebesgue spaces. The equilibrium between
external and internal forces in the quasi-static case is given by

div �(x; t) + f(x; t)=0; x∈�; t ∈ (0; T ) (17)

where � satis�es the boundary condition (16). With the relation

�(v)=
1
2

(
@vi
@xj

+
@vj
@xi

)
(18)

the variational formulation of (17) becomes∫
�
� : �(v) dx=

∫
�
f · v dx +

∫
�N

g · v dS(x) (19)

valid for all t ∈ [0; T ] and all v∈H 1
D(�). According to Lemma 1, we express the constitutive

law by the form given in (10)

�pr : (qr − ṗr)6Dr(qr)− Dr(ṗr) ∀ qr ∈Q; r ∈ I (20)

where (note that we only consider arguments with zero trace here)

Dr(qr)=�yr ‖qr‖ (21)
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The integral form of (20) over � is given by∫
�
�pr : (qr − ṗr) dx6

∫
�
Dr(qr) dx −

∫
�
Dr(ṗr) dx (22)

We equivalently replace v by v − u̇ in the force equilibrium (19), sum the inequalities (22)
over r and subtract (19) to obtain

∫
�
� :
(
�(v)−∑

r∈I
qr

)
dx −

∫
�
� :
(
�(u̇)−∑

r∈I
ṗr

)
dx

+
∑
r∈I

∫
�
�br : (qr − ṗr) dx +

∑
r∈I

∫
�
Dr(qr) dx −∑

r∈I

∫
�
Dr(ṗr) dx

−
∫
�
f · (v − u̇) dx −

∫
�N

g · (v − u̇) dS(x)¿0 (23)

In the case of a single yield surface, i.e. I = {1}, this corresponds to the primal varia-
tional formulation discussed in Section 7.1 of Reference [7]. Next, we eliminate �=Ce=
C(�(u)− p), �br =H rpr and collect the remaining unknowns as a vector of functions

w=(u; (pr)r∈I)

We consider w as an element of the Hilbert space (the scalar product will be de�ned below)

H=H 1
D(�)×

∏
r∈I

Q (24)

Writing z=(v; (qr)r∈I), we de�ne a bilinear form a(·; ·), a linear functional ‘(·) and a non-
linear functional  (·) by

a :H×H→R; a(w; z) =
∫
�
C
(
�(u)−∑

r∈I
pr

)
:
(
�(v)−∑

r∈I
qr

)
dx

+
∑
r∈I

∫
�
H rpr : qr dx

‘(t) :H→R; 〈‘(t); z〉=
∫
�
f(t) · v dx +

∫
�N

g(t) · v dS(x)

 :H→R;  (z) =
∑
r∈I

∫
�
Dr(qr) dx (25)

From (23) we thus obtain the time-dependent variational inequality

a(w(t); z − ẇ(t)) +  (z)−  (ẇ(t))¿〈‘(t); z − ẇ(t)〉; for all z ∈H (26)

We assume zero initial conditions

w(0)=0 (27)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1697–1710
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We thus have arrived at the following formulation of the boundary value problem of quasi-
static elastoplasticity.

Problem 1 (BVP of quasi-static multi-surface elastoplasticity)
For given ‘∈H 1(0; T ;H∗) with ‘(0)=0, �nd w∈H 1(0; T ;H) with w(0)=0, such that (26)
holds for almost all t ∈ (0; T ).
The case of in�nitely many surfaces (15) again leads to Problem 1, see Reference [16].

