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Summary. We prove optimal a priori error estimates in W 1,p for finite
element minimizers of polyconvex energy functionals with small applied
loads. The proof relies on a quantitative version of Zhang’s stability estimate
(K. Zhang, Arch. Rat. Mech. Anal. 114 (1991), 95-117).
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1 Introduction

Compared to the large number of contributions on computational finite elas-
ticity in the engineering literature, very little is based on a rigorous mathemat-
ical foundation.We refer to the recent survey [T] in the handbook of numerical
analysis and emphasize that it does not include any error estimates. The math-
ematical existence theory is more developed and offers a local approach via
the implicit function theorem and a global approach via minimization of a
polyconvex energy functional in the sense of Ball [C2,V,B2].

The numerical analysis in the context of the implicit function theorem
then involves a linearisation about a smooth solution but does not address
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the question of whether the local finite element approximation is a global or
local minimizer of a discrete energy. This difficulty is recast into a path-fol-
lowing ansatz where, e.g., the load serves as a control parameter (see, e.g.,
[C2,D]). In this paper we focus on a discrete global minimization problem
and employ energy estimates. For several mathematical difficulties discussed
in Section 5 we succeeded only for small loads where the two approaches
coincide as shown by Zhang [Z].

2 Variational methods and implicit function theorems
in finite elasticity

The variational approach to the existence of equilibrium solutions in nonlin-
ear elasticity is based on the minimization of an energy functional of the form

I (u) =
∫
�

(
W(Du)− f · u) dx(2.1)

in a suitable class A of admissible deformations. For conceptual reasons, one
cannot assume local conditions such as convexity forW , see [B1]. However,
for a large class of constitutive relations, including the Ogden materials, the
free energy densityW is polyconvex and the existence of minimizers follows
from Ball’s seminal paper [B2]. Throughout the paper we assume that the
subsequent hypotheses are satisfied.

(H1) � is a bounded C3-domain in R
2;

(H2) G ∈ C3(M2×2 × (0,∞); R) is convex and satisfies the growth condi-
tion

G(F, δ) ≥ α + β|F |p ∀F ∈ M
2×2, δ > 0,

with p > 2, α ∈ R, and β > 0;
(H3) W : M

2×2
+ → R is defined by

W(F) = γ |F |p +G(F, det F)

with γ > 0; here M
2×2
+ = {F ∈ M

2×2 : det F > 0}.
(H4) g ∈ C3(�; R

2), f ∈ Lr(�; R
2) with r > 2, and the class A of admis-

sible functions, defined by

A = {u ∈ W 1,p(�; R
2) : u = id + g on ∂�,

detDu > 0 a.e. in �}
is not empty.

(H5) we have for all sequences {Fj }j∈N in M
2×2 and {δj }j∈N in (0,∞) with

limj→∞ Fj = F and limj→∞ δj = 0 that

lim
j→∞

G(Fj , δj ) = +∞.
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The existence of a minimizer for (2.1) follows from the general theory for
polyconvex functionals even for γ = 0 and under weaker assumptions on
the smoothness ofW . In our situation, Zhang’s results [Z] imply uniqueness
of the solution if the loads are sufficiently small.

Theorem 2.1 ([B2]) Suppose (H1)-(H5) and that the total energy

I (u) =
∫
�

(
W(Du)− f · u) dx

is finite for at least one u ∈ A. Then there exists a minimizer of I in A. ��
A different technique for proving the existence of an equilibrium solution

in finite elasticity is based on the implicit function theorem (see, e.g., [C2,V,
Z]). We use the following result.

Theorem 2.2 Suppose (H1)-(H5). Then there exists an ε0 > 0 and a func-
tion η : [ 0, ε0 ] → [ 0, η0 ] such that the following holds: For all ε ∈ (0, ε0),
for all g ∈ C3(�; R

2), and for all f ∈ Lr(�; R
2) with

‖g‖3,∞ < ε(2.2)

and

‖f + div
∂W

∂F
(I +Dg)‖r < ε,(2.3)

there exists a unique weak solution u = U(f, g) ∈ W 2,r (�; R
2) of the

equilibrium equations

div
∂W

∂F
(Du)+ f = 0(2.4)

that satisfies the boundary conditions

u = id + g on ∂�(2.5)

and the estimate

‖u− id‖2,r < η(ε).(2.6)

Moreover, η is continuous at zero with η(0) = 0.

