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C. CARSTENSEN

Abstract. Residual-based a posteriori error estimates are de-
rived within a unified setting for lowest-order conforming, noncon-
forming, and mixed finite element schemes. The various residuals
are identified for all techniques and problems as the operator norm
‖`‖ of a linear functional of the form

`(v) :=

∫

Ω

ph : Dv dx +

∫

Ω

gΩ · v dx

in the variable v of a Sobolev space V . The main assumption
is that the first-order finite element space S1

0 (Ω) ⊂ ker ` ⊂ V is
included in the kernel ker ` of `. As a consequence, any residual

estimator that is a computable bound of ‖`‖ can be used within
the proposed frame without further analysis for nonconforming or
mixed FE schemes. Applications are given for the Laplace, Stokes,
and Navier-Lamè equations.

1. Unifying Theory of A Posteriori Error Control

This section sets up an abstract framework for a posteriori estimation
which is filled with details for low-order finite element methods for the
Laplace, Stokes, and Navier-Lamè equations in Section 2, 3, and 4, re-
spectively. This unifying approach generalizes known techniques based
on a Helmholtz decomposition [A, C, CD, CF1, CBK, BC, DDVP] as
well as comparison schemes [HW]. The final result of the presented
theory is that one unified type of residuals has to be analyzed once and
the resulting estimator can be simultaneously used for a posteriori error
control of conforming, nonconforming, mixed, or other finite element
schemes.

1.1. Residual-Based A Posteriori Error Control. Let A : X →
X∗ be a linear and bounded operator between the (real) Banach spaces
X and its dual X∗. Suppose that A is surjective and injective such
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that A−1 is bounded as well. In particular, given y ∈ X∗, there exists
a unique x ∈ X such that

(1.1) Ax = y.

Suppose we are given some finite element approximation xh ∈ X (pos-
sibly with some additional properties generated by the computational
scheme that provided xh). Then we address the issue of approximating
the error ‖x − xh‖. Notice that the linear functional

(1.2) Res := y − Axh = A(x − xh) ∈ X∗

is known or, at least computable. Throughout this paper, an inequality
a . b replaces a ≤ c b with a multiplicative mesh-size independent
constant c that depends only on the domain Ω and the shape (e.g.
through the aspect ratio) of finite elements. Finally, a ≈ b abbreviates
a . b . a. Since the operator norms ‖A‖ ≈ 1 ≈ ‖A−1‖ of A and A−1

are uniformly bounded, there holds

(1.3) ‖x − xh‖X ≈ ‖A(x − xh)‖X∗ ≈ ‖Res‖X∗ .

Hence, any residual-based a posteriori error control means the approx-
imation of lower and upper bounds of the dual norm ‖Res‖X∗ of Res.
Throughout the paper, X = H × L will (essentially) be fixed and the
discrete subspaces vary.

1.2. Goal-Oriented Error Control. The analysis of this paper fo-
cuses on the estimation of the norm ‖x − xh‖X . In some applica-
tions, there is a given (hence known) linear and bounded functional
ρ : X → R that monitors the error |ρ(x − xh)| (e.g. the error of an
averaged strain or traction over a small but fixed region). To assess
the latter quantity, let A∗ : X → X∗ be the dual operator of A (for
reflexive spaces X = X∗∗) and let z ∈ X be the solution to

A∗z = ρ.

Then it remains to estimate

ρ(x − xh) = (A∗z)(x − xh) = (A(x − xh))z = Res(z).

An immediate consequence of this reads

(1.4) |ρ(x − xh)| ≤ ‖Res‖X∗‖z‖X ≈ ‖ρ‖X∗‖Res‖X∗.

This global estimate (1.4) is (a) presumably too coarse and (b) does
not convey local information of ρ via z. But it indicates that the eval-
uation of Res(z) may follow localized arguments from the assessment
of ‖Res‖X∗ addressed in this paper (cf. [BR1, AO, BaS]).
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1.3. Mixed Approach to Flux or Stress Error Control. The pri-
mal variable u ∈ H (e.g. the displacement field) is accompanied by a
dual variable p ∈ L (e.g. the flux or stress). The pair (p, u) =: x ∈
L × H =: X plays the role of the variable x in Subsection 1.1 above.
Below, L will be a Lebesgue space (e.g. L = L2(Ω)n) and H will be a
Sobolev space (e.g. H = H1

0 (Ω)), defined on a bounded domain Ω in
Rn. At the moment, it suffices to consider L and H as reflexive Ba-
nach spaces. The linear operator A : X → X∗ is defined via a mixed
framework, namely,

(1.5) (A(p, u))(q, v) := a(p, q) + b(p, v) + b(q, u)

for bounded bilinear forms a : L × L → R and b : L × H → R. Under
well-analyzed conditions on a and b [B, BF] the operator A is bijective.
Hence, given right-hand sides f ∈ L∗ and g ∈ H∗ with y ∈ X∗ defined
by y(q, v) = f(q) + g(v), there exists a unique x = (p, u) ∈ L×H that
solves (1.1). Let xh = (ph, ũh) ∈ L × H be an approximation to x and
define Res as ResL + ResH by (1.2), namely

ResL(q) := f(q) − a(ph, q) − b(q, ũh) for q ∈ L,

ResH(v) := g(v) − b(ph, v) for v ∈ H.
(1.6)

The notation ũh ∈ H here and below asserts that ũh is a continuous
and not necessarily a discrete function; the subindex in ũh refers to
the fact that ũh is closely related to uh and is on our disposal. With
(1.5)-(1.6), Equivalence (1.3) becomes

(1.7) ‖p − ph‖L + ‖u − ũh‖H ≈ ‖ResL‖L∗ + ‖ResH‖H∗.

