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Summary. The hypersingular integral equation of the first kind equivalently
describes screen and Neumann problems on an open surface piece. The paper
establishes a computable upper error bound for its Galerkin approximation
and so motivates adaptive mesh refining algorithms. Numerical experiments
for triangular elements on a screen provide empirical evidence of the superior-
ity of adapted over uniform mesh-refining. The numerical realisation requires
the evaluation of the hypersingular integral operator at a source point; this
and other details on the algorithm are included.
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1 Introduction

Let�be a bounded domain in R
3 with Lipschitz boundary ∂� and let� ⊂ ∂�

be an open surface. Neumann screen problems on� in three dimensions yield
the hypersingular integral equation,

Wu(x) := − 1

2π

∂

∂nx

∫
�

( ∂

∂ny

1

|x − y|
)
u(y) dsy = f (x) for any x ∈ �

(1.1)
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with the hypersingular operator W : H̃ s(�) → Hs−1(�) for 0 < s < 1.
With Theorem 4.2, this paper establishes the residual-based a posteriori error
estimate

‖ u− uh ‖H̃ s (�) ≤ c1 ‖h1−s
T R ‖L2(�)(1.2)

for the Galerkin approximation uh to the exact solution uwith respect to a tri-
angulation T of�with mesh sizehT and its residualR := f−Wuh ∈ L2(�).
(The fractional order Sobolev spaces Hs(�), H̃ s(�), H−s(�), H̃−s(�) will
be defined in Section 2.)

Similar estimates in two dimensions are proved by a reduction to an esti-
mate for the single-layer potential by simple integration along the curve [C2,
CS]. Hence, in three dimensions, a new technique is required. In contrast to
the former work [CS,C2,CMS] the interpolation estimate (c.f., e.g., Equa-
tion (2.6) below) cannot be employed. Instead of a localization inequality (in
Lemma 2.1), we use the reversed version of Lemma 2.3.

Inequality (1.2) ensures the reliability of the a posteriori error bound. The
reverse inequality, which ensures the efficiency, is an open problem as the
technique in [C1] requires a closed boundary.

The numerical validation of (1.2) and numerical evidence on the efficiency
are the experimental contributions of this paper. Two algorithms generate
effective meshes in two screen examples and provide empirical evidence for
the superiority of adaptive over uniform mesh-refining.

The remaining part of the paper is organized as follows. Preliminaries
on non-local Sobolev spaces of fractional order follow in Section 2. Those
on the mesh geometry are collected in Section 3. The main result (1.2) is
proved in Section 4. A comparison with a multilevel error estimator is given
in Theorem 5.2 of Section 5. The computation of the refinement indicator

ηT := h
1/2
T ‖R ‖L2(T ) for T ∈ T

via a quadrature rule requires the pointwise evaluation of R(x). This calcu-
lation is described in Section 6. The implementation of a Galerkin boundary
element method, based on (conforming) triangles on� is documented in Sec-
tion 7. There, two adaptive algorithms (AR) and (AH) are proposed and run
for two examples.

2 Preliminaries on interpolation spaces

Let � be a bounded Lipschitz domain in R
3 with (closed) boundary

�̂ = ∂� and � ⊂ �̂(2.1)
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an (relatively) open surface piece. We provide a partition

T = {�1, . . . , �n}(2.2)

of � into elements �1, . . . , �n supposed to be closed (flat) triangles or par-
allelograms in R

3.
For any (relatively) open set ω ⊆ �̂ and 0 ≤ s ≤ 1, we define Sobolev

spaces of fractional order by interpolation

H̃ s(ω) := [L2(ω);H 1
0 (ω)]s and Hs(ω) := [L2(ω);H 1(ω)]s,(2.3)

where [X0;X1]s denotes the complex (L2-) interpolation ofX0 andX1 ⊆ X0

[BL], [L]. The norm ‖ · ‖H 1(ω) in H 1(ω) is given by the surface gradient
∇ as ‖ f ‖2

H 1(ω)
= ‖ f ‖2

L2(ω)
+ ‖ ∇f ‖2

L2(ω)
and H 1

0 (ω) is the completion of

{f ∈ Lip(ω) : f = 0 on ∂ω} in H 1(ω). We define the dual spaces

H−s(ω) := (
H̃ s(ω)

)∗
and H̃−s(ω) := (

Hs(ω)
)∗

(2.4)

and extend the scalar product in L2(ω) to the duality pairing

〈·; ·〉 in H̃−s(ω) and Hs(ω).(2.5)

We remark the following interpolation properties.

Remark 2.1. Let X0, X1 being normed spaces with X1 ⊆ X0 and X :=
[X0;X1]s the complex interpolation (0 ≤ s ≤ 1). For the norm of X holds
the estimate

‖ · ‖[X0;X1]s ≤ ‖ · ‖1−s
X0

‖ · ‖sX1
(2.6)

but we stress that it is not needed below. Further, let Y := [Y0;Y1]s being
the complex interpolation of two normed spaces Y0, Y1 with Y1 ⊆ Y0. If
T ∈ L(X0, Y0) can also be viewed as T ∈ L(X1, Y1) then T : X → Y is
well-defined and continuous as well with operator norm

‖ T ‖L(X,Y ) ≤ ‖ T ‖1−s
L(X0,Y0)

‖ T ‖sL(X1,Y1)
.(2.7)

The following two lemmas from [P,SS] are frequently employed in the
literature.

Lemma 2.1 ([P,SS]). If f ∈ H̃ s(�) with f |�j ∈ H̃ s(�j ) for all j =
1, . . . , n, then

‖ f ‖2
H̃ s (�)

≤
n∑
j=1

‖ f |�j ‖2
H̃ s (�j )

. ��(2.8)
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Lemma 2.2 ([P,SS]). If f ∈ Hs(�), then f |�j ∈ Hs(�j ) for all j =
1, . . . , n with

n∑
j=1

‖ f |�j ‖2
Hs(�j )

≤ ‖ f ‖2
Hs(�). ��(2.9)

Remarks 2.2. (i) The lemmas hold for all s ∈ R if we interpret the restric-
tion correctly.

(ii) The constant factor 1 on the right-hand sides in the lemmas (not dis-
played explicitly) holds for complex interpolation and needs to be re-
placed by n-independent constants in case of real interpolation and
alternative definitions by extension or by Sobolev-Slobodeckij norms.

(iii) The assumption f |�j ∈ H̃ s(�j ) may be neglected in Lemma 2.1 if we
understand ‖ f |�j ‖H̃ s (�j )

= ∞ in case f |�j �∈ H̃ s(�j ).