Proof. This result is essentially a two-dimensional version of Theorem 2.10
in [Z] in the three-dimensional setting. The continuity of η at ε = 0 is central
for our arguments below. We include a sketch of the proof of the theorem
using the notation in [V] (which is also used in [Z]). The idea is to use the
implicit function theorem in suitable function spaces. Since polyconvexity
implies quasiconvexity and hence global stability of affine mappings, u = id
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is a solution of (2.4)-(2.5) with f = 0 and g = 0. This suggests to consider
the mapping

F :
(
W

1,r
0 (�; R

2) ∩W 2,r (�; R
2)

) × Lr(�; R
2)

× C3(�; R
2) → Lr(�; R

2),

(v, f, g) 
→ −f − div
∂W

∂F
(I +Dv +Dg)

in a neighbourhood of (0, 0, 0). An orientation-preserving C1 diffeomor-
phism u of � onto � is called an admissible deformation if u = id on ∂�.
We denote by Am+2,r the set of those admissible deformations that lie in
Wm+2,r (�; R

2). Finally Sm+2,r is the subset of all admissible deformations
in Am+2,r for which

∫
�

∂2W

∂Fij∂Fk	
(Du)

∂ψi

∂xj

∂ψk

∂x	
dx ≥ c(u)‖ψ‖2

1,2 for all ψ ∈ D(�; R
2),

where the constant c(u) > 0 does not depend on ψ . The arguments on
page 101 in [Z] show that id ∈ S2,r . We can then follow the discussion on
page 95 in [V] to see that the differential of F with respect to v at f = 0 and
g = 0 is a linear bijection of W 1,r

0 (�; R
2) ∩W 2,r (�; R

2) onto Lr(�; R
2).

Then the implicit function theorem implies that there exists a local represen-
tation V (f, g) of the zeros of F , i.e. F(V (f, g), f, g) = 0 for f and g close
to zero in Lr(�; R

2) and C3(�; R
2). Moreover, the function V (f, g) satis-

fies V (0, 0) = 0 and depends continuously on f and g in the corresponding
norms. Finally the function U = id + V has the properties stated in the
theorem. ��

Under the same hypotheses, Zhang [Z] proved that any minimizer of I in
Theorem 2.1 solves (2.4)-(2.6) if the assumptions (2.2)-(2.3) hold.

Theorem 2.3 ([Z]) Suppose (H1)-(H5). Then there exists an ε1 ∈ (0, ε0)

such that for all ε ∈ (0, ε1) the following holds: If g ∈ C3(�; R
2) and

f ∈ Lr(�; R
2) satisfy (2.2) and (2.3), respectively, then any minimizer u of

I in A belongs to W 2,r (�; R
2) and satisfies (2.4)–(2.6). ��

Remark. In this paper, we restrict our attention to the two-dimensional situa-
tion for notational simplicity. The extension to the three-dimensional setting
follows along the same lines, but the algebra is more involved. Theorem 2.3
is the two-dimensional version of Theorem 3.4 in [Z]. We sketch the proof
following Zhang’s arguments in the appendix. Incompressible materials can
be treated by the same techniques, see [B2,C2,V,Z].

Notation. We denote with ‖·‖p and ‖·‖k,p the norms inLp(�) andWk,p(�),
respectively. TheWk,p(�)-seminorm is defined by |u|k,p = ‖Dku‖p. If A ∈
M
k×k, then |A| is the Frobenius norm of A, i.e., the Euclidean norm in R

k2
,
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induced by the scalar product A : B = ∑k
i,j=1AijBij . For k = 1, 2 we

denote the matrix of all partial derivatives ofG of order k withDkG and we
let

ck = max
{|DkG(F, δ)| : F ∈ M

2×2, |I − F | ≤ 1

4
, |δ − 1| ≤ 1

32
+

√
2

4

}
.

