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Summary. The numerical solution of elliptic boundary value problems with
finite element methods requires the approximation of given Dirichlet data uD
byfunctionsuD,h in thetracespaceofafiniteelementspaceon�D. In thispaper,
quantitative a priori and a posteriori estimates are presented for two choices of
uD,h, namely the nodal interpolation and the orthogonal projection inL2(�D)

onto the trace space. Two corresponding extension operators allow for an esti-
mate of the boundary data approximation in global H 1 and L2 a priori and
a posteriori error estimates. The results imply that the orthogonal projection
leads to better estimates in the sense that the influence of the approximation
error on the estimates is of higher order than for the nodal interpolation.

Mathematics Subject Classification (1991): 65N30, 65R20, 73C50

1 Introduction

In this paper we investigate the influence of approximation errors in the
Dirichlet boundary data for finite element approximations of elliptic partial
differential equations. We restrict our attention to the model problem
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−�u = f in �, u = uD on �D, ∂nu = ∇u · n = g on �N(1.1)

but the results have an important impact also for the analysis of nonlinear
problems, see, e.g., [BC2] and [B] for an a posteriori error analysis of varia-
tional inequalitites and time-dependent Ginzburg-Landau equations, respec-
tively. Here, � is an open and bounded Lipschitz domain in R

d , d = 2 or
d = 3, with polygonal or polyhedral boundary, respectively, and n is the unit
outer normal to ∂�. We suppose that ∂� = �D ∪ �N where the Dirichlet
boundary �D is a closed subset of ∂� with positive surface measure and the
Neumann boundary is given by �N = ∂� \ �D. The basis for finite element
approximations of (1.1) is its weak form given by

(∇u; ∇v) = (f ; v)+
∫
�N

gv ds for all v ∈ H 1
D(�)(1.2)

where H 1
D(�) is the subspace of the Sobolev space H 1(�) given by

H 1
D(�) = {v ∈ H 1(�) : v|�D = 0},

and where (·; ·) denotes the L2 scalar product. Let T be a regular triangula-
tion of � into triangles (d = 2) or tetrahedra (d = 3) in the sense of Ciarlet
[Ci]. We consider the simplest conforming finite element space S1(T ) of all
continuous and piecewise affine functions on T . Moreover, we denote by
S1
D(T ) the subspace of all functions in S1(T ) that vanish on �D, and by

S1(�D) the trace space of functions in S1(T ) on �D. In order to formulate
the finite element approximation of (1.1), we fix a function uD,h ∈ S1(�D).
Then uh ∈ S1(T ) is the finite element solution of (1.1) if uh = uD,h on �D
and

(∇uh; ∇vh) = (f ; vh)+
∫
�N

gvh ds for all vh ∈ S1
D(T ).(1.3)

We assume that f ∈ L2(�), that g ∈ L2(�N), and that uD is continuous on
�D. More regularity of uD on the faces of the elements in �D will be required
for some of the estimates. Then the model problem (1.1) and its finite element
approximation (1.3) have unique solutions u and uh, respectively.

The focus of this paper is to provide appropriate tools which allow to ana-
lyze the influence of approximated boundary data on a priori and a posteriori
estimates for the error e = u− uh in H 1 and L2 and to analyze in particular
the effect of the choice of the discrete Dirichlet data uD,h on the estimates.
A standard choice for the Dirichlet data uD,h in finite element spaces is the
nodal interpolation IDuD of the given function uD. This does not influence
the a prioriH 1 error estimates since the approximation error does not appear
explicitly. As for a posteriori estimates, the results in [BC1,CB,CBJ,Ca1]
show that this choice affects the estimates only in a higher order term. Sur-
prisingly, this situation is different for the corresponding L2 error estimates
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based on duality techniques (Aubin-Nitsche trick). As a remedy we propose
to use uD,h = �DuD where �D is the L2 projection of the Dirichlet data
uD onto S1(�D). A surprising consequence of the analysis in this paper is
that the resulting contributions to a priori and a posteriori error estimates are
always of higher order, see Section 2 for an informal overview of our results
and Sections 6 and 7 for the precise statements.

2 Formulation of the problem and main results

In order to formulate our results, we recall the following general framework
for a posteriori error estimates. Let w be the solution of

−�w = 0 in �,

w = uD − uD,h on �D,

∂nw = 0 on �N.

Equivalently,w is the minimizer of the Dirichlet integral subject to the given
Dirichlet conditions. Thus

‖∇e‖2
L2(�)

= Res(e − w)+
∫
�

∇e · ∇w dx

where we define for a function v ∈ H 1
D(�) the residual by

Res(v) =
∫
�

∇e · ∇v dx =
∫
�

f v dx +
∫
�N

gv ds −
∫
�

∇uh · ∇v dx.

This identity and the orthogonality ‖∇e‖2
L2 = ‖∇w‖2

L2 + ‖∇(e − w)‖2
L2

allow us to estimate

‖∇e‖L2(�) ≤ ‖ Res ‖−1 + η
(1/2)
D(2.1)

where

η
(1/2)
D = ‖∇w‖L2(�) = inf

v∈H 1(�)
v|�D=uD−uD,h

‖∇v‖L2(�)(2.2)

and

‖ Res ‖−k = sup
v∈Hk(�)\{0}
v|�D=0

Res(v)

‖v‖Hk(�)

for k = 1, 2.(2.3)
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The L2 estimates are based on duality techniques and we define correspond-
ingly z to be the solution of the dual problem

−�z = e, in �,

z = 0 on �D,(2.4)

∂nz = 0 on �N.

We obtain by integration by parts

‖e‖2
L2(�)

= Res(z)−
∫
�D

(uD − uD,h) ∂nz ds.(2.5)

For the derivation of L2 error estimates we assume that the dual problem is
H 2 regular, i.e., that z ∈ H 2(�) and that the elliptic estimate

‖z‖H 2(�) ≤ c1‖e‖L2(�)(2.6)

holds with a constant c1 that only depends on� and�D.A sufficient condition
for this estimate to hold is that the domain � is convex and that �D = ∂�.
Then

‖e‖L2(�) ≤ c1
(‖ Res ‖−2 + η

(−1/2)
D

)
.

Here

η
(−1/2)
D = sup

φ∈H 2
DN(�)\{0}

1

‖φ‖H 2(�)

∫
�D

(uD − uD,h) ∂nφ ds(2.7)

where

H 2
DN(�) = {φ ∈ H 2(�) ∩H 1

D(�) : ∂nφ|�N = 0}.

