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Summary. We prove optimal a priori error estimates in W'? for finite
element minimizers of polyconvex energy functionals with small applied
loads. The proof relies on a quantitative version of Zhang’s stability estimate
(K. Zhang, Arch. Rat. Mech. Anal. 114 (1991), 95-117).

Mathematics Subject Classification (2000): 35G25, 73G25, 65N12

1 Introduction

Compared to the large number of contributions on computational finite elas-
ticity in the engineering literature, very little is based on a rigorous mathemat-
ical foundation. We refer to the recent survey [T] in the handbook of numerical
analysis and emphasize that it does not include any error estimates. The math-
ematical existence theory is more developed and offers a local approach via
the implicit function theorem and a global approach via minimization of a
polyconvex energy functional in the sense of Ball [C2,V,B2].

The numerical analysis in the context of the implicit function theorem
then involves a linearisation about a smooth solution but does not address
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the question of whether the local finite element approximation is a global or
local minimizer of a discrete energy. This difficulty is recast into a path-fol-
lowing ansatz where, e.g., the load serves as a control parameter (see, e.g.,
[C2,D)). In this paper we focus on a discrete global minimization problem
and employ energy estimates. For several mathematical difficulties discussed
in Section 5 we succeeded only for small loads where the two approaches
coincide as shown by Zhang [Z].

2 Variational methods and implicit function theorems
in finite elasticity

The variational approach to the existence of equilibrium solutions in nonlin-
ear elasticity is based on the minimization of an energy functional of the form

(2.1) I(u):/ (W(Du) — f - u)dx
Q

in a suitable class A of admissible deformations. For conceptual reasons, one
cannot assume local conditions such as convexity for W, see [B1]. However,
for a large class of constitutive relations, including the Ogden materials, the
free energy density W is polyconvex and the existence of minimizers follows
from Ball’s seminal paper [B2]. Throughout the paper we assume that the
subsequent hypotheses are satisfied.

(H1) € is a bounded C3-domain in R?;
(H2) G € C3*(M**? x (0, 00); R) is convex and satisfies the growth condi-
tion

G(F,8) >a+ B|FI” VFeM*? §>0,

with p > 2, € R, and 8 > 0;
(H3) W : M7** — R s defined by
W(F) = y|F|" + G(F,det F)

with y > 0; here M%rxz = {F e M?>*? : det F > 0}.
(H4) g € C3(; R?), f € L"(22; R?) with r > 2, and the class A of admis-
sible functions, defined by
A={ueW'P(QR? :u=id+ gonds,
det Du > 0 a.e. in 2}
is not empty.
(H5) we have for all sequences {F;}jen in M?*2 and {6;}jenin (0, co) with
lim; o F; = F and lim;_,, §; = O that

lim G(F},8;) = +o0.
Jj—o00
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The existence of a minimizer for (2.1) follows from the general theory for
polyconvex functionals even for y = 0 and under weaker assumptions on
the smoothness of W. In our situation, Zhang’s results [Z] imply uniqueness
of the solution if the loads are sufficiently small.

Theorem 2.1 ([B2]) Suppose (HI)-(HS5) and that the total energy

I(u):/ (W(Du)—f‘u)dx
Q

is finite for at least one u € A. Then there exists a minimizer of  in A. 0O

A different technique for proving the existence of an equilibrium solution
in finite elasticity is based on the implicit function theorem (see, e.g., [C2,V,
Z]). We use the following result.

Theorem 2.2 Suppose (HI)-(H5). Then there exists an g > 0 and a func-
tionn : [0, & ]_—> [0, no | such that the following holds: For all ¢ € (0, &),
forall g € C*(Q; R?), and for all f € L"(; R?) with

(2.2) llgll30 <&
and
ow
(2.3) | f + div ﬁ(l + DYl <e,

there exists a unique weak solution u = U(f,g) € W' (Q; R?) of the
equilibrium equations

2.4) div z—v:(Du) +f=0

that satisfies the boundary conditions

(2.5) u=id+ gonoQ2
and the estimate

(2.6) lu —idll2, < n(e).
Moreover, 1 is continuous at zero with n(0) = 0.

