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Convergence for stabilisation of degenerately convex minimisation problems
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Degenerate variational problems often result from a relaxation technique in effective numerical
simulation of nonconvex minimisation problems. The relaxed energy density is the convex
envelope of the original one and so convex but not strictly convex. Hence strong convergence
of straightforward finite element approximations cannot be expected but is relevant in many
applications. This paper establishes a modified discretization by stabilisation and proves its
convergence in strong norms.
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1. Motivation and introduction

The relaxation procedure in the calculus of variations allows the direct macroscopic simulation of
models with finer and finer oscillations [L1, L2, BP]. For the discrete problem this means that the
nonconvex energy density is removed and replaced by some quasiconvex envelope or—in some
applications—even the convex envelope; we refer to Example 1.1 for an illustration. The resulting
discrete problem is then degenerate in the sense that it is convex butnot strictly convex and so
the Newton solver faces situations where the Hessian matrix for the tangential stiffness matrix is
not positive definite and may be singular. Standard numerical regularisations are analysed in this
paper as stabilisation techniques. Example 1.1 illustrates that the stabilisation allows less Newton
iterations than the original relaxed problem. We prove for relevant examples that proper stabilisation
maintains the convergence rates of the discrete problem, and, what came much to a surprise, yields
even strong convergence of the strain variables in certain circumstances.
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EXAMPLE 1.1 (3-Well Problem) GivenΩ = (0,1)2 and boundary datauD(x) = v0(x1)+ v0(x2)

for x = (x1, x2) ∈ Ω and

v0(t) =

{
(t − 1/4)3/6 + (t − 1/4)/8 for t 6 1/4,
−(t − 1/4)5/40− (t − 1/4)3/8 for t > 1/4,

the relaxationW ∗∗ (i.e. the lower convex envelope) of the 3-well energy density

W(F) = min{|F |
2, |F − (1,0)|2, |F − (0,1)|2}

leads to the energy minimisation problem

min
u∈A

E(u) for A = {v ∈ W1,2(Ω) : v = uD on ∂Ω} and

E(u) =

∫
Ω

W ∗∗(Du)dx +

∫
Ω

|uD − u|2 dx +

∫
Ω

f v dx

with f = divDW ∗∗(DuD). The exact solution of the relaxed minimisation problem reads
u(x) = uD(x) for x ∈ Ω. Its finite element approximation is computed on a sequence of
uniform triangulationsT of Ω with mesh sizeh = 1/2,1/4, . . . ,1/32 and degrees of freedom
N = 1,9,49,225,961 into triangles which are translated copies of conv{(0,0), (0, h), (h, h)} and
conv{(0,0), (h, h), (h,0)}. Notice thatW ∗∗ vanishes identically in conv{(0,0), (1,0), (0,1)} ⊂ R2

and hence stabilisation is in order. The resulting discrete problem reads

min
uh∈Ah

Eh(uh) for Eh(uh) = E(uh)+ hγ−1
∫
Ω

|Duh|
2 dx

andAh = {vh ∈ S1(T ) : vh = uD,h on ∂Ω} whereS1(T ) ⊆ W1,2(Ω) is the lowest order finite
element space related toT anduD,h(z) = uD(z) for all nodesz on ∂Ω.

For the exponentsγ = 0,1/2,1,2 andγ = ∞ (γ = ∞ meansEh = E, i.e. no stabilisation)
we run a nested Newton–Raphson scheme. The termination criterion was an`2 norm of the residual
less than 10−9. Table 1 displays the history of iteration numbersK as a function ofγ andh. This
experimental result supports our strategy to approximate a degenerate convex problem by a slightly
strictly convex one.

The paper is concerned with the convergence behaviour of the perturbed discrete solutions. The
class of problems analysed in this paper is as follows. A natural finite element discretization of the
Euler–Lagrange equations of a degenerately convex minimisation problem

(P ) Seeku ∈ A with
∫
Ω

S(Du) : Dv dx + J (u; v) = 0 for all v ∈ AD

(colon denotes the scalar product inRm×n) with discrete spacesAh = uD,h+AD,h andAD,h ⊆ AD
reads

(Ph) Seekuh ∈ Ah with
∫
Ω

S(Duh) : Dvh dx + Jh(uh; vh) = 0 for all vh ∈ AD,h.

Typically, the nonlinear stress-strain functionS : Rm×n
→ Rm×n is the derivativeS = Dϕ

of an energy density functionϕ that is (quasi-) convex but not strictly (quasi-)convex. Lacking
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TABLE 1
Iteration numbersK required in the relaxed 3-well problem of
Example 1.1 as a function of uniform mesh sizeh and parameterγ .
A minus sign means no convergence within250 iteration steps.

h 1/2 1/4 1/8 1/16 1/32

γ = 0 4 4 5 7 8
γ = 1/2 4 4 5 10 9
γ = 1 4 4 5 13 16
γ = 2 4 6 10 29 -
γ = ∞ 4 10 98 - -

uniform convexity ofϕ and so lacking uniform monotonicity ofS we cannotgenerally expect
strong convergence of the errore := u− uh, namely

lim
h→0

‖De‖Lp(Ω) = 0, (1.1)

if an underlying meshTh becomes finer and finer such that the maximal mesh size tends to zero
ash → 0. Instead of (1.1), one can merely expect weak convergenceDuh ⇀ Du in Lp(Ω)
or convergence in weaker norms, e.g. limh→0 ‖u − uh‖Lr (Ω) = 0. It turns out that the continuous
lower order termJ : W1,p(Ω; Rm) → W1,p(Ω; Rm)∗ as well as boundary conditions inA := {v ∈

W1,p(Ω; Rm) : v = uD onΓD} for some partΓD of the boundary∂Ω of the domainΩ determine
whether solutionsu oruh are unique or not; we refer to Section 2 for detailed assumptions. A typical
time step in evolution of phase transitions leads to(P ) with anL2-uniformly convex low-order term
J (see, e.g., [CP3]) and requires strong convergence of gradients.

