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Abstract — The numerical approximation of the Laplace equation with inhomo-
geneous mixed boundary conditions in 2D with lowest-order Raviart-Thomas mixed
finite elements is realized in three flexible and short MATLAB programs. The first,
hybrid, implementation (LMmfem) assumes that the discrete function ph(x) equals
a + bx for x with unknowns a ∈ R2 and b ∈ R on each element and then enforces
ph ∈ H(div, Ω) through Lagrange multipliers. The second, direct, approach (EBmfem)
utilizes edge-basis functions (ψE : E ∈ E) as an explicit basis of RT0 with the edgewise
constant flux normal ph ·νE as a degree of freedom. The third ansatz (CRmfem) utilizes
the P1 nonconforming finite element method due to Crouzeix and Raviart and then
postprocesses the discrete flux via a technique due to Marini. It is the aim of this pa-
per to derive, document, illustrate, and validate the three MATLAB implementations
EBmfem, LMmfem, and CRmfem for further use and modification in education and
research. A posteriori error control with a reliable and efficient averaging technique is
included to monitor the discretization error. Therein, emphasis is on the correct treat-
ment of mixed boundary conditions. Numerical examples illustrate some applications
of the provided software and the quality of the error estimation.

2000 Mathematics Subject Classification: 65N15; 65M30.

Keywords: Matlab, implementation, mixed finite element method, Raviart-Thomas
finite element method, Crouzeix-Raviart finite element method, nonconforming finite
element method.

1. Introduction

This paper provides three short Matlab implementations of the lowest-order Raviart-Thomas
mixed finite elements for the numerical solution of a Laplace equation with mixed Dirich-
let and Neumann boundary conditions and their reliable error control through averaging
techniques.



334 C. Bahriawati and C. Carstensen

Section 2 presents details on the model boundary value problem, its weak, and its discrete
mixed formulation. Three essentially equivalent implementations EBmfem, LMmfem, and
CRmfem yield the three linear systems of equations (1.1)-(1.3) discussed below. The direct
realisation with an edge-oriented basis of RT0(T ) from Section 4 in the Matlab program
EBmfem leads to a linear system of the form

(
B C
CT 0

) (
xψ

xu

)
=

(
bD

bf

)
(1.1)

for given bD and bf which reflect inhomogeneous Dirichlet boundary conditions and volume
forces, and for unknowns xψ, the normal components of the flux ph · νE, which correspond
to the basis of Mh,0, and the elementwise constant displacements with components xu.

The continuity condition ph ∈ H(div, Ω) is directly satisfied by the edge-basis functions
(ψE : E ∈ E) of Section 4. In Section 5, it is enforced in the Matlab program LMmfem via
Lagrange multipliers and results in a linear system
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 (1.2)

with given bD, bf , bg and unknowns xψ, xu, xλM
, xλN

. For each element T ∈ T with a center
of gravity xT , the three components a1, a2, b of ph(x) = a+b(x−xT ) are gathered in xψ while
xu denotes the elementwise constant displacement approximations. The unknowns xλN

are
the Lagrange multipliers for the flux boundary conditions on ΓN while the unknowns xλM

are
the Lagrange multipliers to the side restriction that the jump of the normal flux components
[ph · νE] vanishes along interior edges. The components bD, bf , and bg reflect inhomogeneous
Dirichlet boundary conditions, volume forces, and applied surface forces.

The nonconforming Crouzeix-Raviart finite element method is implemented in the Matlab
program CRmfem in Section 7 and leads to a linear system

Ax = b (1.3)

for given b and unknown x associated with the volume force and the edge-oriented basis of the
nonconforming finite element space S1,NC

D (T ). A result of [3, 17] then allows a modification
to compute the discrete flux ph(x) = ∇T u− 1

2
fh(x−xT ) of the Raviart-Thomas finite element

discretization where fh is the piecewise constant approximation of the right-hand side f . We
give a more direct proof of that in Theorem 7.1 for a more general situation than in [17].

It is the aim of this paper to give a clear algorithmic description of the computation
of the matrices A,B, C, D, and F in (1.1)-(1.3) and the corresponding Matlab programs
documented in Section 4, 5, and 7.

In Section 8, a posteriori error control is performed by an averaging technique. Therein,
the error estimator is based on a smoother approximation, e.g., in S1(T )d, the continuous T -
piecewise affine functions [10,13,14], to the discrete flux ph obtained by an averaging operator
A : Ph → S1(T )d to ph. That is, for each node z ∈ N and its patch ωz, (Aph)(z) := Azph

where Az := πz ◦Mz is the composition of a continuous averaging Mz : P1(Tz)
d → Rd and

the orthogonal projection πz : Rd → Rd onto the affine subspace Az ⊂ Rd that carries proper
boundary conditions (cf. (8.9) below for details).
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Then, Aph is defined by interpolation with first-order nodal basis functions (ϕz : z ∈ N ),

Aph =
∑
z∈N

Az(ph|ωz)ϕz.

The resulting averaging error estimator defined by ηA := ‖ph − Aph‖L2(Ω) [10, 13] is reliable
and efficient in the sense that

CeffηA − h.o.t. 6 ‖p− ph‖L2(Ω) 6 CrelηA + h.o.t. (1.4)

The remaining part of the paper is organized as follows. The model problem in its weak
and discrete formulation is described in Section 2. The triangulation T and the geometric
data structures, which lie at the heart of the contribution, are presented in Section 3.

In Section 4, we define an edge-oriented basis (ψE : E ∈ E) for RT0(T ) where E is the set
of all edges in the triangulation T . Section 5 describes the Lagrange multiplier technique to
enforce continuity of the normal flux along the interior edges E ∈ EΩ. The Matlab realisation
of the right-hand sides and the boundary conditions is established in Section 6. Section 7
explains the flux and displacement approximation, ph and uh, via Crouzeix-Raviart finite
element methods due to [4, 5, 17] for mixed boundary conditions.

The implementation of a posteriori error control, based on an averaging technique [9,10,
13,14,18], is presented in Section 8. Numerical examples illustrate the documented software
in Section 9 and the a posteriori error control via the averaging error estimate ηA. Post-
processing routines of the display of the numerical solution are documented in the collected
algorithm.

The collected algorithm gives the full listing of EBmfem.m, LMmfem.m, CRmfem.m, postpro-
cessing (ShowDisplacement.m, ShowFlux.m), and Aposteriori.m.

The programs are written for Matlab 6.5 but adaption for previous is possible. For a
numerical calculation it is necessary to run the main program with respect to each program
solver, i.e. EBmfem, LMmfem and CRmfem, for each particular problem at hand, with
the user-specified files coordinate.dat, element.dat, Dirichlet.dat, and Neumann.dat

as well as the user-specified Matlab functions f.m, g.m, and u D.m. The graphical rep-
resentation is performed with the function ShowDisplacement.m and ShowFlux.m; the a
posteriori estimator is provided in the function Aposteriori.m. The complete listing can
be downloaded from http://www.math.hu-berlin.de/~cc/ under the item Software.

2. Model problem in its weak and discrete formulation

This section is devoted to details on the model example at hand in a strong and weak mixed
formulation as well as in a first discrete formulation.

Let Ω be a bounded Lipschitz domain in the plane with outer unit normal ν on the
polygonal boundary Γ = ΓD ∪ ΓN split into a relatively open Neumann boundary ΓN and
a closed Dirichlet boundary ΓD := Γ \ ΓN of positive surface measure. Given f ∈ L2(Ω),
g ∈ L2(ΓN), and uD ∈ H1(Ω) ∩ C(Ω), seek u ∈ H1(Ω) such that

∆u + f = 0 in Ω, u = uD on ΓD, ∇u · ν = g on ΓN . (2.1)

Here and throughout, we use standard notation for Lebesgue and Sobolev spaces L2(Ω) and
H1(Ω), respectively; C(Ω) denotes the set of continuous functions on Ω.
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The second-order equation (2.1a) is split into two equations

div p + f = 0 and p = ∇u in Ω (2.2)

for unknown u ∈ H1(Ω) and p ∈ L2(Ω)2 with div p ∈ L2(Ω). The standard functional
analytical framework [8] for (2.2), called dual mixed formulation, involves the function spaces

H(div, Ω) := {q ∈ L2(Ω)2 : div q ∈ L2(Ω)},
H0,N(div, Ω) := {q ∈ H(div, Ω) : q · ν = 0 on ΓN},
Hg,N(div, Ω) := {q ∈ H(div, Ω) : q · ν = g on ΓN}.