Lemma 2.1 was employed for localization in almost all residual-based
a posteriori error estimates for integral equations of the first kind. Here, we
utilize the following Lemma 2.3, a derivation of Lemma 2.2. Let γ be the rela-
tive boundary of� on �̂. DefineH 1

D(ω) := {f ∈ H 1(ω) : f = 0 on γ ∩∂ω}
for an open subset ω ⊆ � and consider for 0 ≤ s ≤ 1

Hs
D(ω) := [L2(ω);H 1

D(ω)]s(2.10)

Lemma 2.3. If f ∈ H̃ s(�) then f |�j ∈ Hs
D(�j ) for all j = 1, . . . , n, and

n∑
j=1

‖ f ‖2
Hs
D(�j )

≤ ‖ f ‖2
H̃ s (�)

(2.11)

Proof. The essential observation is that the product of interpolated spaces is
the interpolation of the products (even with equal norms [BL]), i.e.,

∏
j∈J

[Xj0;Xj1 ]s︸ ︷︷ ︸
=:Xjs

≡
[ ∏
j∈J

X
j

0 ;
∏
j∈J

X
j

1

]
s
=: Xs

With Xjs = [L2(�j );H 1
D(�j )]s = Hs

D(�j ), this shows

n∑
j=1

‖ u|�j ‖2
Hs
D(�j )

= ‖ (u|�j : j = 1, . . . , n) ‖2
Xs
.(2.12)

For s = 0 and s = 1, the linear mapping

Ts : H̃ s(�) → Xs ; u �→ (u|�j : j = 1, . . . , n)(2.13)
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is bounded with norm ≤ 1. Interpolation yields that Ts is well-defined with
‖Ts‖ ≤ 1 for all 0 ≤ s ≤ 1 and hence

‖ (u|�j : j = 1, . . . , n) ‖2
Xs

≤ ‖u‖2
H̃ s (�)

.(2.14)

Combining (2.12)-(2.14) we deduce (2.11) and, in particular, we show that
the restriction (·)|�j : H̃ 2(�) → Hs

D(�j ) is a well-defined bounded linear
operator. ��

3 Preliminaries of finite element approximation

Each element �j of the triangulation T is supposed to be a closed (flat) trian-
gle or parallelogram in R

3. Hence, we can define nodal local basis functions
which are linear combinations of 1, x, y (for �j a triangle) or 1, x, y, xy
(for �j a parallelogram) on the (two-dimensional) reference element �ref =
conv {(0, 0), (1, 0), (0, 1)} resp. �ref = [0, 1]2. Although � is the open sur-
face of a polyhedragonal closed boundary �̂ = ∂�, the concept of a regular
triangulation applies to T = {�1, . . . , �n} as well: Two distinct and intersect-
ing �j and �k share either an entire edge or a vertex. The relative boundary γ
of � on �̂ is a finite union of closed polygons which consists of entire edges.

The set of all nodes in the triangulation is denoted by N and the free nodes
by K := N \ γ . The set of all edges in the triangulation is denoted by E and
E is split into edges on the boundary γ , namely Eγ := {E ∈ E : E ⊆ γ },
and interior edges E� := {E ∈ E : E �⊆ γ }.

For each free node z ∈ K there is a hat function ϕz which equals zero on
each element �k (if z �∈ �k) or one of the nodal local basis functions (if z is a
vertex of �k) such that ϕz(z) = 1 and ϕz(x) = 0 for all x ∈ N \ {z}. The hat
functions are Lipschitz continuous and form a partition of unity. Their linear
hull

S := span{ϕz : z ∈ K} ⊆ H 1
0 (�)(3.1)

satisfies proper boundary conditions. Since {ϕz : z ∈ K} is, in general, not
a partition of unity, we choose a node ζ(z) ∈ K for each z ∈ N \ K and
define ζ(z) = z for z ∈ K. We get a partition of N into card(K) classes
I (z) := {z̃ ∈ N : ζ(z̃) = z}, z ∈ K. For each z ∈ K set

ψz :=
∑
z̃∈I (z)

ϕz̃(3.2)

and notice that {ψz : z ∈ K} is a partition of unity. It is required that

�z := {x ∈ � : 0 < ψz(x)}(3.3)
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is connected and contains only a limited number of elements. We remark that
ψz �= ϕz implies that γ ∩ ∂�z has a positive surface measure. Those defini-
tions follow and adapt [CB] in order to employ an approximation operator
(0 ≤ s ≤ 1)

J : H̃ s(�) → S ⊆ H̃ s(�).(3.4)

For each g ∈ L1(�) let gz ∈ R be gz :=
∫
�z
gψz ds∫

�z
ϕz ds

for z ∈ K and then set

J g :=
∑
z∈K

gz ϕz ∈ S.(3.5)

The following approximation properties of J proved for � ⊆ R
2 in [CB,

Theorem 2.1, Equation (2.10)] hold as well under the present assumptions,
where hz := diam (�z), z ∈ K, denotes the Euclidean diameter of �z.

Lemma 3.1 ([CB]). There is a constant c2 > 0 that depends on � and the
aspect ratio of the elements (but not on their sizes) such that for all z ∈ K
and g ∈ H 1

0 (�) we have

‖ψzg − ϕzgz ‖L2(�z) ≤ c2 min
{‖ g ‖L2(�z) , hz‖ ∇g ‖L2(�z)

}
. ��(3.6)

4 A Posteriori error estimate

Suppose that the residual R := f −Wuh = W(u − uh) ∈ L2(�) satisfies
the Galerkin conditions

〈R;ϕz〉 = 0 for all z ∈ K,(4.1)

where 〈·; ·〉 denotes the duality pairing on H̃−s and Hs , c.f. (2.5). Then we
have the following residual-based a posteriori error estimate.

Theorem 4.1. There is a constant c3 > 0 such that for all R ∈ L2(�) with
(4.1) and 0 ≤ s ≤ 1 there holds

‖R ‖Hs−1(�) ≤ c3

( ∑
z∈K

h2−2s
z ‖R ‖2

L2(�z)

)1/2
.(4.2)

Proof. Since (ψz : z ∈ K) defines a partition of unity, we have R =∑
z∈K ψzR. This combined with (4.1) shows for g ∈ H 1

0 (�)

〈R; g〉 =
∑
z∈K

〈R; gψz〉 =
∑
z∈K

〈R; gψz − gzϕz〉(4.3)
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with gz ∈ R defined as above. For s = 0 and s = 1 the linear operator

Ts : Hs
D(�z) → L2(�z), f �→ fψz − fzϕz(4.4)

(where fz ∈ R and �z as above, see (3.3)) is well-defined and continuous
with operator norm ≤ c2 for s = 0 and ≤ c2hz for s = 1 according to Lemma
3.1. By interpolation we deduce ‖T1−s‖ ≤ c2h

1−s
z , i.e.,

‖ gψz − gzϕz ‖L2(�z) ≤ c2h
1−s
z ‖ g ‖H 1−s

D (�z)
.(4.5)