It is the aim of this paper to introduce stabilisation strategies to guarantee (1.1). For a mesh-
dependent bilinear formah : Xh × Yh → R such thatAh ⊆ Xh andAD,h ⊆ Yh we set
Jh(uh, vh) := J (uh, vh)+ah(uh, vh). For relaxed nonconvex minimisation problems the additional
term ah(uh, vh) allows a physical interpretation of a discrete surface energy. Provided that(P )

exhibits sufficient convexity, e.g. ifJ is uniformly monotone with respect to anLp norm (on low-
order terms) andϕ is convex, there exists a unique solutionu of (P ). Then ifu ∈ H 3/2+ε(Ω; Rm)
for someε > 0 we prove (1.1) for the unique discrete solutionuh of (Ph).

In order to illustrate some of the arguments in the proof of (1.1) we avoid in this introduction
any technicalities through the (unrealistic) assumptionAh,AD,h ⊆ H 2(Ω; Rm) and consider only
one stabilisation term

Jh(uh; vh) := J (uh; vh)+ h2
∫
Ω

∆uh ·∆vh dx (1.2)

(dot denotes the scalar product inRm). Suppose furthermore that the low-order termJ is uniformly
monotone such that standard arguments with the Galerkin orthogonality yield

h2
‖∆e‖2

L2(Ω)
+ ‖e‖2

L2(Ω)
6 Ch2 (1.3)
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for u ∈ H 2(Ω; Rm) ∩A. Then an integration by parts ande = 0 on∂Ω lead to

‖De‖2
L2(Ω)

=

∫
Ω

De : De dx = −

∫
Ω

e ·∆e dx.

Cauchy’s inequality, Young’s inequality in the resulting upper bound, and (1.3) in the final step
prove

‖De‖2
L2(Ω)

6 ‖e‖L2(Ω)‖∆e‖L2(Ω) 6
h

2
‖∆e‖2

L2(Ω)
+
h−1

2
‖e‖2

L2(Ω)
6 Ch.

Hence we have strong convergence of gradients (1.1) forp = 2 if u ∈ H 2(Ω; Rm). Since this
argument requiresC1 conforming finite elements the practical use of stabilisation (1.2) is limited.
Therefore, this paper establishes three discrete stabilisations which lead to (1.1) in caseAh, AD,h
are lowest order finite element spaces.

It should be stressed that stabilisation is in fact equivalent to that of [NW] stated form = n = 1
and for a numerical modification that replacesJ by a lumped versionJh. The proof of (1.1) in
[NW] employs specific one-dimensional arguments for a particular model example. In contrast,
stabilisation as introduced in this paper, and in [P] in the context of micromagnetism, appears
to be a robust and flexible tool for a large class of degenerately convex minimisation problems.
Convergence rates for the gradient error, however, require strong regularity conditions of the exact
solution along with its uniqueness.

This paper is organised as follows. The general setting and the main results are presented in
Section 2. A collection of examples forS andJ that meet the abstract framework in(P ) are given
in Section 3. In Section 4 we prove the main result. Notation and basic results related to finite
element discretizations are introduced and recalled in Section 5. Sections 6–8 are devoted to three
different stabilisations that define(Ph) and lead to (1.1) via the abstract result of Section 2. Section 9
discusses strong convergence for a 2-well problem which results from a model for phase transitions
in crystalline solids. Numerical examples are reported in [Ba].

2. General setting and main result

This section is devoted to a general framework that allows several particular choices of the
stabilisation termah for a large class of examples indicated below. For this section,Jh is quite
general and could model a numerical quadrature forJ as well.

Given a bounded Lipschitz domainΩ ⊂ Rn with polygonal (forn = 2) or polyhedral (for
n = 3) boundary∂Ω and 1< q 6 2 6 p < ∞, 1/p + 1/q = 1. GivenuD ∈ W1,p(Ω; Rm) set

AD := W
1,p
0 (Ω; Rm), A := uD +AD,

with W1,p
0 (Ω; Rm) = {v ∈ W1,p(Ω; Rm) : v|∂Ω = 0}; moreover, let| · |W1,p(Ω) denote the semi-

norm|v|W1,p(Ω) := ‖Dv‖Lp(Ω) of v ∈ W1,p(Ω; Rm). For a discrete spaceAD,h ⊆ W
1,p
0 (Ω; Rm),

spacesXh andYh, and an approximationuD,h of uD we merely suppose

Ah = uD,h +AD,h ⊆ Xh, AD,h ⊆ Yh.

The stress functionS : Mm×n
→ R and the low-order terms

J : W1,p(Ω; Rm) → (W1,p(Ω; Rm))∗, Jh : Xh → Y ∗

h
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of the continuous and discrete level, respectively, are supposed to satisfy the following hypotheses
(H1)–(H3) for the exact and the discrete solutionu ∈ A anduh ∈ Ah, respectively. A collection of
examples follows below in Section 3.

(H1) There exist positive constantsα, r, s with 1 < r 6 2, 0 6 s < ∞, and a functionS :
Mm×n

→ Mm×n such that, for allA,B ∈ Mm×n,

|S(A)− S(B)|r 6 α(1 + |A|
s
+ |B|

s)(S(A)− S(B)) : (A− B).

Here,Mm×n denotes the realm×nmatrices, and| · | the Frobenius norm related to the scalar
product

A : B =

m∑
k=1

n∑
`=1

Ak `Bk ` for A,B in Mm×n.

(H2) There exist solutionsu and uh of (P ) and (Ph), respectively. [Their uniqueness is not
assumed explicitly; at this stage, any choice will do. However, the uniqueness ofu is later
a consequence of our strong regularity assumption.] That is, suppose thatu ∈ A with
σ := S(Du) anduh ∈ Ah with σh := S(Duh) satisfy∫

Ω

σ : Dv dx + J (u; v) = 0 for all v ∈ AD,∫
Ω

σh : Dvh dx + Jh(uh; vh) = 0 for all vh ∈ AD,h.

Throughout this paper, set
e := u− uh, δ := σ − σh.