We set

H=H 1
D(�)×L2�(I ;Q) (28)

where

L2�(I ;Q) :=
{
f|f : I →Q;

∫
r∈I

‖fr‖2L2 d�(r)¡∞
}

The linear functional ‘(·) is de�ned as in (25). The bilinear form a(·; ·) and the non-linear
functional  (·) are given by

a :H×H→R; a(w; z) =
∫
�
C
(
�(u)−

∫
I
pr d�(r)

)
:
(
�(v)−

∫
I
qr d�(r)

)
dx

+
∫
�

∫
I
H rpr : qr d�(r) dx (29)

 :H→R;  (z) =
∫
�

∫
I
Dr(qr) d�(r) dx

4. EXISTENCE AND UNIQUENESS

In this section, we will prove the unique solvability of Problem 1. We pose the natural
assumption that the elastic and hardening tensors are symmetric and positive de�nite,

� :C�=C� : � for all �; �∈Rd×d

� :H r�=H r� : � for all �; �∈Rd×d; r=1; : : : ; M
(30)

and there exist constants c; hr¿0 such that

C� : �¿c‖�‖2 for all �∈Rd×d

H r� : �¿hr‖�‖2 for all �∈Rd×d; r=1; : : : ; M
(31)

We now state the main theorem of this paper.

Theorem 1
Assume that (30) and (31) hold, let ‘∈H 1(0; T ;H∗) with ‘(0)=0. Then there exists a
unique solution w∈H 1(0; T ;H) of Problem 1.

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1697–1710
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We will prove that Theorem 1 is implied by the following theorem, which in turn constitutes
a special case of Theorem 7.3 in Reference [7].

Theorem 2 (Han and Reddy [7])
Let H be a Hilbert space, a :H×H→R be a bilinear form that is symmetric, bounded, and
H-elliptic; ‘∈H 1(0; T ;H∗) with ‘(0)=0; and  :H→R non-negative, convex, positively
homogeneous, and Lipschitz continuous. Then there exists a unique w∈H 1(0; T ;H) with
w(0)=0 which satis�es the variational inequality (26) for almost all t ∈ (0; T ).
In order to prove Theorem 1, we have to prove that the assumptions of Theorem 2 are

satis�ed. As mentioned above, for a �nite index set I = {1; : : : ; M} we set

H=H 1
D(�)×

M∏
r=1

Q (32)

The scalar product and the induced norm are given by

(w; z)H := (u; v)H 1 +
M∑
r=1
(pr; qr)L2 ; ‖w‖2H := (u; u)2H 1 +

M∑
r=1
(pr; pr)2L2

where

(pr; qr)L2 =
∫
�
pr : qr dx; ‖pr‖2L2 = (pr; pr)L2

Proposition 1 (Boundedness of the bilinear form a(·; ·))
The bilinear form a(·; ·) is bounded in the space H,

|a(w; z)|6
(
(M + 1)‖C‖+ max

r=1;:::;M
‖H r‖

)
‖w‖H‖z‖H (33)

Proof
We have ∣∣∣∣

∫
�

(
C(�(u)−

M∑
r=1

pr)
)
:
(
�(v)−

M∑
r=1

qr

)
dx
∣∣∣∣

6‖C‖ ·
∣∣∣∣
∣∣∣∣�(u)−

M∑
r=1

pr

∣∣∣∣
∣∣∣∣
L2

·
∣∣∣∣
∣∣∣∣�(v)−

M∑
r=1

qr

∣∣∣∣
∣∣∣∣
L2

(34)

Because
(∑M

r=0 ar

)2
6(M + 1)

∑M
r=0 a

2
r in R, and because ‖�(u)‖L26‖u‖H 1 , we have

∣∣∣∣
∣∣∣∣�(u)−

M∑
r=1

pr

∣∣∣∣
∣∣∣∣
2

L2
6
(

‖�(u)‖L2 +
M∑
r=1

‖pr‖L2

)2

6 (M + 1)
(

‖�(u)‖2L2 +
M∑
r=1

‖pr‖2L2
)

6 (M + 1)‖w‖2H (35)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1697–1710
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likewise for the rightmost term in (34). Moreover, we have∣∣∣∣ M∑
r=1

∫
�
H rpr : qr dx

∣∣∣∣6
(
max

r=1;:::;M
‖H r‖

)
M∑
r=1

‖pr‖L2‖qr‖L2 (36)

and

M∑
r=1

‖pr‖L2‖qr‖L26
(

M∑
r=1

‖pr‖2L2
)1=2( M∑

r=1
‖qr‖2L2

)1=2
6‖w‖H‖z‖H (37)

Putting together (34)–(37), we obtain the assertion.