A Cauchy inequality in (4.3) and the estimate (4.5) show

〈R; g〉 ≤ c2

( ∑
z∈K

h2−2s
z ‖R ‖2

L2(�z)

)1/2( ∑
z∈K

‖ g ‖2
H 1−s
D (�z)

)1/2
(4.6)

and it remains to prove, with the help of Lemma 2.3, that
∑
z∈K

‖ g ‖2
H 1−s
D (�z)

≤ c4 ‖ g ‖2
H̃ 1−s (�)(4.7)

with a constant c4 > 0. A coloring argument (e.g., as in [CMS, Proof of
Lemma 3.1]) shows that we can find a finite number of index sets
J1, J2, . . . , JM such that {�z : z ∈ Jk} are pairwise disjoint for all j =
1, . . . ,M . The numberM depends on the overlap of the patches (�z : z ∈ K)
and so on the topology whence on the aspect ratios of the elements (and on
�). Lemma 2.3 now implies for each set Jk (and �z replacing �j )

∑
z∈Jk

‖ g ‖2
H 1−s
D (�z)

≤ ‖ g ‖2
H̃ 1−s (�) for k = 1, . . . ,M.(4.8)

Utilizing this and a finite number of triangle inequalities we prove (4.7). This
concludes the proof since H 1

0 (�) is a dense subspace of H̃ 1−s(�). ��
The following main result of this section guarantees reliability of our

estimator

η :=
( ∑
T ∈T

η2
T

)1/2
with ηT := h1−s

T ‖R ‖L2(T ) and

hT := diam (T ) for T ∈ T .

Theorem 4.2. For 0 < s < 1, there is a constant c5 > 0 that depends on s,
�, and the aspect ratio of the elements (but not their size) such that

‖ u− uh ‖H̃ s (�) ≤ c5c6 ‖h1−s
T R ‖L2(�),(4.9)

where the T -piecewise constant hT ∈ L∞(�) is defined by hT (x) = hT for
x ∈ T and c6 := max{hz/hT : z ∈ K, T ∈ T with T ⊆ �z}.
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Proof. The hypersingular operatorW : H̃ s(�) → Hs−1(�) is a continuous,
linear bijection (c.f., e.g., [CS] and the references therein). By the open map-
ping theorem the inverse map W−1 is continuous, i.e., ‖W−1‖ < ∞. Since
R = W(u− uh) we obtain

‖ u− uh ‖H̃ s (�) ≤ ‖W−1‖ ‖R ‖Hs−1(�).(4.10)

Theorem 4.1 and the finite overlap of the {�z : z ∈ K} yield

‖R ‖Hs−1(�) ≤ c3

( ∑
z∈K

‖h1−sR ‖2
L2(�z)

)1/2

≤ Mc3 ‖h1−sR ‖L2(�) ≤ Mc3c6 ‖h1−s
T R ‖L2(�)(4.11)

withM ∈ N as in the proof of Theorem 4.1 and h(x) := max{hz : x ∈ �z}.
��

5 Multilevel error estimation

This section is devoted to a brief description of the multilevel error estimator
µ from [MuS,MaS], and a comparison with η. It was already remarked that
the hypersingular operator W : H̃ s(�) → Hs−1(�) is a continuous, linear
bijection for 0 < s < 1. For s = 1/2 it defines a continuous and elliptic
bilinear form 〈u; v〉W := 〈Wu; v〉 on H̃ 1/2(�), whence the induced energy
norm ‖ u ‖W := 〈u; u〉1/2

W is an equivalent norm on H̃ 1/2(�).
In contrast to the previous sections we require at least two meshes where

one triangulation Th is a refinement of TH . (Any notation is used in the sense
of Section 3 indexed with h resp. H .) The set of free nodes Kh and KH give
rise to hat functions (ϕz : z ∈ Kh) and (�z : z ∈ KH ) with respect to Th
and TH , respectively. If Sh and SH denote the respective discrete spaces,
SH ⊆ Sh and

Sh = SH ⊕ span{ϕz : z ∈ Kh\KH },(5.1)

with respective discrete solutions uh and uH . For the practical computation,
only uH is required, Sh plays the role of a fictitious larger space. However,
the saturation assumption,

‖ u− uh ‖W ≤ κ‖ u− uH ‖W,(5.2)

for some fixed 0 ≤ κ < 1, plays an essential role.

Definition 5.1. For each z ∈ Kh, let µz := 〈R;ϕz〉/‖ϕz ‖W with R :=
f −WuH .
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Theorem 5.1 ([MuS,MaS]). Under the saturation assumption (5.2) we have

c7

∑
z∈Kh\KH

µ2
z ≤ ‖ u− uH ‖2

W ≤ c8

∑
z∈Kh\KH

µ2
z. ��(5.3)

Remarks 5.2. (i) The constant c8 in (5.3) depends on 1/(1 − κ) and (pos-
sibly) degenerates as κ → 1.

(ii) The constant c7 is robust in 0 ≤ κ < 1.
(iii) The two-level estimator

µ :=
( ∑
z∈Kh\KH

µ2
z

)1/2
(5.4)

performs very accurately in practice; its justification in (5.3), however,
depends crucially on the saturation assumption (5.2).

(iv) In contrast to the finite element context for partial differential equations
[D,DN], a proof of (5.2) is unknown for boundary element problems.

Theorem 5.2. There is an hT -independent constant c9 such that, for each
z ∈ Kh\KH and suppϕz ⊆ T1 ∪ T2 with T1, T2 ∈ TH , we have

µz ≤ c9‖h1/2
T R ‖L2(T1∪T2) ≤ c9(ηT1 + ηT2).(5.5)

The proof of (5.5) requires the following lemma.

Lemma 5.3. For each triangulation T and a corresponding free node z ∈ K
with hat function ϕz, and hz := diam(supp ϕz), we have ‖ϕz ‖H̃ s (�) ≈ h1−s

z ,
i.e., there exist positive hz-independent constants c10 and c11 such that, for
0 ≤ s ≤ 1,

c10h
1−s
z ≤ ‖ϕz ‖H̃ s (�) ≤ c11h

1−s
z .(5.6)

The constants c10, c11 depend on� and the shape (not the size) of the elements.