(H3) There exist a constantB > 0, a strictly convex functionβ : [0,∞) → [0,∞) with β(0) = 0,
and seminorms‖ · ‖Xh and‖ · ‖Yh on the function spacesXh andYh with Ah ⊆ Xh ⊆

W1,p(Ω; Rm) andAD,h ⊆ Yh ⊆ W1,p(Ω; Rm) such thate ∈ Xh, e −AD,h ⊆ Yh, and

β(‖e‖Xh) 6 Jh(u; e)− Jh(uh; e),

Jh(u, v)− Jh(uh; v) 6 B‖e‖Xh‖v‖Yh

for the exact and discrete solutionu and uh with the errore = u − uh from (H2), and
v ∈ e −AD,h.

THEOREM 2.1 Suppose (H1)–(H3) hold and letβ∗ denote the dual functional toβ, i.e.β∗(t) =

sup{st − β(s) : s > 0}. Then, for alleh ∈ AD,h,

(1 − 1/r)
∫
Ω

δ : De dx + (1/c1) ‖δ‖
r
Lq (Ω) + β(‖e‖Xh)

6 c2|e − eh|
r/(r−1)
W1,p(Ω)

+ β∗(2B‖e − eh‖Yh)+ 2(Jh(u; eh)− J (u; eh)).

The constantsc1 andc2 depend onα, p, r, s, and upper bounds for|u|W1,p(Ω) and|uh|W1,p(Ω).

REMARK 2.1 It follows from (H1) that 06 δ : De almost everywhere onΩ; hence all the terms
on the left-hand side in the estimate of the theorem are nonnegative.
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REMARK 2.2 It is known thatβ∗ : [0,∞) → [0,∞) is a convex function withβ∗(0) = 0. In
particular, forβ(t) = t2/2 one findsβ∗(t) = t2/2.

REMARK 2.3 The bounds of|u|W1,p(Ω) and|uh|W1,p(Ω) may follow from further natural growth
conditions onS, J , andJh which we have not stated here.

Throughout this paper we considerJh = J |Xh×Yh + ah for a continuous bilinear formah :
Xh × Yh → R. Then we can replace (H3) by the following hypothesis.

(H4) Let 0< m 6 M < ∞ satisfy

m‖e‖2
L2(Ω)

6 J (u; e)− J (uh; e), J (u; v)− J (uh; v) 6 M‖e‖L2(Ω)‖v‖L2(Ω)

for all v ∈ W1,p(Ω; Rm).

PROPOSITION2.2 Suppose (H4) holds, andAh ⊆ Xh ⊆ W1,p(Ω; Rm) andAD,h ⊆ Yh ⊆

W1,p(Ω; Rm) are such thate ∈ Xh ande − AD,h ⊆ Yh. Assume thatah : Xh × Yh → R is a
continuous bilinear form,‖ · ‖

2
Xh

= ‖ · ‖
2
Yh

= ‖ · ‖
2
L2(Ω)

+ ah(·, ·), andJh = J |Xh×Yh + ah. Then

(H3) holds withβ(t) = min{1, m} t2 andB := max{1,M}.

Proof. This follows directly from the definitions ofJh, ‖ · ‖Xh , ‖ · ‖Yh . 2

3. Examples

EXAMPLE 3.1 (p-Laplacian) An energy minimisation of|Du|p/p leads to thep-Laplacian
problem withS(F ) = |F |

p−2F and 26 p < ∞. Since (e.g. by a combination of Lemmas 2.1–2.3
in [CK]) for any distinctA,B ∈ Rn andα = 1 + max{1, p − 2}

2,

|S(A)− S(B)|2

(S(A)− S(B)) : (A− B)
6 α(|A|

p−2
+ |B|

p−2)

it follows that (H1) is valid withr = 2, s = p − 2. See [CM, LB] for further results.

EXAMPLE 3.2 (Optimal Design) The relaxed model for an optimal design problem derived in
[GKR] leads to a minimisation problem with energy densityϕ(F ) = ψ(|F |) andS(F ) = Dϕ(F).
Given positive parameters 0< t1 < t2 and 0< µ2 < µ1 with t1µ1 = t2µ2, theC1 function
ψ : [0,∞) → [0,∞) is defined byψ(0) = 0 and

ψ ′(t) =


µ1 t if 0 6 t 6 t1,

t1µ1 = t2µ2 if t1 6 t 6 t2,

µ2 t if t2 6 t.

The functionS(F ) satisfies (H1) withr = 2, s = 0, andα = µ1 ([CP1]; cf. also [F]).

EXAMPLE 3.3 (Scalar 2-Well Problem) Given distinct wellsF1, F2 ∈ Rn, the relaxed scalar 2-well
problem leads to a convexified minimisation problem with energy density

ϕ(F ) = max{|F − B|
2
− |A|

2,0}
2
+ 4(|A|

2
|F − B|

2
− [AT (F − B)]2), (3.1)

whereA = (F2 − F1)/2 andB = (F1 + F2)/2, and (H1) is satisfied withr = 2, s = 2, and
α = 4 max{2, |F1 − F2|

2
} [CP1, F]. This scalar problem can be deduced from the Ericksen–James

energy density in an anti-plane shear model; the version forn = 1, due to O. Bolza [Bo], serves as
a master example in nonconvex minimisation [Y].
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EXAMPLE 3.4 (Compatible Vectorial 2-Well Problem) Given two symmetric matricesE1, E2 ∈

Mn×n
sym, real numbersW0

1 ,W
0
2 ∈ R, and a positive definite fourth order tensorC : Mn×n

sym → Mn×n
sym,

let

Wj (E) =
1

2
(E − Ej ) : C(E − Ej )+W0

j

for E ∈ Mn×n
sym andj = 1,2. Then ifE1 = E2 + (a ⊗ b + b ⊗ a)/2 for a, b ∈ Rn the quasiconvex

hull of W : Mn×n
sym → R, E 7→ min{W1(E),W2(E)}, is convex and (see [K]) given by

ϕ(E) =


W1(E) for W2(E)+ γ 6 W1(E),
1

2
(W2(E)+W1(E))−

1

4γ
(W2(E)−W1(E))

2
−

4

γ
for |W1(E)−W2(E)| 6 γ,

W2(E) for W1(E)+ γ 6 W2(E),

for E ∈ Mn×n
sym andγ =

1
2(E1 −E2) : C(E1 −E2). Then (H1) holds forS(A) = Dϕ((A+AT )/2),

A ∈ Mn×n, with r = 2, s = 0, and a constant 0< α that depends onC [CP2].