3 Stability of global minimizers

In this section we modify Zhang’s arguments to prove a stability estimate for
the global minimizer u ∈ A and an approximation w ∈ A ∩W 1,∞(�; R

2)

with ‖u− id‖1,∞ and ‖w− id‖1,∞ small enough. It is important to note that
Theorem 2.3 implies regularity for the minimizer u ∈ A of the variational
problem. In particular, u ∈ W 2,r (�; R

2) ↪→ W 1,∞(�; R
2). More precisely,

we prove that for any v ∈ A with I (u) ≤ I (v) ≤ I (w) the estimate

‖D(u− v)‖2 ≤ c3‖D(u− w)‖2

holds. As an application, we prove error estimates for finite element approx-
imations in Section 4.

Theorem 3.1 Suppose (H1)-(H5). Then there exist ε > 0, δ0 > 0 small
enough, and c3 > 0 such that for all g ∈ C3(�; R

2) and for all f ∈
Lr(�; R

2) satisfying (2.2)–(2.3) the following implication holds: If u ∈ A is
the minimizer of I ,

I (u) = min{I (̃u) : ũ ∈ A},
with |u − id|1,∞ < δ0, and if v ∈ A, and w ∈ A ∩W 1,∞(�; R

2) are such
that |w − id|1,∞ < δ0 and

I (u) ≤ I (v) ≤ I (w)

then

‖D(u− v)‖pp + ‖D(u− v)‖2
2 ≤ c3‖D(u− w)‖2

2.

Remark. The point is that we do not assume in Theorem 3.1 that |v−id|1,∞ <

δ0.
The proof of the theorem requires two elementary estimates which we

state in the following two lemmas. The first is a consequence of Lemma 8.2
in [E]. We include the proof of the second for the convenience of the reader.

Lemma 3.2 ([E]) For 2 ≤ p < ∞ there exists a constant c4 > 0 which
only depends on k and p such that for all A, B ∈ R

k the following estimate
holds:

c4
(|A|p−2|B|2 + |B|p) ≤ |A+ B|p − |A|p − p|A|p−2A · B. ��
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Lemma 3.3 For 2 ≤ p < ∞ and A, B ∈ R
k we have

∣∣|A|p−2A− |B|p−2B
∣∣ ≤ (p − 1) |B − A| max

{|A|p−2, |B|p−2}.
Proof. For λ ∈ [ 0, 1 ] we define Fλ = A+ λ(B − A). Then

∣∣ ∂
∂λ

(|Fλ|p−2Fλ
)∣∣

≤ (p − 2)
∣∣|Fλ|p−4 (

Fλ : (B − A)
)
Fλ

∣∣ + |Fλ|p−2|B − A|
≤ (p − 1)|Fλ|p−2|B − A| ≤ (p − 1)|B − A| max{|A|p−2, |B|p−2}

and the assertion follows from

|B|p−2B − |A|p−2A =
∫ 1

0

∂

∂λ
(|Fλ|p−2Fλ)dλ. ��

Proof. Let ∂G/∂F and ∂G/∂δ denote the partial derivatives ofGwith respect
to the (four components of the) first and the last argument, respectively. The
convexity of G implies that

0 ≤ I (w)− I (v)

≤ γ
(‖Dw‖pp − ‖Dv‖pp

)

−
∫
�

f · (w − v) dx

+
∫
�

∂G

∂F
(Dw, detDw) : D(w − v) dx

+
∫
�

∂G

∂δ
(Dw, detDw)(detDw − detDv) dx.(3.1)

The integral that involves f can be substituted by the weak formulation of
the Euler-Lagrange equations (2.4) for the minimizer u,
∫
�

f · ζ dx =
∫
�

∂G

∂F
(Du, detDu) : Dζ dx + γp

∫
�

|Du|p−2Du : Dζ dx

+
∫
�

∂G

∂δ
(Du, detDu) cof Du : Dζ dx(3.2)

for all ζ ∈ W 1,p
0 (�; R

2). Lemma 3.2 yields withA = Dw andB = D(v−w)
γ
(‖Dw‖pp − ‖Dv‖pp

)

≤ γp

∫
�

|Dw|p−2Dw : D(w − v) dx

−γ c4

∫
�

(|Dw|p−2|D(v − w)|2 + |D(v − w)|p) dx.(3.3)
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We infer from (3.1)–(3.3) that

γ c4

∫
�

(|Dw|p−2|D(v − w)|2 + |D(v − w)|p) dx

≤
∫
�

(∂G
∂F

(Dw, detDw)− ∂G

∂F
(Du, detDu)

)
: D(w − v) dx

+
∫
�

∂G

∂δ
(Dw, detDw)

(
detDw − detDv − cof Dw : D(w − v)

)
dx

+
∫
�

(∂G
∂δ
(Dw, detDw) cof Dw

− ∂G

∂δ
(Du, detDu) cof Du

)
: D(w − v) dx

+ γp

∫
�

(|Dw|p−2Dw − |Du|p−2Du
)

: D(w − v) dx.

