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AVERAGING TECHNIQUES FOR THE EFFECTIVE NUMERICAL
SOLUTION OF SYMM’S INTEGRAL EQUATION OF THE

FIRST KIND∗

CARSTEN CARSTENSEN† AND DIRK PRAETORIUS‡

Abstract. Averaging techniques for finite element error control, occasionally called ZZ esti-
mators for the gradient recovery, enjoy a high popularity in engineering because of their striking
simplicity and universality: One does not even require a PDE to apply the nonexpensive post-
processing routines. Recently, averaging techniques have been mathematically proved to be reliable
and efficient for various applications of the finite element method. This paper establishes a class
of averaging error estimators for boundary integral methods. Symm’s integral equation of the first
kind with a nonlocal single-layer integral operator serves as a model equation studied both theoret-
ically and numerically. We introduce four new error estimators which are proven to be reliable and
efficient up to terms of higher order. The higher-order terms depend on the regularity of the exact
solution. Several numerical experiments illustrate the theoretical results and show that the [normally
unknown] error is sharply estimated by the proposed estimators, i.e., error and estimators almost
coincide.
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1. Introduction. Reliable error control and efficient meshdesign in today’s bound-
ary element analysis are usually based on a posteriori error estimates. Let Ω be a
bounded domain in R

d, d = 2, 3, with Lipschitz boundary ∂Ω, and let Γ ⊂ ∂Ω be an
open surface. Suppose we are given the right-hand side f and an approximation uh

for the unknown exact solution u of the operator equation

V u = f in H̃−1/2(Γ)(1.1)

for the single-layer potential [dsy denotes surface integration on Γ ⊆ R
d with respect

to the variable y] defined by

(V u)(x) =

∫
Γ

u(y)κ(x− y) dsy for x ∈ Γ(1.2)

and interpreted in a weak sense for the kernel

κ(x) :=

{
− 1

π log |x| for d = 2,
1
2π |x|−1 for d = 3.

(1.3)

A posteriori error estimators η = η(uh, f, T ) are computable quantities in terms of
the right-hand side f , a computed approximate solution uh, and the given underlying
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mesh T = {Γ1, . . . ,Γn} which bound the exact error from below or above [so-called
efficiency and reliability of η, resp.]. So far, for boundary element methods, the
following four groups (i)–(iv) of a posteriori estimates have been introduced; see [CFa]
for more details.

(i) Weighted residual error estimators in 2D, established in [C1, C2, C3, CES,
CS1, CS2],

ηR,j := hα
j ‖∂R/∂s‖L2(Γj)(1.4)

with the derivative ∂R/∂s of the residual R := f − V uh along Γ and hj := |Γj | the
size of Γj . For the hp-method, see [CFS] and, recently, for 3D [CMS, CMPS].

(ii) Local double-integral seminorms in [F2, F3, CP1] with a double integration
over overlapping domains ωj := Γj−1 ∪ Γj in 2D and 3D,

�2
F,j :=

∫
ωj

∫
ωj

|R(x) −R(y)|2
|x− y|1+2α

dsx dsy.(1.5)

(iii) Based on an idea in the finite element literature [BR], Babuška–Rheinboldt-
type error estimators are suggested in [F1], so far only for hypersingular integral
equations.

(iv) Multilevel error estimators involve a hierarchy of grids and, usually, a dis-
putable saturation assumption [MMS, MSW, CMPS].

Other suggested error estimators employ the notion of an influence index and
strengthened Cauchy inequalities [R1, R2, WY, Y1, Y2], localize the outer integration
in the Sobolev–Slobodeckij norm (1.5) of the residual R := f − V uh [FHK], try to
recover gradients [SW, SSW], or employ corrections with another integral equation
[MPM, S, SSt].