Then, the weak formulation of (2.2) reads: given f ∈ L2(Ω), g ∈ L2(ΓN), and uD ∈ H1(Ω)∩
C(Ω), seek p ∈ Hg,N(div, Ω) and u ∈ L2(Ω) such that

∫

Ω

p · q dx +

∫

Ω

u div q dx =

∫

ΓD

uD q · ν ds for all q ∈ H0,N(div, Ω), (2.3)

∫

Ω

v div p dx = −
∫

Ω

vf dx for all v ∈ L2(Ω). (2.4)

The existence and uniqueness of the solution (p, u) of system (2.3)-(2.4) and its equivalence
with (2.1) are well established (cf., e.g. [8; § II, Thm. 1.2]).

For the discretisation of the flux p we consider the lowest-order Raviart-Thomas space

RT0(T ) := {q ∈ L2(T ) : ∀T ∈ T ∃a ∈ R2 ∃b ∈ R ∀x ∈ T, q(x) = a + bx

and ∀E ∈ EΩ, [q]E · νE = 0},

where T is a regular triangulation (cf. Section 3), EΩ is the set of all interior edges, and
[q]E := q|T+ − qT− along E denotes the jump of q across the edge E = T+ ∩T− shared by the
two neighbouring elements T+ and T− in T .

The continuity of the normal components on the boundaries reflects the conformity
RT0(T ) ⊂ H(div, Ω) (as defined below). For the second approach with EBmfem, this con-
tinuity is built in the shape function ψE along E ∈ EΩ. In the hybrid formulation, the
continuity of E ∈ EΩ is enforced via the Lagrange multiplier technique.

With the EN -piecewise constant approximation gh of g, gh|E =
∫

E
g ds/|E | for each E ∈

EN of length |E|, the discrete spaces read

Mh,g := {qh ∈ RT0(T ) : qh · ν = gh on ΓN},
Mh := Mh,0 = RT0(T ) ∩H0,N(div, Ω),

Lh = P0(T ) := {vh ∈ L2(Ω) : T ∈ T , vh|T ∈ P0(T )}.

The discrete problem reads: seek (uh, ph) ∈ Lh ×Mh,g with

∫

Ω

ph · qh dx +

∫

Ω

uh div qh dx =

∫

ΓD

uD qh · ν ds for all qh ∈ Mh,0, (2.5)

∫

Ω

vh div ph dx = −
∫

Ω

vh f dx for all vh ∈ Lh. (2.6)

The system (2.5)–(2.6) admits a unique solution (uh, ph) (cf., e.g., [4], [8; § IV.1, Prop. 1.1]).
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In Section 4 we will define an edge-oriented basis (ψj : j = 1, . . . , N) of RT0(T ) with
Mh,0 = span{ψ1, . . . , ψM} ⊆ RT0(T ). With respect to this basis (possibly in a different

order of the indices), we have the components xψ = (x1, . . . , xN) of ph =
∑N

k=1 xkψk ∈ Mh,g

and the components xu = (xN+1, . . . , xN+L) of uh|T`
= xN+` for ` = 1, . . . , L and for an

enumeration T = {T1, . . . , TL} of the L = card(T ) elements. Then, (2.5)–(2.6) are recast
into the linear system of equations for the unknown (x1, . . . , xM) and (xN+1, . . . , xN+L)

M∑

k=1

xk

∫

Ω

ψj · ψk dx +
L∑

`=1

xN+`

∫

T`

div ψj dx =

∫

ΓD

uD ψj · ν ds

−
N∑

m=M+1

gh|Em

∫

Ω

ψj · ψm dx ,

(2.7)

M∑

k=1

xk

∫

T`

div ψk dx = −
∫

T`

f dx

−
N∑

m=M+1

gh|Em

∫

T`

div ψk dx

(2.8)

for j = 1, . . . , M, ` = 1, . . . , L and the known (xM+1, . . . , xN) := (gh|Em ,m = M +1, . . . , N).
For the sake of the presentation, it is assumed in Section 2 that the Neumann edges have
the numbers M + 1, . . . , N while this will be defined on the Matlab realisation below. The
enumeration {E1, . . . , EN} = EΩ∪EN of the interior edges EΩ = {E1, . . . , EM} and the edges
EN = {EM+1, . . . , EN} on the Neumann boundary is explained in the subsequent section.

3. Triangulation and geometric data structures

To describe further the edge-basis (ψj : j = 1, . . . , N), this section provides notation on the
triangulation T and the edges E and their data representation.

3.1. Geometric description

Suppose the domain Ω with the polygonal boundary Γ = ΓD ∪ ΓN is covered by a regular
triangulation T , in the sense of Ciarlet [7, 15], into triangles. That is, T is a set of closed
triangles T = conv{a, b, c} of positive area with vertices a, b, c, called nodes, such that the
union ∪T = Ω of the triangulation covers Ω exactly and any nonempty intersection of two
distinct triangles of T equals one common edge E = conv{a, b} or a node {a} shared by the
two triangles. The set of all edges and nodes is abbreviated by E and N , respectively. The
set

E := EΩ ∪ ED ∪ EN

of all edges in T is partitioned into edges on the Dirichlet boundary ED := {E ∈ E : E ⊂ ΓD},
on the Neumann boundary EN := {E ∈ E : E ⊂ ΓN}, and the set of all interior element
edges EΩ. The skeleton of all points which belong to some element’s boundary is the union
of all edges and reads ∪E = ∪E∈EE = {x ∈ Ω : ∃T ∈ T , x ∈ ∂T}.

All the Matlab programs employ the following data representation of T ,N and E . The
n := card(N ) nodes N = {z1, . . . , zn} with coordinates zj = (xj, yj) ∈ R2 are stored in
the user-defined file coordinate.dat, where the row number j contains the two coordinates
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xj, yj. The element Tj = conv{zk, z`, zm} is the convex hull of its three vertices zk, z`, zm inN
described by the global numbers k, `,m stored in the row number j of the file element.dat.
It is a convention in all data structures [1,2,12] that the enumeration k, `,m of the three nodes
is counterclockwise. The information of the edge E = conv{zk, z`} of ED and EN is stored in
the data files Dirichlet.dat and Neumann.dat, respectively, represent E = conv{zk, z`} in
row j by the two (global) numbers k, `. It is a convention that the tangential unit vector τE

along E points from zk to z` and that the outer normal νE points to the right. Figures 1 and 2
display the triangulation T and its data representation in coordinate.dat, element.dat,
and Dirichlet.dat.

The initialization of coordinate.dat, element.dat, Dirichlet.dat, and Neumann is
performed by the simple Matlab commands load coordinate.dat; load element.dat;

load Dirichlet.dat; load Neumann.dat.

1 2 3

4
5

6

7
8 9

2 4

86

1 3

75

Figure 1. Triangulation of the unit square in eight congruent triangles with enumeration of nodes (numbers
in circles) and an enumeration of triangles (numbers in boxes)

coordinates.dat

0 0
0.5 0

1 0
0 0.5

0.5 0.5
1 0.5
0 1

0.5 1
1 1

element.dat

1 2 5
1 5 4
2 3 6
2 6 5
4 5 8
4 8 7
5 6 9
5 9 8

Dirichlet.dat

1 2
2 3
3 6
6 9
9 8
8 7
7 4
4 1

Figure 2. Data files coordinate.dat, element.dat, and Dirichlet.dat for the triangulation displayed
in Fig. 1

With the geometric information from Figs. 1 and 2 and with f := 1, g := 0, and u D=0,
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Figure 3. Discrete solution of problem (2.1) for the prescribed data of Fig. 1 with f := 1, g := 0, and u D=0.
The displacement uh is shown on the left, the flux components phx (top) and phy (bottom) are shown on
the right

the mixed finite element approximation shows the approximate displacement uh and the flux
ph in Fig. 3.

Definition 3.1 (Normals and jumps on edges). For each E ∈ E , let νE be a unit
normal which coincides with the exterior unit normal ν = νE along Γ if E ∈ ED ∪EN . Given
any E ∈ EΩ and any T -piecewise continuous function ρ ∈ L2(Ω;R2), let JE := [ρ ·νE] denote
the jump of ρ across E in the direction νE on E ∈ EΩ defined by

[ρ · νE] = (ρ|T+ − ρ|T−) · νE if E = T+ ∩ T− (3.1)

for T+, T− ∈ T such that νE points from T+ into T−. Set JE := 0 for E ∈ E \ EΩ. [This
convention is found useful in the treatment of boundary edges but is not standard in the
literature.]

