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An Adaptive Mesh-Refining Algorithm Allowing
for an H 1 Stable L2 Projection onto Courant

Finite Element Spaces

Carsten Carstensen

Abstract. Suppose S1(T ) ⊂ H1(�) is the P1-finite element space of T -piecewise
affine functions based on a regular triangulation T of a two-dimensional surface� into
triangles. The L2 projection� ontoS1(T ) is H1 stable if ‖�v‖H1(�) ≤ C‖v‖H1(�) for
all v in the Sobolev space H1(�) and if the bound C does not depend on the mesh-size
in T or on the dimension of S1(T ).

A red–green–blue refining adaptive algorithm is designed which refines a coarse
mesh T0 successively such that each triangle is divided into one, two, three, or four
subtriangles. This is the newest vertex bisection supplemented with possible red re-
finements based on a careful initialization. The resulting finite element space allows
for an H1 stable L2 projection. The stability bound C depends only on the coarse
mesh T0 through the number of unknowns, the shapes of the triangles in T0, and pos-
sible Dirichlet boundary conditions. Our arguments also provide a discrete version
‖h−1
T �v‖L2(�) ≤ C‖h−1

T v‖L2(�) in L2 norms weighted with the mesh-size hT .

1. Introduction

This paper concerns triangulations of a two-dimensional compact polyhedral manifold
� into triangles, i.e., T is a set of closed triangles T in � ⊂ Rn with⋃

T = � ⊂⊂ Rn.

The triangulations are regular in the sense of Ciarlet, i.e., each nonvoid intersection of
two distinct triangles is either a joint vertex or a common edge of both triangles.

Each triangulation T induces a finite element space S1(T ), the T -piecewise affine
and globally continuous functions,

S1(T ) := {v ∈ C0(�) : ∀ T ∈ T , v|T affine}.
Given a coarse regular triangulation T0, an adaptive algorithm generates a sequence of
triangulations by red–green–blue refinement which divides each triangle into one, two,
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Fig. 1. Red refinement of a triangle T into T1, . . . , T4; thick edges indicate old and new reference edges.

Fig. 2. Green refinement of a triangle T into T1 and T2; thick edges indicate old and new reference edges.

three, or four subtriangles as illustrated in Figures 1, 2, and 3. The concept and refinement
of a reference edge, made precise in Section 2, essentially avoid degeneracies, e.g.,
maintain the minimum angle condition. In this paper, it also avoids overrefinements.

In the literature we find a priori [9], [6] and a posteriori [3], [13] conditions on the
decay of the mesh-size in terms of a distance of two elements which are sufficient for
the H 1 stability of �. The observation [6] that the red–green–blue refinement strategy
controls overrefinements motivated this paper. We design Algorithms 2.1 and 2.2 which
steer the selection of reference edges in the coarse triangulation T0 and in any red–green–
blue refinement step. The main purpose of Algorithms 2.1 and 2.2 is that any induced
finite element space allows for a stable L2 projection. The two algorithms do not bisect
the longest edge (see, e.g., [12] for details on this alternative); instead we follow the
newest-vertex bisection supplemented with possible red refinement steps (see Figures 1,
2, and 3).

Let E0 (resp., E) denote the edges in T0 (resp., T ) and let ED ⊆ E0 denote the (possibly
empty) set of edges on the (possibly empty) Dirichlet boundary 	D =

⋃
ED . Set

H 1
D(�) := {v ∈ C0(�) : ∀ T ∈ T0, v|T ∈ H 1(T ) and v|	D = 0},
S1

D(T ) := {v ∈ H 1
D(�) : ∀ T ∈ T , v|T affine}.

Let ∇ denote the T0-piecewise two-dimensional gradient. Then, the formula

‖∇v‖2
L2(�) + ‖v‖2

L2(�) = ‖v‖2
H 1(�)

Fig. 3. The two possible blue refinements of a triangle T into T1, T2, T3; thick edges indicate old and new
reference edges. Each blue refinement consists of two consecutive green refinement steps.
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defines the norm in the Sobolev space H 1(�). Our main result asserts the H 1 stability
of the L2 projection

� : L2(�)→ L2(�)

onto the finite element space S1
D(T ).