This is the starting point of the unifying theory. The fact that ũh has
to belong to H is a crucial point in the sequel.

Remark 1.1. For non-conforming or mixed finite element schemes we
obtain an approximation uh to u which, below, is not in H. Conse-
quently, ũh ∈ H is, in general, different from uh. To achieve an error
estimation of the dual variable p− ph, we will choose ũh properly. The
choice ũh = u might be possible and minimizes ‖u−ũh‖ but, in general,
leads to difficulties in the evaluation of b(q, ũh) in ResL in (1.6)a.

Remark 1.2. It should be notified clearly that (1.5) is a primal mixed
formulation, also called hybrid in [BF], where L is not a subspace of
H(div; Ω). This is because the derivatives act on u ∈ H = H1

0 (Ω)m.
For instance, the bilinear form b looks like

b(q, v) = −

∫

Ω

q · ∇v dx for the Laplace equation
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(without an integration by parts as for the dual mixed formulation)
and similar expressions hold for Stokes and Navier-Lamè equations.

1.4. Residuals. It is an aim of this paper to emphasize that there is
essentially only one type of residual that arise in a posteriori error con-
trol: Given some g ∈ L2(Ω)m and some gE ∈ L2(∪E)m one encounters
the linear functional Res : H1

0 (Ω)m → R,

(1.8) Res(v) :=

∫

Ω

g · v dx +

∫

∪E

gE · v ds

with the property that

(1.9) S1
0 (T )m ⊆ ker Res

for globally continuous and piecewise polynomials S1(T )m of (partial
or total) degree ≤ 1 and S1

0 (T ) := S1(T ) ∩ H1
0 (Ω). (Details on the

notation follow in Section 2). The norm of Res enters as an explicit
bound in the form of

‖Res‖ := sup
v∈H1

0
(Ω)m\{0}

Res(v)/‖∇v‖L2(Ω)

or, for m = 3 = n and nonconforming terms, in the form

‖Res‖ := sup
v∈H1(Ω)3 ,Curl v 6≡0

Res(v)/‖Curl v‖L2(Ω).

It will be seen in Section 2, 3, and 4 that all arising residuals can be
written and hence estimated in this unified form (1.8)-(1.9).

2. Application to Laplace Equation

This section is devoted to the Poisson problem as the simplest ellip-
tic PDE and its residual-based a posteriori finite element error control.
Subsection 2.1 introduces the model problem and some required nota-
tion while Subsection 2.2, 2.3, and 2.4 concern technical details in in-
creasing difficulty for the conforming, non-conforming, and mixed low-
order finite element methods. An application to discontinuous Galerkin
schemes is in preparation.

2.1. Model Problem. Throughout this paper, Ω denotes a bounded
Lipschitz domain in Rn with piecewise flat boundary ∂Ω such that Ω
is the union of a regular triangulation T , Ω = ∪T (no hanging nodes).
The Lebesgue and Sobolev spaces L2(Ω) and H1(Ω) are defined as usual
and we define

(2.1) L := L2(Ω)n and H := H1
0 (Ω) := {w ∈ H1(Ω) : w = 0 on ∂Ω}.
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Then, the gradient operator, ∇ : H → L, maps H into L. Given
g ∈ L2(Ω) let u ∈ H denote the solution to the Poisson Problem

(2.2) ∆u + g = 0 in Ω and u = 0 on ∂Ω.

Then, the flux p := ∇u ∈ L and u ∈ H solve the problem

(A(p, u))(q, v) := a(p, q) + b(p, v) + b(q, u)

!
= −

∫

Ω

gv dx for all (q, v) ∈ X = L × H
(2.3)

of the form considered in Subsection 1.3 with

(2.4) a(p, q) :=

∫

Ω

p · q dx and b(p, v) := −

∫

Ω

p · ∇v dx.

Theorem 2.1. The operator A : X → X∗ defined in (2.3)a is bounded,
linear, and bijective. For any ph ∈ L and ũh ∈ H there holds

(2.5) ‖p − ph‖L + ‖u − ũh‖H ≈ ‖ResL‖L∗ + ‖ResH‖H∗

for ResL ∈ L∗ and ResH ∈ H∗ defined for all q ∈ L and v ∈ H by

ResL(q) :=

∫

Ω

q · (∇ũh − ph) dx and

ResH(v) := −

∫

Ω

gv dx +

∫

Ω

ph · ∇v dx.

(2.6)

Proof. The assertions on A are well known; a direct proof of an inf-sup
condition follows for any (p, u) ∈ L×H from (q, v) := (p−∇u;−2u) ∈
L × H and

1/6 ‖(p, u)‖X‖(q, v)‖X ≤ 1/6 (‖p‖L + ‖u‖H)(‖p‖L + 3‖u‖H)

≤ ‖p‖2
L + ‖u‖2

H = (A(p, u))(q, v).