More physical examples in the context of nonconvex minimisation are included in [L1, L2, R].

EXAMPLE 3.5 (Linear Right-Hand Side) Given functionsf ∈ Lq(Ω; Rm) andg ∈ Lq(ΓN ; Rm) a
typical linear right-hand side is, foru, v ∈ W1,p(Ω; Rm),

J (u; v) =

∫
Ω

f · v dx +

∫
ΓN

g · v ds,

whereΓN is a (possibly empty) part of∂Ω. Note thatJ is independent ofu and hence does not
satisfy (H4).

EXAMPLE 3.6 (Linear Low-Order Terms) The derivativeJ = DΨ of a strictly convex low-order
termΨ in a model situation of [CP1] reads, foru, v ∈ W1,p(Ω; Rm),

J (u; v) =

∫
Ω

u · v ds

and satisfies (H4) form = M = 1.

4. Proof of Theorem 2.1

The proof of Theorem 2.1 extends a technique from [CP1]. From that paper we quote the first
lemma.

LEMMA 4.1 Suppose (H1)–(H2) hold and|Ω|
s/p

+ |u|s
W1,p(Ω)

+ |uh|
s
W1,p(Ω)

6 c1α. Then

‖δ‖rLq (Ω) 6 c1

∫
Ω

δ : De dx.

Proof. The proof follows (with different notation) the arguments that lead to formula (3.7) in [CP1]
and is hence omitted. 2

Direct algebra and (H3) imply the following result.
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LEMMA 4.2 Suppose (H2)–(H3) hold andeh ∈ AD,h. Then

2
∫
Ω

δ : De dx + β(‖e‖Xh) 6 2
∫
Ω

δ : D(e − eh)dx + β∗(2B‖e − eh‖Yh)

+ 2(Jh(u; eh)− J (u; eh)).

Proof. The two identities in (H2) withv = eh = vh ∈ AD,h ⊆ AD yield∫
Ω

δ : De dx + J (u; e)− Jh(uh; e) =

∫
Ω

δ : D(e − eh)dx + J (u; e − eh)− Jh(uh; e − eh).

The differences on the left- and right-hand side are estimated by means of the first and second
inequality of (H3) after insertingJh(u; e) andJh(u; e− eh), respectively, wherev = e− eh. Hence,∫
Ω

δ : De dx + β(‖e‖Xh)+ (J (u; e)− Jh(u; e)) 6
∫
Ω

δ : D(e − eh)dx

+ B‖e‖Xh‖e − eh‖Yh + (J (u; e − eh)− Jh(u; e − eh)).

The definition ofβ∗ showsst 6 β(s)+β∗(t), which, fors = ‖e‖Xh andt = 2B‖e− eh‖Yh , results
in

2B‖e‖Xh‖e − eh‖Yh 6 β(‖e‖Xh)+ β∗(2B‖e − eh‖Yh).

The combination of the last two estimates proves the lemma. 2

LEMMA 4.3 Suppose (H1)–(H2) hold, and letc2 := 2r
′

cr
′
−1

1 /r ′. Then

2
∫
Ω

δ : D(e − eh)dx 6 (1/r)
∫
Ω

δ : De dx + c2|e − eh|
r ′

W1,p(Ω)
.

Proof. Hölder’s and Young’s inequalities show

2
∫
Ω

δ : D(e − eh)dx 6 ‖δ‖rLq (Ω)/(rc1)+ 2r
′

c
r ′/r

1 |e − eh|
r ′

W1,p(Ω)
/r ′.

The assertion then follows from Lemma 4.1. 2

Proof of Theorem 2.1. This follows from Lemmas 4.1–4.3. 2

5. Finite element discretization

Let T be a regular triangulation ofΩ into triangles (n = 2) or tetrahedra (n = 3) in the sense
of [BS], i.e. no hanging nodes, the domain is matched exactly,Ω =

⋃
T ∈T T , andT satisfies the

maximum angle condition. The extremal points ofT ∈ T are callednodesandN denotes the set of
all such nodes;K := N \ ∂Ω is the subset of free nodes. The set of edges (n = 2) or faces (n = 3)
E = conv{z1, . . . , zn} ⊆ ∂T for pairwise distinctz1, . . . , zn ∈ N andT ∈ T is denoted asE . By
EΩ we denote the set of interior edges or faces,EΩ = {E ∈ E : ∃T1, T2 ∈ T , E = T1 ∩ T2}. We
assume that∂Ω is matched exactly by edges on∂Ω, which implies∂Ω =

⋃
E∈ED E for the set of
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boundary edgesED := {E ∈ E : E ⊆ ∂Ω}. Let Pk(ω) denote the set of algebraic polynomials of
(total) degree6 k regarded as scalar functions onω. The set

Pk(T ) := {vh ∈ L∞(Ω) : ∀T ∈ T , vh|T ∈ Pk(T )}

consists of all (possibly discontinuous)T -elementwise polynomials of degree at mostk. We define

S1(T ) :=P1(T ) ∩ C(Ω). AD,h= S1
0(T )

m := S1(T )m ∩W
1,2
0 (Ω; Rm).

Supposing thatuD is continuous on∂Ω we chooseuD,h ∈ S1(T )m with uD,h(z) = uD(z) for all
z ∈ N ∩ ∂Ω and set

Ah := uD,h + S1
0(T )

m.