Theorem 1. Let T0 be a regular triangulation of the bounded two-dimensional piece-
wise planar Lipschitz manifold � ⊆ Rn . Let T be a red–green–blue refinement of T0

generated by Algorithm 2.1 and L steps of Algorithm 2.2. Then, for any v ∈ H 1
D(�), we

have �v ∈ S1
D(�) with

‖∇�v‖L2(�) ≤ ‖�‖ ‖∇v‖L2(�) and ‖h−1
T �v‖L2(�) ≤ ‖�‖ ‖h−1

T v‖L2(�).

The bound ‖�‖ for the L2 projection � onto S1
D(T ) depends on T0 and 	D but is

independent of L or card(T ).

The remaining part of the paper is organized as follows. Section 2 introduces the
concepts of regular triangulations, red–green–blue refinements, reference edges, and the
two algorithms of Theorem 1. The key result of Proposition 3.1 in Section 3 bounds
the decay of refinement levels of three connected elements in the class of triangulations
under consideration. This is the basis of Proposition 4.1 in Section 4 which then defines
a quantity dz for each node z ∈ N . Neighboring nodes a and b satisfy da/db ≤

√
8 and

dz is equivalent to mesh-sizes of elements with vertex z. These properties permit a proof
of Theorem 1 in Section 5 with the theory of [6] based on [13], [3].

2. Adaptively Refined Triangulations

The piecewise planar Lipschitz surface � is a connected and closed two-dimensional
manifold decomposed by a coarse triangulation T0: Each T ∈ T0 is a closed triangle
in Rn , i.e., the convex hull of the three vertices, called nodes, and has a positive two-
dimensional measure |T |.

Definition 2.1. A triangulation T of � is regular if two distinct triangles T1 and T2 in
T are either disjoint, T1 ∩ T2 = ∅, or share exactly one node z ∈ Rn , T1 ∩ T2 = {z}, or
share exactly one edge E = conv{a, b}, T1 ∩ T2 = E , that combines two vertices a, b
of both, T1 and T2.

In particular, each vertex of some triangle in a regular triangulation intersects with
other triangles at precisely one of their vertices (hanging nodes are not allowed, see, e.g.,
[4], [7]).

Definition 2.2. Given a regular triangulation T , let N denote the nodes in T (i.e., the
set of all possible vertices of triangles in T ) and let E denote the edges (i.e., the set of
all possible edges E of triangles in T ).

A fundamental concept within the green and blue refinements is the reference edge of
an element [2], [11], [10], [1].
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Definition 2.3. For each element K in the coarse triangulation T0, let E(K ) ∈ E0

denote one of the three edges, called the reference edge of K . An element T ∈ T0

is called isolated if the reference edge E(T ) is shared with another element K ∈ T0,
E(T ) = T ∩ K , with a different reference edge E(K ) �= E(T ).

Remark 2.1. In the literature on element bisection, a reference edge is often called
marked edge. In this paper, however, we introduced the word reference to distinguish
between marked objects (elements or edges) which will currently be refined in the mesh-
generation step at hand and those which mark an object to steer the refinement rules
which may or may not be executed within the design of forthcoming meshes.

The following algorithm generates the reference edges of a given coarse triangulation
in a proper way, i.e., two distinct isolated elements do not share an edge.

Algorithm 2.1. (Define Reference Edges for the Coarse Triangulation) Input is a
coarse triangulation T0. Set T (0) := T0 and j := 0.
Repeat

Choose T ∈T ( j) and look for K ∈T ( j) with T ∩ K =E ∈ E0.
If such K ∈ T ( j) exist,

choose one of them and set E(T ) := T ∩ K =: E(K ).
Set T ( j+1) := T ( j)\{T, K } and j := j + 1.
(Note that neither T nor K is isolated.)

If no such K exists,
choose some edge E of T and set E(T ) := E,
T ( j+1) := T ( j)\{T }, and j := j + 1.

Until T ( j) = ∅.
Output is E(T ) for all T ∈ T0.

Proposition 2.1.

(a) Algorithm 2.1 is feasible in the sense that it defines one reference edge E(T ) for
each triangle T in T0 in at most card(T0) steps.

(b) Two distinct isolated elements in T0 cannot share an edge.