The foregoing representations of the error in L2 and H 1 have the important
feature that they separate terms that depend on the given boundary data, the
expressions η(±1/2)

D , and terms that only depend on �D, namely the negative
norms of the residuals given by (2.3). Estimates for these residuals are well
established and can be found in the literature, see [AO,BS,BC1,CB,CBJ,
CV,EEHJ,V] for details. For completeness of the presentation, we quote a
few results in Section 3. The main focus of this paper is therefore to estab-
lish bounds on the additional error terms that reflect directly the influence
of the boundary data and their approximation. We give an overview of our
results in Table 1. The surprising observation is that the L2 projection of the
given Dirichlet data onto the trace space of the finite element functions on
the boundary gives always higher order contributions in a posteriori estimates
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Table 1. Overview of main results: approximation of the Dirichlet data by nodal interpo-
lation (ID) and by L2 projection (�D) and the corresponding contributions η(±1/2)

D in the
global L2 and H 1 a priori and a posteriori error estimates

Error Estimate η
(±1/2)
D for ID η

(±1/2)
D for �D

A priori H 1 0 O(h3/2)

A posteriori H 1 O(h3/2) O(h3/2)

A priori L2 O(h2) O(h5/2)

A posteriori L2 O(h2) O(h5/2)

than the nodal interpolation. The key to this result is the representation (2.7)
in which we can rewrite the boundary integral as∫

�D

(uD − uD,h) ∂nφ ds =
∫
�D

(uD − uD,h) (∂nφ − ψh) ds

for all ψh ∈ S1(�D), see the proof of Theorem 7.1.
These results can be easily extended in several directions.

Remark 2.1. The computation of�DuD involves the solution of a linear sys-
tem of equations of the size of the number of nodes on �D. Other definitions
of uD,h based on piecewiseL2 projections are possible and reduce the amount
of work for the computation of the projection. One obtains the same bounds
as for uD,h = �DuD. For example, let F be a connected face of ∂�, i.e.,
the intersection of ∂� with a d − 1 dimensional plane in R

d , and let P be a
connected component of F ∩ �D. Then one can define uD,h|P ∈ S1(�D)|P
by uD,h|∂P \∂�D = IDuD and

∫
P

(uD,h − uD)vh ds = 0 for all vh ∈ S1(�D) with vh|∂P \∂�D = 0.

In this case uD,h is defined by local L2 projections on (maximally) affine
parts of �D. The error uD,h − uD is then L2(�D) orthogonal to functions in
S1(�D) that vanish on the intersections of maximally affine subsets of �D.
This orthogonality is sufficient for the proofs of our estimates (cf. proof of
Theorem 7.1).

Remark 2.2. The estimates inL2 andH 1 can be extended to estimates inHs ,
0 ≤ s ≤ 1, by standard interpolation techniques.
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Remark 2.3. The case� �= �h = ∪T is excluded from our analysis but can
be analyzed with similar techniques: Let ũh ∈ H 1(�) be an extension of uh
and let ẽ = u− ũh and ũD,h = ũh|�D . We define ˜Res by replacing e by ẽ in
the definition of Res, w̃ by replacing uD,h by ũD,h in the definition of w, and
η̃
(±1/2)
D by replacingw and uD,h by w̃ and ũD,h, respectively, in the definition

of η(±1/2)
D . It can then be shown as above that

‖∇ ẽ‖L2(�) ≤ ‖ ˜Res‖−1 + η̃
(1/2)
D ,

‖ẽ‖L2(�) ≤ c1
(‖ ˜Res‖−2 + η̃

(−1/2)
D

)
.

We believe that under appropriate assumptions on �D similar estimates to
those shown in Table 1 can be proved for η̃(±1/2)

D with similar techniques as
provided in this paper. For estimates of ‖ ˜Res‖−k, k = 1, 2, we refer the reader
to [DR].

We conclude this introduction with an overview of the paper. Section 3
summarizes well-known facts that will be used in the sequel without proofs
and introduces the relevant notation. The proofs of the H 1 and L2 estimates
rely essentially on extension theorems for functions and vector fields that we
obtain in Sections 4 and 5, respectively. The precise statements of our results
are then given in Sections 6 and 7. We conclude the paper with an explicit
example showing that the choice of uD,h = �DuD leads genuinely to higher
order contributions in the estimates which is not the case for uD,h = IDuD.

3 Preliminaries

In this section we introduce the notation used throughout the paper and we
collect some auxiliary results.

Notation. We say that a constant c in a given inequality depends only on
the geometric properties of the triangulation if it depends only on the space
dimension d and the constant c2 > 0 that relates the maximal radius of a ball
B(x, r) ⊂ K and the minimal radius of a ball B(y,R) ⊃ K via

c2r ≤ hK = diam(K) ≤ c−1
2 R for all K ∈ T .

For simplicity we write frequently a � b for a ≤ c b where the constant c
depends only on the geometric properties of the given triangulation T .

The lowest order conforming finite element space of piecewise affine and
continuous functions is given by

S1(T ) = {vh ∈ C(�̄) : vh|T is affine on all elements T ∈ T }.
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We define N to be the set of all nodes (or vertices) of T and we write
(ϕz : z ∈ N ) for the nodal basis of S1(T ). The subspace of all functions that
vanish on �D is given by

S1
D(T ) = {vh ∈ S1(T ) : vh|�D = 0}.(3.1)

The open patches ωz = {x ∈ � : 0 < ϕz(x)} form an open cover {ωz : z ∈
N } of � with finite overlap and diameter hz = diam(ωz). Let E denote the
set of all edges (d = 2) or faces (d = 3) of elements in T , i.e.,

E = {
conv{z1, . . . , zd} : ∃T ∈ T such that T ∩ N = {z1, . . . , zd}

}
.

For simplicity, we refer to the edges of the triangles in two dimensions also
as faces. We suppose that�D is matched exactly by faces of the triangulation,
that is, there exist subsets ED, EN ⊂ E such that

�D =
⋃
E∈ED

E, �̄N =
⋃
E∈EN

E.

In particular, T induces regular triangulations of �D and �N . Then the set
of interior faces E� is defined by E� = E \ (ED ∪ EN). The lowest order
conforming finite element space on ED is given by defined through

S1(�D) = {vh ∈ C(�D) : vh|E is affine for all E ∈ ED}.
We denote the mesh-size function which is piecewise constant on the ele-
ments of T by hT , i.e., hT |T = hT = diam(T ). Similarly, hE ∈ L∞(∪E)
describes the size of the edges of the triangulation by hE |E = hE = diam(E);
here ∪E = ∪T ∈T ∂T is the set of points on the faces of the elements.