Let (ϕz : z ∈ N ) be the nodal basis ofS1(T ), i.e.ϕz ∈ S1(T ) satisfiesϕz(x) = 0 if x ∈ N \{z} and
ϕz(z) = 1. We sethT := diam(T ) for all T ∈ T andhE := diam(E) for all E ∈ E and define a
functionhT ∈ L0(T ) by hT |T := hT for T ∈ T . Abbreviateh := ‖hT ‖L∞(Ω). We will frequently
assume thatT is quasiuniform, which implies thath ≈ ‖h−1

T ‖
−1
L∞(Ω).

We writeH s(U ; Rm) for W s,2(U ; Rm) for an open setU ⊆ Rn and

H s(T ; Rm) = {v ∈ L2(Ω; Rm) : ∀T ∈ T , v|T ∈ H s(int(T ); Rm)}.

The elementwise application of the differential operatorsD2 (the matrix of all second order
derivatives) and∆ (the Laplace operator) to a functionv ∈ H 2(T ; Rm) is denoted byD2

T v and
∆T v, respectively.

For each edgeE ∈ EΩ we choose a vectorνE ∈ Rn (with selected and then fixed orientation)
with |νE | = 1 orthogonal toE.

Assumev ∈ H 1(Ω; Rm)∩H 2(T ; Rm), letE ∈ EΩ be such thatE = T+ ∩ T− for T+, T− ∈ T
and supposeνE points fromT+ to T−. Then define [Dv] ∈ L2(E; Mm×n) by

[Dv] := (Dv|T+
)|E − (Dv|T−

)|E .

For a functionφ ∈ C(∂Ω; Rm) such thatφ|E ∈ H 2(E; Rm) for all E ∈ ED, ∂2
Eφ/∂s

2 is the
edgewise second derivative ofφ along∂Ω; H 2(ED; Rm) denotes the set of all such functionsφ.

Throughout this paper we abbreviate inequalitiesA 6 CB with an h-independent constant
C > 0 byA . B, andA ≈ B replacesA . B . A. The constantC may well depend on the
shape of the elements; e.g.hE ≈ hT for E ∈ E andT ∈ T with E ⊆ ∂T . For instance, the
well-established trace inequality reads

‖φ‖
2
L2(∂T )

. h−1
T ‖φ‖

2
L2(T )

+ hT ‖Dφ‖
2
L2(T )

(5.1)

for anyT ∈ T andφ ∈ H 1(T ; Rm).

6. Stabilisation via jumps of gradients

This section is devoted to the discrete problem(Ph) with Jh := J + ah for the bilinear form

ah : Xh × Yh → R, (v,w) 7→

∑
E∈EΩ

h
γ

E

∫
E

[Dv] : [Dw] ds. (6.1)
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Here, the spacesXh andYh are arbitrary with

Xh = Yh ⊆ W1,p(Ω; Rm) ∩H 3/2+ε(T ; Rm) (6.2)

for someε with 0< ε 6 1/2. Then the traces ofDv andDw on
⋃
EΩ for v,w ∈ Xh = Yh belong

to L2(
⋃
EΩ). Notice thatS1(T )m ⊆ Xh but e ∈ Xh is an additional (and strong) hypothesis onu,

and that we will even supposeu ∈ H 2(Ω; Rm).

THEOREM 6.1 Suppose (H1), (H2), and (H4) hold anduD ∈ H 2(ED; Rm). Moreover, assume that
u ∈ H 2(Ω; Rm) ∩W1,p(Ω; Rm) andT is quasiuniform. Then

lim
h→0

‖Du−Duh‖L2(Ω) = 0 for −1< γ < 3,

‖u− uh‖W1,2(Ω) 6 c3h
1/2 for γ = 1.

The constantc3 > 0 depends onc1, c2, and upper bounds for‖u‖H2(Ω), |uh|W1,p(Ω), |u|W1,p(Ω),
and‖∂2

EuD/∂s
2
‖L2(∂Ω).

REMARK 6.1 If u ∈ (H 2(T ; Rm) ∩W1,p(Ω; Rm)) \H 2(Ω; Rm) thenah(u, ·) 6≡ 0. In that case,
for γ = 5/2, the proof of Theorem 6.1 below can be modified to obtain the estimate

‖u− uh‖W1,2(Ω) . h1/8.

The proof of the theorem follows from the abstract estimate of Theorem 2.1 and the following
lemmas. Throughout this section, abbreviate

|v|h := ‖h
γ /2
E [Dv]‖L2(

⋃
EΩ ), ‖v‖2

Xh
= ‖v‖2

Yh
:= ‖v‖2

L2(Ω)
+ |v|2h

for v ∈ H 3/2+ε(T ; Rm).

LEMMA 6.1 If eh is the nodal interpolant ofe ∈ C(Ω; Rm) then

‖e − eh‖Yh . ‖h
(1+γ )/2
T D2

T e‖L2(Ω).

Proof. This is an immediate consequence of the trace inequality (5.1) and standard error estimates
of nodal interpolation. 2

Proposition 2.2 and Lemma 6.1 allow for the application of Theorem 2.1. The strong convergence,
however, is obtained by a combination with the following argument.

LEMMA 6.2 We have

|e|2
W1,2(Ω)

. ‖e‖L2(Ω)‖∆T e‖L2(Ω) + |e|h(‖h
(1−γ )/2
T De‖L2(Ω) + ‖h

−(1+γ )/2
T e‖L2(Ω))

+ ‖h2
T ∂

2
EuD/∂s

2
‖L2(∂Ω)(‖u‖H2(Ω) + ‖h

−1/2
T Duh‖L2(Ω)).