Proof. Throughout this proof we abbreviate a ≤ c b by a � b and write
a ≈ b if a � b and b � a. The involved multiplicative constants do not
depend on the mesh-sizes but may depend on �, �, or the shape of the ele-
ments. Direct calculations show the upper estimate in (5.6) for s = 0 and
s = 1. Interpolation (cf. 2.6) of those results proves

‖ϕz ‖H̃ s (�) ≤ ‖ϕz ‖1−s
L2(�)

‖ϕz ‖sH 1
0 (�)

≈ h1−s
z .(5.7)

For the remaining proof of the reverse inequality we argue by duality,

‖ϕz ‖H̃ s (�) = sup
η∈H−s (�)

η �=0

〈η;ϕz〉
‖ η ‖H−s (�)

.(5.8)
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A lower bound of (5.8) is found by choosing a particular η ∈ H 1
0 (�) of the

form

η = ϕz + αϕζ(5.9)

where α ∈ R and ϕζ is another hat function. The corresponding node ζ is
chosen as a neighbour, e.g., of second order, i.e., there exist x ∈ N with
x, z ∈ T and x, ζ ∈ T ′ for two elements T , T ′ ∈ T . It is required that
ω := int(suppϕz ∪ suppϕζ ) is open and connected. Note carefully that, in
case there is no such node ζ , the mesh is too coarse, hence hz ≈ diam (�)

and so (5.6) degenerates to

1 � ‖ϕz ‖L2(�) ≤ ‖ϕz ‖H̃ s (�) ≤ ‖ϕz ‖H 1
0 (�)

� 1.

Choose α := −〈ϕz; 1〉/〈ϕζ ; 1〉 in (5.9) and observe |α| ≈ 1. Then, 〈η; 1〉 = 0
and

‖η‖H̃ s (�) ≈ h1−s
z for s = 0 or s = 1.(5.10)

For any ψ ∈ H 1
0 (�), ω as above, and ψω := ∫

ω
ψ ds/|ω| with surface area

|ω|, we have

〈η;ψ〉 = 〈η;ψ − ψω〉 ≤ ‖ η ‖L2(�)‖ψ − ψω ‖L2(ω)

� hzhω‖ ∇ψ ‖L2(ω) � h2
z‖ψ ‖H 1

0 (�)

according to a Poincaré inequality on ω with diameter hω ≈ hz. We conclude
with interpolation of H−s(�) = [L2(�);H−1(�)]s that

‖ η ‖H−s (�) ≤ ‖ η ‖1−s
L2(�)

‖ η ‖s
H−1(�)

≈ h1−s
z sup

ψ∈H1
0 (�)

ψ �=0

( 〈η;ψ〉
‖ψ ‖H 1

0 (�)

)s

� h1−s
z h2s

z = h1+s
z .(5.11)

The combination of (5.8) and (5.11) with 〈η;ϕz〉 = ‖ϕz ‖2
L2(�)

≈ h2
z leads to

‖ϕz ‖H−s (�) ≥ h2
z/h

1+s
z = h1−s

z . ��
Remark 5.3. Using Lemma 5.3, a laborious direct calculation for [CMS,
Theorem 5.1] can be shortened and generalized to all 0 ≤ s ≤ 1. The cru-
cial estimate therein requires 〈V χ;χ〉 � hω|ω| for the single-layer potential
operator applied to the characteristic function χ of ω (i.e., χ(x) = 1 if
x ∈ ω and = 0 otherwise). Taking a hat function ϕ with suppϕ ⊂ ω and
‖ϕ ‖L2(�) ≈ hω := diam (ω), we find

〈V χ;χ〉 ≈ ‖χ ‖2
H̃−1/2(�)

≥ sup
η∈H1/2(�)

η �=0

〈χ; η〉2

‖ η ‖2
H 1/2(�)

≥ 〈χ;ϕ〉2

‖ϕ ‖2
H 1/2(�)

≈ |ω|2
hω

≈ hω|ω|. ��
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Proof of Theorem 5.2. We have ‖ϕz ‖2
W ≈ ‖ϕz ‖2

H̃ 1/2(�)
≈ hz owing to

Lemma 5.3. A Cauchy inequality concludes the proof, namely,

µ2
z ≤ ‖R ‖2

L2(T1∪T2)
‖ϕz ‖2

L2(T1∪T2)
/hz, whence

µ2
z ≤ hz‖R ‖2

L2(T1∪T2)
. ��

6. Regularisation of the hypersingular integral

The evaluation of our refinement indicators ηT := h1−s‖R ‖L2(T ) requires an
integration of Wφh(x) over an element. This section is devoted to details on
the computation ofWφh(x) at a given point x on � in the three-dimensional
situation. The evaluation of the hypersingular integral operator applied to a
spline function

Wφ(x) = 1

2π
p.f.

∫
�

∂

∂nx

∂

∂ny

1

|x − y|
( n∑
j=1

cjφj (y)
)
dy for x ∈ �

(6.1)

can be decomposed into the computation of integrals on the mesh elements
(p.f. denote the finite part or principle part of the integral [LS]). For triangles
and linear base functions, we can evaluate the integrals analytically. On the
reference triangle T := {(t1, t2) : 0 ≤ t1 ≤ 1− t2 ≤ 1} the part fini integrals
are linear combinations of integrals Wk�.

Definition 6.1. For a, b, c ∈ R
3, s1, s2 ∈ R with c = −s1a− s2b, we define

Wk�(a, b, c) = p.f.

∫ 1

0

∫ 1−t1

0

tk1 t
�
2

|at1 + bt2 + c|3 dt2 dt1.(6.2)

Theorem 6.1. For a, b ∈ R
3, s1, s2 ∈ R, and c := −s1a − s2b, we have

W00(a, b, c) = − 1

|a × b|2
{ |b + c|
s1(1 − s1 − s2)

+ |c|
s1s2

+ |a + c|
s2(1 − s1 − s2)

}
.

(6.3)

Proof. Let (s1, s2) be an interior point of T , 0 < s1 < 1 − s2 < 1, and set

Iε(a, b, c) :=
∫
T \Bε(s1,s2)

1

|at1 + bt2 + c|3 dt2 dt1 for ε > 0,

where Bε(s1, s2) denotes the ball around (s1, s2) with radius ε > 0. For
(t1, t2) �= (s1, s2) there holds
(
(t1 − s1)∂/∂t1 + (t2 − s2)∂/∂t2

)|at1 + bt2 + c|−3 = −3|at1 + bt2 + c|−3.
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Integration by parts with respect to t1 and t2 leads to

−3Iε =
∫
T \Bε(s1,s2)

(
(t1 − s1)∂/∂t1

+(t2 − s2)∂/∂t2
)|at1 + bt2 + c|−3 dt2 dt1

=
∫
∂(T \Bε(s1,s2))

(
(t1 − s1)n1(t1, t2)

+(t2 − s2)n2(t1, t2)
)|at1 + bt2 + c|−3 − 2Iε.

The normal direction is oriented into the ball, i.e., we have the representation

(t1, t2) = ε(cosϕ, sin ϕ)+ (s1, s2) and

(n1, n2) = −(cosϕ, sin ϕ), 0 ≤ ϕ < 2π.