The (generalised) Lax-Milgram lemma then yields bijectivity of A. The
remaining assertions follow with the arguments of Subsection 1.3 which
lead to (1.7) which, here, reads (2.5)-(2.6). �

2.2. Conforming Finite Element Methods. The aforementioned
triangulation T into triangles or parallelograms for 2D and into tetra-
hedra or parallelepipeds for 3D is the basis of the conforming low-
order finite element space Hh = S1

0 (T ). Let Pk(T ) = Pk(T ) and
Pk(T ) = Qk(T ) for a triangle (or tetrahedron) and parallelogram (or
parallelepiped), respectively, and the space Pk(T ) and Qk(T ) algebraic
polynomials of total and partial degree ≤ k, respectively, and define

Lk(T ) := {v ∈ L2(Ω) : ∀T ∈ T , v|T ∈ Pk(T )} for k = 0, 1;

S1(T ) := L1(T ) ∩ C(Ω) and S1
0 (T ) := S1(T ) ∩ H1

0 (Ω).
(2.7)
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Let N denote the set of nodes (i.e. the vertices of elements in T ) and
let E denote the edges in 2D (or faces in 3D) in T . Let hT and hE

be T - and E-piecewise constant on Ω and ∪E = ∪E∈EE defined by
hT |T := hT := diam(T ) and hE |E := hE := diam(E) for T ∈ T and
E ∈ E , respectively.

Given uh ∈ Hh with

(2.8)

∫

Ω

∇uh · ∇vh dx =

∫

Ω

gvh dx for all vh ∈ Hh

and ph := ∇uh as an approximation to p := ∇u, we aim to estimate
‖p − ph‖L. With Theorem 2.1 and ũh = uh ∈ Hh ⊂ H there holds

(2.9) ResL ≡ 0 and ResH(v) = −

∫

Ω

gv dx +

∫

Ω

ph · ∇v dx.

Notice that an elementwise integration by parts shows that ResH is of
the form (1.8)-(1.9). The evaluation of the residual ResH , namely the
estimation of lower and upper bounds of

(2.10) ‖ResH‖H∗ := sup
v∈H\{0}

(

∫

Ω

gv dx −

∫

Ω

ph · ∇v dx)/‖v‖H,

is subject of a vast literature. Although possibly sometimes not stated
explicitly in this form, it is in fact the content of the books [V2, EJ,
AO, BaS]. The point in this paper is that any of the (energy error)
estimators thereof can be used. The standard explicit estimator reads

(2.11) η
(1)
R := ‖hT (g + divT ph)‖L2(Ω) + ‖h1/2

E [ph · νE ]‖L2(∪EΩ)

and can be refined [CV] for g ∈ H1(Ω) to

(2.12) η
(2)
R := ‖h2

T ∇g‖L2(Ω) + ‖h1/2
E [ph · νE ]‖L2(∪EΩ).

Another simple and easy-to-evaluate estimate is based on gradient-
recovery: For any node z ∈ N with patch ωz := int(∪{T ∈ T : z ∈ T})
let Azph :=

∫

ωz
ph dx/|ωz| ∈ Rn be the average of ph on ωz. With the

nodal basis function ϕz (defined by ϕz ∈ S1(T ) and ϕz(z) = 1 and
ϕz(x) = 0 for all x ∈ N\{z}) let

(2.13) ηA := ‖h2
T ∇g‖L2(Ω) + ‖ph −

∑

z∈N

(Azph)ϕz‖L2(Ω).

There holds (assuming g ∈ H1(Ω) and ‖h2
T ∇g‖L2(Ω) . ‖ResH‖H∗)

(2.14) ‖ResH‖H∗ ≈ η
(1)
R ≈ η

(2)
R ≈ ηA.

Remark 2.1. Notice that ‖h2
T ∇g‖L2(Ω) is of higher order for the low-

order finite element scheme analyzed in this paper.
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Remark 2.2. The proof of ‖p−ph‖L . η
(1)
R goes back to [BaR, BaM, EJ],

the proof of η
(1)
R . ‖p − ph‖L + ‖h2

T ∇g‖L2(Ω) to [BaM, V2].

Remark 2.3. There are more expensive implicit error estimates, cf.
[AO, V2, BaS, CBK].

2.3. Nonconforming Finite Element Methods. Based on the reg-
ular triangulation T into simplices (no parallelograms), the non-confor-
ming finite element schemes due to Crouzeix-Raviart reads

(2.15) S1,NC
0 (T ) := {v ∈ L1(T ) : v continuous at M∩ Ω

and v = 0 at M∩ ∂Ω}

where M is the set of midpoints of edges (of faces) E ∈ E . Notice that

S1
0 (T ) ⊂ S1,NC

0 (T ) ⊂ H1(T ) := {v ∈ L2(Ω) : ∀T ∈ T , v|T ∈ H1(T )}

and this is, in general, 6⊂ H1(Ω). Let ∇T (resp. ∇k
T ) denote the T -

piecewise action of the gradient operator (resp. the matrix of all partial

derivatives of order k). Then, for any vh ∈ S1,NC
0 (T ), ∇T vh ∈ L. The

finite element solution uh ∈ S1,NC
0 (T ) is the unique solution to

(2.16)

∫

Ω

∇T uh · ∇T vh dx =

∫

Ω

gvh dx for all vh ∈ S1,NC
0 (T ).

The aim is to estimate the flux error p − ph for the discrete flux ph :=
∇T uh ∈ L. One difficulty is that, in general, uh 6∈ H and so ũh cannot
be chosen as in Subsection 2.2. However, for any ũh ∈ H, Theorem 2.1
yields

(2.17) ‖p − ph‖L + ‖u − ũh‖H ≈ ‖ResL‖L∗ + ‖ResH‖H∗

with ResH treated as in (2.9)-(2.14) (notice that (2.16) guarantees (1.9)

because of S1
0 (T ) ⊂ S1,NC

0 (T )) and

(2.18) ResL(q) :=

∫

Ω

(∇ũh − ph) · q dx for all q ∈ L.

The focus of the remaining part of this subsection is therefore on

(2.19) ‖ResL‖L∗ = sup
q∈L\{0}

ResL(q)/‖q‖L = ‖ph −∇ũh‖L2(Ω)

and so on a proper choice of ũh.