The nonlocal character of the involved pseudodifferential operator V and the non-
local Sobolev spaces [of functions on Γ] cause severe difficulties in the mathematical
derivation of computable lower and upper error bounds for a discrete (known) ap-
proximation uh to the (unknown) exact solution u. A comparison [F2, F3] shows that

the Faermann error estimator ηF :=
(∑n

j=1 η
2
F,j

)1/2
and its modification μF from

[CP1] were the only proven reliable and efficient estimators for unstructured grids in
the sense that

Ceff‖u− uh‖H̃−1/2(Γ)
≤ ηF ≤ μF ≤ Crel ‖u− uh‖H̃−1/2(Γ)

(1.6)

for the energy norm ‖u − uh‖H̃−1/2(Γ)
of the error in a Galerkin boundary element

method.
In this paper we introduce a new class of error estimators ηM , μM , ηA, and μA for

Symm’s integral equation based on averaging techniques. For finite element methods
it has recently been shown that any averaging technique yields in fact reliable error
estimators [ZZ, CB, AC, CFu]. Our results in this paper establish this concept for
the Galerkin boundary element method.

In the simplest case, let TH be a given mesh with mesh size H, and let Th
be obtained by uniform refinements of TH . Let uh ∈ P0(Th) be a Th-piecewise

constant Galerkin approximation of the exact solution u ∈ H̃−1/2(Γ) of (1.1). If

GH : H̃−1/2(Γ) → P1(TH) and AH : H̃−1/2(Γ) → P1(TH) denote the Galerkin pro-
jection, respectively, the L2-projection onto the TH -piecewise affine [not necessarily
continuous] functions and if the mesh size h is small enough compared with H, then
the error estimator [with ||| · ||| the energy norm of section 2.2]
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ηM := |||uh − GHuh||| := 〈V (uh − GHuh) ;uh − GHuh〉1/2(1.7)

is always reliable and efficient up to terms of higher order; cf. Theorem 5.2. The
higher-order terms depend only on the smoothness of the exact solution u ∈ H̃−1/2.
For the lowest-order ansatz uh ∈ P0(Th) it suffices that u is Th-piecewise in H1+ε

for some ε > 0 [in fact, Γ is therefore required to be piecewise smoother than only
Lipschitz].

Since GH is the best approximation operator with respect to the energy norm,
there holds |||uh − GHuh||| ≤ |||uh −AHuh|||. In particular, the error estimator

ηA := |||uh −AHuh|||(1.8)

is reliable. Theorem 5.6 states the efficiency of ηA provided H1-stability of AH [i.e.,
AH is continuous as operator from H1(Γ) to H1(Γ)]. By interpolation and inverse
estimates we show that the error estimators

μM := ‖H1/2(1l − GH)uh‖L2(Γ) and μA := ‖H1/2(1l −AH)uh‖L2(Γ)(1.9)

are equivalent to ηM and ηA, respectively, i.e.,

C−1
1 μM ≤ ηM ≤ C2μM and C−1

1 μA ≤ ηA ≤ C2μA(1.10)

with constants C1, C2 that do not depend on the size or the number of the elements
in Th and TH ; cf. Corollaries 5.4 and 5.5. Since the L2 norm is local in the sense
that ‖ · ‖2

L2(Γ) =
∑

γ∈TH
‖ · ‖2

L2(γ), μM and μA can be employed for an indicator-based
adaptive mesh refinement introduced in section 6.3 below.

The paper is organized as follows: section 2 recalls the definition of the Sobolev
spaces H̃α(Γ) and Hα(Γ) of fractional order −1 ≤ α ≤ 1. Section 3 displays prelim-
inaries on the mesh geometry and finite elements. A local first-order approximation
result for the L2-projection in scales of Hα(Γ) is proven in section 4. Section 5 estab-
lishes the a posteriori error estimates and introduces four error estimators (1.7)–(1.9)
based on averaging techniques. In section 6 we give implementational details follow-
ing the spirit of [CP1]. Finally, section 7 reports on five experiments, from which
conclusions are drawn in section 8.

2. Preliminaries on the functional analytic setting. This section aims to
recall the definition of the fractional-order Sobolev spaces on open screens Γ ⊆ ∂Ω,
where Ω is a bounded Lipschitz domain in R

d, d = 2, 3, with boundary ∂Ω. We
provide the interpolation results we are going to use in section 4 and recall the mapping
properties of the single layer potential (1.2) in scales of Sobolev spaces Hα(Γ).