We now turn to the problem to �nd an ellipticity constant ce¿0 satisfying

a(w;w)¿ce‖w‖2H for all w∈H

We �rst determine the largest constant k(M), M ∈N, such that(
x0 −

M∑
r=1

xr

)2
+

M∑
r=1

x2r¿k(M)
M∑
r=0

x2r (38)

holds for all x0; x1; : : : ; xM ∈R. Indeed, we have(
x0 −

M∑
r=1

xr

)2
+

M∑
r=1

x2r = xTAx (39)

where

A=D+ a⊗ a; D=diag(0; 1; : : : ; 1); a=(1;−1; : : : ;−1) (40)

Thus, the optimal constant k(M) in (38) is equal to the smallest eigenvalue of A, which we
will compute with the aid of the following Lemma.

Lemma 2
Let D∈RN×N be a diagonal matrix, D=diag(d1; : : : ; dN), dj 	=0 for j=1; : : : ; N , let a∈RN .
Then there holds

det(D+ a⊗ a)=

(
N∏

j=1
dj

)(
1 +

N∑
j=1

a2j =dj

)
(41)

Proof
The assertion follows from the identity

det(D+ a⊗ a) = det

(
D+ a⊗ a −a

0 1

)
= det

(
D −a

aT 1

)

=det


D −a

0 1 +
∑N

j=1 a
2
j =dj


 (42)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1697–1710
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Table I. Values of k for di�erent values of M .

M k

1 0.3819
2 0.2679
3 0.2087
4 0.1715
5 0.1458
10 0.0839
100 0.0098
1000 9.98 10e−4

To see that the second equality holds, for j=1; : : : ; N we multiply the last column

(−a

1

)
of B :=

(
D −a

aT 1

)

by −aj and add it to the jth column of B. Similarly, we obtain the third inequality in (42),
if for j=1; : : : ; N we multiply the jth row of B by −aj=dj and add it to the last row of B.

We now determine the smallest eigenvalue �min of A in (40). By (39), we obviously have
�min¿0. By Lemma 2 we have, if � 	=0; 1,

det(A − �I)= − �(1− �)M
(
1 +

1
−�

+
M
1− �

)
(43)

Besides 0 and 1, the zeroes of (43) are given by �1;2 = 1 +M=2± 1=2√4M +M 2. Thus,

k(M)= �min =1 +
M
2

− 1
2

√
4M +M 2 (44)

Table I displays some values of k. Now we prove the ellipticity of the bilinear form a(·; ·).
By Korn’s inequality,

∫
�

‖�(u)‖2 dx¿K‖u‖2H 1 for all u∈H 1
D(�) (45)

holds for some constant K =K(�; d).

Proposition 2 (Ellipticity of the bilinear form a(·; ·))
The bilinear form a(·; ·) is H-elliptic,

a(w;w)¿ (k(M) min{c; h1; : : : ; hM} min{1; K(�; d)}) ‖w‖2H (46)

where k(M) is given in (44) and c; hr are given in (31).

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1697–1710
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Proof
We can bound the integrand in the scalar product a(w;w) from below as

C
(
�(u)−

M∑
r=1

pr

)
:
(
�(u)−

M∑
r=1

pr

)
+

M∑
r=1
H rpr :pr

¿c
∣∣∣∣
∣∣∣∣�(u)−

M∑
r=1

pr

∣∣∣∣
∣∣∣∣
2

+
M∑
r=1

hr‖pr‖2

¿min{c; h1; : : : ; hM}
(∣∣∣∣
∣∣∣∣�(u)−

M∑
r=1

pr

∣∣∣∣
∣∣∣∣
2

+
M∑
r=1

‖pr‖2
)

(47)

The assertion now follows from (38) and Korn’s inequality. Note that, if (38) is valid for all
scalars xr ∈R, it is also valid for all tensors xr ∈Rd×d.

The functional

 (z)=
M∑
r=1

∫
�
Dr(qr) dx; Dr(qr)=�yr ‖qr‖ (48)

is a convex, non-negative and positively homogeneous functional, because Dr has those
properties.