Proof. Part (a) follows from the fact that T ( j+1) equals T ( j) reduced by one or two
elements and so stops after at most card(T0) steps. Suppose that (b) is wrong, i.e., assume
K and T share an edge and that their (distinct) reference edges are defined in steps k and

 of Algorithm 2.1. We have k �= 
 as K and T are distinct and isolated. Also k < 
 is
impossible as then T, K ∈ T (k) = T (k+1) ∪ {K } but T ∩ K ∈ E0 and so this situation
cannot arise. The same arguments prohibit 
 < k as well. This concludes the proof.

The red–green–blue refinements divide a triangle T with reference edge E(T ) into one,
two, three, or four subtriangles and define their reference edges. Besides no refinement
(i.e., T �→ T ) there are the three rules of Figures 1, 2, and 3.
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Example 2.1 (Red). A triangle T is decomposed into four congruent scaled copies
T1, T2, T3, T4 of it such that the edges’ midpoints are the new nodes. The mapping
T �→ (T1, T2, T3, T4) is called red refinement. The old and new reference edges are
depicted in Figure 1.

Example 2.2 (Green). A triangle T is halved along its reference edge E(T ). The
green refinement T �→ (T1, T2) is depicted in Figure 2 with the old and new reference
edges.

Example 2.3 (Blue). Two successive green refinements of a triangle T describe one
blue refinement T �→ (T1, T2, T3) depicted with reference edge in Figure 3. Notice that
either of the two nonreference edges of T could be refined and hence the two resulting
variants are shown.

In each step of our adaptive mesh-refining algorithm, we are given a set of edges E( j)

which will be refined.

Algorithm 2.2 (Adaptive Mesh-Refining). Input is the coarse triangulation T0 with
reference edges E(T ), T ∈ T0, from Algorithm 2.1.
Set T (0) := T(0) and j := 0.
Repeat

Select a set of edges E( j) such that each triangle
T ∈ T( j) with edge E ∈ E( j) satisfies E(T ) ∈ E( j).
Perform red-green-blue or no refinement of T ∈ T( j)

with edges E1, E2, E3 such that {E1, E2, E3} ∩ E( j)

are halved.
Set new triangulation T( j+1) with new set of
reference edges (E(T ) : T ∈ T( j+1)) and j := j + 1.

Until E( j) = ∅.
Output is triangulation T = T( j).

Example 2.4. In each step of Algorithm 2.2 we are given a set E( j) of edges which
will be refined. This set is frequently defined by element-oriented refinement indicators
[14]. For instance, ifM( j) is a set of marked elements in T( j), we may set

E (0)( j) := {E edge of T : T ∈M( j)} and, for k = 0, 1, 2, . . . ,

E (k+1)
( j) := {E(T ) : ∃ T ∈ T( j) with edge in E (k)( j) } ∪ E (k)( j) .

The increasing sequence E (0)( j) ⊆ E (1)( j) ⊆ . . . ⊆ E( j) will become constant E( j) = E (k)( j) for
sufficiently large k. Then, Algorithm 2.2 red refines each T inM( j) and red–green–blue
refines further elements. It satisfies the condition that each T ∈M( j) with edge E ∈ E( j)

satisfies E(T ) ∈ E( j) and so avoids hanging nodes.

The output of Algorithm 2.2 has some particular properties.
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Proposition 2.2.

(a) Algorithm 2.2 generates a regular triangulation T which is a refinement of T0.
(b) For each T ∈ T there exists exactly one K ∈ T0 with T ⊆ K .
(c) Each K ∈ T0 with reference edge E(K ) uniquely defines an affine map � :

K → Tref onto the reference triangle Tref = conv{(0, 0), (0, 1), (1, 0)} by
�(E(K )) = conv{(0, 1), (1, 0)} and det D� > 0. The triangulation

T̂K := {�(T ) : T ∈ T , T ⊆ K } of K

consists of right isosceles triangles. (A right isosceles triangle results from a square
halved along a diagonal.)

Proof. By mathematical induction on j in Algorithm 2.2. In (c) we use that any red–
green–blue refinement of a right isosceles triangle results into right isosceles triangles.

Remark 2.2. Some bisection algorithms in the literature are based on successive re-
finements in order to guarantee that at least the reference edge of each refined element
is bisected. This is occasionally called closure algorithm. Algorithm 2.2 assumes this
implicitly in the first two lines of the repeat loop through a selection of E( j) such that
each triangle T ∈ T( j) with edge E ∈ E( j) satisfies E(T ) ∈ E( j). Given any set E( j,0)

of marked edges in the current triangulation (e.g. selected by refinement indicators),
E( j,0) is successively enlarged eventually to obtain E( j) with the required property. This
functions as a closure algorithm to guarantee a regular triangulation.