The estimate | detA| ≤ 1
2 |A|2 and the expansion

detA = det(A− B)+ detB + cof A : (A− B)

show that for all A, B ∈ M
2×2 with |A− I |, |B − I | ≤ δ0 < 1/4 we have

| detA− detB| ≤ | det(A− B)| + | cof B : (A− B)|
≤ |A− B|(

√
2 + 2δ0) ≤ 2|A− B|.

Moreover, |tA+ (1 − t)B − I | ≤ δ0 for t ∈ [0, 1] and

| detA− 1| = ∣∣(a11 − 1)(a22 − 1)+ a11 + a22 − a12a21 − 2
∣∣

≤ 1

2
|A− I |2 +

√
2|A− I | ≤ 1

32
+

√
2

4

for |A− I | < 1/4. We therefore obtain for X = F and X = δ,

∣∣∂G
∂X

(A, detA)− ∂G

∂X
(B, detB)

∣∣

=
∣∣∣
∫ 1

0

∂

∂t

∂G

∂X

(
tA+ (1 − t)B, t detA+ (1 − t) detB

)
dt

∣∣∣
≤ c2

(|A− B| + | detA− detB|)
≤ 3 c2 |A− B|.

Finally, since the determinant is a null-Lagrangian, i.e.,
∫
�

detDζ dx = 0

for all ζ ∈ W 1,p
0 (�; R

2), and w − v ∈ W 1,p
0 (�; R

2) it follows that
∫
�

∂G

∂δ
(I, 1) detD(w − v) dx = 0.(3.4)
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We may therefore estimate

γ c4

∫
�

(|Dw|p−2|D(v − w)|2 + |D(v − w)|p) dx

≤ 3 c2 |u− w|1,2|w − v|1,2
−

∫
�

(∂G
∂δ
(Dw, detDw)− ∂G

∂δ
(I, 1)

)
detD(w − v) dx

+
∫
�

(∂G
∂δ
(Dw, detDw)− ∂G

∂δ
(Du, detDu)

)
cof Dw :D(w − v) dx

+
∫
�

∂G

∂δ
(Du, detDu) cof D(w − u) : D(w − v) dx

+γp∥∥|Du|p−2Du− |Dw|p−2Dw
∥∥

2|w − v|1,2 .

Since |Dw| ≤ |Dw− I |+ |I | ≤ δ0 +√
2 ≤ 2 and analogously |Du| ≤ 2 we

obtain in view of Lemma 3.3 as an upper bound of the foregoing inequality

3c2|u− w|1,2|v − w|1,2 + 3c2δ0
1

2
|w − v|21,2 + 6c2|u− w|1,2|v − w|1,2

+c1|u− w|1,2|v − w|1,2 + γp(p − 1)2p−2|u− w|1,2|v − w|1,2
≤ (

c1 + 9c2 + γp(p − 1)2p−2)|u− w|1,2|v − w|1,2 + 3

2
c2δ0|w − v|21,2.

We apply Young’s inequality to the first term on the right-hand side and use
|Dw| ≥ |I | − |Dw − I | ≥ 1. This implies that

γ c4

∫
�

(|D(v − w)|2 + |D(v − w)|p) dx

≤ c5

c6

∫
�

|Du−Dw|2 dx + (
c6 + 3

2
c2 δ0

) ∫
�

|Dw −Dv|2 dx.