Remark 2.4. A direct approach towards an upper bound of (2.19) is
to compute some ũh := Iuh ∈ S1

0 (T ) from the nonconforming finite
element solution uh; cf. [HW] for an example of I.
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Remark 2.5. The minimizing ũh in (2.19) within the class of conforming
finite element approximations is equal to the conforming finite element
approximation uc

h of Subsection 2.2. [Proof: Since
∫

Ω
ph · ∇vc

h dx =
∫

Ω
gvc

h dx =
∫

Ω
∇uc

h · ∇vc
h dx for all vc

hS
1
0 (T ) ⊂ S1,NC

0 (T ) there holds
∫

Ω
(ph −∇uc

h) · ∇vc
h dx = 0.] The split ∇T uh = ∇uc

h + CurlT bh, due to
[AF], is known as the discrete Helmholtz decomposition. [In compari-
son with this, the version of [AF] interchanges the role of nonconform-
ing and conforming terms; a change of the two components plus one
change of signs proves the two versions equivalent.]

Definition 2.1. Given ph := ∇T uh define the linear functional

ResNC : H1(Ω)m → R by ResNC(v) :=

∫

Ω

ph · Curl v dx

for v ∈ H1(Ω)m and for m := 1 if n = 2 and m := 3 if n = 3. Set

‖ResNC‖ := sup
v∈H1(Ω)m,Curl v 6=0

∫

Ω

ph · Curl v dx/‖Curl v‖L.

The following result relates ‖ResNC‖ to (1.8)-(1.9). Notice carefully
that ũh is an arbitrary element in H (and not necessarily some discrete
function).

Theorem 2.2. There holds

min
ũh∈H

‖ph −∇ũh‖L = ‖ResNC‖ and S1(T )m ⊂ kerResNC .

Proof. The Helmholtz decomposition

(2.20) ph = ∇a + Curl b

holds for a unique a ∈ H1
0(Ω) = H and some b ∈ H1(Ω)m with the L2

orthogonality of Curl(H1(Ω)m) and ∇(H). Then

min
ũh∈H

‖ph −∇ũh‖
2
L = ‖Curl b‖2

L

=

∫

Ω

ph · Curl b dx = ResNC(b)

≤ ‖ResNC‖ ‖Curl b‖L.

(2.21)

For any v ∈ H1(Ω)m there holds, with (2.20) and
∫

Ω
∇a ·Curl v dx = 0,

that

ResNC(v) =

∫

Ω

(∇a + Curl b) · Curl v dx

=

∫

Ω

Curl b · Curl v dx

≤ ‖Curl v‖L‖Curl b‖L.

(2.22)
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The combination of (2.21)-(2.22) shows

‖ResNC‖ = ‖Curl b‖L = min
ũh∈H

‖ph −∇ũh‖L.

This proves the first assertion of the theorem. The second is simpler
in 2D and so solely shown for n = m = 3 and vh ∈ S1(T )3. An
elementwise integration by parts yields

ResNC(vh) =
∑

T∈T

∫

T

∇uh · Curl vh dx

=
∑

T∈T

∫

∂T

uh(Curl vh) · ν ds

=
∑

E∈E

∫

E

[uh Curl vh] · νE ds

for the unit normal νE on the element face E and the jump [·] across
E. Recall that

∫

E
[uh] ds = 0 by construction of the nonconforming

finite element space S1,NC
0 (T ). We claim that [Curl vh] · νE = 0 on an

interior face E ∈ EΩ := {E ∈ E : E 6⊂ ∂Ω}. Since vh is a polynomial
on T+ and T− ∈ T , E = T+ ∩ T−, and continuous along E, there holds
(⊗ denotes the dyadic product)

Dvh|T+
− Dvh|T−

= a ⊗ νE on E

for some polynomial a in three components on E. A direct calculation
shows that, therefore, the jump of (Curl vh) ·νE along E vanishes. This
proves our claim. We conclude continuity of (Curl vh) · νE along E ∈ E
and so

ResNC(vh) =
∑

E∈E

∫

E

[uh](Curl vh) · νE ds.

Since Curl vh is constant along E and
∫

E
[uh] ds = 0 we conclude

ResNC(vh) = 0. �

Remark 2.6. For n = 2 dimensions, |Curl v| = |∇v| and ph · Curl v =
p⊥h · ∇v for p⊥h := (−ph2, ph1). Hence

ResNC(v) =

∫

Ω

p⊥h · ∇v dx and

‖ResNC‖ = sup
v∈H1(Ω)\R

∫

Ω

p⊥h · ∇v dx/‖∇v‖L

(2.23)
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Element Mk(T ) Dk(T )
RT P2

k + x · Pk Pk

BDM P2
k+1 Pk

BDFM {q ∈ P2
k+1 : (q · n)|∂T ∈ Rk(∂T )} Pk

Table 1. Standard 2D Mixed FEMs allowed in Theo-
rem 2.4. Here, Pk denotes polynomials of total degree at
most k = 0, 1, 2, ... and Rk(∂T ) denotes (not necessarily
continuous) functions on ∂T which equal a polynomial
of degree at most k on each edge.

is the usual operator norm as in (2.10). Notice the differences in the
boundary conditions in (2.10) (where v = 0 on ∂Ω) and (2.23) (where
v has integral mean zero on Ω). Since divT p⊥h = 0, we obtain

(2.24) η
(NC)
R := ‖h1/2

E [ph · τE ]‖L2(∪E)

(with the piecewise tangential unit vector τE) instead of (2.11)-(2.12)
and, as in (2.13),

(2.25) ηA := ‖ph −
∑

z∈N

(Ahph)ϕz‖L2(Ω).