Therefore, we obtain

−Iε =
∫
∂T

((t1 − s1)n1(t1, t2)+ (t2 − s2)n2(t1, t2))|at1 + bt2

+c|−3dt1 dt2 −
∫ 2π

0
(ε cosϕ(− cosϕ)+ ε sin ϕ(− sin ϕ))

× |aε cosϕ + bε sin ϕ|−3ε dϕ

= s2

∫ 1

0

dt1

|at1 + c|3 + (1 − s1 − s2)

∫ 1

0

dt

|(a − b)t + b + c|3

+s1
∫ 1

0

dt2

|bt2 + c|3 + 1

ε

∫ 2π

0
|a cosϕ + b sin ϕ|−3 dϕ.

Regularisation in the sense of Hadamard and simplification of the remaining
integrals concludes the proof. The case (s1, s2) �∈ T is handled analogously
by integration by parts without the regularisation. ��
Theorem 6.2. For a, b ∈ R

3, s1, s2 ∈ R, and c := s1a − s2b, there are
unique q1, q2 ∈ R such that

(
W10(a, b, c)

W01(a, b, c)

)
= − 1

|a × b|2
( |b|2 −a · b

−a · b |a|2
)(q1

q2

)
+

(s1
s2

)
W00(a, b, c).

These are given by q1 = I (a − b, b + c) − I (b, c) and q2 = I (a − b, b +
c)− I (a, c) with

I (a, b) :=
∫ 1

0
|at + b|−1 dt

= 1

|a|

{
arsinh a·(a+b)

|a×b| − arsinh a·b
|a×b| if |a × b| > 0,

log a·(a+b)
a·b if |a × b| = 0.
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Proof. We neglect the arguments (a, b, c) and define W̃10 := W10 − s1W00

and W̃01 := W01 − s2W00. Using the identities

−|a|2(t1 − s1)+ a · b(t2 − s2)

|a(t1 − s1)+ b(t2 − s2)|3 = ∂t1 |a(t1 − s1)+ b(t2 − s2)|−1,

−a · b(t1 − s1)+ |b|2(t2 − s2)

|a(t1 − s1)+ b(t2 − s2)|3 = ∂t2 |a(t1 − s1)+ b(t2 − s2)|−1,

we obtain a linear 2 × 2 system of equations

−|a|2 W̃10 − a · b W̃01 =
∫ 1

0

∫ 1−t1

0
∂t1 |a(t1 − s1)+ b(t2 − s2)|−1 dt2 dt1

= q1

−a · b W̃10 − |b|2 W̃01 =
∫ 1

0

∫ 1−t1

0
∂t2 |a(t1 − s1)+ b(t2 − s2)|−1 dt2 dt1

= q2.

The solution of which yields an identity for q1, q2, namely,

(W̃10

W̃01

)
= − 1

|a × b|2
( |b|2 −a · b

−a · b |a|2
)(q1

q2

)
(6.4)

An integration by parts in the inner integrals of q1 and q2 yields

q1 =
∫ 1

0
|(a − b)t1 + b + c|−1 dt1 −

∫ 1

0
|bt2 + c|−1 dt2

= I (a − b, b + c)− I (b, c),

q2 =
∫ 1

0
|(a − b)t1 + b + c|−1 dt1 −

∫ 1

0
|at1 + c|−1 dt1

= I (a − b, b + c)− I (a, c). ��(6.5)

With the above formulae for W̃jk, the point value of Wφ for a hat function
φ of Figure 1 is given by Formula (6.6) below. The important observation is
that the hypersingular operator applied to a hat function on a planar domain
only yields logarithmic singularities on element boundaries.

Theorem 6.3. Let v be the common vertex point of the triangles�1, . . . , �n,
where �j = {y = v + t1aj + t2bj : (t1, t2) ∈ T }, j = 1, . . . , n. The edge
vectors aj , bj are numbered such that aj+1 = bj and an+1 := a1 = bn. For
the hat function φ defined in the vertex v we obtain

Wφ(x) = − 1

2π

n∑
i=1

|ai × bi |
(
W̃01(ai, bi, c)

+W̃10(ai, bi, c)
)

with c = v − x.(6.6)
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c xv

Fig. 1. Triangles supporting a hat function in Theorem 6.3

Proof. Introducing local coordinates and the unique representation
c = −s1,j aj − s2,j bj on the element �j , we obtain

Wφ(x) = 1

2π

n∑
j=1

∫ 1

0

∫ 1−t1

0

1 − t1 − t2

|aj t1 + bj t2 + c|3 dt2 dt1

= 1

2π

n∑
j=1

|aj × bj |
(
(1 − s1,j − s2,j )W00(aj , bj , c)

−W̃01(aj , bj , c)− W̃10(aj , bj , c)
)
.

It remains to show that the first integral of the three in the last expression,
namely

I :=
n∑
j=1

|aj × bj |(1 − s1,j − s2,j )W00(aj , bj , c),

vanishes. With Theorem 6.1, aj+1 = bj , and the relation

s1,j |aj × bj | = −s2,j+1|aj+1 × bj+1|,(6.7)

we can simplify

I = −
n∑
j=1

1

|aj × bj |
( |bj + c|

s1,j
+ |c|(1 − s1,j − s2,j )

s1,j s2,j
+ |aj + c|

s2,j

)

= −
n∑
j=1

|bj + c| − |c|
|aj × bj |s1,j −

n∑
j=1

|aj + c| − |c|
|aj × bj |s2,j −

n∑
j=1

|c|
|aj × bj |s1,j s2,j
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=
n∑
j=1

|aj+1 + c| − |c|
|aj+1 × bj+1|s2,j+1

−
n∑
j=1

|aj + c| − |c|
|aj × bj |s2,j −

n∑
j=1

|c|
|aj × bj |s1,j s2,j

= −
n∑
j=1

|c|
|aj × bj |s1,j s2,j .

For aj , bj , c in the same plane, we have

1

s1,j s2,j
= − 1

|c|2
(
cbj

s1,j
+ caj

s2,j

)
.

Therefore we obtain with (6.7)

I = 1

|c|
n∑
j=1

cbj

|aj × bj |s1,j + 1

|c|
n∑
j=1

caj

|aj × bj |s2,j

= 1

|c|
n∑
j=1

−caj+1

|aj+1 × bj+1|s2,j+1
+ 1

|c|
n∑
j=1

caj

|aj × bj |s2,j = 0.��

7 Numerical results

This section is devoted to the presentation and discussion of two numerical
experiments. In all examples, the flat boundary � is partitioned by a regu-
lar triangulation into triangles (and, for comparison, into rectangles in two
experiments of Example 7.2). With basis functions (ϕz : z ∈ K), the discrete
problem addresses a linear system of equations with a stiffness matrix,

〈Wϕz;ϕζ 〉 = 〈V∇�ϕz; ∇�ϕζ 〉
:= 〈V ∂ϕz/∂x; ∂ϕζ /∂x〉 + 〈V ∂ϕz/∂y; ∂ϕζ /∂y〉 for z, ζ ∈ K.(7.1)

Here the single layer potential V is applied to the two components of the sur-
face gradients of ϕz and ϕζ [N]. Then, the entry 〈Wϕz;ϕζ 〉 can be calculated
analytically [M2] as well as, for piecewise affine g, the entry 〈g;ϕz〉 of the
right-hand side. The discrete system is solved exactly [M1].