We absorb the resulting quadratic term in |w− v|1,2 on the left-hand side for
δ0 and c6 > 0 small enough and obtain the assertion of the theorem. ��

4 Finite element discretizations

In this section we apply the stability result in Theorem 3.1 to prove a pri-
ori error estimates for finite element approximations. The idea is to use the
W 2,r -regularity of the minimizer u to show that |�u − id|1,∞ < δ0 for an
interpolation �u of u in a suitable finite element space Ah. Since the mini-
mizer uh in Ah satisfies I (u) ≤ I (uh) ≤ I (�u) we can apply Theorem 3.1
and the a priori estimates follow easily.



A priori error estimates in nonlinear elasticity 75

The definition of Ah requires some care since the existence results assume
the boundary ∂� to be smooth. This excludes corners in the domain and
enforces isoparametric finite elements. In order to focus on the idea and keep
the proofs short we derive instead a convergence estimate for the simplest
case of Courant elements.

Suppose that T is a regular triangulation in the sense of Ciarlet [C1] that
consists of closed triangles with diameters h ≤ h0 and angles in the inter-
val (ω, π − ω) with ω > 0. Assume, moreover, that �h = ∪T ⊆ � is an
approximation of � in the sense that |� \�h| ≤ κh2 and dist(z, ∂�) ≤ κh2

for all nodes z on ∂�h. The constants in our estimates depend on the positive
parameters κ and ω and require a sufficiently small h0, but are independent
of h0. Define

S1
0 (T ) = {

u ∈ C0(�; R
2) : u ≡ 0 on � \�h,

u affine on all triangles T ∈ T
}

and the finite-dimensional space of admissible deformations

Ah = {
uh ∈ W 1,p(�; R

2) : uh ∈ id + g + S1
0 (T ), detDuh > 0 a.e. in�

}
.

The existence of a minimizer in Ah is a consequence of general existence
theorems for polyconvex functionals, see, e.g., [B1] for an overview and [B2]
for details.

Lemma 4.1 Assume that there exists a wh ∈ Ah with I (wh) < ∞. Then
there exists a minimizer uh of I in Ah.

We need some additional notation for the construction of the interpolation
operator. Assume that zα, α = 1, ...,M , are the nodes in the triangulation and
that the nodes contained in the boundary ∂�h are labeled z1, ..., zN . Let {ϕα}
be the nodal basis in S1

0 (T ) with ϕα(zβ) = δαβ . We define a modification of
the standard interpolation operator�1 onto S1

0 with zero boundary values on
∂�h by

�̂1w =
M∑

α=N+1

w(zα)ϕα.

This operator is well-defined ifw is continuous. In particular, if u is the min-
imizer constructed in Theorem 2.2, then u ∈ W 2,r (�; R

2) ↪→ W 1,∞(�; R
2)

and �̂1u exists. Finally we let

� : W 2,r (�; R
2) → Ah, �u = id + g + �̂1(u− id − g),

where �̂1 acts on the two components of its argument.
The next lemma provides the crucial estimates for the interpolation �u

of u. Similar interpolation estimates in L2 will be important in the proof of
Theorem 4.3.
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Lemma 4.2 Assume that ε > 0, δ0 > 0, that f and g are as in Theorem 3.1,
and that u is the unique minimizer of I in A. Then there exists a constant
c7 > 0, which depends only on ω, such that

|�u− id|1,∞ ≤ c7
(
h1−2/r ‖ u− id − g ‖2,r + h+ ε + η(ε)

)
.

In particular, �u ∈ Ah for sufficiently small ε and h.

Proof. On each element T ∈ T without nodes in ∂�h the operator �̂1 coin-
cides with the usual nodal interpolation operator �1 onto piecewise affine
functions. Therefore we may use the standard interpolation estimate (see,
e.g., [C1], Theorem 3.1.6) to conclude

|u−�u|W 1,∞(T ) = |u− id − g −�1(u− id − g)|W 1,∞(T )

≤ c8 h
1−2/r |u− id − g|W 2,r (T ).(4.1)

This implies together with the triangle inequality, the Sobolev embedding
W 2,r (�; R

2) ↪→ W 1,∞(�; R
2), and (2.6) that

|�u− id|W 1,∞(T ) ≤ |�u− u|W 1,∞(T ) + |u− id|W 1,∞(T )

≤ c8 h
1−2/r |u− id − g|W 2,r (T ) + c9 η(ε).(4.2)