Proof. This result is essentially a two-dimensional version of Theorem 2.10
in [Z] in the three-dimensional setting. The continuity of n at ¢ = 0 is central
for our arguments below. We include a sketch of the proof of the theorem
using the notation in [V] (which is also used in [Z]). The idea is to use the
implicit function theorem in suitable function spaces. Since polyconvexity
implies quasiconvexity and hence global stability of affine mappings, u = id
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is a solution of (2.4)-(2.5) with f = 0 and g = 0. This suggests to consider
the mapping
F (W, (2 RY) N W2 (2; R?)) x L' (2; R?)
x C3(; R?) — L' (Q: R?),

A4
(v7fag)|_> _f_dlva_F(I+DU+Dg)

in a neighbourhood of (0, 0, 0). An orientation-preserving C! diffeomor-
phism u of Q onto €2 is called an admissible deformation if u = id on 9.
We denote by A,,1»,, the set of those admissible deformations that lie in
Wrtar(Q; R?). Finally S,,42., is the subset of all admissible deformations
in A2, for which

/ W oyt ayk
Q

2 . T2
3FoE, P any & Z CWIVIL,  forall ¥ € DE:RY),

where the constant c(u) > 0 does not depend on 1. The arguments on
page 101 in [Z] show that id € S, ,. We can then follow the discussion on
page 95 in [V] to see that the differential of F with respectto v at f = 0 and
g = 0 is a linear bijection of W, (2; R?) N W27 (2; R?) onto L' (; R?).
Then the implicit function theorem implies that there exists a local represen-
tation V (f, g) of the zeros of F,i.e. F(V(f, g), f, g) = 0for f and g close
to zero in L (2; R?) and C3(Q: R?). Moreover, the function V ( f, g) satis-
fies V (0, 0) = 0 and depends continuously on f and g in the corresponding
norms. Finally the function U = id + V has the properties stated in the
theorem. m|

Under the same hypotheses, Zhang [Z] proved that any minimizer of / in
Theorem 2.1 solves (2.4)-(2.6) if the assumptions (2.2)-(2.3) hold.

Theorem 2.3 ([Z]) Suppose (HI)-(H5). Then there exists an g1 € (0, &)
such that for all ¢ € (0, &) the following holds: If g € C3(Q;R?) and
f e L"(2; R?) satisfy (2.2) and (2.3), respectively, then any minimizer u of
I in A belongs to W' (2; R?) and satisfies (2.4)—(2.6). O

Remark. In this paper, we restrict our attention to the two-dimensional situa-
tion for notational simplicity. The extension to the three-dimensional setting
follows along the same lines, but the algebra is more involved. Theorem 2.3
is the two-dimensional version of Theorem 3.4 in [Z]. We sketch the proof
following Zhang’s arguments in the appendix. Incompressible materials can
be treated by the same techniques, see [B2,C2,V,Z].

Notation. We denote with |- ||, and | - ||, , the norms in L (£2) and W57 (),
respectively. The W7 (2)-seminorm is defined by ltl,p = ||Dku||,,. IfAe
M >k then |A| is the Frobenius norm of A, i.e., the Euclidean norm in R"Z,
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induced by the scalar product A : B = Z§j=1 A;jBjj. For k =1, 2 we
denote the matrix of all partial derivatives of G of order k with D*G and we

let

1 1 2
cx = max {|D*G(F,8)| : F e M, |I — F| < pl-l=5+ %}.

3 Stability of global minimizers

In this section we modify Zhang’s arguments to prove a stability estimate for
the global minimizer u € A and an approximation w € AN WH®(Q; R?)
with |lu —id||1 0 and ||w —id||1 « small enough. It is important to note that
Theorem 2.3 implies regularity for the minimizer u € A of the variational
problem. In particular, u € W2 (Q; R?) — W!>(Q; R?). More precisely,
we prove that for any v € A with I (1) < I (v) < I(w) the estimate

D —v)ll2 < c3llDu — w2

holds. As an application, we prove error estimates for finite element approx-
imations in Section 4.

Theorem 3.1 Suppose (HI)-(H5). Then there exist ¢ > 0, §g > 0 small
enough, and c3 > 0 such that for all g € C3(;R?) and for all f €
L"(Q; R?) satisfying (2.2)—(2.3) the following implication holds: Ifu € A is
the minimizer of 1,
I(w) =min{I@) : u € A},
with lu — id|1.c0 < 8o, and ifv € A, and w € AN W'>(Q; R?) are such
that |lw — id|1,c0 < 8o and
IT(w) <1(v) =I(w)
then
ID@ — )12+ 1D — v)[I3 < 3D — w)l3.