Remark 2.7. We stress that all other estimators, for instance the local-
ized or equilibrated implicit estimators of [AO, BS], are available for
the assessment of

(2.26) ‖ResNC‖ ≈ η
(NC)
R . ηA

as well. The averaging estimator (2.25) concerns discontinuities in
normal and tangential components and so

(2.27) ‖ResNC‖ + ‖ResH‖H + ‖h2
T ∇g‖L2(Ω) ≈ ηA + ‖h2

T ∇T g‖L2(Ω).

Remark 2.8. The situation for n = 3 dimensions is more delicate and
we refer to [CBJ] for reliable and efficient explicit error estimators.

2.4. Mixed Finite Element Methods. The Laplace equation is split
into div p + g = 0 and the weak form of p = ∇u. The resulting mixed
formulation involves a bilinear form as in (1.5). Its discrete version
involves

ph ∈ Lh ⊆ Lk+1(T )n ∩ H(div; Ω) and uh ∈ Hh ⊆ Lk(T )
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for k = 0, 1. The couple (ph, uh) is supposed to satisfy
∫

Ω

ph · qh dx +

∫

Ω

uh div qh dx = 0 for all qh ∈ Lh,

∫

Ω

vh div ph dx = −

∫

Ω

g vh dx for all vh ∈ Lk(T ).

(2.28)

With the above sets Dk(T ) and Mk(T ) from Table 1 for n = 2 we define

Lh := Mk(T ) := {qh ∈ H(div; Ω) : ∀T ∈ T , qh|T ∈ Mk(T )},

Hh := Dk(T ) := {vh ∈ L∞(Ω) : ∀T ∈ T , vh|T ∈ Dk(T )}.

Theorem 2.1 is applied to estimate ‖p − ph‖L + ‖u − ũh‖H for some
ũh ∈ H different from uh. The evaluation of ResH follows the argu-
ments of the conforming finite element situation in Subsection 2.2.

Theorem 2.3. Given g ∈ H1+k(T ) := {g ∈ L2(Ω) : ∀T ∈ T , g|T ∈
H1+k(T )} and k = 0, 1,

‖ResH‖H∗ . ‖h2+k
T ∇1+k

T g‖L2(Ω) is of higher order.

Proof. An integration by parts shows, for all v ∈ H,

ResH(v) := −

∫

Ω

gv dx +

∫

Ω

ph · ∇v dx = −

∫

Ω

v(g + div ph) dx.

Note that there are no jump terms across interior element boundaries
since ph ∈ H(div; Ω) (and, equivalently, [ph] · νE = 0). In the lowest-
order cases, Hh = L0(T ) and (2.28)b lead to

− div ph|T =

∫

T

g dx/|T | =: gh|T for all T ∈ T .

Consequently, if vh and gh denote the T -piecewise constant averages of
v and g, respectively, Poincaré inequalities show

ResH(v) = −

∫

Ω

(v − vh)(g − gh) dx

≤ ‖hT (g − gh)‖L2(Ω)‖(v − vh)/hT ‖L2(Ω)

. ‖h2
T ∇g‖L2(Ω)‖∇v‖L2(Ω).

(2.29)

The proof is finished for k = 0. For k = 1, the second equation in (2.28)
implies on each element domain T ∈ T that − div ph = gh := Π1g is
the L2 projection of g onto P1(T ). Hence (2.29) can be moified to yield
the upper bound ‖h3

T ∇
2
T g‖L2(Ω)‖∇v‖L2(Ω). �

For the evaluation of ‖ResL‖L∗ we have the following analogue of
Theorem 2.2 which shows (1.8)-(1.9) in the notation from Definition 2.1;
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recall that ũh denotes an arbitrary (not necessarily discrete) element
in H.

Theorem 2.4. For each of the mixed FEM of Table 1 there holds

min
ũh∈H

‖ph −∇ũh‖L = ‖ResNC‖ and S1(T )m ⊂ kerResNC .

Proof. The assertion follows as in Theorem 2.2: Given vh ∈ S1(T )m the
second part of its proof showed Curl vh ∈ H(div; Ω) by [Curl vh]·νE = 0.
Hence,

qh := Curl vh ∈ L1(T )n ∩ H(div, Ω) ⊂ Lh.

The last inclusion holds for the finite element spaces of Table 1. Thus,
qh := Curl vh may be considered in (2.28)a and shows

ResNC(vh) =

∫

Ω

ph · Curl vh dx = −

∫

Ω

uh div Curl vh dx = 0. �

Remark 2.9. Based on Theorem 2.4, the evaluation of ‖ResNC‖ follows

the arguments of Subsections 2.2 and 2.3; e.g. for n = 2, η
(NC)
R , and

ηA from (2.24)-(2.25) there holds

‖ResNC‖ ≈ η
(NC)
R ≈ ηA.

3. Applications to the Stokes Problem

The stationary incompressible fluid flow can be modelled by the
Stokes equations: Given g ∈ L2(Ω) seek (u, p) ∈ H × L := H1

0 (Ω)n ×
L2

0(Ω) with
∫

Ω

2µ ε(u) : ε(v) dx −

∫

Ω

p div v dx =

∫

Ω

g v dx,

−

∫

Ω

q div u dx = 0 for all (v, q) ∈ H1
0 (Ω)n × L2

0(Ω).