Proposition 3 (Lipschitz continuity of the functional  (·))
The functional  (·) is a Lipschitz continuous functional in the space H with the Lipschitz
constant

L=
(
max

r=1;:::;M
�yr

)
meas(�)1=2M 1=2 (49)

Proof
Let us de�ne z1 = (v1; q11; : : : ; q

1
M ); z

2 = (v2; q21; : : : ; q
2
M ). Then

| (z1)−  (z2)| =
M∑
r=1

∣∣∣∣
∫
�
�yr (‖q1r‖ − ‖q2r‖) dx

∣∣∣∣
6
(
max
r=1;:::; r

�yr

)
M∑
r=1

∫
�

‖q1r − q2r‖ dx (50)

Moreover,

M∑
r=1

∫
�

‖q1r − q2r‖ dx6meas(�)1=2
M∑
r=1

‖q1r − q2r‖L2

6meas(�)1=2M 1=2
(

M∑
r=1

‖q1r − q2r‖2L2
)1=2

(51)

Putting (50) and (51) together, the assertion follows.
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We now have shown that all assumptions of Theorem 2 are satis�ed in Problem 1. Thus,
Theorem 1 is proved.

5. THE CASE OF INFINITELY MANY SURFACES

The main existence and uniqueness theorem (Theorem 1) can be extended to the case of
in�nitely many surfaces given by (28) and (29). We present the results corresponding to
Propositions 1, 2 and 3 and sketch the changes in the arguments, more details are given in
Reference [16]. Firstly, note that the estimate (35) in the proof of the boundedness of a(·; ·)
can be modi�ed to

‖�(u)−
∫
I
pr d�(r)‖2L262

(
‖�(u)‖2L2 + �(I) ·

∫
I
‖pr‖2L2 d�(r)

)

62 max{1; �(I)}(‖�(u)‖2L2 + ‖p‖2L2�(I ;Q))
(52)

and consequently the constant (M + 1) in Proposition 1 is replaced by 2 max{1; �(I)}, i.e.
the following proposition holds.

Proposition 4 (Boundedness of the bilinear form a(·; ·), case of in�nitely many surfaces)
The bilinear form a(·; ·) is bounded in the space H,

a(w; z)6
(
2 max{1; �(I)}‖C‖+ sup

r∈I
‖H r‖

)
‖w‖H‖z‖H (53)

Secondly, in order to prove the ellipticity of the bilinear form a(·; ·) we will determine a
constant k(�) such that

(
x0 −

∫
I
xr d�(r)

)2
+
∫
I
x2r d�(r)¿k(�)

(
x20 +

∫
I
x2r d�(r)

)
(54)

holds for all x0; xr ∈R; r ∈ I;
∫
I x
2
r d�(r)¡∞. Indeed, applying the argument from [7], page 168,

the left-hand side of (54) can be bounded from below as follows:

(
x0 −

∫
I
xr d�(r)

)2
+
∫
I
x2r d�(r)

= x20 +
(∫

I
xr d�(r)

)2
− 2x0

(∫
I
xr d�(r)

)
+
∫
I
x2r d�(r)

¿x20 +
(∫

I
xr d�(r)

)2
− dx20 − 1

d

(∫
I
xr d�(r)

)2
+
∫
I
x2r d�(r)

¿(1− d)(x0)2 +
[(
1− 1

d

)
�(I) + 1

] ∫
I
x2r d�(r) (55)
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Here d∈ (0; 1) is arbitrary, and we have used the inequality 2ab6da2+(1=d)b2 for all a; b∈R
and the Cauchy-Schwarz inequality(∫

I
xr d�(r)

)2
6
∫
I
1 d�(r) ·

∫
I
x2r d�(r)=�(I)

∫
I
x2r d�(r)

Now, for all d∈ (�(I)=1 + �(I); 1) we have min{1−d; 1−�(I) (1− d)=d}¿0. Consequently,
(54) holds if we set

k(�) = max
d∈

(
�(I)
1+�(I) ;1

) min
{
1− d; 1− �(I)

1− d
d

}

=
1
2

(√
(�(I))2 + 4�(I)− �(I)

)
(56)

The following proposition holds.