µ

A

B

P+

P−

T−
T+

I

νE

E

Figure 4. Two neighbouring triangles T+ and T− that share the edge E = ∂T+ ∩ T− with the initial node
A and the end node B and the unit normal νE . The orientation of νE is such that it equals the outer normal
of T+ (and hence points into T−)

3.2. Edge enumeration

The degrees of freedom in the flux variable of the mixed formulation are edge-oriented. The
underlying edge enumeration in EBmfem, LMmfem, and CRmfem connect all edges with
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geometric information of the triangulation. Three main groups of data structures built in
the three matrices called nodes2edge, nodes2element, and edges2element are computed
in the function edge.m

function [nodes2element,nodes2edge,noedges,edge2element,...
interioredge]=edge(element,coordinate)

The corresponding data structures and computation of the three matrices nodes2edge,
nodes2element, and edges2element are given in Subsections 3.2.1–3.2.3.

3.2.1. Matrix nodes2element. The quadratic sparse matrix nodes2element of dimen-
sion card(N ) describes the number of an element as a function of its two vertices

nodes2element(k, `) =

{
j if (k, `) are numbers of nodes of the element number j;

0 otherwise.

Notice that the two neighbouring elements T+ and T− as depicted in Fig. 4 that share one
common edge conv{A,B} with endpoints A = coordinate(k) and B = coordinate(`) have
the number j+:=nodes2element(k,`) and j−:=nodes2element(`,k); i.e., T± has the number
j±. The computation of the matrix nodes2element in Matlab reads

% Matrix nodes2element
nodes2element=sparse(size(coordinate,1),size(coordinate,1));
for j=1:size(element,1)

nodes2element(element(j,:),element(j,[2 3 1]))= ...
nodes2element(element(j,:),element(j,[2 3 1]))+j*eye(3,3);

end

3.2.2. Matrix nodes2edge. The symmetric sparse matrix nodes2edge of dimension
card(N ) describes the number of edges given by

nodes2edge(k, `) =





j if edge Ej = conv{zk, z`} number j belongs to nodes

with numbers k, `;

0 otherwise.

The computation of the matrix nodes2edge in Matlab reads

% Matrix nodes2edge
B=nodes2element+nodes2element’; [I,J]=find(triu(B));
nodes2edge=sparse(I,J,1:size(I,1),size(coordinate,1), ...

size(coordinate,1));
nodes2edge=nodes2edge+nodes2edge’;

Therein, I denotes nonzero indices of the upper triangular part of the matrix B. The number
of edges is abbreviated by noedges=size(I,1).
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3.2.3. Matrix edge2element The (noedges× 4) matrix edges2element represents the
initial node k and the end node ` of the edge of the row number j and the numbers n,m
of elements T+, T− that share the edge. The line number j of the matrix edges2element

contains the four components
k ` m n

Therein, the neighbouring elements T+, T− with numbers m,n are specified with respect to
the convention of Fig. 4. The entry edge2element(j,3) defines T+ and hence the orientation
of the normal νE of the edge E = T+∩T− number j throughout all Matlab programs. In the
case of an exterior edge E ∈ ED ∪ EN , the fourth entry is zero [thereby, νE is exterior to Ω],

edge2element(j, [3, 4]) =

{
[m,n] if the common edge j belongs to elements m,n;

[m, 0] if the edge j belongs to an element m.

The computation of the matrix edge2element in Matlab reads

edge2element=zeros(noedges,4);
for m=1:size(element,1)
for k=1:3
initial_node=element(m,k);
end_node=element(m,rem(k,3)+1);
p=nodes2edge(element(m,k),element(m,rem(k,3)+1));
if edge2element(p,1)==0
edge2element(p,:)=[initial_node end_node ...

nodes2element(initial_node,end_node) ...
nodes2element(end_node,initial_node)];

end
end

end

Using this structure, one can immediately compute the list find(edge2element(:,4))

of numbers of the interior edges and the list find(edge2element(:,4)==0) of the exterior
edges. Figure 5 displays the matrix edge2element computed from the data of Fig. 2.

4. Edge-basis functions and stiffness matrices in EBmfem

This section is devoted to the edge-basis functions for the lowest-order Raviart-Thomas finite
elements employed in the Matlab program EBmfem that realizes (1.1). Figure 6 displays
the notation adapted for one typical triangle throughout this section.

4.1. Construction of the edge-basis function ψE

This subsection is devoted to the (local) definition of the edge-basis function for the triangle
depicted in Fig. 6.

Definition 4.1 (Local definition of ψE). Let E1, E2, E3 be the edges of a triangle T
opposite to its vertices P1, P2, P3, respectively, and let νEj

denote the unit normal vector of
Ej chosen with a global fixed orientation while νj denotes the outer unit normal of T along
Ej. Define

ψEj
(x) = σj

|Ej|
2|T |(x− Pj) for j = 1, 2, 3 and x ∈ T , (4.1)
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1 2 1 0
2 3 3 0
4 1 2 0
5 1 1 2
2 5 1 4
5 4 2 5
6 2 3 4
3 6 3 0
6 5 4 7
7 4 6 0
8 4 5 6
5 8 5 8
8 7 6 0
9 5 7 8
6 9 7 0
9 8 8 0

Figure 5. Matrix edge2element generated by the function edge.m from the data of Fig. 2 for the triangu-
lation depicted in Fig. 1

k 3

?

· ·

·
P1

P3

P2

E2

E3

E1

ν2 ν1

ν3

h1 h2

h3

Figure 6. Triangle T = conv{P1, P2, P3} with vertices P1, P2, P3 (ordered counterclockwise) and opposite
edges E1 = conv{P2, P3}, E2 = conv{P1, P3}, E3 = conv{P1, P2} of lengths |E1|, |E2|, |E3|, respectively.
The area |T | satisfies (4.2) with a plus sign in front of the determinant; with the heights h1, h2, h3 depicted,
there holds 2|T | = |Ej |hj for j = 1, 2, 3

where σj = νj · νEj
is +1 if νEj

points outward and otherwise −1; |Ej| is the length of Ej,
and |T | is the area of T ,

2|T | = det (P2 − P1, P3 − P1) = det

(
P1 P2 P3

1 1 1

)
(4.2)

(with the 3× 3-matrix that consists of the 2× 3 matrix of the three vectors P1, P2, P3 ∈ R2

plus three ones in the last row).
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Definition 4.2 (Notation for elements that share an edge E). Let T± = conv{E ∪
{P±}} for the vertex P± opposite to E of T± such that the edge E = conv{A,B} orients
from A to B. Then νE points outward from T+ to T− (cf. Fig. 4) with a positive sign. If E
is an exterior edge E ∈ ED ∪ EN , then ν = νE is the exterior normal and E ⊂ ∂T+ defines
T+ (and T− is undefined).

Note that the normal direction changes if we reverse the orientation of the edge E =
conv{A,B}.

Definition 4.3 (Global definition of ψE). Given an edge E ∈ E there are either two
elements T+ and T− in T with the joint edge E = ∂T+ ∩ ∂T− or there is exactly one element
T+ in T with E ⊂ ∂T+. Then if T± = conv{E ∪ {P±}} for the vertex P± opposite to E of
T± set

ψE(x) :=

{
± |E|

2|T±|(x− P±) for x ∈ T±,

0 elsewhere.
(4.3)

Lemma 4.1. There hold

(a) ψE · νE =

{
0 along (∪E) \ E,

1 along E;

(b) ψE ∈ H(div, Ω);
(c) (ψE : E ∈ E) is a basis of RT0(T );

(d) div ψE =

{
± |E|
|T±| on T±,

0 elsewhere.

Proof. (a) Consider T± = conv{P±, A, B} with E = T+ ∩ T− shown in Fig. 4 and denote
ωE := int(T+∪T−). Let F ∈ E\{E} be an edge different from E. Clearly, ψE ·νF vanishes for
F 6⊂ ∂ωE. For x ∈ F ⊂ ∂ωE the vector x−P± is tangential to ∂ωE and hence ψE(x) ·νF = 0
as well. For x ∈ E = F , (x− P±) · νE is the height of the triangle T± (cf. Fig. 6). Hence it
is constant and equals 2|T±|/|E|. The factor in Definition 4.3 then yields ψE(x) · νE = 1.

(b) Obviously, ψE ∈ L2(Ω) and ψ|T± equals

ψE(x) = ± |E|
2T±

P± ± |E|
2T±

x for all x ∈ T±.