Algorithm (AAARRR) resp. (AAAHHH ).

(a) Start with k = 0 and a coarse triangulation T0.
(b) Compute stiffness matrixA = (〈Wϕz;ϕζ 〉 : z, ζ ∈ Kk), right-hand side

b, and discrete solution uN (the indexN indicates the number of degrees
of freedom), uN = ∑

z∈Kk
xzϕz, of the discrete problem Ax = b with

respect to the current mesh Tk with N = card(Kk) degrees of freedom
and free nodes Kk.
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Fig. 2. Possible refinements (a), (b) on top and (c), (d), (e) below in Algorithm (AR)) resp.
(AH ) with respect to the longest edge in a triangle

(c) Display the error EN := ‖ u − uN ‖W = (‖ u ‖2
W − ‖ uN ‖2

W

)1/2
and

estimators

ηN := ‖h1/2
T R ‖L2(�) for the residual R := f −WuN,

µN :=
( ∑
z∈Kh\Kk

µ2
z

)1/2
from (5.4)

for the current coarse mesh TH = Tk and one (fictitious) refinement Th
with new nodes Kh\Kk on all edges.

(d) Decide to terminate or to continue with (e) based on ηN resp. µN .
(e) Given a parameter 0 ≤ θ ≤ 1, mark (1 − θ) card(Tk) elements for

refinement by choosing a corresponding level τ > 0. Then, mark T ∈ Tk
provided

ηT ≥ τ,

where ηT ′ for T ∈ Tk denotes the local refinement indicator

ηT := h
1/2
T ‖R ‖L2(T ) for (AR) resp.

ηT :=
( ∑

z∈T
z∈Kh\Kk

µ2
z

)1/2
for (AH).

(f) Refine each marked element into 4 new elements as shown in Figure 2(d).
Further, refine neighbouring elements to avoid hanging notes and so
design a new mesh Tk+1, update k, and go to (b).
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Remarks 7.1. (i) Algorithm (AR) resp. (AH) generated all the meshes
and corresponding results reported below. (The simplified termination
criterion in (d) was based on individual limits for N ).

(ii) For θ = 0, Algorithm (AR) and (AH) generate a uniform refinement
while, e.g., θ = 0.8, in the examples below yield effectively adapted
meshes.

(iii) The value ‖ u ‖W in (c) was independently computed by extrapolation
of discrete approximations for a sequence of uniformly refined meshes.

(iv) The crucial calculation of ηT in (c) utilizes the representation of The-
orem 6.3 to evaluate (Wϕz)(x) for a hat function ϕz and a point x. As
this integration involved only logarithmic singularities, we computed
R(x) by a 4×4 quadrature formula as follows: Duffy’s transformation

�1(ξ1, ξ2) := (ξ1, (1 − ξ1)ξ2)

maps the unit square [0, 1]2 onto the reference triangle

{(x, y) ∈ R
2 : 0 ≤ x, y ≤ 1, 0 ≤ x + y ≤ 1}.

Then, a standard affine transformation �2 maps the reference triangle
onto T by a standard affine map. We computed

∫
T

|R|2 dT =
∫ 1

0

∫ 1

0
(R ◦�2 ◦�1)

2 | detD(�2 ◦�1)| dx dy

by a standard 4×4 tensor product Gaussian quadrature rule on [0, 1]2.
(v) For the calculation ofµz = 〈R;ϕz〉/‖ϕz ‖W , ‖ϕz ‖W can be calculated

as described for the stiffness matrix at the beginning of this section. The
fictitious mesh Th is a uniform refinement where any edge is halved (cf.
Figure 2.(d)). Note thatR is the known residual and no further discrete
problem needs to be solved.

(vi) The mesh refinement (as in Figure 2.(c), (d), or (e)) may be necessary if
a neighbouring element with a corresponding longest edge is marked.

(vii) The tolerance τ in (e) is defined by

τ := max
{
t ≥ 0 : (1 − θ) card(Tk) ≤ card({T ∈ Tk : ηT ≥ t})}.

Marking (1 − θ) card(Tk) elements for refinement, we expect the new
mesh Tk+1 to consist of at least θ card(Tk) + 4(1 − θ) card(Tk) =
(4 − 3θ) card(Tk) elements. Hence, (4 − 3θ) is the factor by which the
number of elements is aimed to be raised. Since neighbouring elements
are possibly refined in (f) we obtain card(Tk+1) ≥ (4 − 3θ) card(Tk).

(viii) In the context of adaptive finite element methods for partial differential
equations, it can be shown that an algorithm analogous to Algorithm
(A) converges linearly [D,DN]. This is an open question in the context
of integral equations.
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Fig. 3. Mesh T3 generated by Algorithm (AR) (left) and (AH ) (right) for θ = 0.8 in
Example 7.1

7.1 Example on L-shaped screen

A typical example for screen problems is the Neumann problem of the La-
placian with boundary data g(x) = 1 on the L-shaped screen �, shown in
Figures 3, 4, and 5. The initial mesh T0 with N = 5 degrees of freedom
consisted of 24 triangles obtained from a partition of � into 12 squares of
size 1/2 which are halved along the main diagonal. We first run the algorithm
for uniform refinement (θ = 0) with the empirical value ‖ u ‖W = 1.4310 in



Residual-based a posteriori error estimate 415

Fig. 4. Mesh T5 generated by Algorithm (AR) (left) and (AH ) (right) for θ = 0.8 in
Example 7.1

step (d). The outcome N , EN , ηN , µN is displayed in Table 1 together with
the cpu-times tmat, tη, tµ (in seconds) and the experimental convergence rate

αN := log(EN ′/EN) / log(N/N ′)

Here,N ′ and EN ′ are the corresponding values of the previous step based on
Tk−1. Notice that α = 1/2 indicates linear convergence in terms of a ficti-
tious mesh size h = 1/

√
N . Instead of linear convergence (α = 1/2), Table 1
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Fig. 5. Mesh T7 generated by Algorithm (AR) (left) and (AH ) (right) for θ = 0.8 in
Example 7.1

shows α ≈ 1/4, which corresponds to O(h1/2). This is expected owing to
the edge singularities along the screen boundary.