(3.1)

Here, L2
0(Ω) := {q ∈ L2(Ω) :

∫

Ω
q dx = 0} ≡ L2(Ω)/R fixes a global

additive constant in the pressure (because of lacking Neumann bound-
ary conditions). In this case, (3.1) is equivalent to a formulation with
the non-symmetric gradient ∇u instead of its symmetric part

(3.2) ε(u) := (∇u + ∇uT )/2 ∈ L := L2(Ω; Rn×n
sym)

here; R
n×n
sym = {A ∈ R

n×n : A = AT}. (Colon denotes the Euclidean
scalar product, A : B =

∑n
j,k=1 AjkBjk for A, B ∈ Rn×n.)

It is well-known that (3.1) has a unique solution (u, p). We discuss
conforming and nonconforming finite element approximations of the
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Stokes equations. Given a regular triangulation T and a T -piecewise
H1 function (written v ∈ H1(T )) set

εT (v) := (∇T v + ∇T vT ))/2 ∈ L := L2(Ω; Rn×n
sym)

for the T -piecewise gradient ∇T ; ∇T v equals ∇(v|T ) on each T ∈
T ; let divT denote the T -piecewise divergence operator. To describe
conforming and nonconforming finite element methods simultaneously,
suppose uh ∈ Lk(T )n and ph ∈ Lk(T ) ∩ L2

0(Ω) satisfy

(3.3)

∫

Ω

2µ εT (uh) : εT (vh) dx −

∫

Ω

ph divT vh dx =

∫

Ω

g vh dx

for all vh ∈ S1
0 (T )n.

Remark 3.1. Even for nonconforming schemes we suppose that (3.3)
holds for a continuous test function vh. For the lowest-order finite ele-
ment schemes, this implies the restriction to triangular finite elements.

Remark 3.2. Throughout the discussion of this paper, the discrete uh

and ph are supposed to be piecewise polynomials of some degree ≤ k.
This does not mean that we propose some P n

k ×Pk finite element method
— they may be instable. However, our a posteriori analysis partly
includes error control even for unstable methods.

Remark 3.3. The condition (3.1)b has no discrete analog in (3.3) be-
cause that is not needed in our a posteriori error analysis. However,
since ‖ divT uh‖L2(Ω) arises in estimates of ResL below, it is understood
below that ‖ divT uh‖L2(Ω) is small.

Remark 3.4. The list of examples for n = 2 includes conforming finite
elements such as the MINI element, the P2-P0 finite element, and the
Taylor-Hood element [BF] and the nonconforming finite element due
to Kouhia and Stenberg [KS].

Remark 3.5. There are also finite element methods for the unsymmetric
formulation [BF] such as the popular Crouzeix-Raviart finite element.
Since the arguments of this section work verbatim (if not simpler), we
omit details and refer to [DDP, V1].

Definition 3.1. Given uh ∈ H1(T )n and ph ∈ L2
0(Ω) set

(3.4) σh := 2µ εT (uh) − ph1 ∈ L := L2(Ω; Rn×n
sym)

and define the linear functional ResH : H → R by

(3.5) ResH(v) =

∫

Ω

(g · v − σh : ε(v)) dx for v ∈ H := H1
0 (Ω)n.
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The linear function space H is endowed with the norm ‖v‖H := |v|1,2

:= ‖∇v‖2 for v ∈ H such that

‖ResH‖H∗ = sup
v∈H\{0}

ResH(v)/|v|1,2.

The residual ‖ResL‖L∗ involves the deviatoric-part operator

(3.6) dev A = A − (tr(A)/n) 1 for any A ∈ R
n×n

(where tr(A) = A11 + · · · + Ann is the trace of A).

Theorem 3.1. Let (u, p) ∈ H × L2
0(Ω) solve (3.1) and set σ :=

2µ ε(u) − p 1 ∈ L. Let (uh, ph) satisfy (3.3) and define σh as in (3.4).
Then, for any ũh ∈ H, there holds

(3.7) ‖σ−σh‖L +‖u− ũh‖H ≈ ‖ε(ũh)−dev εT (uh)‖L +‖ResH(v)‖H∗.

Before we focus on its proof, we briefly comment on applications
of the theorem. The residual ResH satisfies ResH(vh) = 0 for all
vh ∈ S1

0 (T )n and, since σh is symmetric, can be recast into

(3.8) ResH(v) =

∫

Ω

(g · v − σh : ∇v) dx.

That is, ResH in (3.5) is the sum of j = 1, 2, . . . , n residuals Res(v ej)
of the form in (2.6)b where ej is the j-th canonical unit vector in Rn and,
here, v in H1

0 (Ω) is a scalar. As a consequence, the residual evaluation
can follow the same lines as in Subsection 2.1.

The discussion of ‖ResL‖L∗ = ‖ε(ũh) − dev εT (uh)‖L follows two
cases. In case I, for any conforming approximation uh ∈ H, the choice
ũh = uh yields

(3.9) ‖ResL‖L∗ = ‖ε(uh) − dev εT (uh)‖L = n−1‖ div uh‖L2(Ω).

This is an appropriate error contribution and, at the same time, an
error estimator.