For any F ∈ EΩ there follows [ψE]F · νF = 0 from (a). Hence ψE ∈ RT0(T ) ⊆ H(div, Ω).
(c) The functions (ψE : E ∈ E) are (uniquely) determined by ψE ∈ RT0(T ) and ψE·νF = 1

for E = F ∈ E and ψE · νF = 0 for E 6= F in E . Given any qh ∈ RT0(T ) notice that qh · νE

is constant on E ∈ E and define

ph := qh −
∑
E∈E

(qh · νE)ψE ∈ RT0(T ).

Then, (a) implies ph · νE = 0 for all E ∈ E . On T ∈ T with edges E1, E2, E3 as in Fig. 6,
there holds

ph(Pj) · νEk
= 0 for k = {1, 2, 3} \ {j}

at the vertex x = Pj opposite to Ej. Since ph|T is affine, this proves ph ≡ 0 on T ∈ T .
Consequently, RT0(T ) ⊆ span{ψE : E ∈ E}. It remains to verify that (ψE : E ∈ E) is linear
independent: given real coefficients (xE : E ∈ E) with

ph =
∑
E∈E

xE ψE ≡ 0 in Ω,
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we deduce with (a) that 0 = ph|F · νF = xF .
(d) This is immediate from (4.3).

4.2. Local stiffness matrices

In this subsection, we recall the notation from Fig. 6 for a triangle T with edges E1, E2, and
E3 with (local) number j = 1, 2, 3 and abbreviate ψj := ψEj

.

Definition 4.4 (Local Stiffness Matrices). Let the local stiffness matrices BT , CT ∈
R3×3 be defined by

(BT )jk :=

∫

T

ψj · ψk dx for j, k = 1, 2, 3, (4.4)

CT := diag
( ∫

T

div ψ1 dx ,

∫

T

div ψ2 dx ,

∫

T

div ψ3 dx
)
. (4.5)

Lemma 4.2. Given (4.4)–(4.5) and the matrices

M :=




2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2



∈ R6×6 andN :=




0 P1 − P2 P1 − P3

P2 − P1 0 P2 − P3

P3 − P1 P3 − P2 0


 ∈ R6×3,

there holds

BT =
1

48|T |C
T
T NT M N CT . (4.6)

Proof. Let λ1, λ2, λ3 denote the barycentric coordinates in the triangle T of Fig. 3. Then
the affine function (4.1) reads ψE(x) = σEj

|Ej|/(2|T |)(λ1(x)(P1 − Pj) + λ2(x)(P2 − Pj) +
λ3(x)(P3 − Pj)). Hence one calculates

Bjk =

∫

T

ψj · ψk dx = σEj σEk

|Ej‖Ek |
4 |T |2

3∑
`=1
m=1

∫

T

λ`(P` − Pj ) · λm(Pm − Pk) dx

=
σEj

|Ej|σEk
|Ek|

4|T |2
3∑

`=1
m=1

(P` − Pj) · (Pm − Pk)

∫

T

λ`λm dx .

Since
∫

T
λ`λm dx = |T |

12
(1 + δ`m), this yields

(BT )jk =
σEj

|Ej|σEk
|Ek|

4|T |2
3∑

`=1
m=1

(P` − Pj) · (Pm − Pk)
( |T |

12
(1 + δ`m)

)

=
σEj

|Ej|
48|T |

(( 3∑

`=1

(P` − Pj)
)
·
( 3∑

m=1

(Pm − Pk)
)

+
3∑

`=1

(P` − Pj) · (P` − Pk)

)
σEk

|Ek|.
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Then, direct calculations for each (BT )jk, j, k = 1, 2, 3 and Pj,k = (Pjk,x, Pjk,y)
T verify (4.6).

The Matlab realisation for the computation of the local stiffness matrix BT in EBmfem
via Lemma 4.2 reads

function B=stimaB(coord);
N=coord(:)*ones(1,3)-repmat(coord,3,1);
C=diag([norm(N([5,6],2)),norm(N([1,2],3)),norm(N([1,2],2))]);
M=spdiags([ones(6,1),ones(6,1),2*ones(6,1),ones(6,1),ones(6,1)],...

[-4,-2,0,2,4],6,6);
B=C*N’*M*N*C/(24*det([1,1,1;coord]));

Therein, the matrices B and C equal BT and CT from (4.5) up to the global signs σE1 , σE2 ,
and σE3 cooperated with the assembling described in the subsequent subsection.

4.3. Assembling the global stiffness matrices

The global stiffness matrix A consists of matrices B ∈ RK×K and C ∈ RK×L computed from
the local stiffness matrix BT and CT ; recall K = card(E) and L = card(T ). Given any element
T ∈ T of number j, the command I=nodes2edge(element(j,[2 3 1]),element(j,[3 1

2])) gives the vector (m1,m2,m3) of global edge numbers. The sign σEmk
of the global edge

number mk with respect to the current element T with outer unit normal νT is σEmk
= νEmk

·
νT for k = 1, 2, 3. The sign σEmk

= ±1 is negative if and only if j=edge2element(mk,4).
In a formal way, the assembling

B =
∑
T∈T

B(T ) and C =
∑
T∈T

C(T )

requires the concept of the K ×K matrix B(T ) defined by the entries

B(T )

(
m1,m2,m3

m1,m2,m3

)
= diag

(
σEm1

, σEm2
, σEm3

)
stimaB(coord) diag

(
σEm1

, σEm2
, σEm3

)

in the components of m1,m2, and m3; similar formulae hold for C(T ). The Matlab routines
for the assembling of the global stiffness matrix B and matrix C read

B=sparse(noedges,noedges);
C=sparse(noedges,size(element,1)); for j=1:size(element,1)
coord=coordinate(element(j,:),:)’;
I=diag(nodes2edge(element(j,[2 3 1]),element(j,[3 1 2])));
signum=ones(1,3);
signum(find(j==edge2element(I,4)))=-1;
n=coord(:,[3 1 2])-coord(:,[2 3 1]);
B(I,I)=B(I,I)+diag(signum)*stimaB(coord)*diag(signum);
C(I,j)=diag(signum)*[norm(n(:,1)) norm(n(:,2)) norm(n(:,3))]’;

end

and the global matrix A from (1.1) is generated by

A=sparse(noedges+size(element,1),noedges+size(element,1));
A=[B,C;C’,sparse(size(C,2),size(C,2))];
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5. Lagrange multiplier technique and stiffness matrices in LMmfem

This section is devoted to the hybrid mixed finite element realisation LMmfem that realizes
(1.2). Lagrange multipliers are introduced on the interfaces ∪EΩ and on the Neumann
boundary ΓN to relax the continuity required on the normal component. Set

Λh := P0(EΩ)2 := {λ ∈ L∞(∪E) : ∀E ∈ E , λ|E := λE ∈ R2 and λ∂Ω ≡ 0}, (5.1)

Nh := P0(EN)2. (5.2)

Then the discrete problem reads [8]: Find (uh, ph, λh, `h) ∈ Lh ×Mh × Λh × Nh such that
there holds for all (vh, qh, µh,mh) ∈ Lh ×Mh × Λh ×Nh

∫

Ω

ph · qh dx +

∫

Ω

u · div qh dx −
∑
E∈∪E

∫

E

[qh · νE ]λh ds

−
∫

ΓN

(qh · ν) · `h ds =

∫

ΓD

uD qh · ν ds ,

(5.3)

∫

Ω

vh div ph dx = −
∫

Ω

vhf dx , (5.4)

−
∑

E∈∪E

∫

E

[ph · νE] µh ds = 0, (5.5)

−
∫

ΓN

[ph · ν] ·mh ds = −
∫

ΓN

g ·mh ds . (5.6)

Throughout this section, given any triangle T with the center of gravity (xT , yT ) we
consider the shape functions

ψ1 = (1, 0), ψ2 = (0, 1), ψ3 = (x− xT , y − yT ) for x ∈ T . (5.7)

The evaluation of the integrals in (5.3)-(5.6) for (5.7) yields the linear system (1.2).

Definition 5.1 (Local stiffness matrices). For each element T , the local stiffness ma-
trices BT ∈ R3×3 and CT ∈ R3×1 are given by

(BT )jk :=

∫

T

ψj · ψkdx for j, k = 1, 2, 3, (5.8)

(CT )j :=

∫

T

div ψj dx for j = 1, 2, 3. (5.9)

Lemma 5.1. Given an element T with vertices zj = (xj, yj), j = 1, 2, 3, and area |T |,
define s := |z2 − z1|2 + |z3 − z2|2 + |z3 − z1|2. Then there holds

B = |T | diag
(
1, 1, s/36

)
and CT =

(
0, 0, 2|T |).