Remark 2.3. The selection of a reference edge by Algorithm 2.1 seems to be new. The
condition in this paper that isolated elements are not neighbors (via a shared edge) is less
restrictive than that of no isolated triangles at all (in the triangulation). The later condition
is that all triangles are compatibly divisible and employed to maintain regularity [11,
Algorithm 2.1].

We conclude Section 2 on adapted meshes with a comparison to another red–green–
blue refinement algorithm which differs by another choice of the reference edges, namely
by the longest edge strategy.

Example 2.5. Figure 4 shows six configurations to illustrate the difference of two
possible refinement algorithms. The left column depicts three triangulations of the tri-
angle (A, B,C) while the right column displays the affine image of the left; A, B,C is
mapped onto A′, B ′,C ′, etc. Let us start with the first row. The triangle A, B,C is special
in that the length |AB| of the edge AB := conv{A, B} is smaller than |AC | = |BC |.
Suppose AC = E(A, B,C) is the reference edge in all algorithms. The affine image
reflects this in that A′C ′ is the diagonal of the reference triangle. Any red refinement of
(A, B,C)would yield four congruent smaller configurations which essentially coincide
with (A, B,C), so let us look at one green refinement. The reference edge AC is divided
at D and we obtain the first picture in Figure 4. The triangle (A, B,C) is special in that
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Fig. 4. One green refinement of a triangle (A, B,C) (top) followed by one of (A, B, D) with respect to
reference edge B D (middle) or AB (bottom). The right column displays the affine image onto the reference
triangle (A′, B ′,C ′). Algorithm 2.2 avoids the middle configuration by E(A, B, D) = AB.

|AB| = |DB|. Hence the longest edge strategy may choose either the reference edge
B D or the reference edge AB, while our strategy insists on AB. A different scaling
of the vertical axis changes the reference choice: If we enlarge the distance of C onto
AB, |AB| < |B D| and the longest edge strategy uniquely chooses the reference edge
|B D|. A green (resp., red) refinement in the two triangles of the top figures results
in the situation of the middle pictures. We see clearly that A′E ′ does not yield right
isosceles triangles in the affine image on the right. If, conversely, the distance of C to
AB is smaller than in Figure 4, |B D| < |AB| and in both reference choices we have
E(A, B, D) = AB. A green refinement in (A, B, D) leads to the bottom pictures of
Figure 4. The point is that the affine image consists of right isosceles triangles.
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Remark 2.4. The example clearly illustrates, first, our red–green–blue refining al-
gorithm is different to the usually proposed longest-edge strategy; second, the latter
algorithm does, in general, not lead to affine images of triangulations into right isosceles
triangles, whereas Algorithm 2.2 does; third, the number of different angles in the tri-
angulation generated for the longest-edge strategy is, in general, larger than (or at least
equal to) in Algorithm 2.2.

3. Mesh-Size Decay in Adapted Triangulations

Throughout this section, we consider a regular triangulation T of � obtained by Algo-
rithms 2.1 and 2.2.

Definition 3.1 (Distance of Nodes). Given two distinct nodes a and b inN let δ(a, b)
be the smallest integer J such that J elements T1, T2, . . . , TJ ∈ T exist with a ∈
T1, T1 ∩ T2 �= ∅, T2 ∩ T3 �= ∅, . . . , TJ−1 ∩ TJ �= ∅ and b ∈ TJ ; set δ(z, z) = 0 for each
z ∈ N .

Remark 3.1. (N , δ) is a metric space.

Definition 3.2 (Level of Refinement). For each T ∈ T we define 
(T ) ≥ 0 through
the macroelement K ∈ T0 with T ⊆ K by


(T ) := log2

√
|K |/|T |

where |T | denotes the area of an element T .

Remark 3.2. By mathematical induction, we infer


(T ) ∈ {0, 1
2 , 1, 3

2 , 2, . . .}.

The subsequent decay estimate is the key observation for the stability proof.

Proposition 3.1. Suppose a, b ∈ N \N0, δ(a, b) ≤ 1, a ∈ T , b ∈ K for T, K ∈ T .
Then,

|
(T )− 
(K )| ≤ 3.