2.1. Fractional order Sobolev spaces and interpolation. For any (rela-
tively) open set ω ⊆ ∂Ω and 0 ≤ α ≤ 1, we define Sobolev spaces of fractional order
by complex interpolation

H̃α(ω) = [L2(ω);H1
0 (ω)]α and Hα(ω) = [L2(ω);H1(ω)]α,(2.1)

where [X0;X1]α denotes the complex interpolation of X0 and X1 ⊆ X0 [BL, McL].
The norm ‖ · ‖H1(ω) is given by the surface gradient ∇ as ‖u‖2

H1(ω) = ‖u‖2
L2(ω) +

‖∇u‖2
L2(ω), and H1(ω) and H1

0 (ω) are defined as the completions of Lip(ω) and {v ∈
Lip(ω) : v|∂ω = 0}, respectively. Sobolev spaces with negative index are defined by
duality,

H−α(Γ) := H̃α(Γ)∗ and H̃−α(Γ) := Hα(Γ)∗(2.2)
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with corresponding norms and duality brackets

〈· ; ·〉 in H̃−α(Γ) ×Hα(Γ)(2.3)

which extend the L2(Γ) scalar product.
Remark 2.1. Let X0, X1 be normed spaces with X1 ⊆ X0 and 0 ≤ α ≤ 1. Then,

the norm of the interpolation space X := [X0;X1]α satisfies

‖ · ‖[X0;X1]α ≤ ‖ · ‖1−α
X0

‖ · ‖αX1
.(2.4)

Furthermore, let Y := [Y0;Y1]α be the complex interpolation of normed spaces Y1 ⊆
Y0. If T ∈ L(X0;Y0) can also be viewed as an operator T ∈ L(X1;Y1), then T : X → Y
is well defined and continuous and the corresponding operator norms satisfy

‖T‖L(X;Y ) ≤ ‖T‖1−α
L(X0;Y0)

‖T‖αL(X1;Y1)
.(2.5)

Lemma 2.1 (see [P, StS]). Let T = {Γ1, . . . ,Γn} be a partition of Γ into elements
Γ1, . . . ,Γn. For 0 ≤ α ≤ 1 and u ∈ Hα(Γ), we have u|Γj ∈ Hα(Γj) for all j = 1, . . . , n
with

n∑
j=1

‖u|Γj‖2
Hα(Γj)

≤ ‖u‖2
Hα(Γ).(2.6)

Remark 2.2. (i) The constant factor 1 on the right-hand side of (2.6) [not dis-
played explicitly] holds for complex interpolation and needs to be replaced by an
n-independent constant in case of real interpolation as well as in case of alternative
definitions by extension or by Sobolev–Slobodeckij norms.

(ii) The converse inequality in (2.6) fails to hold in general [F2, F3].

2.2. Single-layer potential and energy norm. The single-layer potential
(1.2) defines a continuous linear operator

V : H̃α−1(Γ) → Hα(Γ)(2.7)

for all 0 ≤ α ≤ 1 [Co, McL]. For d = 3, V always is an isomorphism [i.e., V is bijective
and V and V −1 are continuous]. Moreover,

〈〈u ; v〉〉 := 〈V u ; v〉 for u, v ∈ H̃−1/2(Γ)(2.8)

defines a scalar product on H̃−1/2(Γ). For d = 2, V is bijective if the capacity of Γ is

not 1, and (2.8) defines a scalar product on H̃−1/2(Γ) provided the capacity is strictly
less than 1 [e.g., Ω is contained in the open unit disk]; cf. [McL].

In what follows we assume for d = 2 that the capacity of Ω is strictly less than 1
so that all results of this paper hold for d = 2 and d = 3 simultaneously. The induced
energy norm

|||u||| := 〈〈u ;u〉〉1/2(2.9)

is an equivalent norm on H̃−1/2(Γ). According to the Lax–Milgram lemma, given

f ∈ H1/2(Γ) there is a unique solution u := V −1f ∈ H̃−1/2(Γ) of (1.1).