Proof. The direct calculation of (BT )jk in (5.8) shows that (BT )jk are zero except the
diagonal entries

(BT )11 = (BT )22 = |T |, (BT )33 =

∫

T

(
(x− xT )2 + (y − yT )2

)
dy = 1/36 |T | s .
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The calculation of (CT )j for (5.9) results in

(CT )j =

∫

T

div ψj dx = 0 for j = 1, 2, and (CT )3 = 2|T |.

The Matlab realisation for the local stiffness matrices BT and CT in LMmfem via
Lemma 5.1 reads

B=sparse(3*size(element,1),3*size(element,1));
C=sparse(3*size(element,1),size(element,1)); for j=1:size(element,1)
s=sum(sum((coordinate(element (j,[2 3 1]),:)- ...

coordinate(element (j,[1 2 3]),:)).^2));
B(3*(j-1)+[1 2 3],3*(j-1)+[1 2 3])=det([1 1 1; ...

coordinate(element(j,:),:)’])/2*diag([1 1 s/36]);
C(3*(j-1)+[1 2 3],j)=[0;0;det([1 1 1;coordinate(element(j,:),:)’])];

end

The global stiffness matrix B of dimension 3L and the global matrix C of dimension
3L× L are block diagonal matrices,




B1 0 . . . 0

0 B2
. . .

...
...

. . . . . . 0
0 . . . 0 Bcard(T )


 and




C1 0 . . . 0

0 C2
. . .

...
...

. . . . . . 0
0 . . . 0 Ccard(T )


 . (5.10)

Definition 5.2. For each Ek ∈ EΩ, the local vector Dk ∈ R6×1 for the Lagrange multi-
plier technique is defined by

Dkj = −
∫

Ek

ψj · νEk
ds for j = 1 , . . . , 6 , (5.11)

where ψ1, ψ2, ψ3 and ψ4, ψ5, ψ6 denote the three shape functions in RT0(T+) and RT0(T−),
respectively.

Recall the notation and orientation of Fig. 4 and define

EV (k) := (EV (k)x, EV (k)y) := B − A ∈ R2 for the edge Ek = conv{A,B} (5.12)

with nodes A and B and the tangential unit vector τk := (B−A)/|B−A| and the unit normal
νk = (EV (k)y,−EV (k)x)/|Ek| ∈ R2 (assume that A,B are ordered counterclockwise).

Lemma 5.2. For each Ek ∈ EΩ, k = 1, 2 . . . , M , let h := (yT − y0, x0− xT ) ·EV (k) with
a node (x0, y0) of the edge Ek. Then there holds

Dk =
(− EV (k)y, EV (k)x,−h,EV (k)y,−EV (k)x, h

)T
. (5.13)
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Proof. Direct calculations of Dkj in (5.11) result in

−Dk1 = Dk4 =

∫

Ek

ψ1 · νk ds =

∫

Ek

νx (k)ds = −νx (k)|Ek | = EV (k)y ,

−Dk2 = Dk5 =

∫

Ek

ψ2 · νk ds =

∫

Ek

νy(k)ds = −νy(k)|Ek | = EV (k)x ,

−Dk3 = Dk6 =

∫

Ek

ψ3 · νk ds =

∫

Ek

(yT − y , x − xT ) · EV (k)/|Ek | ds =: h.

Given an interior edge E = T+∩T− shared by the elements T± ∈ T of the global numbers
j± and with (5.13), the global matrix D ∈ RL×M reads

D

(
k

j+ j+ + 1 j+ + 2 j− j− + 1 j− + 2

)
= Dk. (5.14)

With the sublist I of edge2element of all interior edges, the Matlab realisation of the global
matrix D reads

I=edge2element(find(edge2element(:,4)))
D=sparse(3*size(element,1),size(I));
MidPoint=reshape(sum(reshape(coordinate(element’,:),3,...

2*size(element,1))),size(element,1),2)/3;
EV=coordinate(I(:,2),:)-coordinate(I(:,1),:); for k=1:size(I,1)
h=(coordinate(I(k,[1 1]),:)-...

MidPoint(I(k,3:4),:))*[EV(k,2);-EV(k,1)];
D([3*(I(k,3)-1)+[1 2 3],3*(I(k,4)-1)+...
[1 2 3]],k)=[-EV(k,2);EV(k,1);-h(1);EV(k,2);-EV(k,1);h(2)];

end

The global matrix A from (1.2) is assembled by its blocks B, C, D.

6. Matlab realisation of right-hand sides and boundary conditions

This section is devoted to the computation of the right-hand sides in (1.1)–(1.3), whose
ingredients include numerical integration over elements and edges of the given functions
f.m, g.m, and u D.m.

6.1. Computing bf

The right-hand side f ∈ L2(Ω) is approximated by the integral mean f :=
∫

T
f(x) dx/|T | for

T ∈ T . The given volume force is provided by the user-specified function f.m. The integrals
for each element T` with the centre of gravity zT`

, namely

−
∫

T`

f(x)dx for ` = 1, . . . , L, (6.1)

form the vector bf on the right-hand sides in (1.1)-(1.3). In the simplest choice, the numerical
realisation involves a one-point numerical quadrature rule

bf`
:= −|T`| f(zT`

) (6.2)

which in Matlab reads
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-det([1 1 1;coordinate(element(l,:),:)’]) * ...
f(sum(coordinate(element(l,:),:))/3)/2

The global vector b (of length N + L or 4 ∗ L + M or N) on the right-hand side has a
different structure in each linear system of equations (1.1)-(1.3). For (1.1) the entry (6.2)
equals b(noedges+`) and for (1.2) the entry (6.2) equals b(4 × size(element) + `) for
` = 1, . . . , L. [The right-hand side of (1.3) is stored differently according to the enumeration
of edges.]

6.2. Computing bD

6.2.1. Dirichlet condition for EBmfem Since the normal components of the test
functions are zero or equal one along the edge E ∈ ED of number j with mid-point (xM , yM),
a simple one-point integration reads

bD := uD(xM , yM) |E| ≈
∫

E

uD ds . (6.3)

Given the values of u D in a user-specified function u D.m, the Matlab realisation of (6.3)
reads

for k=1:size(Dirichlet,1)
b(nodes2edge(Dirichlet(k,1),Dirichlet(k,2)))=...
norm(coordinate(Dirichlet(k,1),:)-coordinate(Dirichlet(k,2),:))*...
u_D(sum(coordinate(Dirichlet(k,:),:))/2);

end

6.2.2. Dirichlet condition for LMmfem Since the normal components of the test
functions are zero or equal one along the edge E ∈ ED with mid-point (xM , yM), a simple
one-point integration reads

bD :=

card(ED)∑

k=1

uD(xM , yM)
(
EV (k)y,−EV (k)x, (yT − y0, x0 − xT ) · EV (k)

)

≈
card(ED)∑

k=1

∫

Ek

uDψj · νk ds

(6.4)

with components EV (k)x and EV (k)y of EV (k) in (5.12). The Matlab realisation of (6.4)
reads

EV=coordinate(Dirichlet(:,2),:)-coordinate(Dirichlet(:,1),:);
for k=1:size(Dirichlet,1)

h=(coordinate(Dirichlet(k,1),:)-...
MidPoint(nodes2element(Dirichlet(k,1),Dirichlet(k,2)),:))*...
[EV(k,2);-EV(k,1)];

b(3*nodes2element(Dirichlet(k,1),Dirichlet(k,2))-[2 1 0])=...
b(3*nodes2element(Dirichlet(k,1),Dirichlet(k,2))-[2 1 0]) + ...
u_D(sum(coordinate(Dirichlet(k,:),:))/2)*[EV(k,2);-EV(k,1);h];

end
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6.3. Incorporating Neumann conditions

6.3.1. Neumann conditions for EBmfem Let B1 := B
(
1,...,M
1,...,M

)
, B2 := B

(
M+1,...,N

1,...,M

)
,

and B3 := B
(

M+1,...,N
M+1,...,N

)
be a partition of B so that the system of linear equations resulting

from the construction described in (2.7)-(2.8) can be written as



B1 B2 C
BT

2 B3 0
CT 0 0







xψ(1, . . . , M)
xψ(M + 1, . . . , N)

xu


 =

(
bD(1, . . . , N)

bf

)
. (6.5)

Therein, xψ(1, . . . , M) is the vector of the unknowns at the free edges EΩ to be determined
and xψ(M +1, . . . , N) are the given values at the edges which are on the Neumann boundary.
Hence, the first and second blocks of equations can be rewritten as(