Remark. The point s that we do not assume in Theorem 3.1 that [v—id| o <
3.

The proof of the theorem requires two elementary estimates which we

state in the following two lemmas. The first is a consequence of Lemma 8.2
in [E]. We include the proof of the second for the convenience of the reader.

Lemma 3.2 ([E]) For 2 < p < o0 there exists a constant ¢4 > 0 which
only depends on k and p such that for all A, B € R* the following estimate
holds:

cs(IAIP72|B* + |BI”) < |A+ B|” — |A|” — p|A|" A - B. O
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Lemma 3.3 For2 < p <ooand A, B € R* we have
[|A|P72A — |B|"*B| < (p — 1) |B — A| max {|A|""2, |B|""?}.

Proof. For A € [0, 1] we define Fy, = A + A(B — A). Then

)
—(IF P—2F

(IR
<(p—=D|IF|"*(F.: (B—A) F|+ |F.|"|B — A
<(p—D|FP 2B —A| < (p—1)|B— Almax{|A|”2, |B|P"%)

and the assertion follows from
'
|BI"?B — |A|"?A = / —(FI"?F)dh. o
0 OA
Proof. Let dG /9 F and 0G /96 denote the partial derivatives of G with respect

to the (four components of the) first and the last argument, respectively. The
convexity of G implies that

0<I(w)—1()
<y (IDwl% — 1Dv]12)

—/f-(w—v)dx
Q
G
+/Q ﬁ(Dw,det Dw) : D(w —v)dx

0G
3.1 +/ %(Dw,det Dw)(det Dw — det Dv) dx.
Q

The integral that involves f can be substituted by the weak formulation of
the Euler-Lagrange equations (2.4) for the minimizer u,

G
/ f-¢dx = / —(Du,det Du) : D¢ dx + yp/ |Du|”~*Du : D¢ dx
Q QdF Q
G
3.2) —I—/ %(Du, det Du) cof Du : D¢ dx
Q

forallz € Wy”(Q; R?). Lemma3.2 yields with A = Dwand B = D(v—w)
y(IDwl? — | Dv]2)

< yp/ [Dw|P72Dw : D(w — v) dx
Q

(3.3) —yC4f (IDw|P?|D(v — w)|* + |D(v — w)|”) dx.
Q
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We infer from (3.1)—(3.3) that
mf (1DwlP?ID@ — w)* + D (v — w)|”) dx
Q
oG oG
< /Q (8—F(Dw, det Dw) — ——(Du, det Du)) : D(w — v) dx
G
+ %(Dw, det Dw)(det Dw — det Dv — cof Dw : D(w — v)) dx
Q
oG
+ / (= (Dw, det Dw) cof Dw
q 06
G
— %(Du, det Du) cof Du) :D(w —v)dx
+ yp/ (IDw|?">Dw — |Du|?~2Du) : D(w — v) dx.
Q

The estimate | det A| < %lAl2 and the expansion
det A =det(A — B)+detB+cof A: (A—B)
show that for all A, B € M?*? with |A — I|, |B — I| < 8y < 1/4 we have

|det A — det B| < |det(A — B)| + |cof B : (A — B)|
<|A — B|(v2 +28)) <2|A — B|.

Moreover, [tA+ (1 —t)B — I] < §y fort € [0, 1] and

|det A — 1| = |(ai1 — D(an — D) + a1 + an — apaz — 2

1 V2
A—IP+2A—-I< —+—=
A—IP+V2AA -1 = o+

for |[A — I| < 1/4. We therefore obtain for X = F and X = §,

=

| =

G G
| == (A, det A) — — (B, det B)|
X X

=‘ liE(tA+(1—t)B,tdetA+(1—t)detB)dt)
o 01 9X

< c2(]A — B| + | det A — det B|)

< 3¢, |A — B].