3. Preliminaries on finite element approximation.



1230 CARSTEN CARSTENSEN AND DIRK PRAETORIUS

3.1. Galerkin discretization of H̃−1/2(Γ). Let T = {Γ1, . . . ,Γn} be a trian-
gulation of Γ. Each element Γj of the triangulation T is supposed to be a connected
(affine) boundary piece for d = 2 and a (flat) triangle for d = 3, respectively. For d = 3,
we assume that T is a regular triangulation: Two distinct and intersecting Γj and Γk

share either a common edge or a vertex. The set of all nodes of the triangulation T is
denoted with N . Let h ∈ L∞(Γ) denote the local mesh size h|Γj

:= hj := diam(Γj).

For an integer p ≥ 0, Pp(T ) denotes the space of all isoparametric polyno-
mials of total degree ≤ p [defined on reference elements Γref = [0, 1] and Γref =
conv{(0, 0), (0, 1), (1, 0)} for d = 2, 3, resp.].

If S is a finite dimensional subspace of H̃−1/2(Γ) [e.g., S = Pp(T )], the dis-
crete Galerkin approximation uh ∈ S is uniquely determined by the linear system of
equations

〈〈uh ; vh〉〉 = 〈f ; vh〉 for all vh ∈ S.(3.1)

The Galerkin projection G : H̃−1/2(Γ) → S defined by

〈〈Gu ; vh〉〉 = 〈〈u ; vh〉〉 for all vh ∈ S

is the orthogonal projection onto S ⊆ H̃−1/2(Γ) with respect to the energy norm.

3.2. Inverse estimate for the energy norm. Given T and S = Pp(T ), we
assume that there is a mesh size independent constant Cinv > 0 which depends only
on Γ, p, and the shape of the elements of T such that, for all vh ∈ Pp(T ), there holds

‖vh‖L2(Γ) ≤ Cinv|||h−1/2vh|||.(3.2)

Remark 3.1. The estimate (3.2) is proven in [GHS, Theorem 3.6] for p ∈ N0 and
Γ a 2D manifold in R

3, but the arguments work for a 1D boundary as well. We stress
that here, with a focus on adapted meshes, the local mesh size enters the estimates.
Well-established inverse estimates

‖vh‖L2(Γ) � h
−1/2
min |||vh||| for vh ∈ Pp(T )(3.3)

involve the global quantity hmin := min1≤j≤n hj .

3.3. Standard approximation estimate. Given a regular triangulation T ,
real numbers α,m ∈ R with m ≥ α, and an integer p ≥ 0, define p̂ := min{p+1,m}−α.
Moreover, let Sp(T ) denote either P0(T ) or Pp(T ) ∩ C(Γ) for p = 0 and p > 0,
respectively. Define the T -piecewise Sobolev space

Hm(T ) := {u ∈ L2(Γ) : u|Γj ∈ Hm(Γj) for all Γj ∈ T }

with norm ‖u‖2
Hm(T ) =

∑n
j=1 ‖u|Γj‖2

Hm(Γj)
. Then, there is constant C3 > 0 depend-

ing only on Γ, α,m, p, and the shape of the elements in T such that

min
vh∈Sp(T )

‖u− vh‖Hα(Γ) ≤ C3h
p̂
max ‖u‖Hm(T )(3.4)

for all u ∈ Hα(Γ) ∩Hm(T ) and hmax := max1≤j≤n hj ; cf. [SaS].
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3.4. Local first-order approximation operator. The following definitions
adapt [CB] for fixed 0 ≤ α ≤ 1 to obtain an approximation operator:

Jh : Hα(Γ) → P1(T ) ∩ C(Γ) ⊆ L2(Γ).(3.5)

For each node z ∈ N let ϕz ∈ P1(T ) ∩ C(Γ) denote the nodal basis functions with
ϕz(z) = 1 and ϕz(z̃) = 0 for z̃ ∈ N\{z}. Note that {ϕz : z ∈ N} is a partition
of unity. The support of ϕz is denoted with ωz := supp(ϕz) and has the diameter
hz := diam(ωz). For each u ∈ L1(Γ) define

Jh(u) :=
∑
z∈N

λz(u)ϕz ∈ P1(T ) ∩ C(Γ) with λz(u) :=

∫
ωz

uϕz ds∫
ωz

ϕz ds
(3.6)

for z ∈ N .