In this paper, we analyze two particular approximations of the given
boundary data uD in S1(�D): The nodal interpolation IDuD, defined through
IDuD(z) = uD(z) for all nodes z on �D, and the L2 projection�DuD which
is the unique function in S1(�D) with

∫
�D

(uD −�DuD) vh ds = 0 for all vh ∈ S1(�D).

We define Sobolev spaces on the Dirichlet boundary �D as follows.

Definition 3.1. For an edge or a face E ∈ E and a function g ∈ C1(E) we
denote by ∂Eg the surface gradient along E (with respect to a proper Carte-
sian coordinate system along the flat d − 1 dimensional manifold E). We
then say that v|E ∈ H 1(E) if v has weak derivatives on E and if ‖v‖2

H 1(E)
=

‖v‖2
L2(E)

+‖∂Ev‖2
L2(E)

< ∞. Similarly, we denote by ∂2
Eg the edgewise second

derivative of g along �D if g|E ∈ H 2(E) for all E ∈ ED.
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Definition 3.2. We define H 1(�D) = {v ∈ C(�D) : ∀E ∈ ED, v|E ∈
H 1(E)} with the norm

‖v‖2
H 1(�D)

=
∑
E∈ED

‖v‖2
H 1(E)

.

Some of our assertions require the projection�D to be stable inH 1(�D).

Definition 3.3. The operator �D : H 1(�D) → S1(�D) is said to be H 1

stable if

‖�Dv‖H 1(�D)
� ‖v‖H 1(�D)

for all v ∈ H 1(�D).

Stability results can be found in [CT,BPS,Ca2]. A particular version of a
red-green-blue refinement strategy on surfaces (such as �D) allows for local
refinements and guarantees that

‖∂E�Dv‖L2(�D)
≤ C‖∂Ev‖L2(�D)

for all v ∈ H 1(�D).

Here the constant C does not depend on the mesh-size or the number of
refinement levels, but depends on the shape of the elements [Ca3]. Thus, the
assumption that �D be H 1 stable on �D is indeed satisfied for a large class
of meshes used in practise in two and three dimensional problems. We finally
recall the following estimate for stable projections.

Lemma 3.4 ([CV], Lemma 3.3). Assume that �D is H 1 stable. Then

‖h−1
E (v −�Dv)‖L2(�D)

� ‖∂Ev‖L2(�D)
for all v ∈ H 1(�D).

We frequently use Poincaré-type inequalities in the estimates. In particu-
lar, if D is a Lipschitz domain and ū is the mean value of u on D, then

∫
D

|u− ū|2 dx ≤ c(D) diam2(D)

∫
D

|Du|2 dx.

Moreover, a scaling argument proves the following version for functions
defined on the open patches ωz. If u ∈ H 1(ωz) with u = 0 on at least one
face E ∈ E with E ⊂ ∂ωz, then

∫
ωz

|u|2 dx ≤ c(T )h2
z

∫
ωz

|Du|2 dx.(3.2)

The next estimate of Poincaré-type is used in the proof of the extension the-
orems below.
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Proposition 3.5. Let K ∈ T be a triangle or tetrahedron of diameter hK
with nodes p1, . . . , pd+1 ∈ R

d . Then
∫
K

|φ|2 dx � h4
K

∫
K

|D2φ|2 dx,(3.3)
∫
K

|∇φ|2 dx � h2
K

∫
K

|D2φ|2 dx(3.4)

for all φ ∈ H 2(K) with φ(pj ) = 0 for j = 1, . . . , d + 1.

Proof. Assume first that K = K̂ is the standard simplex in R
d with

1 � hK � 1, and that (3.3) does not hold. Then there exists a sequence
φk ∈ H 2(K̂) with φk(pj ) = 0 for j = 1, . . . , d + 1 and ‖φk‖L2(K̂) = 1 such
that

k

∫
K̂

|D2φk|2 dx ≤
∫
K̂

|φk|2 dx.

It follows that the sequence φk is uniformly bounded in H 2 and that φk ⇀
φ (weakly) in H 2. The compact Sobolev embedding theorem implies that
φk → φ in H 1 with ‖φ‖L2(K̂) = 1 and φ(pj ) = 0 for j = 1, . . . , d + 1.
Moreover, we obtain from the weak lower semicontinuity of the norm that

∫
K̂

|D2φ|2 dx ≤ lim inf
k→∞

∫
K̂

|D2φk|2 dx ≤ lim sup
k→∞

1

k
= 0,

and thus φ is an affine function. Since φ(pj ) = 0, we deduce that φ ≡ 0
and this contradicts ‖φ‖L2(K̂) = 1. A scaling argument completes the proof
of (3.3). The proof of (3.4) is analogous. ��

We finish the preliminaries by quoting some estimates for the residuals.
For instance, if f ∈ H 1(�), then [CV,CB]

‖ Res ‖−1 � ‖h2
T ∇f ‖L2(�)

+ min
ph∈S1(T )d

{‖∇uh − ph‖L2(�) + ‖h1/2
E (g − ph · n)‖L2(�N )

}
,

and

‖ Res ‖−1 � ‖h2
T ∇f ‖L2(�) +

( ∑
E∈E�

hE‖[∇uh · nE]‖2
L2(E)

)1/2

+( ∑
E∈EN

hE‖g − ∇uh · n‖2
L2(E)

)1/2
.

Local problem solving techniques, equilibrium estimators and other im-
plicit a posteriori error estimation techniques [AO,BS] can also be applied.
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Moreover, if the L2 projection onto S1(T ) is H 1 stable, then we have the
following bound for ‖ Res ‖−2 (see [CV])

‖ Res ‖−2 � inf
fh∈S1

D(T )
‖h2

T (f − fh)‖L2(�) +
( ∑
E∈E�

h3
E‖[∇uh · nE]‖2

L2(E)

)1/2

+
( ∑
E∈EN

h3
E‖g − ∇uh · n‖2

L2(E)

)1/2

.

4 The extension operator for functions

TheH 1 estimates require good bounds on the quantities η(1/2)D in (2.2). They
rely on the construction of functions with given values on the Dirichlet bound-
ary �D which we describe in this section. Our first result is valid in any
dimensions.

Proposition 4.1. Let K ∈ T be a simplex in R
d and let hK = diam(K).

Assume that the nodes ofK are given byp1, . . . , pd+1 ∈ R
d and that the faces

ofK are labeledF1, . . . , Fd+1. Suppose that g ∈ C(∂K)with g|Fj ∈ H 1(Fj )

for j = 1, . . . , d + 1, and define w to be the harmonic extension of g to K .
Then there exists a constant c3 that only depends on the geometric properties
of K such that

‖∇w‖2
L2(K)

≤ c3
{
h−1
K ‖g‖2

L2(∂K)
+ hK‖∂Eg‖2

L2(∂K)

}
.