Finally, since the determinant is a null-Lagrangian, i.e., [, det D dx = 0
forall ¢ e WOI”’(Q; R*>),andw —v € Wol’p(Q; R?) it follows that

(3.4) / 9G 1.1) det D(w — v)dx = 0.
q 99
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We may therefore estimate

m[ (IDw|P2|D(v — w)|* + |D(v — w)|”) dx
Q
<3clu—wli2lw—vli2

G G
—f (=< (Dw, det Dw) — —(I, 1)) det D(w — v) dx
Q 08 38
G G
+/ (%(Dw, det Dw) — —=(Du, det Du)) cof Dw: D(w — v) dx
Q

0G
+/ %(Du, det Du) cof D(w —u) : D(w — v) dx
Q
—|—yp|||Du|p_2Du — Ilep_sz”zlw —v12.
Since |Dw| < |[Dw—1I|+|I] < So++/2 < 2 and analogously |Du| < 2 we
obtain in view of Lemma 3.3 as an upper bound of the foregoing inequality
1 2
3erlu —wlizv —wliz+ 36250§|w —vli, +6c2lu —wlialv—wli
+eilu = wli2lv = w2 +yp(p = D272 — whafv —wh,
_ 3
= (a1 92+ yp(p = D277 lu — whalv — wlio + Jeadolw — vl 5.

We apply Young’s inequality to the first term on the right-hand side and use
|Dw| > |I| — |Dw — I| > 1. This implies that

m/ (ID@ = w)* + D — w)|”) dx

Cs
<2 |Du—Dw| dx—l—(c6—|——0280 /|Dw—Dv| dx.
C6

We absorb the resulting quadratic term in |w — v|; » on the left-hand side for
8o and ¢¢ > 0 small enough and obtain the assertion of the theorem. O

4 Finite element discretizations

In this section we apply the stability result in Theorem 3.1 to prove a pri-
ori error estimates for finite element approximations. The idea is to use the
Wzvr-regularity of the minimizer u to show that [ITu — id|; « < Jp for an
interpolation ITu of u in a suitable finite element space .4;,. Since the mini-
mizer uy, in Ay, satisfies I (1) < I(u,) < I(I1u) we can apply Theorem 3.1
and the a priori estimates follow easily.
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The definition of .4, requires some care since the existence results assume
the boundary 02 to be smooth. This excludes corners in the domain and
enforces isoparametric finite elements. In order to focus on the idea and keep
the proofs short we derive instead a convergence estimate for the simplest
case of Courant elements.

Suppose that 7 is a regular triangulation in the sense of Ciarlet [C1] that
consists of closed triangles with diameters 2 < hg and angles in the inter-
val (w, 1 — w) with @ > 0. Assume, moreover, that €, = U7 C € is an
approximation of Q in the sense that |2 \ Q| < «h? and dist(z, 9Q) < kh?
for all nodes z on 0€2;,. The constants in our estimates depend on the positive
parameters « and w and require a sufficiently small /g, but are independent
of hg. Define

So(T) ={u e COLRY) :u=00nQ\ Q,
u affine on all triangles 7' € ’T}
and the finite-dimensional space of admissible deformations
Ay ={up € WHP(QR?) 1wy €id + g+ S)(T), det Duy, > 0 ace. inQ}.

The existence of a minimizer in .4, is a consequence of general existence
theorems for polyconvex functionals, see, e.g., [B1] for an overview and [B2]
for details.

Lemma 4.1 Assume that there exists a wy, € Ay with I(w,) < oo. Then
there exists a minimizer uy, of I in Ay,

We need some additional notation for the construction of the interpolation
operator. Assume that z,, « = 1, ..., M, are the nodes in the triangulation and
that the nodes contained in the boundary 9€2;, are labeled z1, ..., zy. Let {¢y}
be the nodal basis in S} (7)) with @4 (z5) = 845. We define a modification of
the standard interpolation operator IT; onto S} with zero boundary values on
202, by

M

lA_[lw: Z w(Za)goa-

a=N+1
This operator is well-defined if w is continuous. In particular, if u is the min-

imizer constructed in Theorem 2.2, then u € W27 (Q; R?) — W1 >(Q; R?)
and IT;u exists. Finally we let

I: W ( QR > A, Hu=id+g+1(u—id—g),

where IT; acts on the two components of its argument.