The estimate (4.1) cannot be applied to a triangle T with one or more nodes
z on ∂�h since �̂1(u− id − g) has been set to zero in the boundary nodes.
However, since u is the minimizer, we obtain from Theorem 2.2

|u− id − g|1,∞ ≤ c9‖u− id‖W 2,r (T ) + ‖g‖3,∞ ≤ c9(η(ε)+ ε)

(see (2.1) and (2.5)). By our assumptions on T we have dist(z, ∂�) = O(h2)

for all nodes z ∈ ∂�h and thus |(u− id − g)(z)| = O(h2). This allows us to
estimate

|u−�u|W 1,∞(T ) ≤ |u− id − g −�1(u− id − g)|W 1,∞(T )

+
∑

zα∈T∩∂�h
|(u− id − g)(zα)ϕα|W 1,∞(T ).

Since |ϕα|W 1,∞(T ) = O(h−1) (the constant in the estimate depends only on
the angles of the triangles T ∈ T ) this implies the estimates

|u−�u|W 1,∞(T ) ≤ c10
(
h1−2/r |u− id − g|W 2,r (T ) + h

)
,(4.3)

|�u− id|W 1,∞(T ) ≤ c11
(
h1−2/r |u− id − g|W 2,r (T ) + h+ η(ε)

)
.(4.4)

In the thin boundary layer�\�h we have �̂1(u− id−g) = 0 and therefore

|�u− id|W 1,∞(�\�h) ≤ ‖ g ‖W 1,∞(�\�h) ≤ ε,(4.5)



A priori error estimates in nonlinear elasticity 77

by (2.2). The estimates (4.2), (4.4) and (4.5) now imply the first assertion of
the lemma.

It remains to show that detD�u > 0 a.e. Let w be any function with
|w − id|W 1,∞ ≤ µ for some µ > 0. Then

detDw ≥ 1 − 2µ(µ+ 1)

and this inequality yields the second assertion of the lemma for h and ε small
enough. ��

We are now in a position to prove the main theorem of this section.

Theorem 4.3 For any ω > 0 and κ > 0 there exist ε ∈ (0, ε0) (ε0 as in
Theorem 2.2) and h0 > 0 with the following properties: For any triangu-
lation T as in Section 4 with maximal mesh-size h ≤ h0 (and shape and
boundary approximation according to ω and κ) and for all f ∈ Lr(�; R

2)

and g ∈ C3(�; R
2) with (2.2)–(2.3), the unique minimizer u of I satisfies

�u ∈ Ah and any minimizer uh of I in Ah satisfies

‖D(u− uh) ‖pp + ‖D(u− uh) ‖2
2 ≤ c12‖D(u−�u) ‖2

2

≤ c13
(
h4(1−1/r) + h2)(ε + η(ε)).(4.6)

Remark. Since, in particular, ‖D(u − uh) ‖2 ≤ c
1/2
12 ‖D(u − �u) ‖2, we

regard (4.6) as a quasi-optimal a priori error estimate.

Proof. Since the angles of the triangles in T are contained in a compact
interval in (0, π) we may choose ε and h0 sufficiently small to ensure that
�u ∈ Ah by Lemma 4.2. The existence of a minimizer follows now from
Lemma 4.1 and the first inequality in (4.6) is a consequence of Theorem 3.1
since I (u) ≤ I (uh) ≤ I (�u) for all minimizers uh of I in A.

The second inequality in (4.6) uses interpolation estimates in W 1,2 sim-
ilar to those in the proof of Lemma 4.2 in W 1,∞. For triangles T without
boundary nodes we obtain the analogue of (4.1),

|u−�u|W 1,2(T ) ≤ c14 h
2(1−1/r)|u− id − g|W 2,r (T ),

while we have for triangles with boundary nodes

|u−�u|W 1,2(T ) ≤ c15
(
h2(1−1/r)|u− id − g|W 2,r (T ) + h2),

see (4.3). Finally our assumptions on T imply that

|u−�u|W 1,2(�\�h) ≤ O(h)|u− id − g|W 1,∞(�\�h).

The proof of the theorem follows easily.
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5 Concluding remarks

Several analytical difficulties are listed below which, in our opinion, have to
be overcome in order to avoid the assumptions of small right-hand sides in
our analysis.