Proof. We perform an integration by parts on eachT ∈ T , use the estimates‖Du · ν‖L2(∂Ω) .
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‖u‖H2(Ω) and‖Duh · ν‖L2(∂Ω) . ‖h
−1/2
T Duh‖L2(Ω), and employ the Cauchy inequalities to verify

‖De‖2
L2(Ω)

=

∑
T ∈T

∫
∂T

(De · ν) · e ds −

∑
T ∈T

∫
T

(∆e) · e dx

=

∑
E∈EΩ

∫
E

([De] · νE) · e ds −

∫
Ω

(∆T e) · e dx +

∫
∂Ω

(De · ν) · e ds

.
( ∑
E∈EΩ

h
γ

E‖[De]‖2
L2(E)

)1/2( ∑
E∈EΩ

h
−γ

E ‖e‖2
L2(E)

)1/2

+ ‖∆T e‖L2(Ω)‖e‖L2(Ω) + (‖u‖H2(Ω) + ‖h
−1/2
T Duh‖L2(Ω))‖e‖L2(∂Ω)

= |e|h

( ∑
E∈EΩ

h
−γ

E ‖e‖2
L2(E)

)1/2
+ ‖e‖L2(Ω)‖∆T e‖L2(Ω)

+ (‖u‖H2(Ω) + ‖h
−1/2
T Duh‖L2(Ω))‖e‖L2(∂Ω).

The trace inequality (5.1) yields∑
E∈EΩ

h
−γ

E ‖e‖2
L2(E)

. ‖h
−(1+γ )/2
T e‖2

L2(Ω)
+ ‖h

(1−γ )/2
T De‖2

L2(Ω)
.

Nodal interpolation estimates on eachE ∈ ED show

‖e‖L2(∂Ω) . ‖h2
T ∂

2
EuD/∂s

2
‖L2(∂Ω).

The combination of the last three estimates concludes the proof. 2

Proof of Theorem 6.1. Notice that [Du]|E = 0 for all E ∈ EΩ so thatah(u, eh) = 0. It follows
from Theorem 2.1 and Lemma 6.1 that

‖e‖2
L2(Ω)

+ |e|2h . |e − eh|
r/(r−1)
W1,p(Ω)

+ β∗(2B‖e − eh‖Yh)+ 2ah(u, eh)

. ‖hT D
2
T e‖

r/(r−1)
Lp(Ω) + ‖h

(γ+1)/2
T D2

T e‖
2
L2(Ω)

. hr/(r−1)
+ hγ+1

=: RHS2.

The combination of this with Lemma 6.2 and‖∆T e‖L2(Ω), ‖u‖H2(Ω), ‖∂
2
EuD/∂s

2
‖L2(∂Ω),

‖Duh‖L2(Ω) . 1 yields

|e|2
W1,2(Ω)

. RHS+ ‖h2
T ‖L∞(Ω)‖h

−1/2
T ‖L∞(Ω)

+ RHS(‖h−(1+γ )/2
T ‖L∞(Ω)RHS+ ‖h

(1−γ )/2
T ‖L∞(Ω)‖De‖L2(Ω)).

Young’s inequality allows us to absorb‖De‖L2(Ω) = |e|W1,2(Ω) on the right-hand side and hence
shows

|e|2
W1,2(Ω)

. RHS+RHS2
‖h

−(1+γ )/2
T ‖L∞(Ω)+RHS2

‖h
(1−γ )/2
T ‖

2
L∞(Ω)+‖h2

T ‖L∞(Ω)‖h
−1/2
T ‖L∞(Ω).

Sincer 6 2,hr/(r−1) . h2. From‖h−1
T ‖L∞(Ω) ≈ ‖hT ‖

−1
L∞(Ω) we deduce

|e|2
W1,2(Ω)

. h+ h(γ+1)/2
+ h(3−γ )/2

+ h(γ+1)/2
+ h3−γ

+ h2
+ h3/2.

This and‖e‖L2(Ω) . h2
+ hγ+1 prove Theorem 6.1. 2
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REMARK 6.2 If boundary conditions are imposed only on some partΓD of ∂Ω (and not on the
entire boundary∂Ω) one obtains an additional term∫

∂Ω\ΓD

(De · ν) · e ds

which we have been unable to control.

7. Stabilisation via distances to averages of gradients

This section is devoted to a stabilisationJh = J + ah with distances to averages of gradients, i.e.

ah(v,w) :=
∫
Ω

h
γ−1
T (Dv − ADv) : (Dw − ADw)dx (7.1)

for γ ∈ R, v,w ∈ W1,p(Ω; Rm), and for the averaging operator

A : L2(Ω; Mm×n) → S1(T )m×n, p 7→ Ap :=
∑
z∈N

|ωz|
−1

∫
ωz

p dx ϕz.

Here, for each nodez ∈ N , ωz = {x ∈ Ω : ϕz(x) > 0} denotes its patch of area or volume|ωz|.
LetXh = Yh be as in Section 6. Forv ∈ Xh we abbreviate

|||v|||2h = ah(v, v) = ‖h
(γ−1)/2
T (Dv − ADv)‖2

L2(Ω)

and define‖ · ‖Xh = ‖ · ‖Yh by

‖v‖2
Xh

= ‖v‖2
Yh

= ‖v‖2
L2(Ω)

+ |||v|||2h.

THEOREM 7.1 Under the hypotheses of Theorem 6.1,

lim
h→0

‖Du−Duh‖L2(Ω) = 0 for −1< γ < 3,

‖u− uh‖W1,2(Ω) 6 c4h
1/2 for γ = 1.

REMARK 7.1 Providedu ∈ (H 2(T ; Rm) ∩W1,p(Ω; Rm)) \ H 2(Ω; Rm) andγ = 5/2, one can
prove

‖u− uh‖W1,2(Ω) . h1/8.

The following lemma shows that the stabilisation defined by (7.1) is equivalent to the one
discussed in the previous section and will be used to reduce the proof of Theorem 7.1 to the one of
Theorem 6.1. The seminorm| · |h is defined as in the previous section.

LEMMA 7.1 ([C]) Forvh ∈ S1(T )m we have|vh|h ≈ |||vh|||h. 2

Proof of Theorem 7.1. Let eh denote the nodal interpolant ofe ∈ C(Ω; Rm). Theorem 2.1 and
Proposition 2.2 show

‖e‖2
L2(Ω)

+ |||e|||2h . |e − eh|
r/(r−1)
W1,p(Ω)

+ ‖e − eh‖
2
L2(Ω)

+ |||e − eh|||
2
h + 2ah(u, eh).
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Lemma 7.1 shows

|e|h 6 |eh|h + |e − eh|h . |||eh|||h + |e − eh|h . |||e|||h + |||e − eh|||h + |e − eh|h.