B1 C
CT 0

)(
xψ(1, . . . , M)

xu

)
=

(
bD(1, . . . , M)

bf

)
−

(
B2xψ(M + 1, . . . , N)

0

)
,

where the values xψ(`) = gh|E`
for ` = M + 1, . . . , N . In fact, this is the formulation

of (2.7)–(2.8) with g = 0 at non-Neumann nodes. The Matlab realisation reads

if ~isempty(Neumann)
tmp=zeros(noedges+size(element,1),1);
tmp(diag(nodes2edge(Neumann(:,1),Neumann(:,2))))=...

ones(size(diag(nodes2edge(Neumann(:,1),Neumann(:,2))),1),1);
FreeEdge=find(~tmp);
x=zeros(noedges+size(element,1),1);
CN=coordinate(Neumann(:,2),:)-coordinate(Neumann(:,1),:);
for j=1:size(Neumann,1)
x(nodes2edge(Neumann(j,1),Neumann(j,2)))=...
g(sum(coordinate(Neumann(j,:),:))/2,CN(j,:)*[0,-1;1,0]/norm(CN(j,:)));

end
b=b-A*x;

and the solution x ∈ RN is computed via

x(FreeEdge)=A(FreeEdge,FreeEdge)\b(FreeEdge)

6.3.2. Neumann conditions for LMmfem. For each Ek ∈ EN , define

Fj =

∫

Ek

ψj · νk ds for j = 1 , 2 , 3 . (6.6)

Using notation in (5.12), let EV (k)x and EV (k)y denote the components of EV (k) with
respect to x- and y- coordinates along the Neumann boundary. Direct calculations result in

F1 =

∫

Ek

ψ1 · νk ds =

∫

Ek

νx (k) ds = νx (k)|Ek | = EV (k)y ,

F2 =

∫

Ek

ψ2 · νk ds =

∫

Ek

νy(k)|Ek | ds = νy(k)|Ek | = −EV (k)x ,

F3 =

∫

Ek

ψ3 · νk ds =
1

|Ek |
∫

Ek

(yT − y , x − xT ) · EV (k) ds

= (yT − y, x− xT ) · EV (k) =: h, where (x, y) ∈ Ek ∈ EN .

Hence FT =
(
EV (k)y,−EV (k)x, h

)T

and its Matlab realisation reads
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if ~isempty(Neumann)
F=sparse(3*size(element,1),size(Neumann,1));
CN=coordinate(Neumann(:,2),:)-coordinate(Neumann(:,1),:);
for k=1:size(Neumann,1)
h=(coordinate(Neumann(k,1),:)-...

MidPoint(nodes2element(Neumann(k,1),Neumann(k,2)),:))...
*[CN(k,2);-CN(k,1)];
F([3*(nodes2element(Neumann(k,1),Neumann(k,2))-1)+...
[1 2 3]],k)=[CN(k,2);-CN(k,1);h];

end
F=[F;sparse(size(A,1)-size(F,1),size(F,2))];
A=[A,F;F’,sparse(size(F,2),size(F,2))];
% Right-hand side
b=[b;sparse(size(Neumann,1),1)];
for j=1:size(Neumann,1)
b(4*size(element,1)+size(I,1)+j)= ...
b(4*size(element,1)+size(I,1)+j)+norm(CN(j,:))*...
g(sum(coordinate(Neumann(j,:),:))/2,CN(j,:)*[0,-1;1,0]/norm(CN(j,:)));

end
end

The user-defined Matlab function g.m specifies the values of g in its first argument; its
second argument is the outward normal vector. For the example in Subsection 9.1, the
function g.m reads

function val=g(x,n);
[a,r]=cart2pol(x(:,1),x(:,2));
ind=find(a<0);
a(ind)=a(ind)+2*pi*ones(size(ind));
val=(2/3*r.^(-1/3).*[-sin(a/3),cos(a/3)])*n’;

7. Nonconforming Crouzeix-Raviart finite element method

This section is devoted to the flux approximation of the Raviart-Thomas MFEM obtained
from nonconforming Crouzeix-Raviart finite elements. The idea is to employ the identity
ph(x) = ∇T uNC−fh(x−xT )/2 for the discrete flux ph from the lowest-order Raviart-Thomas
MFEM and the discrete flux ∇uNC from the P1 nonconforming FE approximation and the
piecewise constant function fh|T :=

∫
T

f(x) dx/|T | for T ∈ T . Let xT denote the centre of
gravity of the triangle T and x ∈ T . Set

P1(T ) = {f ∈ L2(Ω) : ∀T ∈ T , f |T ∈ P1(T )},
S1,NC(T ) = {v ∈ P1(T ) : v are continuous at all midpoints zE of edges E ∈ EΩ},
S1,NC

D (T ) = {v ∈ S1,NC(T ) : v(zE) = 0 for all E ∈ ED}.
(7.1)

The discrete problem reads: Find uNC ∈ S1,NC(T ) with uNC(z) = uD(z) for all midpoints
z of edges at ED such that

∫

Ω

∇T uNC · ∇T vh =

∫

Ω

fhvh dx +

∫

ΓN

ghvh ds for all vh ∈ S1,NC
D (T ). (7.2)
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The subsequent theorem holds in any dimensions n, i.e., Ω ⊂ Rn, while the rest of the paper
focuses on n = 2.

Theorem 7.1. Let ph ∈ RT0(T ) solve the mixed system with the right-hand side f ∈
L2(Ω) and ph ·ν = gh on ΓN where gh :=

∫
E

g(x) ds/|E| for all E ∈ EN . Let uNC ∈ S1,NC
D (T )

solve (7.2) with fh = − div ph and gh. Set bh(x) = fT (x− xT )/n for x ∈ T ∈ T . Then there
holds

ph = ∇T uNC + bh. (7.3)

Proof. For some constants aT ∈ Rn and bT ∈ R, T ∈ T , there holds

ph|T = aT + bT (x− xT ) for all x ∈ T

and for the centre of inertia xT of T . The MFEM flux approximation ph ∈ H(div, Ω) satisfies∫
T

div ph dx = − ∫
T

f dx and so [with div ph = bT n],

fT := −
∫

T

f(x) dx = −bT n whence bT = −fT /n.

Let ψE be a basis function of an interior edge E. Since ph · νE is constant and the jump [ψE]
of ψE on each edge in EΩ has integral zero, there holds

∫

∪E
ph · ν[ψE] ds = 0.

For an exterior edge E ∈ EN , ψE ph · νE = gh|E := −∫
E

g ds and so

∫

E

gh ds =

∫

∪E
ph · ν[ψE] ds.

Here we follow the convention [ψE] ≡ ψE on E ∩ ΓN . An elementwise integration by parts
shows

∫

ΓN

ghψE ds =

∫

∪E
ph · ν[ψE] ds

=

∫

Ω

ψE div ph dx +

∫

Ω

ph · ∇T ψE dx.

Since div ph = −fh in Ω, it follows that
∫

Ω

ph · ∇T ψE dx =

∫

Ω

fhψE dx +

∫

ΓN

ghψE ds.

Notice that ∇T ψE is constant on each T and so
∫

Ω

ph · ∇T ψE dx =
∑
T∈T

|T | aT · ∇T ψE|T .

Let ah denote the T -piecewise constant values of (aT : T ∈ T ), i.e. ah|T := aT for all T ∈ T .
Since uNC ∈ S1,NC

D (T ) solves (7.2) there holds
∫

Ω

(an −∇T uNC) · ∇T vh dx = 0 for all vh ∈ S1,NC
D (T ).
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Define ah −∇T uNC =: ch ∈ P0(T )n. Then

0 =

∫

Ω

ch · ∇T ψE dx =

∫

∪E
[ch · νE ψE] ds

=

∫

E

νE · [ch] ds +

∫

(∪E)\E
[ch · νEψE] ds.

Since the second integral vanishes, [ch] · ν = 0 on E. This holds for all E ∈ EΩ. Thus
ch ∈ H(div, Ω) and ch · ν = 0 on ΓN . Hence ch is a proper test function in the first equation
for ph, namely ∫

Ω

ph · ch dx +

∫

Ω

div ch phdx = 0.

Observe that div ch = 0 as ch ∈ H(div, Ω) ∩ P0(T )n. Therefore,

0 =

∫

Ω

ph · ch ds =

∫

Ω

ah · ch dx.

Notice that vh = uNC is possible above and hence

∫

Ω

ch · ∇T uNC dx = 0.

Since ch = ah −∇T uNC , this shows 0 =
∫

Ω
ch · ch dx = 0, i.e., ah ≡ ∇T uNC .