Lemma 3.1. There is a constant C4 > 0 that depends on Γ and the aspect ratio
of the elements [but not on their sizes] such that for all z ∈ N , 0 ≤ α ≤ 1, and
u ∈ Hα(Γ) there holds

‖(u− λz(u))ϕz‖L2(ωz) ≤ C4h
α
z ‖u‖Hα(ωz).(3.7)

Proof. We derive from [CB, Theorem 2.1] the existence of C4 > 0 such that

‖(u− λz(u))ϕz‖L2(ωz) ≤ C4 min{‖u‖L2(ωz), hz‖∇u‖L2(ωz)}

for all z ∈ N and u ∈ H1(Γ). [The proof therein is formulated for a domain Γ ⊆ R
2

but applies to the present situation.] For α = 0 and α = 1, the linear operator

Tα : Hα(ωz) → L2(ωz), u �→ (u− λz(u))ϕz

is well defined and continuous with operator norms ‖T0‖ ≤ C4 and ‖T1‖ ≤ C4hz,
respectively. By interpolation, Tα is well defined and continuous with ‖Tα‖ ≤ C4h

α
z .

This proves (3.7).

4. Local first-order approximation property. An interpolation argument
shows that the L2-projection has a local first-order approximation property with re-
spect to the energy norm [equivalent to the H̃−1/2norm].

Definition 1. Let S be a subspace of Pp(T ), p ≥ 0. For 0 ≤ α ≤ 1, a [not neces-
sarily linear] mapping A : L2(Γ) → S has a local first-order approximation property

with respect to the H̃−α-norm, if there is a constant Capx > 0 which exclusively de-
pends on Γ, α, p, and the shape of the elements in T , such that the following estimate
holds,

‖(1l −A)v‖
H̃−α(Γ)

≤ Capx ‖hαv‖L2(Γ) for all v ∈ L2(Γ).(4.1)

In particular, the constant Capx is assumed to be independent of number and size of
the elements.

The following theorem shows that the L2-projection has the first-order approxi-
mation property provided the space S is rich enough. It will be used first to prove
reliability and efficiency of ηM in Theorem 5.1 and second to show reliability of μA

and μM in Corollary 5.4.
Theorem 4.1. Suppose that S contains P0(T ) or P1(T ) ∩ C(Γ). Then, the

L2-projection Π : L2(Γ) → S onto S has the local first-order approximation prop-
erty (4.1).
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The proof of Theorem 4.1 follows ideas from [CMPS, Theorem 4.1] and involves
Lemmas 2.1 and 3.1. We shall consider the cases P0(T ) ⊆ S and P1(T ) ∩ C(Γ) ⊆ S
separately.

Proof of Theorem 4.1 in case P1(T ) ∩ C(Γ) ⊆ S. Notice that, for v ∈ L2(Γ),
orthogonality of the projection (1l − Π) and ϕz ∈ S lead to

〈(1l − Π)v ;ϕz〉 = 0 for all z ∈ N .(4.2)

For u ∈ Hα(Γ), we have u =
∑

z∈N uϕz and therefore � := (1l − Π)v satisfies

〈� ;u〉 =
∑
z∈N

〈� ;uϕz〉 =
∑
z∈N

〈� ; (u− λz(u))ϕz〉(4.3)

≤
∑
z∈N

‖�‖L2(ωz)‖(u− λz(u))ϕz‖L2(ωz).

The combination of (4.3) and (3.7) yields

〈� ;u〉 ≤ C4

∑
z∈N

‖hα
z �‖L2(ωz)‖u‖Hα(ωz)(4.4)

≤ C4

(∑
z∈N

‖hα
z �‖2

L2(ωz)

)1/2 (∑
z∈N

‖u‖2
Hα(ωz)

)1/2

.