The next lemma provides the crucial estimates for the interpolation ITu
of u. Similar interpolation estimates in L? will be important in the proof of
Theorem 4.3.
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Lemma 4.2 Assume that e > 0, §o > 0, that f and g are as in Theorem 3.1,
and that u is the unique minimizer of I in A. Then there exists a constant
c7 > 0, which depends only on w, such that

Mu —id|1oc < c7(h"" u —id — g o, +h + &+ n(e)).

In particular, lu € A, for sufficiently small € and h.

Proof. On each element T € 7 without nodes in 9€2;, the operator ﬁl coin-
cides with the usual nodal interpolation operator IT; onto piecewise affine
functions. Therefore we may use the standard interpolation estimate (see,
e.g., [C1], Theorem 3.1.6) to conclude

IM — Hu'Wl':’O(T) = |l/l —id — 8 — H](u —id — g)|W1'°°(T)
(4.1) <csh'"""u —id — glyarr).
This implies together with the triangle inequality, the Sobolev embedding
W27 (Q: R?) — WH>(Q; R?), and (2.6) that

|Hu — id|W1,00(T) S |HM — M|W1,00(T) + |M —_ id|W1,0C(T)
(4.2) <csh' ™" u —id — gly2rry + con(e).
The estimate (4.1) cannot be applied to a triangle 7 with one or more nodes

z on 0€2;, since ﬁl (u — id — g) has been set to zero in the boundary nodes.
However, since u is the minimizer, we obtain from Theorem 2.2

lu —id —glico < collu —idlw2ray + 181300 < co(n(e) + )

(see (2.1) and (2.5)). By our assumptions on 7 we have dist(z, 3Q) = O(h?)
for all nodes z € 32, and thus |(u —id — g)(z)| = O(h?). This allows us to
estimate
lu — Mulyroory < lu—id — g —Mi(u —id — g)lwiee(r)
+ Yl —id = )z pulwroor)-

20 €TNIY,

Since Qg |wiocory = O(h™") (the constant in the estimate depends only on
the angles of the triangles 7 € 7) this implies the estimates

@43)  |u— Hulyrery < cro(h' ™ u —id — glyrry + h),
@4 |Mu —idlyrcey < cn(h' ™ u —id — glw2r iy + b+ n(e)).

A

In the thin boundary layer €2 \ Q, we have f[l (u —id — g) = 0 and therefore

(45) |HH — ld|W]oo(Q\§h) S ” g ”WI’OO(Q\Q},) S &,
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by (2.2). The estimates (4.2), (4.4) and (4.5) now imply the first assertion of
the lemma.

It remains to show that det DITu > 0 a.e. Let w be any function with
|w — id|wy1.0 < pu for some u > 0. Then

det Dw>1—-2u(u+1)

and this inequality yields the second assertion of the lemma for # and ¢ small
enough. O

We are now in a position to prove the main theorem of this section.

Theorem 4.3 For any w > 0 and k > 0 there exist ¢ € (0, &) (&9 as in
Theorem 2.2) and hy > 0 with the following properties: For any triangu-
lation T as in Section 4 with maximal mesh-size h < hy (and shape and
boundary approximation according to w and k) and for all f € L"(Q; R?)
and g € C3(2; R?) with (2.2)~(2.3), the unique minimizer u of I satisfies
[u € A, and any minimizer uy, of I in Ay, satisfies

I D@ —up) 12+ | D — up) |5 < crall D(u — Mu) |13
(4.6) < ci3 (K70 4 12 (e + n(e)).

Remark. Since, in particular, || D(u — up) |2 < ;32| D(u — Tlu) |2, we

regard (4.6) as a quasi-optimal a priori error estimate.

Proof. Since the angles of the triangles in 7 are contained in a compact
interval in (0, 7) we may choose ¢ and h¢ sufficiently small to ensure that
[Mu € A, by Lemma 4.2. The existence of a minimizer follows now from
Lemma 4.1 and the first inequality in (4.6) is a consequence of Theorem 3.1
since I (u) < I(uj) < I(Ilu) for all minimizers u;, of I in A.