Proof. Since the harmonic extension of g minimizes the Dirichlet integral,
it suffices to construct a function v ∈ H 1(K) with v|∂K = g and

‖∇v‖2
L2(K)

≤ c3
{
h−1
K ‖g‖2

L2(∂K)
+ hK‖∂Eg‖2

L2(∂K)

}
.(4.1)

In order to construct v, let xK denote the barycenter ofK and define the sim-
plices Kj = conv{xK, Fj } for j = 1, . . . , d + 1. The idea is to interpolate
the boundary data linearly along rays connecting the boundary points and
xK , see Figure 1. For each x ∈ K \ {xK} there exist unique λx ∈ (0, 1] and
ξx ∈ ∂K such that x = (1 − λx)xK + λxξx . Define v on K by

v(x) =
{
λxg(ξx) if x ∈ K, x �= xK,

0 if x = xK.

It remains to prove (4.1). It suffices to show that

‖∇v‖2
L2(Kj )

≤ c3

d + 1

{
h−1
K ‖g‖2

L2(Fj )
+ hK‖∂Eg‖2

L2(Fj )

}
for j = 1, . . . , d + 1.
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Fig. 1. Construction of the extension of the boundary data into the simplex in two dimen-
sions

We may assume that j = 1, that F1 = conv{p1, . . . , pd} ⊂ {x ∈ R
n : xn =

ρ} with ρ > 0 and that xK = 0. In the following we write x̂ for the first n−1
coordinates of x, i.e., x̂ = (x1, . . . , xn−1). Then

v(x) =
{
xn
ρ g

( ρ
xn
x̂, ρ

)
if x ∈ K1, x �= xK,

0 if x = xK.

Thus for i = 1, . . . , n− 1
∫
K1

∣∣ ∂
∂xi

v(x)
∣∣2

dx =
∫
K1

∣∣ ∂g
∂xi

( ρ
xn
x̂, ρ

)∣∣2
dx

=
∫ ρ

0

∫
F1

∣∣ ∂g
∂xi

(x̂, ρ)
)∣∣2(xn

ρ

)d−1
dx̂ dxn≤ρ∥∥ ∂g

∂xi

∥∥2
L2(F1)

.

Finally,

∫
K1

∣∣ ∂
∂xn

v(x)
∣∣2

dx =
∫
K1

∣∣ 1

ρ
g
( ρ
xn
x̂, ρ

) −
n−1∑
i=1

∂g

∂xi

( ρ
xn
x̂, ρ

) xi
xn

∣∣2
dx

≤ 1

ρ
‖g‖2

L2(F1)
+

∫
K1

|x̂|2
x2
n

∣∣ n−1∑
i=1

∂g

∂xi

( ρ
xn
x̂, ρ

)∣∣2
dx

≤ 1

ρ
‖g‖2

L2(F1)
+ diam2(F1)

ρ

n−1∑
i=1

∥∥ ∂g
∂xi

∥∥2
L2(F1)

.

This implies the assertion since the regularity of the triangulation implies the
existence of a constant c4 > 0 such that

c4hK ≤ diam(Fj ) ≤ c−1
4 hK, c4hK ≤ ρ ≤ c−1

4 hK.

This concludes the proof of the proposition. ��
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The main result in this section is the following extension result that is
crucial in the proofs of theH 1 estimates. For simplicity of the exposition, we
state this result only for d = 2 and d = 3

Theorem 4.2. Assume d = 2 or d = 3, and that uD ∈ C(�D) with uD|E ∈
H 2(E) for all faces E ∈ ED. Let uD,h = IDuD. Then there exists a w ∈
H 1(�) such that w|�D = uD − uD,h, suppw ⊆ {T ∈ T : T ∩�D �= ∅}, and

‖∇w‖L2(�) � ‖h3/2
E ∂2

EuD‖L2(�D)
.(4.2)

Proof. The idea of the proof is to successively extend functions from lower
dimensional objects (faces) to higher dimensional ones (elements) by har-
monic extension. In order to accomplish this, we define first the function w
on all edges of the triangulation and then on all simplices.

Recall that we denote by ∂E the (tangential) derivative of a function on the
d−1 dimensional faces of the tetrahedra. Moreover, we use ∂L for the deriv-
ative of a function along a one-dimensional edge (the line segment formed
by the intersection of two faces) of a tetrahedron in three dimensions.

Step 1: Definition of w on the faces of the triangulation T . Let g = uD −
uD,h ∈ C(�D) and note that g(z) = 0 for all z ∈ N ∩ �D. For each E ∈ E
we define a function wE ∈ C(E) as follows.

(a) IfE∩�D = {z1, . . . , z�} for 1 ≤ � ≤ d and z1, . . . , z� ∈ N orE∩�D =
∅, then we set wE = 0.

(b) If E ⊆ �D, then we set wE = g|E .
(c) Suppose that d = 3 and that either (c1)E∩�D = ∪Jj=1 conv{aj , bj } with

J ∈ {1, 2, 3}, aj , bj ∈ N , and aj �= bj , or (c2)E∩�D = conv{a1, b1}∪
{z} with a1, b1 ∈ N , and z ∈ N \ {a1, b1}. Let zE denote the bary-
center of E and define Sj = conv{aj , bj } and Gj = conv{zE, aj , bj }.
For j = 1, . . . , J , let wE|Gj be the harmonic extension of g|Sj such that
wE|∂Gj \Sj = 0. Finally we set wE = 0 on E \ ∪Jj=1Gj .

Here case (c) describes the situation that in three dimensions some (or all)
of the edges of a face of a tetrahedron may be contained in the Dirichlet
boundary even though the face is not a subset of �D.

Step 2: An auxiliary estimate in case (c). We have

h−1
E ‖wE‖2

L2(E)
� hE‖∂EwE‖2

L2(E)
�

J∑
j=1

(
hE‖g‖2

H 1(Fj )
+ h3

E‖g‖2
H 2(Fj )

)
.