The time (in seconds) for computing the Galerkin matrix is denoted by
tmat, and the times for computing the two error indicators are given by tη, tµ.
The computations have been done using an Intel(R) Xeon(TM) CPU with
2.80 GHz and 4 GByte of memory. Note, that there holds tµ ≈ 8tmat. The
hierachical error indicator is obtained by computing the residual on a refined
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Table 1. Numerical results for uniform mesh refinement in Example 7.1

N EN ηN µN EN/ηN EN/µN αN tmat tη tµ
33 0.5794817 0.9423710 0.3471134 0.61492 1.66943 0.06000 0.44000 0.50000

161 0.3925993 0.6596814 0.2419290 0.59513 1.62279 0.246 0.98000 7.00000 7.50000
705 0.2708639 0.4609843 0.1681837 0.58758 1.61052 0.251 15.6400 111.660 117.900

2945 0.1884173 0.3236354 0.1172190 0.58219 1.60740 0.254 251.350 1811.83 1875.76
12033 0.1317638 0.2279023 0.0820724 0.57816 1.60546 0.254 4035.66 28780.0 30030.0

Table 2. Output of Algorithm (AR) for θ = 0.8 in Example 7.1

N EN ηN µN EN/ηN EN/µN αN tmat tη tµ
12 0.6968136 1.2371191 0.4427737 0.56326 1.57375 0.02000 0.10000 0.12000
31 0.5816609 0.9437129 0.3463353 0.61635 1.67947 0.190 0.05000 0.39000 0.49000
70 0.4503962 0.7735382 0.2905099 0.58225 1.55036 0.314 0.23000 1.63000 1.86000

163 0.3180149 0.5879044 0.2145841 0.54093 1.48201 0.412 1.07000 7.52000 8.39000
360 0.2190819 0.4412660 0.1630947 0.49648 1.34328 0.470 4.88000 34.2300 37.6000
762 0.1474977 0.3260425 0.1225931 0.45239 1.20315 0.528 20.9800 149.380 162.000

1598 0.0986230 0.2391711 0.0916457 0.41235 1.07613 0.544 90.6400 643.510 695.710
3393 0.0871337 0.1741430 0.0672880 0.50036 1.29494 0.164 400.530 2854.65 3060.09
7146 0.0485286 0.1287967 0.0504777 0.37678 0.96139 0.786 1755.40 12500.0 13350.0

Table 3. Output of Algorithm (AH ) for θ = 0.8 in Example 7.1

N EN ηN µN EN/ηN EN/µN αN tmat tη tµ
20 0.6448391 1.1641380 0.4062413 0.55392 1.58733 0.02000 0.17000 0.22000
46 0.5538872 0.9256691 0.3360857 0.59836 1.64805 0.183 0.09000 0.68000 0.81000

115 0.4116299 0.7580858 0.2512338 0.54299 1.63843 0.324 0.48000 3.35000 3.89000
250 0.3187360 0.5808173 0.2035831 0.54877 1.56563 0.329 2.18000 14.9500 17.1500
532 0.2184784 0.4308609 0.1542260 0.50707 1.41661 0.500 9.60000 65.8500 75.0100

1161 0.1489778 0.3192171 0.1157990 0.46670 1.28652 0.491 44.8300 307.610 348.270
2478 0.0986286 0.2313451 0.0850653 0.42633 1.15945 0.544 202.030 1388.87 1558.08
5287 0.0843851 0.1685591 0.0628799 0.50063 1.34200 0.206 909.570 6192.60 6965.31

grid containing four times as many elements as before, and the Galerkin
matrix is obtained by taking into account the symmetry, i.e., we need only
half of the time. Together this gives a factor of 8.

To improve the accuracy effectively, we run Algorithm (AR) and (AH)
for θ = 0.8. The errors and error estimators are displayed in Table 2 and
3, the resulting meshes T3, T5, and T7 are shown in Figure 3, 4, and 5. For
both algorithms, we observe a high refinement towards the edges of �, a
moderate refinement near the re-entering corner, and little refinements on the
other (convex) corners of �. The resulting experimental convergence rates
are improved to values around 1/2 which indicates linear convergence. This
improvement is in agreement with our expectation as the three-dimensional
edge singularities dominate over corner singularities on the surface.

In Table 1, 2, and 3, the valueEN/ηN stays bounded from above in agree-
ment with our reliability bound EN ≤ CηN . The values are bounded from
below as well which provides empirical evidence of efficiency. The same
observation applies to the hierarchical error estimator which is always
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Fig. 6. Neumann problem on the L-shape in Example 7.1

efficient (c.f. Remark 5.2 (ii)). Theoretically, its reliability is guaranteed under
the saturation assumption (5.2) to hold.

Further numerical experiments and comparisons are compactly displayed
in Fig. 6, where we plotted the energy errorEN versus the number of degrees
of freedom N . Both axis are scaled logarithmically. Related entries are plot-
ted with the same symbol (e.g., ◦, +, ×) and linked by (e.g., full, dashed,
dotted) straight lines.

Algorithm (AR) and (AH) run for θ = 0.9 as well. In comparison with
the output for θ = 0.8 (already shown in Table 2 and 3) and θ = 0 (already
shown in Table 1) only little further improvement is observed. Since a larger
value of θ results in a larger number of refinement levels, it appears doubt-
ful that θ = 0.9 is a better choice. However, even with a larger parameter
θ , the convergence rate remains linearly. For comparison, Figure 6 shows
numerical results for Q1 finite elements as well. To avoid hanging nodes, a
tensor product grid is employed. Besides a uniform mesh refinement (labelled
h-uniform Q1) we run a graded tensor product mesh with distance (j/N)4,
for j = 1, . . . , N , from the boundary edge near to the corner points of �.
Figure 6 displays the best performance for the graded strategy with linear
convergence. Further experiments for a uniform grid of rectangles resp. tri-
angles with the p-version show no further improvement of the experimental
convergence rate.
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7.2 Example on the unit square screen

Our second example illustrates the interaction of a singular right-hand side
with edge singularities on the square � = [−1, 1]2 shown in Figures 7, 8,
and 9. The boundary data g(x) = 1/|x − (0, 1.01)| has a singularity at one
point (0, 1.01) near the edge of �. The initial mesh T0 with N = 9 degrees
of freedom consisted of 32 triangles. It was obtained by a partition of the
unit square into 16 squares which were halved along the main diagonal. The
numerical evaluation of the right-hand side is performed by the quadrature
rule from Remark 7.1.(iv) based on a 2 × 2 Gaussian quadrature rule.

We first run the algorithm with uniform mesh refinement, i.e., θ = 0.
We used the extrapolated energy norm ‖ u ‖W = 2.511 in step (c) of the
algorithm. The numerical results are shown in Table 4 with an experimental
convergence rate α ≈ 1/4. To improve this rate, we run Algorithm (AR) and
(AH) with θ = 0.8. The errors and error estimators are shown in Table 5
and Table 6, the corresponding meshed in Figures 7, 8, and 9. The refine-
ment towards the singular point is much higher than the usual refinement
towards the edges. The resulting experimental convergence rates are very
much improved to almost linear convergence. The error estimators ηN and
µN behave efficient and reliable in this example.