The second inequality in (4.6) uses interpolation estimates in W2 sim-
ilar to those in the proof of Lemma 4.2 in W', For triangles T without
boundary nodes we obtain the analogue of (4.1),

lu — Mulyioy < cta PV —id — glyer ),
while we have for triangles with boundary nodes
lu — Mulyrzgy < e1s(B?Yu —id — glyzr ) +h?),
see (4.3). Finally our assumptions on 7 imply that
lu — Mulwi2@\q,) < OW)u —id — glwr=@\ay-

The proof of the theorem follows easily.
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5 Concluding remarks

Several analytical difficulties are listed below which, in our opinion, have to
be overcome in order to avoid the assumptions of small right-hand sides in
our analysis.

(i) The strong convergence of ITu to u shows the convergence of the ener-
gies [ (ITu) — I(u) and so the convergence of I () — I (u). A typi-
cal problem in the computation of energy minimizers is the Lavrientev
phenomenon, see, e.g., [BK], where

min/ < inf I < inf inf I,
A ANW10(Q;R2) >0 A,
i.e., there is no convergence of energies.
(i1) Smooth solutions u are required to guarantee 0 < det(DJu) for some
finite element interpolant Ju of u.

(iii) The nonlinearity DW (Du) has no structure properties such as mono-
tonicity. Therefore, “a simple energy estimate would not be enough for
proving convergence” [D, p. 366]. This led Dobrowolski [D] to study
L™ -estimates for incompressible materials using ahomotopy argument.

(iv) A smooth solution u# does not allow cavitation, i.e., formation and
growth of holes inside the body (see the seminal paper [B3]).

(v) Any stability result such as Theorem 3.1 implies uniqueness of global
and separation of local minimizers and excludes bifurcation.

(vi) Zhang’s result [Z] is, to the best of our knowledge, the only result that
guarantees uniqueness and regularity of minimizers of /. The main
drawback is the restriction to small loads and boundary data close to
the identity for the pure Dirichlet problem. On the other hand, buck-
ling is expected for large data and therefore uniqueness results require
further conditions. It remains an open problem how to obtain a local
version of Zhang’s result for large data.

(vii) It is unclear how to extend the stability result to mixed boundary con-
ditions. It is not known whether there is a higher regularity result anal-
ogous to (2.6). In addition, the proof of Lemma 3.1 uses the fact that
the determinant is a null-Lagrangian.

A Proof of Theorem 2.3

The proof of Theorem 2.3 in the two-dimensional setting is considerably eas-
ier than the proof in the three-dimensional situation since the terms involving
the cofactor matrix are not present. We sketch the argument following [Z] for
the convenience of the reader.

Let u be the solution given by the implicit function theorem and let u + ¢
withg € WOl ' (Q; R?) be the global minimizer of the polyconvex variational
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integral. The goal is to prove that ¢ = 0. In order to simplify the notation we
define for F € M?*? the differentiable functions

G G
A(F) = 8_F(F’ det F), C(F)= a—a(F, det F).

For ¢ > 0 given we may choose || ||, and || g||3,00 small enough in order to
guarantee that

(A1)
II — Dulles <&, [C(Du)—C(Dllso <&, |Dux)|>1forx e Q.

Since u satisfies the weak form of (2.4), there holds

/ (py|Du|p72Du Do — fo+ A(Du) : Do
Q
+ C(Du) cof Du : Dg)dx = 0.

By construction, u + ¢ is the global minimizer and thus 7 (u+¢) — I (1) < 0.
In view of the convexity of G, this implies

02/{)/(IDM-FD(PI”—IDMI”)—f(P}dX
Q
+ / {A(Du) : Dg + C(Du)(det(Du + D) — det Du)} dx
Q
> / yC4(|Du|p2|D¢|2+|D¢|p)dx+/ C(Du)det Do dx + 81 (u)g
Q Q

where we used the expansion
det(A+ B) =detA+cof A: B+detB for A, B € M>?

and the estimate in Lemma 3.2. In view of (A.1), the bound |det A| < %lA |2
for A € M?*2, and the fact that the determinant is a null-Lagrangian, i.e.,

/ det Dopdx =0 forallgp € ng(Q; R?),
Q
we deduce
0> / (vesl Dgl? — £| det Do) dx > / (ves — §)|Dgo|2dx.
Q Q

For ¢ > 0 small enough we obtain D¢ = 0 and hence ¢ = 0. This establishes
the assertion of the theorem.
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