Note that by construction wE ∈ H 1(E) ∩ C(E). Moreover, we obtain from
Proposition 4.1 (with d = 2 applied to the triangles Gj whose union is
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the face E) and the one-dimensional Poincaré inequality for wE on the line
segment Sj that

‖∂EwE‖2
L2(Gj )

� hE‖∂LwE‖2
L2(∂Gj )

= hE‖∂Lg‖2
L2(Sj )

.(4.3)

To estimate the derivative ofg alongSj choose a faceFj ∈ ED withSj ⊆ ∂Fj ,
j = 1, . . . , J . It follows by scaling from the trace inequality in W 1,1(K̂),∫

∂K̂

|v| ds ≤ C(K̂)

∫
K̂

(|v| + |Dv|) dx,

applied to v = φ2 that

‖φ‖2
L2(∂K)

� h−1
K ‖φ‖2

L2(K)
+ ‖φ‖L2(K)‖∇φ‖L2(K) for all φ ∈ H 1(K).

This estimate applied to K = Fj and the Poincaré inequality in Proposi-
tion 3.5 imply

hE‖∂Lg‖2
L2(Sj )

� ‖g‖2
H 1(Fj )

+ h2
E‖g‖2

H 2(Fj )
.(4.4)

Since wE vanishes on two of the three sides of the triangles Gj we may use
Poincaré’s inequality and we obtain

h−1
E ‖wE‖2

L2(E)
= h−1

E

J∑
j=1

‖wE‖2
L2(Gj )

� hE

J∑
j=1

‖∂EwE‖2
L2(Gj )

.

The combination this inequality with (4.3) and (4.4) implies the assertion of
Step 2.

Step 3: Proof of the theorem. We extend the function wE (defined so far for
allE ∈ E) to a functionwT on T ∈ T in the following way. For all T ∈ T let
wT be the harmonic function with wT = wE on ∂T . From the construction
of wE we have wT �≡ 0 only if T ∩ �D �= ∅. By Proposition 4.1 we deduce

‖∇wT ‖2
L2(T )

� h−1
T ‖wT ‖2

L2(∂T )
+ hT ‖∂EwT ‖2

L2(∂T )

�
∑

E∈E,E⊆∂T

(
h−1
E ‖wE‖2

L2(E)
+ hE‖∂EwE‖2

L2(E)

)
.

Recall that wE is different from zero only if E ∈ ED or (this applies only
to the three-dimensional situation) if E is the face of a tetrahedron and at
least one of the edges of this face is contained in �D. In the former case,
wE = g|E , and in the latter case wE and its derivatives have been estimated
above. Hence∑

T ∈T
‖∇wT ‖2

L2(T )
�

∑
E∈E,E⊆�D

(
h−1
E ‖g‖2

L2(E)

+hE‖∂Eg‖2
L2(E)

+ h3
E‖∂2

Eg‖2
L2(E)

)
.



14 S. Bartels et al.

Let χT be the characteristic function of the element T . Then,

w =
∑
T ∈T

χTwT ∈ H 1(�) with w|�D = g = uD − uD,h.

Proposition 3.5 shows, for all E ∈ ED,

h−1
E

∫
E

|g|2ds + hE

∫
E

|∂Eg|2ds � h3
E

∫
E

|∂2
Eg|2ds = h3

E

∫
E

|∂2
EuD|2ds.

These estimates allow us to rewrite the foregoing estimate as

‖∇w‖2
L2(�)

�
∑
E∈ED

h3
E‖∂2

EuD‖2
L2(E)

.

This finishes the proof of the theorem. ��
We conclude this section with the construction of a suitable extension of

the difference �DuD − IDuD on �D onto �.

Proposition 4.3. Assume that �D is H 1 stable and that uD ∈ C(�D) with
uD|E ∈ H 2(E) for all E ∈ ED. Then there exists a vh ∈ S1(T ) such that
vh|�D = �DuD − IDuD, supp vh ⊆ {T ∈ T : T ∩ �D �= ∅}, and

‖∇vh‖L2(�) � ‖hE‖1/2
L∞(�D)‖hE∂

2
EuD‖L2(�D)

.

Proof. Let gh = �DuD − IDuD. We define vh = ∑
z∈N vzϕz where vz =

gh(z) if z ∈ N ∩ �D and vz = 0 otherwise. Then supp vh ⊆ ∪{ωz : z ∈
N ∩�D}, and the quantities ‖vh‖L2(ωz) and h1/2

z ‖gh‖L2(∂ωz∩�D) are equivalent
norms for gh|∂ωz∩�D . We conclude from inverse estimates that

‖∇vh‖L2(ωz) � h−1
z ‖vh‖L2(ωz) � h−1/2

z ‖�DuD − IDuD‖L2(∂ωz∩�D)

for all z ∈ N ∩ �D. We now take the sum for all z ∈ N ∩ �D . Since
the patches ωz have finite overlap and since hz � hE � hz for E ∈ E and
z ∈ E ∩ N we obtain that

‖∇vh‖L2(�) � ‖hE‖1/2
L∞(�D)‖h−1

E (�DuD − IDuD)‖L2(�D)
.

It follows from the triangle inequality and Lemma 3.4 in view of�DIDuD =
IDuD that

‖∇vh‖L2(�) � ‖hE‖1/2
L∞(�D)‖h−1

E �D(uD − IDuD)‖L2(�D)

� ‖hE‖1/2
L∞(�D)

(‖∂E(uD − IDuD)‖L2(�D)

+‖h−1
E (uD − IDuD)‖L2(�D)

)
.

The assertion of the lemma follows now with standard interpolation inequal-
ities. ��
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5 The extension operator for vector fields

In the case of the L2 estimates, one needs good bounds on the quantities
η
(−1/2)
D defined in (2.7). The idea here is to write ∂nφ = p · n with p = ∇φ,

and to use integration by parts to rewrite the boundary integral as a volume
integral. This leads to the question of how to construct vector fields ph that
are suitably close to p; the answer is given in Theorem 5.1 below.

Definition 5.1. For eachE ∈ ED let n|E, t1E, . . . , td−1
E ∈ R

d be an orthonor-
mal basis of R

d . For p ∈ H 1(�)d and E ∈ ED let γtE (p) ∈ L2(E)d denote
the tangential component of p|E , i.e., p|E = γtE (p)+ (n|E · p|E) n|E .