The following lemma is devoted to the local stiffness matrix of the P1 nonconforming
finite element method in the spirit of [2].

Lemma 7.1. For any T ∈ T denote by MNC and M the local stiffness matrix of the
P1 nonconforming finite element and the P1 conforming finite element, respectively. Then
there holds

MNC = 4 M. (7.4)

Proof. For a triangle T ∈ T set Pj := (xj, yj) for 1 6 j 6 3 and let z := (xj, yj) =
(xj+1 +xj+2, yj+1 + yj+2)/2 be the midpoints on edges. Here the indices are modulo 3. Then

(
yj − yj+1

xj+1 − xj

)
=

1

2

(
yj+1 + yj+2 − yj+2 − yj+3

xj+2 + xj+1 − xj+3 − xj+2

)
=

1

2

(
yj − yj+1

xj+1 − xj

)
. (7.5)

Since T = conv{Pj, zj} for 1 6 j 6 3, |T | := |T |conv{Pj ,zj} = 4|T |conv{z1,z2,z3}. With this,
(7.5) and by [2] it follows that MNC = 4M .

The Matlab realisation of the stiffness matrix MNC in (7.4) via a result from [2] reads

function M_NC=StemaNC(vertices)
G=[ones(1,3);vertices’]\[zeros(1,2);eye(2)];
M_NC=4*det([ones(1,3);vertices’])*G*G’;

The complete Matlab program for the solution uNC is provided in function CRmfem.m.
The remaining part of this section concerns the computation of (uh, ph) from the solu-

tion uNC . Given uNC ∈ S1,NC(T ) from CRmfem.m, Theorem 7.1 allows the computation of
ph(x) := ∇uNC − fh(x − xT )/2 for x ∈ T ∈ T . Let (ϕE : E ∈ E) be the edge-oriented
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first-order nonconforming basis functions of S1,NC(T ) and let (xj, yj) be the midpoint of
edge Ej for a local enumeration E1, E2, E3 of the edges of T . Based on



∇ϕE1

∇ϕE2

∇ϕE3


 =




1 1 1
x1 x2 x3

y1 y2 y3



−1 


0 0
1 0
0 1


 , (7.6)

the Matlab realisation for the computation of ph from (7.3) reads

function ph=ph_OnRTElement(element,coordinate,nodes2edge,noedges,...
edge2element,uNC)

MidPoint=reshape(sum(reshape(coordinate(element’,:),3,...
2*size(element,1))),size(element,1),2)/3;

ph=zeros(3*size(element,1),2);
for j=1:size(element,1)

I=diag(nodes2edge(element(j,[2 3 1]),element(j,[3 1 2])));
gradUNC=([-1,1,1;1,-1,1;1,1,-1]*uNC(I))’*...

([1,1,1;coordinate(element(j,:),:)’]\[0,0;1,0;0,1]);
ph(3*(j-1)+[1,2,3],:)=ones(3,1)*gradUNC-(det([1 1 1;...
coordinate(element(j,:),:)’])*f(sum(coordinate(element(j,:),:))/2))*...
(coordinate(element(j,:),:)-ones(3,1)*MidPoint(j,:))/2;

end

Given ph ∈ RT0(T ), some remarks on the computation of the piecewise constant displace-
ments uh ∈ P0(T ) conclude this section. With given ph ∈ RT0(T ) from Theorem 7.1 and
the unknown uh ∈ P0(T ) satisfying (2.3), i.e., with ψE from (4.3), there holds

∫

Ω

ph · ψE dx +

∫

Ω

div ψEuh dx =

∫

ΓD

uD · ψE ds for all E ∈ EΩ ∪ EN . (7.7)

For E ∈ ED one obtains immediately

uh = − 2

E

∫

T+

ph · ψE dx for E ∈ ED and E ⊂ T+ ∈ T , (7.8)

while, for E = ∂Γ+ ∩ ∂Γ− ∈ EΩ with T+, T− ∈ T , there holds

uh|T+

∫

T+

div ψE dx + uh|T−
∫

T−
div ψE dx =

∫

Ω

ph · ψE dx. (7.9)

Given one the two values uh|T+ and uh|T− , the other value follows from (7.9). The Matlab
functions IntPhOmega.m and uhDir.m in the collected algorithm compute the values uh|T
from (7.8)-(7.9) in a loop over all elements T . The computation of uh starts from the Dirichlet
boundary from (7.8) and proceeds the values uh on the neighbouring elements via (7.9).

8. A posteriori error control

This section is devoted to a posteriori error control based on the averaging technique for
the Poisson problem. Recall equation (2.1) with a given right-hand side f ∈ L2(Ω) and a
known approximation ph ∈ L2(Ω)d to the unknown exact flux p ∈ H(div; Ω) in the bounded
Lipschitz domain Ω ⊂ Rd.
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Suppose ph ∈ L2(Ω)2 satisfies a Galerkin property with respect to a test function finite
element space that includes continuous piecewise linear S1

D(T ) (with homogeneous Dirichlet
boundary conditions) based on a regular triangulation T of Ω, i.e.,

∫

Ω

ph · ∇vhdx =

∫

Ω

fvh dx for all vh ∈ S1
D(T ). (8.1)

In averaging techniques, the error ‖p− ph‖L2(Ω) is estimated by the approximation error
of a smoother approximation qh ∈ S1(T )d to ph. In fact, the minimal value

ηM := min
ph∈S1

D(T )
‖ph − qh‖L2(Ω) (8.2)

is certainly efficient up to higher-order terms of the exact solution p; a triangle inequality
gives

ηM 6 ‖p− ph‖L2(Ω) + min
qh∈S1(T )d

‖p− qh‖L2(Ω). (8.3)

It is striking that ηM is also reliable [9, 10] in the sense of

‖p− ph‖L2(Ω) 6 CrelηM + h.o.t. (8.4)

This section describes a Matlab realisation of one averaging operator A with Aph = qh

in (8.2) to define an upper bound of ηM ,

ηM 6 ηA := ‖ph − Aph‖L2(Ω),

and emphasizes the proper treatment of boundary conditions. Consider the following discrete
spaces:

Pk(T ) := {vh ∈ L∞(Ω) : ∀T ∈ T , vh|T ∈ Pk(T )} for k = 0, 1, (8.5)

S1(T ) := P1(T ) ∪ C(Ω) = span{ϕz : z ∈ N}, (8.6)

Ph := P (T ) := {ph ∈ L∞(Ω)d : ∀T ∈ T , ph|T ∈ P (T )} ⊆ P1(T )d, (8.7)

Qh := {qh ∈ S1(T )d : ∀z ∈ N ∪ Γ, qh(z) ∈ Az} (8.8)

with the affine subspace

Az := {a ∈ Rd : ∀E ∈ Ez ∩ EN , g(z) = a · νE and ∀E ∈ Ez ∩ ED,∇EuD(z) = (a)E} (8.9)

of Rd and∇EuD denotes the tangential derivative along E. Here, the Dirichlet and Neumann
boundary conditions on the gradient p = ∇u are asserted at each boundary node z ∈ N by
p(z) ∈ Az. Define Aph by the operator A : Ph → Qh to average ph on its patch ωz [13] with

Aph :=
∑
z∈N

Az(ph|ωz)ϕz and Az := πz ◦Mz : P1(Tz)
d → Rd. (8.10)

The operator Mz : P1(T )d → Rd defines the averaging process and is chosen as the integral
mean of ph

pz := Mz(ph) := −
∫

ωz

ph dx =

∫

ωz

ph dx/|ωz|
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for any node z with patch ωz of area |ωz| (for d = 2). Let πz : Rd → Rd denote the orthogonal
projection onto the affine subspace Az ⊂ Rd from (8.9) written in the form

Az = πz(0) + Vz (8.11)

which is a linear subspace Vz of Rd. The (nonlinear) orthogonal projection πz is Lipschitz
continuous with Lip(πz) 6 1 and, for each a ∈ Rd, there holds a− πz(a)⊥Vz.

For a Dirichlet boundary condition u = uD on E in term of a = p(z) = ∇u(z) at z, the
term ∇EuD(z) = (a)E in (8.9) is equivalent to ∂uD(z)/∂τE = a · τE for all (tangential unit
vectors) τE ∈ Rd with τE⊥νE.

Finally, we state the boundary conditions data via (8.9) as follows: for z ∈ ΓD we distin-
guish between the following cases (i) and (ii) to fulfill the discrete Dirichlet condition at z.