Proof. Before we immerse ourselves in the most complicated configurations possible
in T , we stress the setting and the difficulty of this proof. Proposition 2.2(c) guides
us to consider right isosceles triangles which share one vertex z. There exists only a
finite number of shapes of such patches ωz =

⋃{T ∈ T : z ∈ T } and Figure 5 shows
one of those. The assertion gives a useful estimate of different mesh-sizes (relative to
macro elements) of two elements in two overlapping patches. The patch ω̂z of Figure 5
is extremal in the sense that |T6|/|T1| = 8 is the maximal quotient of the area for two
elements of one patch. The proposition asserts that T and K allow such estimates for
one element M ∈ T with a, b ∈ M , namely,

|K |/|M | ≤ 8 and |M |/|T | ≤ 8.
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Fig. 5. Extremal patch ω̃z within a triangulation into right isosceles triangles.

In the simplest configuration, all three elements T,M, K belong to the same macro-
element K0. Then


(T )− 
(K ) = log2

√
|K0|/|T | − log2

√
|K0|/|K |

= 1
2 log2(|K |/|T |) ≤ 1

2 log2 64 = 3.

This is the idea of the proposition. The difficulty is that all three elements may belong
to different macroelements and with possibly quite different areas. Nevertheless, Algo-
rithms 2.1 and 2.2 provide sufficient structural uniformity to maintain the above estimate
in any possible situation.

After the introduction to the simplest configuration, we consider the most complicated
configuration. For simpler situations several steps below are redundant. It can indeed
happen that T ⊆ T0 and K ⊆ K0 belong to two distinct macroelements T0 and K0 in T0

and that edge E ∈ E between a and b does neither belong to T0 nor to K0. Since neither
a nor b are nodes in the coarse triangulation T0, then a and b belong to the boundary of
another macroelement M0 ∈ T0 with a ∈ M0 ∩ T0 ∈ E0 and b ∈ M0 ∩ K0 ∈ E0. Let
us map M0 to the reference element as in Proposition 2.2. For the node a (resp., b) we
proceed as follows. If a (resp., b) belongs to the reference edge of both M0 and T0 (resp.,
M0 and K0) or if it belongs to neither of the two, we map T0 (resp., K0) to the reference
element and translate and rotate the image such that it fits the corresponding edge of
Tref to which a (resp., b) is mapped by the first mapping. In case that a (resp., b)
belongs to the reference edge of M0 but not to that of T0 (resp., K0) we scale the picture
of the map onto Tref by a factor

√
2 and then translate and rotate to fit the two images

of the edge M0∩T0 (resp., K0∩T0). In the remaining case, a (resp., b) does belong to the
reference edge of T0 (resp., K0) but does not belong to the reference edge of M0. Then
we scale the affine image of T0 (resp., K0) by a factor 1/

√
2 and rotate and translate it

to fit the two images of the edge M0 ∩ T0 (resp., K0 ∩ T0). The resulting macroelement
configuration is of the form shown in Figure 6 (we neglected some variants which are
symmetric to one of the displayed forms).

Because of Proposition 2.1(b), the configurations of Figure 7 cannot arise: In all cases
shown, the reference edges of T0 and M0 as well as of M0 and K0 do not coincide and
so two neighboring macroelements are isolated. In conclusion, at least two of the three
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Fig. 6. Some possible T0-piecewise affine images K̃0, M̃0, T̃0 of three neighboring macroelements
K0,M0, T0 in the proof of Proposition 3.1. Other variants are obtained by reflection along the main diag-
onal.

triangles shown in the configurations of Figure 6 are congruent. Let us denote the image
of K0,M0, and T0 under the T0-piecewise affine mapping, that are possibly among the
configurations of Figure 6, by K̃0, M̃0, and T̃0, respectively. Then

|K̃0|/|T̃0| ≤ 2.