A coloring argument in [CMS, section 3] and [CMPS, Theorem 4.1] shows that we
can find a finite number of index sets J1, J2, . . . , JM such that for each k the sets
ωz in {ωz : z ∈ Jk} are pairwise disjoint. The number M depends on the overlap
of the patches ωz, z ∈ N , and thus on the aspect ratios of the elements and on Γ.
Lemma 2.1 can be applied for each set Jk and so yields eventually∑

z∈N
‖u‖2

Hα(ωz) ≤ M ‖u‖2
Hα(Γ).(4.5)

With the constant C5 := max{hz/hT : z ∈ K, T ∈ T with T ⊆ ωz}, there holds∑
z∈N

‖hα
z �‖2

L2(ωz) ≤ C2α
5

∑
z∈N

‖hα�‖2
L2(ωz) ≤ MC2α

5 ‖hα�‖2
L2(Γ).(4.6)

The combination of (4.4), (4.6) yields

‖�‖
H̃−α(Γ)

= sup
u∈Hα(Γ)

u�=0

〈� ;u〉
‖u‖Hα(Γ)

≤ M C4C
α
5 ‖hα�‖L2(Γ).(4.7)

Proof of Theorem 4.1 in case P0(T ) ⊆ S. With Π0 : L2(Γ) → P0(T ) the L2-
projection onto P0(T ), there holds for any u ∈ H1(Γj)

‖(1l−Π)u‖L2(Γj) = inf
vh∈S

‖u−vh‖L2(Γj) ≤ inf
vh∈P0(T )

‖u−vh‖L2(Γj) = ‖(1l−Π0)u‖L2(Γj).

An application of the Poincaré inequality proves ‖(1l−Π0)u‖L2(Γj) ≤ C6hj‖∇u‖L2(Γj)

with C6 = 1/π. Hence, the operator Tα : Hα(Γj) → L2(Γj), u �→ u−Πu has operator
norm ||T0|| = 1 and ||T1|| ≤ C6hj for α = 0, 1, respectively. With the interpolation
estimate (2.5), we infer ||Tα|| ≤ Cα

6 h
α
j and therefore

‖(1l − Π)u‖L2(Γj) ≤ Cα
6 h

α
j ‖u‖Hα(Γj), for u ∈ Hα(Γj).(4.8)
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Now, let v ∈ L2(Γ) and u ∈ Hα(Γ). The symmetry of orthogonal projections yields

〈(1l − Π)v ;u〉 = 〈v ; (1l − Π)u〉 ≤
n∑

j=1

‖v‖L2(Γj)‖(1l − Π)u‖L2(Γj).(4.9)

The combination of (4.8)-(4.9) with Lemma 2.1 concludes the proof,

〈(1l − Π)v ;u〉 ≤ Cα
6

n∑
j=1

‖hαv‖L2(Γj)‖u‖Hα(Γj) ≤ Cα
6 ‖hαv‖L2(Γ)‖u‖Hα(Γ).

Corollary 4.2. For α = 1/2 and provided the assumptions of Theorem 4.1, the

Galerkin projection G : H̃−1/2(Γ) → S onto S has the local first-order approximation
property.

Proof. With the best approximation property |||(1l − G)v||| ≤ |||(1l − Π)v|||, for

all v ∈ L2(Γ), the proof follows from the equivalence of ||| · ||| and the H̃−1/2(Γ)-
norm.

The following elementary lemma sharpens the local first-order approximation
property. It will be applied for Π and G to obtain reliability of μA and μM , re-
spectively.

Lemma 4.3. Let A : L2(Γ) → Pp(T ) be idempotent [i.e., A2 = A] and let A
satisfy (4.1). Then there holds for all v ∈ L2(Γ),

‖(1l −A)v‖
H̃−α(Γ)

≤ Capx min
{
‖hαv‖L2(Γ), ‖hα(1l −A)v‖L2(Γ)

}
.(4.10)

Proof. Since (1l−A) is idempotent, we obtain from (4.1) for w := (1l−A)v ∈ L2(Γ)

‖w‖
H̃−α(Γ)

= ‖(1l −A)v‖
H̃−α(Γ)

= ‖(1l −A)w‖
H̃−α(Γ)

≤ Capx ‖hαw‖L2(Γ).