Theorem 5.1. Let p ∈ H 1(�)d satisfy γtE (p) = 0 for all E ∈ ED and
p · n = 0 on �N . Then there exists ph ∈ S1(T )d with γtE (ph) = 0 for all
E ∈ ED, ph · n = 0 on �N , and

‖h−1
T (p − ph)‖L2(�) + ‖∇(p − ph)‖L2(�) � ‖∇p‖L2(�).(5.1)

Proof. For z ∈ N \ ∂� set pz = |ωz|−1
∫
ωz
p dx. We need a more sophisti-

cated construction for nodes on ∂�. For z ∈ N ∩ ∂� define
p̃z = |ωz|−1

∫
ωz
p dx. Moreover, let vz1, . . . , v

z
kz

, 1 ≤ kz ≤ d, be an ortho-
normal basis of

Vz = span{n|E : z ∈ E ∈ EN } ∪ span{t�E : z ∈ E ∈ ED, � = 1, . . . , d − 1},

and let (vz1, . . . , v
z
kz
, sz1, . . . , s

z
d−kz) be an orthonormal basis of R

d . Set

pz =
d−kz∑
j=1

(p̃z · szj ) szj

and define ph = ∑
z∈N pzϕz. By construction, γtE (ph) = 0 for all E ∈ ED

and ph · n = 0 on �N . To see this, consider for example a face E ∈ ED. The
spaces Vz contain the tangential directions for all nodes z ∈ E and thus pz
is normal to E for all nodes z ∈ E. Consequently, the tangential component
of ph vanishes on all E ∈ ED. The argument for EN is analogous. Since∑

z∈N ϕz = 1 and hz � hT � hz if T ∈ T and z ∈ N ∩ T , we have

‖h−1
T (p − ph)‖2

L2(�)
=

∑
z∈N

∫
ωz

h−2
T ϕz(p − pz) · (p − ph) dx

(5.2)

�
(∑
z∈N

h−2
z ‖p − pz‖2

L2(ωz)

)1/2

‖h−1
T (p − ph)‖L2(�).
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Moreover (ϕz : z ∈ N ) is a locally finite partition of unity and therefore

‖∇(p − ph)‖L2(�) �
(∑
z∈N

‖∇(
ϕz(p − pz)

)‖2
L2(ωz)

)1/2
.(5.3)

If we expand the gradient using the product rule we obtain a term similar
to (5.2) and a term proportional to ‖∇p‖L2(�) since pz is constant on the
patch ωz. It thus suffices to show that ‖p − pz‖L2(ωz) � hz‖∇p‖L2(ωz). Sup-
pose first that z ∈ N \ ∂�. Since pz is the mean value of ph on ωz we obtain
with Poincaré’s inequality that

‖p − pz‖L2(ωz) � hz‖∇p‖L2(ωz).(5.4)

It therefore remains to estimate this local norm for z ∈ N ∩ ∂�. By con-
struction, pz · vzj = 0 for j = 1, . . . , kz, and this implies in view of the
orthogonality of the vectors vzj and szj that

‖p − pz‖2
L2(ωz)

=
kz∑
j=1

‖p · vzj‖2
L2(ωz)

+
d−kz∑
j=1

‖(p − pz) · szj‖2
L2(ωz)

.(5.5)

The second term can be estimated by Poincaré’s inequality since

(5.6)

‖(p − pz) · szj‖L2(ωz) = ‖(p − p̃z) · szj‖L2(ωz)

� hz‖∇p‖L2(ωz) for j = 1, . . . , d − kz.

In order to justify the application of the Poincaré inequality (3.2) in the first
term, consider first z ∈ E ∈ EN . Then E ⊂ ∂ωz and

(
p · n|E

)|E = 0. Hence

‖p · n|E‖L2(ωz) � hz‖∇p n|E‖L2(ωz) � hz‖∇p‖L2(ωz).(5.7)

Similarly, for z ∈ E ∈ ED we have that
(
p · t�E

)|E = 0 for � = 1, . . . , d − 1
and consequently

‖p · t�E‖L2(ωz) � hz‖∇p t�E‖L2(ωz) � hz‖∇p‖L2(ωz).(5.8)

Finally note that for all z ∈ ∂N ∩ � the vectors vzj ∈ Vz are linear com-
binations of the vectors n

∣∣
E

and t�E , and this allows us to find coefficients

α
j

z,E, β
j,�

z,E with |αjz,E|, |βj,�z,E| ≤ C(�) such that

vzj =
∑

z∈E∈EN

α
j

z,E n|E +
∑

z∈E∈ED

d−1∑
�=1

β
j,�

z,E t
�
E, j = 1, . . . , kz.

By (5.7)–(5.8) we have

‖p · vzj‖L2(ωz) � hz‖∇p‖L2(ωz).

By (5.5)–(5.8) one obtains (5.4) for z ∈ N ∩∂� as well. Since ‖∇ϕz‖L∞(ωz) �
h−1
z for all z ∈ N , the assertion of the theorem follows from (5.2)–(5.3). ��
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Lemma 5.2. Let ph ∈ S1(T )d be such that γtE (ph) = 0 for all E ∈ ED.
Then (ph · n)|�D ∈ S1(�D).

Proof. We have to show that (ph·n)|�D is continuous across interfacesE1∩E2

of neighbouring faces E1, E2 ∈ ED with n|E1 �= n|E2 . Since ph|E1∩E2 is per-
pendicular to span{t1E1

, . . . , td−1
E1

, t1E2
, . . . , td−1

E2
} = R

d we haveph|E1∩E2 = 0
and hence ph · n is continuous across E1 ∩ E2. ��

6 A priori and a posteriori estimates in H1

In this section we state and prove the asymptotic estimates for the a priori
and a posteriori estimates in H 1.

Theorem 6.1 (A priori estimate in H 1). Under the foregoing assumptions,

‖∇e‖L2(�) � inf
wh∈S1(T ), wh|�D=IDuD

‖∇(u− wh)‖L2(�)

+
{

0 if uD,h = IDuD,

‖hE‖1/2
L∞(�D)‖hE∂2

EuD‖L2(�D)
if uD,h = �DuD.

Remark 6.2. If u ∈ H 2(�), then standard interpolation estimates imply that

inf
wh∈S1(T ), wh|�D= IDuD

‖∇(u− wh)‖L2(�) � ‖hT D
2u‖L2(�).

Proof. The Galerkin orthogonality

(∇e; ∇vh) = 0 for all vh ∈ S1
D(T )(6.1)

and Hölder’s inequality yield

‖∇e‖2
L2(�)

= (∇e,∇(e − vh)) ≤ ‖∇e‖L2(�)‖∇(e − vh)‖L2(�)

for all vh ∈ S1
D(T ). If uD,h = IDuD, then the assertion follows immediately

by choosing vh = wh − uh where wh ∈ S1(T ) satisfies wh|�D = IDuD. If
uD,h = �DuD, then let vh = wh − uh + yh, where wh, yh ∈ S1(T ) satisfy
yh|�D = �DuD − IDuD and wh|�D = IDuD. It follows that

‖∇(e − vh)‖L2(�) � ‖∇(u− wh)‖L2(�) + ‖∇yh‖L2(�),

and the proof is an immediate consequence of Proposition 4.3. ��
The a posteriori estimate relies on a good estimate of the contribution

η
(1/2)
D which is based on the extension results in Section 4. More precisely,

we have the following theorem.
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Theorem 6.2 (A posteriori estimate in H 1). Under the foregoing assump-
tions,

‖∇e‖L2(�) � ‖ Res ‖−1 +
{

‖h3/2
E ∂2

EuD‖L2(�D)
if uD,h = IDuD,

‖hE‖1/2
L∞(�D)‖hE∂2

EuD‖L2(�D)
if uD,h = �DuD.