Nodal interpolation estimates and continuity ofA then imply

|e|2h . |||eh|||
2
h + hγ+1.

We employ Ḧolder’s inequality, Young’s inequality, and nodal interpolation estimates to verify that
for % > 0,

ah(u, eh) . |||u|||2h + %|||eh|||
2
h . |||u|||2h + %|||e|||2h + %|||e − eh|||

2
h . |||u|||2h + %|||e|||2h + hγ+1.

Using
∑
z∈N ϕz = 1, we deduce

|||u|||2h =

∑
z∈N

∫
Ω

h
γ−1
T ϕz(Du− pz)(Du− ADu)dx

6
(∑
z∈N

‖h
(γ−1)/2
T ϕ

1/2
z (Du− pz)‖

2
L2(Ω)

)1/2
‖h
(γ−1)/2
T (Du− ADu)‖L2(Ω),

wherepz = |ωz|
−1

∫
ωz
Dudx for all z ∈ N . Poincaŕe’s inequality and|ϕz| 6 1 show∑

z∈N
‖h
(γ−1)/2
T ϕ

1/2
z (Du− pz)‖

2
L2(Ω)

. ‖h
(γ+1)/2
T D2u‖2

L2(Ω)
.

The combination of the preceding three estimates proves

‖e‖2
L2(Ω)

+ |e|2h . h2
+ hγ+1.

The assertions of the theorem then follow from Lemma 6.2 and the arguments of the proof of
Theorem 6.1. 2

8. Stabilisation via gradients

This section is devoted to a stabilisationJh = J + ah with gradients, i.e. with

ah(v,w) = hγ
∫
Ω

Dv : Dw dx (8.1)

for someγ > 0 and allv,w ∈ Xh = Yh = W1,p(Ω; Rm). Forv ∈ Xh we define

‖v‖2
Xh

= ‖v‖2
Yh

:= ‖v‖2
L2(Ω)

+ hγ ‖Dv‖2
L2(Ω)

.

THEOREM 8.1 Suppose (H1), (H2), and (H4) hold. Assume thatT is quasiuniform andu ∈

W1,p(Ω; Rm) ∩H 1+s(Ω; Rm) for somes ∈ (1/2,1]. Then

lim
h→0

‖Du−Duh‖L2(Ω) = 0 for γ ∈ (2(1 − s),2s),

‖u− uh‖W1,2(Ω) 6 c5h
s−1/2 for γ = 1.

The constantc5 > 0 depends onc1, c2, and upper bounds for‖u‖H1+s (Ω), |uh|W1,p(Ω), |u|W1,p(Ω).
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Proof. Proposition 2.2 and Theorem 2.1 prove

‖e‖2
L2(Ω)

+hγ ‖De‖2
L2(Ω)

. |e−eh|
r/(r−1)
W1,p(Ω)

+‖e−eh‖
2
L2(Ω)

+hγ ‖D(e−eh)‖
2
L2(Ω)

+ah(u, eh) (8.2)

for the nodal interpolanteh ∈ S1
0(T )

m of e ∈ C(Ω; Rm). Standard estimates on nodal interpolation
in H 1+s(Ω) andr/(r − 1) > 2 imply

|e − eh|
r/(r−1)
W1,p(Ω)

+ ‖e − eh‖
2
L2(Ω)

+ hγ ‖D(e − eh)‖
2
L2(Ω)

. h2s
+ h2+2s

+ hγ+2s .

If u ∈ H 2(Ω; Rm) then integration by parts andeh = 0 on∂Ω show

hγ
∫
Ω

Du : Deh dx 6 hγ ‖u‖H2(Ω)‖eh‖L2(Ω).

Hölder’s inequality and an elementwise inverse estimate imply

hγ
∫
Ω

Du : Deh dx . hγ−1
‖u‖H1(Ω)‖eh‖L2(Ω).

Interpolation of the last two estimates yields

ah(u, eh) = hγ
∫
Ω

Du : Deh dx . hγ−(1−s)
‖u‖H1+s (Ω)‖eh‖L2(Ω).

We further estimate

ah(u, eh) . hγ−(1−s)
‖u‖H1+s (Ω)‖eh‖L2(Ω)

6 hγ−(1−s)
‖u‖H1+s (Ω)‖e − eh‖L2(Ω) + hγ−(1−s)

‖u‖H1+s (Ω)‖e‖L2(Ω).

Nodal interpolation estimates and Young’s inequality imply that for% > 0,

ah(u, eh) . hγ−(1−s)+1+s
+ h2γ−2(1−s)

+ %‖e‖2
L2(Ω)

.

The combination with (8.2) shows, after absorbing‖e‖L2(Ω) on the right-hand side,

‖e‖2
L2(Ω)

+ hγ ‖De‖2
L2(Ω)

. h2s
+ h2γ−2(1−s). 2

The following theorem states that the stabilisation scheme (8.1) is in fact the scheme of [NW] in 1D
(up to a lumped integration of the right-hand sidef ).

THEOREM 8.2 Letn = m = 1,Ω := (0,1),A = AD := W
1,p
0 (0,1),

J (u; v) :=
∫ 1

0
uv dx, Jh(uh; vh) :=

1

2

∑
z∈K

hzuh(z)vh(z)

for u, v ∈ W
1,p
0 (0,1) anduh, vh ∈ Ah = AD,h := S1

0(T ). Then, for alluh, vh ∈ Ah,

Jh(uh; vh) = J (uh; vh)+
1

6

∫ 1

0
h2
T DuhDvh dx.
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Proof. Let 0 = z0 < z1 < · · · < zm+1 = 1 be such thatN = {z0, z1, · · · , zm+1} and set
hj := zj − zj−1 for j = 1, . . . , m + 1 so thathzj = hj + hj+1 for j = 1, . . . , m. Elementary
calculations withvh(z0) = vh(zm+1) = 0 show

J (uh; vh) =
1

6

m+1∑
j=1

hj (2uh(zj−1)vh(zj−1)+ uh(zj−1)vh(zj )

+ uh(zj )vh(zj−1)+ 2uh(zj )vh(zj )),

Jh(uh; vh) =
1

2

m+1∑
j=1

hj (uh(zj−1)vh(zj−1)+ uh(zj )vh(zj )).