5. A posteriori error control by averaging techniques. This section aims
to provide a new class of error estimators and states their reliability and efficiency of
which. We need two discrete finite element spaces Sh and SH , where Sh belongs to a
finer mesh Th but lower polynomial degree as compared to SH .

5.1. Assumptions and notations. Fix two regular triangulations Th = {Γ1,
. . . ,Γn} and TH = {γ1, . . . , γN} with mesh sizes h � H [cf. (5.4) for a precise
statement]. For integers 0 ≤ p < q, let Sh and SH be subspaces of Pp(Th) and
Pq(TH), respectively. With respect to Theorem 4.1 we suppose that Sh contains
P0(Th) or P1(Th) ∩ C(Γ).

Let u ∈ H̃−1/2(Γ) denote the unique solution of (1.1), and let uh ∈ Sh be its
Galerkin approximation with respect to S = Sh in (3.1). The Galerkin projection

GH : H̃−1/2(Γ) → SH ⊆ H̃−1/2(Γ)(5.1)

onto SH [i.e., the orthogonal projection onto SH with respect to the energy norm] is
compared with an arbitrary [not necessarily linear or continuous] operator

AH : L2(Γ) → SH .(5.2)

We consider the following four error estimators:

ηM := |||(1l − GH)uh|||, μM := ‖H1/2(1l − GH)uh‖L2(Γ),
ηA := |||(1l −AH)uh|||, μA := ‖H1/2(1l −AH)uh‖L2(Γ),

(5.3)
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i.e., we estimate the difference of the (low-order) discrete solution uh on a finer mesh
Th and a higher-order approximation of which on a coarser mesh TH .

In what follows, we use the inverse estimate (3.2) for [subspaces of] Pp(Th),

Pq(Th), and Pq(TH). To be precise, we therefore write, for instance, Ch,p
inv = Cinv(Γ, p,

Th). The analogous notation is used for the first-order approximation property of
the L2-projection [resp., Galerkin-projection] and we write, for instance, Ch,p

apx. Let

Πh : L2(Γ) → Sh denote the L2-projection onto Sh, and let Ch,p
apx > 0 be defined as in

Theorem 4.1 with S = Sh. With the constant CH,q
inv > 0 in the inverse estimate (3.2)

for SH , we assume

Ch,p
apxC

H,q
inv max

γj∈TH

(‖h‖L∞(γj)/Hj)
1/2 =: L < 1.(5.4)

The analysis in the subsequent sections requires some additional regularity assumption
on the exact solution, namely

u ∈ Hm(TH) for some m > p + 1.(5.5)

Remark 5.1. (i) The authors are aware that Assumption (5.5) is not reasonable
for arbitrary Lipschitz screens Γ but requires some further (piecewise) smoothness of
Γ so that Hm(TH) is well defined [SaS].

(ii) Even for slit problems [HMS] with smooth right-hand side f in (1.1), the
solution u does not satisfy (5.5).

5.2. The results. The main theorem in section 5.3 states the reliability and
efficiency of ηM [up to terms of higher order]. The perhaps surprising result is that ηA
is always reliable; cf. Corollary 5.3. The explicit estimator μA appears to be less costly
compared with the other three since these involve the (approximate) computation
of large full matrices; cf. section 8. The L2-norm based estimators μM and μA

immediately allow for local error indication for adaptive mesh-refining algorithms.
Under weak additional assumptions [cf. section 5.4], we prove that ηM and μM ,
respectively, ηA and μA are equivalent, i.e., there are constants C7, C8 > 0 such that
there holds

C7μM ≤ ηM ≤ C8μM and C7μA ≤ ηA ≤ C8μA.

In the case that AH is the L2-projection onto SH and provided that AH is H1-stable,
Theorem 5.6 states the efficiency of ηA and, in particular, of μA.

5.3. Reliability and efficiency of the error estimator ηM . The idea of the
following argument goes back at least to an Oberwolfach conference in the eighties
as the authors learned from L.B. Wahlbin, but it has not been applied to integral
equations before.