Proof. In view of the representation (2.1) it suffices to estimate the terms
η
(1/2)
D . Suppose first that uD,h = IDuD. Sincewminimizes the Dirichlet inte-

gral subject to the given Dirichlet conditions, we deduce from Theorem 4.2
that

‖∇w‖L2(�) = min
v|�D=uD−uD,h

‖∇v‖L2(�) � ‖h3/2
E ∂EuD‖L2(�D)

.

This proves the assertion for the nodal interpolation.Assume next that uD,h =
�DuD and that �D is H 1 stable. Note that for all yh ∈ S1(T ) with yh|�D =
�DuD − IDuD

‖∇w‖L2(�) = min
v|�D= uD−uD,h

‖∇v‖L2(�)

≤ min
v|�D= uD−uD,h

‖∇(v − yh)‖L2(�) + ‖∇yh‖L2(�)

= min
y|�D= uD−IDuD

‖∇y‖L2(�) + ‖∇yh‖L2(�).

The statement of the theorem follows now in view of the estimate for
‖∇y‖L2(�) and ‖∇yh‖L2(�) with Theorem 4.2 and Proposition 4.3, respec-
tively. ��

7 A priori and a posteriori estimates in L2

In this section we present the corresponding L2 estimates.

Theorem 7.1 (A priori estimate in L2). Suppose that the dual problem (2.4)
is H 2 regular and that �D is H 1 stable if uD,h = �DuD. Then

‖e‖L2(�) � ‖hT ∇e‖L2(�) +
{‖h2

E∂
2
EuD‖L2(�D)

if uD,h = IDuD,

‖hE‖3/2
L∞(�D)‖hE∂2

EuD‖L2(�D)
if uD,h = �DuD.

Proof. We first derive a representation of the error based on duality tech-
niques. Let z ∈ H 2(�) satisfy (2.4) and (2.6). Then

‖e‖2
L2(�)

= (e; −�z) = (∇e; ∇z)−
∫
�D

e ∂nz ds.(7.1)
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Let zh ∈ S1
D(T ) be the nodal interpolant of z so that the Galerkin orthogo-

nality (6.1) implies

(∇e; ∇z) = (∇e; ∇(z− zh)) ≤ ‖hT ∇e‖L2(�)‖h−1
T ∇(z− zh)‖L2(�)

� ‖hT ∇e‖L2(�)‖z‖H 2(�).(7.2)

The second term on the right-hand side in (7.1) is bounded by∫
�D

e ∂nz ds ≤ η
(−1/2)
D ‖z‖H 2(�).(7.3)

It therefore suffices to estimate the terms η(−1/2)
D . Suppose first that uD,h =

IDuD. By the continuity of the trace operator H 1(�) → L2(�D) we have
‖∂nφ‖L2(�D)

≤ ‖∇φ‖L2(�D)
� ‖φ‖H 2(�). Therefore, Hölder’s inequality

yields for φ ∈ H 2
DN(�),∫

�D

(uD − uD,h)∂nφ ds � ‖uD − uD,h‖L2(�D)
‖φ‖H 2(�).

and standard nodal interpolation estimates imply that

η
(−1/2)
D � ‖h2

E∂
2
EuD‖L2(�D)

.

It remains to prove the assertion for uD,h = �DuD. Fix v ∈ H 1(�) with
v|�D = uD − uD,h and φ ∈ H 2

DN(�). Let p = ∇φ. Then γtE (p) = 0 for all
E ∈ ED and p · n = 0 on �N and we may find a vector field ph ∈ S1(T )d
with the properties in Theorem 5.1. Since uD−uD,h isL2(�D) orthogonal to
S1(�D)we have by Lemma 5.2, integration by parts, and Cauchy’s inequality∫

�D

(uD − uD,h)∂nφ ds

=
∫
�D

(uD − uD,h)(p − ph) · n ds

=
∫
∂�

v(p − ph) · n ds

=
∫
�

∇v · (p − ph) dx +
∫
�

v div(p − ph) dx

≤ ‖hT ∇v‖L2(�) ‖h−1
T (p − ph)‖L2(�) + ‖v‖L2(�) ‖ div(p − ph)‖L2(�)

≤ (‖hT ∇v‖2
L2(�)

+ ‖v‖2
L2(�)

)1/2(‖h−1
T (p − ph)‖2

L2(�)

+‖ div(p − ph)‖2
L2(�)

)1/2
.

The choice v = w − vh with w of Theorem 4.2 and vh of Proposition 4.3
shows

‖hT ∇v‖2
L2(�)

+ ‖v‖2
L2(�)

� ‖hE‖3
L∞(�D)‖hE∂

2
EuD‖2

L2(�D)
.
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The combination of the previous estimates withTheorem 5.1 and‖∇p‖L2(�)≤
‖φ‖H 2(�) show that

η
(−1/2)
D � ‖hE‖3/2

L∞(�D)‖hE∂
2
EuD‖L2(�D)

.

This concludes the proof of the theorem. ��
The inequality ‖∂nφ‖L2(�D)

� ‖φ‖H 2(�) appears suboptimal in the fore-

going proof for uD,h = IDuD. However, the estimate for η(−1/2)
D in the proof

of Theorem 7.1 can in general not be improved, see Section 8.
The next theorem describes the corresponding results for a posteriori error

estimates.

Theorem 7.2 (A posteriori estimate in L2). Suppose that the dual problem
(2.4) is H 2 regular. Then

‖e‖L2(�) � ‖ Res ‖−2 +
{‖h2

E∂
2
EuD‖L2(�D)

ifuD,h = IDuD,

‖hE‖3/2
L∞(�D)‖hE∂2

EuD‖L2(�D)
ifuD,h = �DuD.

Proof. With (7.1), (7.3), and (2.6)–(2.7),

‖e‖2
L2(�)

≤ (‖ Res ‖−2 + η
(−1/2)
D

)‖z‖H 2(�)

≤ c1
(‖ Res ‖−2 + η

(−1/2)
D

)‖e‖L2(�).