Hence,

Jh(uh; vh)− J (uh; vh) =
1

6

m+1∑
j=1

hj (uh(zj−1)vh(zj−1)− uh(zj−1)vh(zj )

− uh(zj )vh(zj−1)+ uh(zj )vh(zj ))

=
1

6

m+1∑
j=1

hj (uh(zj )− uh(zj−1))(vh(zj )− vh(zj−1))

=
1

6

∫ 1

0
h2
T DuhDvh dx. 2

The parameterγ = 2 is critical in Theorem 8.1 and excluded in our analysis. In fact, the arguments
in [NW] are quite different and restricted to a model scenario in 1D.

9. Strong convergence in the scalar 2-well problem

In the case of the 2-well energy from Example 3.3 andn > 2,m = 1 we can weaken (H4), i.e. the
uniform monotonicity ofJ can in fact be replaced by monotonicity.

(H5) There existsB > 0 such that, forv ∈ W1,p(Ω),

0 6 J (u; e)− J (uh; e), J (u; v)− J (uh; v) 6 B‖e‖L2(Ω)‖v‖L2(Ω).

We suppose thatJh := J + ah with ah as in (6.1), (7.1), or (8.1).

THEOREM 9.1 Supposen > 2 andm = 1. LetS = Dϕ with ϕ as in Example 3.3. Suppose (H5)
holds anduD ∈ H 2(ED; R). Assume thatT is quasiuniform andu ∈ H 2(Ω) ∩W1,p(Ω). Then

‖u− uh‖W1,2(Ω) 6 c6h
1/2 for γ = 1.

The constantc6 > 0 depends onc1, c2, and upper bounds for‖u‖H2(Ω), |uh|W1,p(Ω), |u|W1,p(Ω),
and‖∂2

EuD/∂s
2
‖L2(∂Ω).

The proof of the theorem follows from the following lemma and the estimates of the previous
sections.
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LEMMA 9.1 Letn > 2 and letϕ be as in Example 3.3 andS = Dϕ. Supposeeh ∈ H 1(Ω) satisfies
eh = 0 on∂Ω. Then

‖e‖2
L2(Ω)

.
∫
Ω

δ : De dx + ‖e − eh‖
2
L2(Ω)

+ ‖D(e − eh)‖
2
L2(Ω)

.

Proof. Proposition 3 in [CP1] ensures the existence of somea ∈ Rn with |a| = 1 such that

‖a ·De‖2
L2(Ω)

.
∫
Ω

δ ·De dx.

A fine version of the Friedrichs inequality (which follows from the one-dimensional Friedrichs
inequality) proves

‖eh‖L2(Ω) . ‖a ·Deh‖L2(Ω).

Two applications of the triangle inequality and the last two estimates prove the lemma. 2

Proof of Theorem 9.1. Proposition 2 and Theorem 2 in [CP1] prove (H1)–(H2). Setting‖v‖2
Xh

=

‖v‖2
Yh

:= ah(v, v) we observe that the first estimate in (H3) is satisfied. Instead of the second
estimate in (H3) we have

Jh(u; v)− Jh(uh; v) 6 ‖e‖L2(Ω)‖v‖L2(Ω) + ‖e‖Xh‖v‖Yh

for all v ∈ Yh. This and Lemma 9.1 imply the estimate of Theorem 2.1. Hence,

‖e‖2
L2(Ω)

+ ah(e, e) . |e − eh|
r/(r−1)
W1,p(Ω)

+ ‖e − eh‖
2
L2(Ω)

+ ‖D(e − eh)‖
2
L2(Ω)

+ ah(e − eh, e − eh)+ 2ah(u, eh)

for eh ∈ S1
0(T ). The estimate of the theorem then follows as in the proofs of Theorem 6.1, 7.1, and

8.1 forah defined by (6.1), (7.1), and (8.1), respectively. 2
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[CP3] CARSTENSEN, C. & PLECHÁČ, P. Numerical analysis of a relaxed variational model of hysteresis

in two-phase solids.M2AN Math. Model. Numer. Anal.35 (2001), 865–878. Zbl 1007.74062
MR 2003c:74071

[F] FRENCH, D. A. On the convergence of finite element approximations of a relaxed variational
problem.SIAM J. Numer. Anal.27 (1990), 419–436. Zbl 0696.65070 MR 91f:65167

[GKR] GOODMAN, J. & KOHN, R., REYNA , L. A numerical study of a relaxed variational problem
from optimal design.Comput. Methods Appl. Engrg.57 (1986), 107–127. Zbl 0591.73119
MR 88a:73054

[K] K OHN, R. V. The relaxation of a double-well energy.Contin. Mech. Thermodyn.3 (1991), 193–236.
Zbl 0825.73029 MR 93d:73014

[LB] L IU , W. B. & BARRETT, J. W. A remark on the regularity of the solutions of thep-Laplacian
and its application to their finite element approximation.J. Math. Anal. Appl.178 (1993), 470–487.
Zbl 0799.35085 MR 95a:35016

[L1] L USKIN, M. On the computation of crystalline microstructure.Acta Numer.5 (1996), 191–257.
Zbl 0867.65033 MR 99f:73030

[L2] L USKIN, M. Approximation of a laminated microstructure for a rotational invariant double-well
energy density.Numer. Math.75 (1996), 205–221. Zbl 0874.73060 MR 97k:73026

[NW] N ICOLAIDES, R. A. & WALKINGTON , N. J. Strong convergence of numerical solutions to degener-
ate variational problems.Math. Comp.64 (1995), 117–127. Zbl 0821.65040 MR 95m:65183

[P] PROHL, A. Computational Micromagnetism.Adv. Numer. Math., Teubner (2001).
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