Owing to Proposition 2.2, the image of T |(M0∪K0∪T0) onto K̃0 ∪ M̃0 ∪ T̃0 yields a trian-
gulation T̃ of K̃0 ∪ M̃0 ∪ T̃0 into right isosceles triangles. Within the triangulation T̃ ,
the patch of the node z := ã (resp., z := b̃) consists of at most eight triangles (at most
four if z belongs to an edge on the relative boundary ∂� of �). Figure 5 shows such an
example.
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Fig. 7. Impossible T0-piecewise affine images K̃0, M̃0, T̃0 of three neighboring macroelements K0,M0, T0

in the proof of Proposition 3.1. The three configurations are avoided by Algorithm 2.1.
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The patch ω̃z of Figure 5 is extremal in the sense that for two triangles T and K in
this patch we have

|K |/|T | ≤ 8

and equality is possible, e.g., |T5|/|T1| = 8. However, for any other patch (i.e., different
from a scaled and rotated version of ω̃z) we have

|K |/|T | ≤ 4.

The images K̃ and T̃ of K and T belong to overlapping patches ω̃a and ω̃b, δ(a, b) = 1.
With any element M̃ in their intersection, we deduce

|K̃ |/|M̃ | ≤ 8 and |M̃ |/|T̃ | ≤ 8.

Since two patches of the form of Figure 5 but of different size cannot be overlapping
neighbors, we have that only one equality is possible and the other inequality can be
replaced by ≤ 4. Thus,

|K̃ |/|T̃ | = |K̃ |/|M̃ | |M̃ |/|T̃ | ≤ 8 · 4 = 32.

Recall the above estimate |T̃0|/|K̃0| ≤ 2 to conclude

|T̃0|/|T̃ | |K̃ |/|K̃0| ≤ 64.

Moreover, T̃0 and T̃ (resp., K̃0 and K̃ ) are images of the same affine map and so their
quotient of areas is preserved,

|T̃0|/|T̃ | = |T0|/|T | (resp., |K̃ |/|K̃0| = |K |/|K0|).

Therefore, we have


(T )− 
(K ) = log2

√
|T0|/|T | |K |/|K0|

= log2

√
|T̃0|/|T̃ | |K̃ |/|K̃0|

≤ log2

√
64 = 3.

This concludes the proof (as K and T play symmetric roles in Proposition 3.1 and so
can be interchanged).

4. Two Basic Estimates

With the decay estimate of Proposition 3.1 we can define an auxiliary nodal value dz

introduced in [6].

Definition 4.1. For each node z ∈ N we define

dz := min
T∈T

23/2 δ(z,T )−
(T ), where δ(z, T ) := min{δ(z, x) : x ∈ N ∩ T }.
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Proposition 4.1.

(a) For a, b ∈ N with δ(a, b) = 1 we have

da/db ≤
√

8.

(b) There exists a constant c1 = c1(T0)which depends on T0 (but not on T or card(T )
or mesh-sizes) such that, for all z ∈ N and T ∈ T with z ∈ T , we have

d2
z /|T | + |T |/d2

z ≤ c1.

Proof. For b ∈ N let T ∈ T satisfy db = 23/2 δ(b,T )−
(T ). Given a ∈ N with δ(a, b) =
1, we have δ(a, T ) ≤ 1+ δ(b, T ). Then,

da ≤ 23/2 δ(a,T )−
(T ) and so da/db ≤ 23/2(δ(a,T )−δ(b,T )) ≤
√

8.

This proves (a). Since δ(z, T ) = 0 in (b) we infer

d2
z /|T | ≤ (23/2 δ(z,T )−
(T ))2/|T | = 2−2
(T )/|T |.

By definition of 
(T ) for T ⊆ T̂ ∈ T0, we have

d2
z /|T | ≤ 2−log2(|T̂ |/|T |)/|T | = 1/|T̂ |

which depends on T0 only. This shows the first estimate in (b). The remaining proof of
the second estimate requires Proposition 3.1. Let

dz = 23/2 δ(z,K )−
(K )

for a minimizing K ∈ T . Let J = δ(z, K ) + 1 be the minimal number of elements
T1, T2, . . . , TJ such that z ∈ T1, T1 ∩ T2 �= ∅, T2 ∩ T3 �= ∅, . . ., TJ−1 ∩ TJ �= ∅, and
TJ = K . There are only a finite number of nodes in the coarse triangulation, card(N0),
and so, for a bounded number of intersections Tj ∩ Tj+1, we have

Tj ∩ Tj+1 ∩N ⊆ N0.