(i) The strong convergence of�u to u shows the convergence of the ener-
gies I (�u) → I (u) and so the convergence of I (uh) → I (u). A typi-
cal problem in the computation of energy minimizers is the Lavrientev
phenomenon, see, e.g., [BK], where

min
A
I < inf

A∩W 1,∞(�;R2)
I ≤ inf

h>0
inf
Ah

I,

i.e., there is no convergence of energies.
(ii) Smooth solutions u are required to guarantee 0 < det(DJu) for some

finite element interpolant Ju of u.
(iii) The nonlinearity DW(Du) has no structure properties such as mono-

tonicity. Therefore, “a simple energy estimate would not be enough for
proving convergence” [D, p. 366]. This led Dobrowolski [D] to study
L∞-estimates for incompressible materials using a homotopy argument.

(iv) A smooth solution u does not allow cavitation, i.e., formation and
growth of holes inside the body (see the seminal paper [B3]).

(v) Any stability result such as Theorem 3.1 implies uniqueness of global
and separation of local minimizers and excludes bifurcation.

(vi) Zhang’s result [Z] is, to the best of our knowledge, the only result that
guarantees uniqueness and regularity of minimizers of I . The main
drawback is the restriction to small loads and boundary data close to
the identity for the pure Dirichlet problem. On the other hand, buck-
ling is expected for large data and therefore uniqueness results require
further conditions. It remains an open problem how to obtain a local
version of Zhang’s result for large data.

(vii) It is unclear how to extend the stability result to mixed boundary con-
ditions. It is not known whether there is a higher regularity result anal-
ogous to (2.6). In addition, the proof of Lemma 3.1 uses the fact that
the determinant is a null-Lagrangian.

A Proof of Theorem 2.3

The proof of Theorem 2.3 in the two-dimensional setting is considerably eas-
ier than the proof in the three-dimensional situation since the terms involving
the cofactor matrix are not present. We sketch the argument following [Z] for
the convenience of the reader.

Let u be the solution given by the implicit function theorem and let u+ϕ
with ϕ ∈ W 1,p

0 (�; R
2) be the global minimizer of the polyconvex variational
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integral. The goal is to prove that ϕ ≡ 0. In order to simplify the notation we
define for F ∈ M

2×2 the differentiable functions

A(F) = ∂G

∂F
(F, det F), C(F ) = ∂G

∂δ
(F, det F).

For ε > 0 given we may choose ‖f ‖r and ‖g‖3,∞ small enough in order to
guarantee that

‖I −Du‖∞ < ε, ‖C(Du)− C(I)‖∞ < ε, |Du(x)| ≥ 1 for x ∈ �.
(A.1)

Since u satisfies the weak form of (2.4), there holds
∫
�

(
pγ |Du|p−2Du : Dϕ − f ϕ + A(Du) : Dϕ

+ C(Du) cof Du : Dϕ
)

dx = 0.

By construction, u+ϕ is the global minimizer and thus I (u+ϕ)−I (u) ≤ 0.
In view of the convexity of G, this implies

0 ≥
∫
�

{
γ
(|Du+Dϕ|p − |Du|p) − f ϕ

}
dx

+
∫
�

{
A(Du) : Dϕ + C(Du)

(
det(Du+Dϕ)− detDu

)}
dx

≥
∫
�

γ c4
(|Du|p−2|Dϕ|2 + |Dϕ|p) dx +

∫
�

C(Du) detDϕ dx + δI (u)ϕ

where we used the expansion

det(A+ B) = detA+ cof A : B + detB for A, B ∈ M
2×2

and the estimate in Lemma 3.2. In view of (A.1), the bound | detA| ≤ 1
2 |A|2

for A ∈ M
2×2, and the fact that the determinant is a null-Lagrangian, i.e.,

∫
�

detDϕ dx = 0 for all ϕ ∈ W 1,2
0 (�; R

2),

we deduce

0 ≥
∫
�

(
γ c4|Dϕ|2 − ε| detDϕ|) dx ≥

∫
�

(
γ c4 − ε

2

)|Dϕ|2 dx.

For ε > 0 small enough we obtainDϕ = 0 and hence ϕ = 0. This establishes
the assertion of the theorem.
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