In case II, uh /∈ H and the estimation of the nonconformity terms
is analogous to that of Subsection 2.3 but slightly more involved be-
cause of the interaction of the divergence residual and the uh − ũh

approximation. If one accepts ‖ divT uh‖L2(Ω) as a proper error term
(cf. Remark 3.3), the upper bound

(3.10) ‖ResL‖L∗ ≤ ‖εT (uh − ũh)‖L + n−1/2‖ divT uh‖L2(Ω)

can be minimised according to a symmetric form of a Helmholtz decom-
position. To quote results from the literature let n = 2 for a moment.
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Lemma 3.2. ([CD, Lemma 3.2]). Given any τ ∈ L2(Ω; R2×2
sym) there

exist a ∈ H1
0 (Ω)2 and b ∈ H2(Ω) such that

(3.11) τ = ε(a) + Curl Curl b

(where Curl Curl b has the four entries b,22,−b,12,−b,12, b,11 where b,αβ =
∂2b/∂xα∂xβ). �

Suppose there holds τ = εT (uh) = ε(a) + Curl Curl b in (3.11). The,
the lemma suggests the choice ũh = a and, as for Theorem 2.2, one
proves

(3.12) min
ũh∈H

‖ε(uh − ũh)‖L = ‖Curl Curl b‖L = ‖ResNC‖H∗

for

ResNC(v) :=

∫

Ω

εT (uh) : Curl v dx for all v ∈ H.

[The proof follows closely (2.20)-(2.22) and is hence omitted.] More
details may be found in [CF1] where it is in particular shown (for the
Kouhia-Stenberg FEM and n = 2) that

(3.13) ‖ResNC‖H∗ . ‖h1/2
E [∇uh · τE ]‖L2(∪E).

The remaining part of this section is devoted to the proof of The-
orem 3.1 for n = 2 or n = 3. To employ the mixed approach of
Subsection 1.3 set

a(σ, τ) :=

∫

Ω

1/(2µ) dev σ : dev τ dx for σ, τ ∈ L,

b(σ; v) := −

∫

Ω

σ : ε(v) dx for (σ, v) ∈ L × H.

(3.14)

Let L/R := {σ ∈ L :
∫

Ω
trσ dx = 0}.

Lemma 3.3. The operator A : X → X∗, defined for (σ, u) ∈ X :=
(L/R) × H by

(3.15) (A(σ, u))(τ, v) := a(σ, τ) + b(σ, v) + b(τ, u)

is linear, bounded and bijective. [This result holds for n = 2, 3.]

Proof. The bijectivity of A is the only not so immediate part of the
lemma. Proposition 3.1 in [BF, Chapter IV] states

‖σ‖L . ‖ dev σ‖L + ‖ div σ‖L2(Ω) for all σ ∈ L/R.

Since any σ ∈ L/R with b(σ; ·) = 0 (written σ ∈ ker B) satisfies div σ =
0 this implies

‖σ‖2
L . a(σ, σ) for all σ ∈ ker B.
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Hence a is elliptic on ker B. This is one of the main ingredients of the
general theory on mixed finite element mehods [BF]. The remaining
details are omitted. �

Proof of Theorem 3.1. The inf-sup condition for A follows from
Lemma 3.3. The resulting equivalence (1.7) reads

‖σ − σh‖L + ‖u − ũh‖H ≈ ‖ResL‖L∗ + ‖ResH‖H∗.

The residuals on the right-hand side result from (1.6). In particular, if
we employ dev ε(u) = ε(u) (from div u = 0), there holds

ResL(τ) =

∫

Ω

(

(1/(2µ) dev(σ − σh) − ε(u − ũh)
)

: τ dx

=

∫

Ω

(

ε(ũh) − devT ε(uh)
)

: τ dx.

The remaining details are omitted. �

4. Applications to linear elasticity

This section is devoted to the Navier-Lamè equations and its con-
forming, nonconforming, and mixed finite element approximation. An
analysis of enhanced finite elements in the same framework is given in
[BCR]. It is an important feature of the presented unifying theory that
the resulting a posteriori error estimates are robust with respect to the
Lamè parameter λ → ∞.

4.1. Model Problem. We adopt the notation of the previous two
sections and continue with a linear stress-strain relation of the form

CA := λ tr(A) 1 + 2µ A for A ∈ R
n×n

with inverse relation

C
−1A = 1/(2µ) A− λ/(2µ(nλ − 2µ)) tr(A) 1 for A ∈ R

n×n.

In the continuous model, σ = Cε(u) ∈ L := L2(Ω; Rn×n
sym) and the

resulting model problem reads: Given g ∈ L2(Ω)n find u ∈ H :=
H1

0 (Ω)n with

(4.1) g + div C ε(u) = 0 in Ω.

The material parameters λ and µ are positive and hence (4.1) is an
elliptic PDE with a unique solution u.

To employ the unified theory of Subsection 1.3 let

(4.2) a(σ, τ) :=

∫

Ω

(C−1σ) : τ dx for σ, τ ∈ L := L2(Ω; Rn×n
sym)
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replace (3.14)a and adopt b(σ; v) from (3.14)b.

Lemma 4.1 ([BCR]). The operator A : X → X∗ from (3.15) is linear,
bounded, and bijective and the operator norms of A and A−1 are λ-
independent. �

Remark 4.1. The operator A represents the weak form of the Hellinger-
Reissner principle in mechanics. Lemma 4.1 is the analogue of Lem-
ma 3.3.

4.2. Conforming Finite Element Methods. Although the (lower
order) conforming finite element methods are not robust in λ → ∞ we
introduce a robust error estimation. Given a finite element approxima-
tion uh ∈ H = H1

0 (Ω)n with

(4.3)

∫

Ω

ε(uh) : C ε(vh) dx =

∫

Ω

g · vh dx for all vh ∈ S1
0 (T )n,

let e := u − uh ∈ H1
0 (Ω) (where u solves (4.1)) denote the error.

Theorem 4.2. With λ-independent constants in ≈, there holds

‖C ε(e)‖L2(Ω) +‖e‖H1(Ω) ≈ sup
v∈H\{0}

∫

Ω

(g ·v−ε(uh) : C ε(v)) dx/‖v‖H1(Ω).