The assertion follows now as in the proof of Theorem 7.1 ��

8 Model Example

In this section we discuss an example which demonstrates the different scal-
ing for the different choices for the approximation of the Dirichlet data. In
particular, the boundary contribution

‖e‖2
L2(�)

− Res(z) = −
∫
�D

(uD − uD,h)∂nz ds

in (2.5) is not of higher order for the discrete boundary data uD,h = IDuD.
Moreover, the L2 error ‖e‖2,� is significantly reduced if one replaces the
discrete Dirichlet data uD,h = IDuD by uD,h = �DuD while the H 1 errors
are comparable.

For the precise argument consider � = (0, 1)2 and �D = ∂�. Let
h = 1/n for n ∈ N. We fix the uniform triangulation T with nodes N ={
(jh, kh) : j, k = 0, 1, . . . , n

}
and sides parallel to the x-axis, the y-axis

and the direction (1, 1). In this situation, the quadratic function u(x, y) =
uD(x, y) = x(1 − x) + y(1 − y) is the solution of −�u = 4 subject to its
own boundary data. The following theorem describes the asymptotic scaling
of the boundary contribution.
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Theorem 8.1. Suppose that T and u are as above and that uD,h = IDuD.
Then

η
(−1/2)
D ≥

√
5

3
√

22c1

(
h2 + O(h5/2)

)
.

In order to prove this result, let Ihu ∈ S1(T ) denote the nodal interpo-
lant of u. We write eIh and e�h for the finite element errors for the choices
uD,h = IDuD and uD,h = �DuD, respectively. Finally, let zIh and z�h denote
the solutions in H 1

D(�) of the corresponding dual problems

−�zIh = eIh in �, zIh = 0 on ∂�,

−�z�h = e�h in �, z�h = 0 on ∂�.

The following proposition compares the four contributions to the two L2

residual relations

‖eIh‖2
L2(�)

= Res(zIh)−
∫
�D

(1 − ID)uD ∂nz
I
h ds,

‖e�h ‖2
L2(�)

= Res(z�h )−
∫
�D

(1 −�D)uD ∂nz
�
h ds.

Proposition 8.2. The approximation errors eIh and e�h are related by eIh =
e�h + h2/6 and satisfy the following estimates:

−
∫
�D

(1 − ID)uD ∂nz
I
h ds = h4/18 + O(h9/2),

−
∫
�D

(1 −�D)uD ∂nz
�
h ds = O(h9/2).

Moreover, ‖eIh‖2
L2(�)

= 11h4/90 and ‖e�h ‖2
L2(�)

= 7h4/180.

Remark. The L2 error is reduced to 56% when the discrete boundary data
are obtained by the L2 projection instead of the nodal interpolation of uD.

Proof. The second partial derivatives of u are constant and therefore a sec-
ond order difference quotient is exact. The stiffness matrix for the uniform
triangulation T is equivalent to the discrete problem in the related difference
scheme. Hence, eIh = (1 − Ih)u.

Let s denote the arc-length parameter on an edge E ⊂ �D on which
eIh = (1 − ID)u is given by eIh(s) = s(h− s) with 0 ≤ s ≤ h. The identities

∫ h

0
s (eIh − h2/6)ds = 0 and

∫ h

0
(h− s) (eIh − h2/6)ds = 0

imply that eIh −h2/6 = (1 − ID)uD −h2/6 is L2(�D) orthogonal to S1(�D)

so that we have �DuD = IDuD + h2/6. Since Ihu + h2/6 ∈ S1(T ) equals
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uD,h = �DuD on �D and satisfies the difference equations there holds e�h =
eIh − h2/6.

A short calculation shows that∫ h

0

∫ h

0
eIh(x, y)

2 dx dy = 11

90
h6 and

∫ h

0

∫ h

0
e�h (x, y)

2 dx dy = 7

180
h6.

This verifies the last two identities in the assertion of the proposition since
eIh and e�h are (h, h)-periodic.

The L2 projection is stable for (quasi-) uniform meshes and therefore the
estimates in the proof Theorem 7.1 show η(−1/2)

D = O(h5/2). By assumption,
the dual problem is H 2 regular and thus

‖∂nz�h ‖L2(�D)
≤ ‖z�h ‖H 2(�) � ‖e�h ‖L2(�).

Hence

−
∫
�D

(1 −�D)uD ∂nz
�
h ds � η

(−1/2)
D ‖e�h ‖L2(�) = O(h9/2).

Let ζ ∈ H 1
D(�) = H 1

0 (�) be the solution of �ζ = 1 in �. Then,

zIh = z�h − h2/6 ζ.

We obtain in view of eIh = e�h + h2/6 that

−
∫
�D

(1 − ID)uD ∂nz
I
h ds = −

∫
∂�

(e�h + h2/6) ∂n(z
�
h − h2

6
ζ ) ds

= −
∫
∂�

e�h ∂nz
�
h ds + h2

6

∫
∂�

e�h ∂n ζ ds

+ h4

36

∫
∂�

∂nζ ds − h2

6

∫
∂�

∂nz
�
h ds.

The first term on the right-hand side is of order h9/2 as shown previously. The
second term is of the same order by the same arguments since ‖ζ‖H 2(�) � 1.
Partial integration in the third term shows∫

∂�

∂nζ ds =
∫
�

�ζ dx = 1.

Combined with a direct calculation of
∫
�
eIh dx = h2/3, the same arguments

prove for the last term

−
∫
∂�

∂nz
�
h ds = −

∫
�

�z�h dx =
∫
�

e�h dx = h2/6.

These estimates prove that

−
∫
�D

(1 − ID)uD ∂nz
I
h ds = h4/18 + O(h9/2),

as asserted. ��
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Proof of Theorem 8.1. With uD, f , T , zIh, and eIh as in the proposition,

‖zIh‖H 2(�) η
(−1/2)
D ≥

∫
�D

(1 − ID)uD∂nz
I
h ds = h4/18 + O(h9/2).

The estimate ‖zIh‖H 2(�) ≤ c1 ‖eIh‖L2(�) and the above identity for ‖eIh‖L2(�)

conclude the proof. ��
The point in the example is that the approximation error uD − IDuD in

the Dirichlet data does not change its sign. This is always the case on parts of
the boundary where uD is convex or concave. We may therefore expect that
the boundary contribution

−
∫
�D

eIh∂nz
I
hds(8.1)

is not of higher order. In this sense, the model example describes a rather
generic situation unless long-range cancellations lead to a global integral
(8.1) of higher order.
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