Note carefully, that an infinite loop is not allowed, as the intersections T1 ∩ T2, T2 ∩ T3,
. . ., TJ−1 ∩ TJ are pairwise disjoint (otherwise, we could link z and K with a smaller
number of elements). Hence we have L ≤ card(N0) indices j1 < j2 < · · · < jL < J
with

Tj
+1 ∩ Tj
+2, Tj
+2 ∩ Tj
+3, . . . , Tj
+1−1 ∩ Tj
+1

is different from {x} for some x ∈ N0 or from E for some E ∈ E0, 
 = 1, . . . , L−1. Only
the L exceptions Tj
∩Tj
+1, 
 = 1, 2, . . . , L , may have this form. Given 
 = 1, 2, . . . , L ,
we consider

Tm, Tm+1, . . . , Tn for m = j
 + 1 and n = j
+1.

The triples (Tm, Tm+1, Tm+2), (Tm+2, Tm+3, Tm+4), (Tm+4, Tm+5, Tm+6), . . . , (Tm+2µ,

Tm+2µ+1, Tm+2µ+2) for m+2µ+2 = n or n−1 satisfy the conditions of Proposition 3.1.
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Indeed, for Tm+2ν, Tm+2ν+1, Tm+2ν+2 we find a, b ∈ N \N0 with a ∈ Tm+2ν ∩ Tm+2ν+1

and b ∈ Tm+2ν+1 ∩ Tm+2ν+2, whence δ(a, b) ≤ 1. Therefore,

|
(Tm+2ν)− 
(Tm+2ν+2)| ≤ 3.

Triangle inequalities show

|
(Tm)− 
(Tm+2µ+2)| ≤ 3(µ+ 1).

Proposition 3.1 is applicable to (Tn−1, Tn, Tn) as well and we infer

|
(Tm+2µ+2)− 
(Tn)| ≤ 3.

Altogether (in all cases, n − m even or odd),

|
(Tm)− 
(Tn)| ≤ 3
2 (n − m + 1).

This reads, for 
 = 1, 2, . . . , L ,

|
(Tj
+1)− 
(Tj
+1)| ≤ 3
2 ( j
+1 − j
).

For each z ∈ N0 with z ∈ Tj
 ∩Tj
+1, there are a limited number of elements in the patch
of z; one bound is 2 card(T0) (as T0 contains ≤ card(T0) elements in the coarse mesh
and this could be doubled at most by refinements).

The quotient of two areas of two neighboring elements is bounded by a constant which
depends on the shape of the elements only. Hence, there is a constant c2 ≥ 1, that depends
only on T0, such that

|Tj
+1|/|Tj
 | ≤ c2 and |T̂j
 |/|T̂j
+1| ≤ c2,

where Tj
 ⊆ T̂j
 ∈ T0 and Tj
+1 ⊆ T̂j
+1 ∈ T0. The definition of 
(Tj ) gives the estimate


(Tj
+1)− 
(Tj
 ) = log2

√
|T̂j
+1|/|Tj
+1| |Tj
 |/|T̂j
 | ≤ log2 c2.

In summary, we have


(TJ )− 
(T1) ≤ L log2 c2 +
L−1∑

=1

3/2 ( j
+1 − j
) ≤ L log2 c2 + 3
2 J.

This shows

|T |/d2
z = |T |2−3δ(z,K )+2
(K ) ≤ |T |2−3J+3+2L log2 c2+3J+2
(T1)

= |T |8c2L
2 22
(T1).

Recall that z ∈ T ∩ T1 and so the argument for the estimate for 
(Tjl+1)− 
(Tjl ) applies
and analogously shows


(T1)− 
(T ) ≤ log2 c2.
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Then, for T1 ⊆ T̂1 ∈ T0 and T ⊆ T̂ ∈ T0,

|T |/|T̂ |22
(T1) = |T |/|T̂ | |T̂1|/|T1| ≤ c2
2.

Hence, |T |/d2
z ≤ |T̂ |8c2(L+1)

2 =: c1 − 1/|T̂ |.

Remark 4.1. From the proof it appears that c1 in Proposition 4.1(b) depends on the
mesh-size of the coarse grid. A different scaling of dz , e.g., by multiplication with

√|K0|
for some fixed K0 ∈ T0, results in a constant c1 that depends on the ratio of different
mesh-sizes in T0 only.

5. Proof of Theorem 1

The asserted H 1-stability in the theorem follows from the preceding Proposition 4.1 and
Theorem 2 in [6]. To be self-contained and to verify the second inequality, we sketch the
arguments and refer for more details to [6].