In addition to the described adaptive schemes on triangles, Figure 10
displays uniform h- and p-version on rectangles and further a graded mesh
version on rectangles.

7.3 Concluding remarks

(i) The examples clearly validate the reliability of the estimator ηN and the
efficiency ofµN . Moreover, they provide strong numerical evidence for
the efficiency of ηN and the reliability of µN .

(ii) The numerical experiments clearly illustrate the superiority of auto-
matic adaptive over uniform mesh-refinements in the presence of edge-
singularities. The optimally graded version, however, performs slightly
better.

(iii) An experimental convergence rate higher than linear convergence is
not observed in our examples, although two-dimensional calculations
result in an expected convergence rate 3/2. Our interpretation is that
conforming triangles require too much degrees of freedom to resolve
an anisotropic layer structure as they refine isotropically. A compari-
son on isotropic vs. anisotropic refinement is possible with numerical
results in [CMS] for Symm’s integral equation with the related single
layer potential V (cf. (7.1) for a link of V and W ). The experiments in
[CMS] with rectangles of high and low aspect ratios show that indeed
a speed-up of a factor 3/2 in the convergence rate is possible.
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Fig. 7. Mesh T3 generated by (AR) (left) and (AH ) (right) for θ = 0.8 in Example 7.2

(iv) The optimal grading parameter is β = 3 + ε and we chose β = 4 in the
experiments. We refer to the literature for proofs and details on graded
meshes [PS,P].

(v) The following heuristic arguments illustrate why we should expect lin-
ear convergence at most when we pass from anisotropic to isotropic
refinements. Given an anisotropic triangulation T graded towards the
edges there are at least O(1/H) elements with a length H and a width
Hβ in T ; H denotes the maximal mesh-size in T and β is the grading
parameter [PS,P]. A corresponding isotropic triangulation T (isotropic)
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Fig. 8. Mesh T5 generated by (AR) (left) and (AH ) (right) for θ = 0.8 in Example 7.2

requires elements along the edges of the same widthHβ to result in the
same accuracy. The length of those elements, however, is of the same
orderO(Hβ) to limit the aspect ratio. Thus, T (isotropic) needs more ele-
ments for the same accuracy. If there are N ∝ H−2 elements in the
graded mesh T we have more than N(isotropic) ∝ H−β in T (isotropic).
Since T yields the optimal convergence rate 3/2 (for P1 or Q1 finite
elements) in terms of mesh-sizes, we have

3/4 = log(EN/E0) / log(N0/N).
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Fig. 9. Mesh T7 generated by (AR) (left) and (AH ) (right) for θ = 0.8 in Example 7.2

Table 4. Numerical results for uniform mesh refinement in Example 7.2

N EN ηN µN EN/ηN EN/µN αN tmat tη tµ
49 1.1439843 2.1480329 0.7094919 0.53257 1.61240 0.11000 0.77000 0.87000

225 0.8340395 1.5157682 0.5289063 0.55024 1.57691 0.207 1.79000 12.1800 13.3100
961 0.5947405 1.0548148 0.3807662 0.56383 1.56196 0.233 28.7200 196.550 209.350

3969 0.4184993 0.7322123 0.2669809 0.57155 1.56753 0.248 461.760 3203.61 3340.04

For the isotropic mesh T (isotropic) we assume the same errorE(isotropic)
N =

EN but the larger numberN(isotropic) ∝ H−β ∝ Nβ/2 of degrees of free-
dom. This leads to an experimental convergence rate
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Table 5. Output of Algorithm (AR) for θ = 0.8 in Example 7.2

N EN ηN µN EN/ηN EN/µN αN tmat tη tµ
22 1.2072099 2.2541222 0.7637518 0.53556 1.58063 0.02000 0.19000 0.24000
48 0.9097344 1.6535456 0.5842659 0.55017 1.55706 0.363 0.11000 0.77000 0.92000

104 0.6769054 1.2157873 0.4378091 0.55676 1.54612 0.382 0.46000 3.09000 3.58000
213 0.4911718 0.8713807 0.3197725 0.56367 1.53600 0.447 1.82000 12.5000 14.2200
445 0.3587789 0.6317357 0.2324232 0.56793 1.54364 0.426 7.56000 51.8100 58.9200
922 0.2604540 0.4540298 0.1672535 0.57365 1.55724 0.440 31.8900 217.630 246.270

1892 0.1915644 0.3250785 0.1202900 0.58929 1.59252 0.427 133.260 912.130 1023.62
3863 0.1439960 0.2320993 0.0860914 0.62041 1.67260 0.400 551.970 3784.22 4224.97
7915 0.1123453 0.1656719 0.0616006 0.67812 1.82377 0.346 2297.34 15710.0 17600.0

Table 6. Output of Algorithm (AH ) for θ = 0.8 in Example 7.2

N EN ηN µN EN/ηN EN/µN αN tmat tη tµ
27 1.1759280 2.2276479 0.7304770 0.52788 1.60981 0.03000 0.25000 0.30000
58 0.8963254 1.6612351 0.5637360 0.53955 1.58997 0.355 0.14000 0.94000 1.12000

131 0.6644998 1.2212580 0.4228734 0.54411 1.57139 0.367 0.63000 4.26000 4.92000
268 0.4942562 0.8997397 0.3157851 0.54933 1.56517 0.414 2.49000 17.0800 19.4400
565 0.3611764 0.6547454 0.2295822 0.55163 1.57319 0.421 10.7500 73.6800 83.2800

1152 0.2655666 0.4726521 0.1677682 0.56186 1.58294 0.432 44.2600 301.630 340.740
2325 0.1955947 0.3383994 0.1210463 0.57800 1.61587 0.436 179.660 1234.14 1376.86
4711 0.1471338 0.2424768 0.0869671 0.60680 1.69183 0.403 735.370 5020.11 5607.81
9482 0.1146502 0.1733238 0.0625805 0.66148 1.83204 0.357 2975.56 20360.0 22710.0
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Fig. 10. Neumann problem on the unit square in Example 7.2
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α(isotropic) = log(E(isotropic)
N /E0)

log(N0/N(isotropic))

= 3

4

log(N0/N)

log(N0/Nβ/2)
= 3

4

1 − log(N0)/ log(N)

β/2 − log(N0)/ log(N)
.

For N(isotropic) = Nβ/2, this tends to 3/(2β) ≤ 1/2 as N → ∞. Al-
though this estimate is very optimistic, the experimental convergence
rates up to 1/2 are indeed seen in the two experiments of this section.

(vi) The adaptive design of anisotropic triangular meshes is a subtle ques-
tion for finite element methods even for partial differential equations
(as the aspect ratio affects the a posteriori estimates). Our discussion
shows, however, that anisotropic elements are unambiguously needed.
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