(i) In the case of z ∈ E1∩E2 for two distinct edges E1, E2 ⊂ ΓD with linearly independent
tangents τE1 and τE2 on E1, E2, respectively, we consider the 2× 2 systems

τE1 · pz = (∂uD|E1/∂s)(z) and τE2 · pz = (∂uD|E2/∂s)(z). (8.12)

(ii) In the remaining cases of z ∈ E1 ∩ ΓD for E1 ∈ EN or z = E1 ∩ E2 with two parallel
edges E1, E2 ∈ EN with the unit tangent vector τE1 let pz ∈ R2 solve

τE1 · pz = (∂uD|E1/∂s)(z) and νE1 · pz = −
∫

ωz

νE1 · pz dx. (8.13)

Under these conditions, Theorem 8.1 of [10,14] guarantees reliability for the averaging error
estimators ηM and ηA up to higher-order terms h.o.t. which depend on the smoothness of
the right-hand sides uD, f , and g.

Theorem 8.1 [10,14]. Suppose that ΓN is connected and that ΓD belongs to only one
connectivity component of ∂Ω and let f |T ∈ H1(T ) for all T ∈ T . Then, there exist (hT , hE)-
independent constants Ceff , Crel (that exclusively depend on the shape of the elements and
patches) such that

CeffηA − h.o.t. 6 ‖p− ph‖L2(Ω) 6 CrelηA + h.o.t. (8.14)

The a posteriori error control is performed in the function Aposteriori.m. The cal-
culation of the error estimator involve the calculation of (∂uD|E/∂s)(z) := (∇uD · τE)(z).
The direction of nodes along the Dirichlet edges are computed and stored in a sparse ma-
trix DirectionEdge of dimension 2 card(T )×2. The computation of the fluxes is provided in
the functions fluxEBEval.m, fluxLMEval.m and ph OnRTElement.m corresponding to EBm-
fem, LMmfem and CRmfem respecticely.

function eta=Aposteriori(element,coordinate,Dirichlet,Neumann,u,pEval)
u_h=zeros(size(coordinate,1),2);
supp_area=zeros(size(coordinate,1),1);
for j=1:size(element,1)
supp_area(element(j,:))=supp_area(element(j,:))+...
ones(3,1)*det([1,1,1;coordinate(element(j ,:),:)’])/6;
u_h(element(j,:),:)=u_h(element(j,:),:)+...
det([1,1,1;coordinate(element(j,:),:)’])*((pEval(3*(j-1)+[1,2,3],:))’*...
[4 1 1;1 4 1;1 1 4]/36)’;

end
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u_h=Tangent(coordinate,Dirichlet,u_h./(supp_area*ones(1,2)));
eta=zeros(size(element,1),1);
for j=1:size(element,1)
eta_T(j)=sqrt(det([1,1,1;coordinate(element(j,:),:)’])*...
(sum(([4 1 1;1 4 1;1 1 4]/6*u_h(element(j,:),:)-...
pEval(3*(j-1)+[1,2,3],:)).^2’)*ones(3,1)/6));

end
eta=sqrt(sum(eta.^2));

The function Aposteriori.m utilises the function Tangent.m to compute τE and the
direction of z ∈ ΓD provided in the collected algorithm.

The element contribution ηT (j) = ‖ph − Aph‖L2(T ) can be employed in an adaptive
algorithm for automatic mesh-refining. The Matlab software provided is fully computable
with the adaptive mesh-generation algorithms [11] utilized in the numerical experiment of
Subsection 9.3 below.

9. Numerical examples

The following examples provide the numerical solutions for the displacement u and the flux
p for uniform mesh-refinement, and display the errors ‖p− ph‖L2(Ω) and ‖u− uh‖L2(Ω), and
the experimental convergence rate

αN := log(eN ′/eN)/log(N/N ′).

This is given from the corresponding error e, N ′ and eN ′ are the corresponding values of the
previous step based on Tk−1. Let us denote the error of ‖u− uh‖L2(Ω) and ‖p− ph‖L2(Ω) by
eu and ep, respectively. Since the results are the same for the edge basis function and the
Lagrange multiplier technique, the corresponding errors and error estimators will presented
only once. Below we denote by N1 and N2 the number of unknowns EBmfem and LMmfem.

9.1. Example on the L-shaped domain

Let f := 0 on the L-shaped domain Ω := (−1, 1)2 \ [0, 1]× [−1, 0], uD := 0 on the Dirichlet
boundary ΓD := {0} × [−1, 0] ∩ [0, 1]× {0} and on the Neumann boundary ΓN := ∂Ω \ ΓD,

g(r, ϕ) := 2/3r−1/3(− sin(ϕ/3), cos(ϕ/3)) · n

in polar coordinates (r, ϕ); the exact solution of (2.1) is u(r, ϕ) := r2/3 sin(2ϕ/3). The
coarsest triangulation T0 consists of four squares halved by diagonals parallel to the vector
(1, 1). The user-defined homogeneous functions for the right-hand sides f and u D.m read

%f.m
function volumeforce=f(x);
volumeforce=zeros(size(x,1),1);
%u_D.m
function dir=u_D(x);
dir=zeros(size(x,1),1);

while g.m is given at the end of Subsection 6.3.
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Figure 7. Discrete solution uh for the example in Subsection 9.1

Table 1. Error, error estimator, and corresponding experimental convergence rates for uniform mesh-
refinement in Subsection 9.1

N1 N2 ep αN eu αN η αN

13 29 .44372547 .40360686 .63793932
56 124 .28475108 .3037 .18344937 .5399 .47052834 .2084

232 512 .18454770 .3051 .08730675 .5223 .29475176 .3290
944 2080 .11881756 .3137 .04232753 .5158 .18617839 .3273

3808 8384 .07594682 .3208 .02073549 .5116 .11771707 .3286
15296 33664 .04829497 .3255 .01022855 .5082 .07438236 .3301
61312 134912 .03060675 .3285 .00506933 .5056 .04696028 .3312

9.2. Example on the disc domain

Let f := 1 on the domain Ω = {(x, y) ∈ R : |x|+ |y| < 1} \ [0, 1]× {0}. The exact solution
of (2.1) is given by u(r, ϕ) = r1/2 sin(ϕ/2)−1/2r2 sin2(ϕ), and the boundary ΓD := ∂Ω. The
coarsest triangulation T0 consists of 4 triangles. The user-defined functions for the right-hand
sides f and u D.m read

%f.m
function volumeforce=f(x);
volumeforce=ones(size(x,1),1);
%u_D.m
function dir=u_D(x);
[a,r]=cart2pol(x(:,1),x(:,2));
ind=find(a<0);
a(ind)=a(ind)+2*pi*ones(size(ind));
dir=r.^(1/2).*sin(a/2)-1/2*(r.^2).*sin(a).*sin(a);
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Figure 8. Discrete solution uh for the example in Subsection 9.2

Table 2. Error, error estimator, and corresponding experimental convergence rates for uniform mesh-
refinement in Subsection 9.2

N1 N2 ep αN eu αN ηN αN

13 19 .73153614 .23874909 1.03438275
46 82 .54718869 .2297 .15339379 .3500 .88569805 .1228

172 340 .38483410 .2668 .08674962 .4321 .69662448 .1820
664 1384 .26438491 .2779 .04519640 .4826 .52063501 .2155

2608 5584 .18295321 .2691 .02289997 .4969 .37806400 .2338
10336 22432 .12777411 .2606 .01150482 .4998 .27097004 .2418
41152 89920 .08976047 .2555 .00576308 .5003 .19297044 .2457

9.3. Adaptive mesh refining

Automatic mesh refining generates a sequence T0, T1, T2, . . . by marking and refining el-
ements and is based on red-green-blue refinements and refinement indication by ηT :=
‖ph−Aph‖L2(T ). We refer to [6,16,18] for details on red-green-blue refinement procedures and
to [11] for corresponding data structures to generate uniform and adaptive mesh-refinements
for the example in Subsection 9.1. The applied refinement criteria reads: Mark the element
T ∈ Tk for red-refinement if the error indicator ηT satisfies

1

2
max
T ′∈Tk

ηA(T
′
) 6 ηA(T ).

The results are summarized in Fig. 9 which displays the error ep and the error estimator ηA

as function of N := N1. We observe an experimental convergence rate 2/3 and 1 (in terms
of a fictitious h := N−1/2) for uniform and adapted mesh-refining, respectively. This is clear
numerical evidence for the superiority of adaptive algorithms.
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Figure 9. Error and error estimator for adaptive mesh-refinement vs. the number N of edges in Section 9.1
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