The mass matrix M(T ) of a triangle T ∈ T is a multiple of M ∈ R3×3 with Mjk =
1 + δjk . Suppose λ1, λ2, λ3 > 0 are the entries of the diagonal matrix � and satisfy
λ1/λk ≤

√
8 =: κ . Then the eigenvalues of

�−1 A� for A := (�2 M + M�2)/2

can be calculated as in [3]. Their smallest value is 5 − µ for µ2 := ∑3
j,k=1 λ

2
j /λ

2
k ≤

3 + 2(1 + κ2 + κ−2) = 21.25 < 25. Hence A is positive definite and so (x · Ax)1/2

defines a norm for x ∈ R3. Consequently, we have

c2
3x ·�2 M�2x ≤ x · Mx ≤ c2

4x · Ax = c2
4x ·�2 Mx .

We will employ these estimates for (λ1, λ2, λ3) = hT (1/da, 1/db, 1/dc) for the three
nodes a, b, c of T and dz from Definition 4.1. The condition λj/λk ≤

√
8 follows from

Proposition 4.1(a). Part (b) of which implies that c3 and c4 depend on c1 but not on hT .
Let P be a weak interpolation operator with Pu ∈ S1

D(T ) [5], [8], [7], [4] which
satisfies

‖h−1
T (u − Pu)‖L2(�) + ‖∇Pu‖L2(�) ≤ c5‖∇u‖L2(�)

with the local mesh-size hT ∈ L∞(�), hT |T = hT on T ∈ T . The constant c5 depends
on the shape of the triangles and so on T0 only. Then, let qh := Pu−�u =∑n


=1 q
ϕ
 ∈
S1

D(T ) for the nodal basis (ϕ1, . . . , ϕn) of S1
D(T ) and let ph :=∑n


=1 q
d
−2

 ϕ
 ∈ S1

D(T )
so that

qh |T =
n∑

=1

q
ϕ
|T =
3∑

j=1

ξT, jψT, j on T ∈ T0

for coefficient vectors xT = (ξT,1, ξT,2, ξT,3) = (q
(T,1), q
(T,2), q
(T,3)). An elementwise
inverse estimate gives ‖∇qh‖L2(�) ≤ c6‖h−1

T qh‖L2(�). A triangle inequality shows

‖∇�u‖L2(�) ≤ ‖∇Pu‖L2(�) + ‖∇qh‖L2(�)

≤ c5‖∇u‖L2(�) + c6‖h−1
T qh‖L2(�)
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and it remains to bound ‖h−1
T qh‖L2(�). With the mass matrix M(T ) of T , this reads

‖h−1
T qh‖2

L2(�) =
∑
T∈T

h−2
T xT · M(T )xT(1)

≤ c2
4

∑
T∈T

h−2
T xT ·�(T )2 M(T )xT

= c2
4

∑
T∈T

3∑
j=1

q
(T, j)

d2

(T, j)

∫
T
ϕ
(T, j)qh dx

= c2
4

∫
�

phqh dx,

where we used the above estimate and d
(T, j) = dz for the node z with hat function ϕ
(T, j)

with global number 
(T, j) and local number j in T . Since � is the L2 projection,
∫
�

phqh dx =
∫
�

ph(ph − u) dx ≤ c5‖hT ph‖L2(�)‖∇u‖L2(�).

The above estimates then yield (since �2xT are the nodal values of ph)

‖hT ph‖2
L2(�) =

∑
T∈T

h2
T xT ·�2 M�2xT ≤ 1/c2

3 ‖h−1
T qh‖2

L2(�).(2)

The combination of the last three inequalities concludes the proof of the first estimate
on the H 1-norms.

The proof of the second uses the aforementioned arguments for qh := Pu and ph :=∑n

=1 q
d

−2

 ϕ
 ∈ S1

D(T ). Formulas (1) and (2) remain valid and are combined with∫
�

phqh dx = ∫
�

phu dx . This shows

‖h−1
T �u‖L2(�) ≤ c2

4/c3‖h−1
T u‖L2(�).

Remark 5.1. Proposition 4.1 holds for a class of triangulations into parallelograms
and triangles as well, but the mass matrices M(T ) do not allow a positive definite matrix
�−1 A� if T is a parallelogram.

Remark 5.2. The author expects similar results for three-dimensional domains. De-
tails, however, are less obvious.
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