Proof. With ũh = uh ∈ H, σ := C ε(u), and σh := C ε(uh), Equiva-
lence (1.7) results in

‖σ − σh‖L + ‖e‖H1(Ω) ≈ ‖ResH‖H∗

where ResH(v) is defined in (3.8). This implies the assertion. �

As in the previous section (cf. the discussion about (3.8)), the es-
timation of ‖ResH‖H∗ follows the lines of Subsection 2.1. Given any
estimator η (of the various choices (2.11)-(2.14)) with

(4.4) ‖ResH‖H∗ ≈ η (up to h.o.t.)

the estimate [the proof follows from (4.4) and ‖e‖H1(Ω) . ‖σ−σh‖L2(Ω)]

(4.5) ‖σ − σh‖L2(Ω) ≈ η (up to h.o.t.)

appears to be new (where h.o.t. refers to ‖h2
T ∇g‖L2(Ω) for the first-order

finite element schemes). The point is that the constants behind ≈ in
(4.5) are λ-independent. This is different for the standard estimate

(4.6) ‖C
1/2ε(e)‖L2(Ω) . η . ‖σ − σh‖L2(Ω) (up to h.o.t.).
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In fact, for the proof of (4.6) one argues
∫

Ω

ε(e) : C ε(e) dx = ResH(e) ≤ ‖ResH‖H∗‖e‖H

. ‖C
−1/2‖∞‖C

1/2ε(e)‖L2(Ω) η . ‖C
1/2ε(e)‖L2(Ω)η.

Finally, inverse estimates verify (4.6)b up to higher order terms (h.o.t.).
Notice that (4.5) is balanced in λ while (4.6) is not. Thus (4.4) estab-
lishes λ-robust a posteriori error control of the L2-stress error ‖σ −
σh‖L2(Ω). A corresponding result for the energy norm ‖C1/2ε(e)‖L2(Ω)

remains as an open problem.

4.3. Nonconforming Finite Element Methods. Robust a priori
convergence estimates are known for nonconforming finite element meth-
ods such as

S1
0 (T )2 ⊂ S1

0 (T ) × S1,NC
0 (T ) ⊂ H1

0 (Ω) × H1(T )

due to Kouhia-Stenberg [KS]. Here and throughout this subsection, let
n = 2 and consider merely triangles. Suppose that the discrete solution
uh ∈ H1(T )2 satisfies

(4.7)

∫

Ω

εT (uh) : C ε(vh) dx =

∫

Ω

g · vh dx for all vh ∈ S1
0 (T )2

and set σh := C εT (uh), σ := C ε(u) ∈ L := L2(Ω; R2×2
sym).

Theorem 4.3. For any ũh ∈ H there holds

(4.8) ‖σ − σh‖L + ‖u − ũh‖H ≈ ‖εT (uh − ũh)‖L + ‖ResH‖H∗.

Proof. This is a result of Equivalence (1.7) and Lemma 4.1. The details
are similar to those of the previous sections and hence omitted. �

The discussion of ‖εT (uh − ũh)‖L follows the lines of (3.10)-(3.13) in
the previous section and hence are omitted; cf. [CF2].

4.4. Mixed Finite Element Methods. Another λ-robust approxi-
mation is feasible with a mixed finite element method with reduced
symmetry [ABD, S] for

σh ∈ H(div; Ω),

i.e. div σh ∈ L2(Ω; Rn) and σh ∈ Lk(T ; Rn×n) with, in general, As(σh)
:= σh − sym σh 6≡ 0, sym σh := (σT

h + σh)/2. Suppose that σh satisfies

(4.9) −

∫

Ω

vh · div σh dx =

∫

Ω

vh · g dx for all vh ∈ L0(T )n.
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Theorem 4.4. For any ũh ∈ H there holds

‖σ − sym σh‖L + ‖u − ũh‖H(4.10)

≈ ‖ε(ũh) − C
−1 sym σh‖L + ‖ResH‖H∗.

Proof. Lemma 4.1 and Equivalence (1.7) apply to σ−sym σh and u−ũh.
We omit the details. �

Notice that the residual satisfies

ResH(v) =

∫

Ω

(v · g − ε(v) : σh) dx

=

∫

Ω

v · (g + div σh) dx −

∫

Ω

As(σh) : ∇(v) dx for v ∈ H.

(For a proof observe that ε(v) : sym σh = ∇(v) : (σh − As(σh)) and
employ an integration by parts.) The estimation of ‖ResH‖H∗ may
hence follow as in (2.29) and yields

‖ResH‖H∗ . ‖h2
T ∇T g‖L2(Ω) + ‖As(σh)‖L2(Ω).(4.11)

The first term on the right-hand side of (4.11) is of higher order for
g ∈ H1(T )n and first order schemes such as PEERS. The estimation
of

(4.12) min
ũh∈H

‖ε(ũh) − C
−1 sym σh‖L = ‖ResNC‖

follows closely the discussion of (3.10)-(3.13). We refer to [CD, CDFH]
for the remaining details on the approximation of

ResNC(v) :=

∫

Ω

Curl v : sym C
−1σh dx.

Notice that (4.10) concerns the symmetric part of the error ‖σ− σh‖L.
Furthermore,

‖σ − σh‖
2
L = ‖σ − sym σh‖

2
L + ‖As(σh)‖

2
L

and ‖As(σh)‖L may simultaneously be regarded as an error contribu-
tion and as a (computable) contribution to an a posteriori error esti-
mate. Hence the estimate (4.10) results in

(4.13) ‖σ − σh‖L ≈ ‖ResNC‖H∗ + ‖ResH‖H∗ + ‖As(σh)‖L.
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