Proposition 5 (Ellipticity of the bilinear form a(·; ·), case of in�nitely many surfaces)
The bilinear form a(·; ·) is H-elliptic,

a(w;w)¿
(
k(�) min

{
c; inf

r∈I
{hr}

}
min{1; K(�; d)}

)
‖w‖2H (57)

where k(�) is given in (56) and c; hr are given in (31).

The extension of the proof of Proposition 3 is straightforward.

Proposition 6 (Lipschitz continuity of the functional  (·), case of in�nitely many surfaces)
The functional  (·) is Lipschitz continuous on H with the Lipschitz constant

L=sup
r∈I

{�yr }meas(�)1=2�(I)1=2 (58)

ACKNOWLEDGEMENTS

The authors are pleased to acknowledge support by the German Research Foundation (DFG) through the
Graduiertenkolleg 357 ‘E�ziente Algorithmen und Mehrskalenmethoden’ in Kiel, Germany. The third
author would also like to thank the Austrian Science Fund ‘Fonds zur F	orderung der wissenschaftlichen
Forschung (FWF)’ for his support under grant SFB F013/F1306 in Linz, Austria.

REFERENCES

1. Lemaitre J, Chaboche J-L. Mechanics of Solid Materials. Cambridge University Press: Cambridge, 1990 (French
edition: Dunod: Paris, 1985)

2. Maugin GA. The Thermomechanics of Plasticity and Fracture. Cambridge University Press: Cambridge, 1992.
3. Chaboche J-L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of
Plasticity 1989; 5(3):247–302.

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1697–1710



1710 M. BROKATE, C. CARSTENSEN AND J. VALDMAN

4. Chaboche J-L. Modeling of ratchetting: evaluation of various approaches. European Journal of Mechanics
A/Solids 1994; 5(3):247–302.

5. Johnson C. On plasticity with hardening. Journal of Mathematical Analysis and Applications 1978; 62:325–336.
6. Visintin A. Di�erential Models of Hysteresis. Springer: Berlin, 1994.
7. Han W, Reddy BD. Plasticity: Mathematical Theory and Numerical Analysis. Springer: New York, 1999.
8. Han W, Reddy BD. Computational plasticity: the variational basis and numerical analysis. Computer Methods
in Applied Mechanics and Engineering 1995; 283–400.

9. Melan E. Zur Plastizit	at des r	aumlichen Kontinuums. Ingenieur-Archiv 1938; 9:116–126.
10. Prager W. Recent developments in the mathematical theory of plasticity. Journal of Applied Physics 1949;

9:235–241.
11. Prandtl L. Ein Gedankenmodell zur kinetischen Theorie der festen K	orper. Zeitschrift f�ur Angewandte

Mathematik und Mechanik 1928; 8:85–106.
12. Ishlinskii AJu. The general theory of plasticity with linear hardening (in Russian). Ukrainian Mathematical

Journal 1954; 6(3):314–325.
13. Besseling JF. A theory of elastic, plastic and creep deformations of an initially isotropic material showing

anisotropic strain-hardening, creep recovery and secondary creep. Journal of Applied Mechanics 1958; 25:
529–536.

14. Iwan WD. A distributed-element model for hysteresis and its steady state dynamic response. Journal of Applied
Mechanics 1966; 33:893–900.

15. Krej
c�� P. Hysteresis, Convexity and Dissipation in Hyperbolic Equations. GAKUTO International Series,
Mathematical Sciences and Applications, 1996.

16. Valdman J. Mathematical and numerical analysis of elastoplastic material with multi-surface stress-strain
relation. Ph.D. Thesis, Christian-Albrechts-Universit	at zu Kiel, 2002. Published at www.dissertation.de in Berlin,
Germany, 2002, ISBN 3-89825-501-8, download: http://www.sfb013.uni-linz.ac.at/∼jan/plasticity.pdf.

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1697–1710