Theorem 5.1. Provided (5.4), there holds

|||u− uh||| ≤
1

1 − L
|||(1l − GH)(u− uh)|||.(5.6)

Proof. Define h̃ ∈ P0(TH) by h̃|γj := ‖h‖L∞(γj) for each element γj ∈ TH . For
the Galerkin error e := u− uh, the approximation property of Πh yields

|||(1l − Πh)GHe||| ≤ Ch,p
apx‖h1/2

GHe‖L2(Γ) ≤ Ch,p
apx‖h̃1/2

GHe‖L2(Γ).
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Now, we use the inverse estimate (3.2) for H1/2
GHe ∈ Pq(TH) and infer

‖h̃1/2
GHe‖L2(Γ) ≤ ‖(h̃/H)1/2‖L∞(Γ)‖H1/2

GHe‖L2(Γ) ≤ CH,q
inv ‖(h̃/H)1/2‖L∞(Γ)|||GHe|||.

The combination with the best approximation property |||GHe||| ≤ |||e||| shows

|||(1l − Πh)GHe||| ≤ L|||e|||.

Using the Galerkin orthogonality and a Cauchy inequality, we obtain for ΠhGHe ∈ Sh

〈〈e ; GHe〉〉 = 〈〈e ; GHe− ΠhGHe〉〉 ≤ |||e||| |||(1l − Πh)GHe||| ≤ L|||e|||2.

Now, another Cauchy inequality leads to

|||e|||2 = 〈〈e ; GHe〉〉 + 〈〈e ; e− GHe〉〉 ≤ |||e|||
(
L|||e||| + |||(1l − GH)e|||

)
.

This concludes the proof.
Remark 5.2. The proof of Theorem 5.1 relies solely on the existence of an ap-

proximation operator Ph : L2(Γ) → Sh with |||(1l − Ph)vH ||| ≤ Capx‖h1/2vH‖L2(Γ) for
all vH ∈ SH . If Πh is replaced by such an operator Ph, the richness assumption on
Sh could be dropped.

Remark 5.3. Under the additional assumption u ∈ L2(Γ), GH in Theorem 5.1
may be replaced by AH since the proof only needs that AH(u − uh) is well defined.
No further properties of GH enter.

Remark 5.4. In contrast to residual-based techniques, we could not derive anal-
ogous results for collocation or qualocation schemes since the proof of Theorem 5.1
makes explicit use of the Galerkin orthogonality.

Theorem 5.2. Provided (5.4) and (5.5), the error estimator ηM is reliable up to
terms of higher order in the sense that

|||u− uh||| ≤
1

1 − L

(
ηM + |||(1l − GH)u|||

)
(5.7)

with the constant 0 < L < 1 from Theorem 5.1, and also efficient up to terms of
higher order, i.e.,

ηM ≤ |||u− uh||| + |||(1l − GH)u|||.(5.8)

[Compared with |||u − uh||| and ηM , the term |||(1l − GH)u||| is generically of higher
order.]

Proof. According to (3.4), the error in the energy norm is of order

|||u− uh||| = O(hp̂
max) with p̂ := min{p + 1,m} + 1/2 = p + 3/2.

Furthermore, for smooth u we have

|||(1l − GH)u||| = O(H q̂
max) with q̂ := min{q + 1,m} + 1/2 ≥ min{p + 2,m} + 1/2.

Since m > p + 1, |||(1l − GH)u||| is of higher order. Theorem 5.1 combined with a
triangle inequality shows

|||u− uh||| ≤
1

1 − L

(
|||(1l − GH)u||| + |||(1l − GH)uh|||

)
and proves the reliability. A simple triangle inequality shows the efficiency

ηM ≤ |||(1l − GH)(u− uh)||| + |||(1l − GH)u|||,

since (1l − GH) is an orthogonal projection with respect to the energy norm.
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5.4. Reliability of the error estimators ηA, μA, and μM . Replacing the
best approximation operator GH by another operator AH , we immediately obtain the
following corollary.

Corollary 5.3. We always have ηM ≤ ηA, i.e., (5.4), (5.5) the error estimator
ηA is reliable up to terms of higher order.

This and an application of Lemma 4.3 proves the reliability of μA and μM .
Corollary 5.4. Suppose that AH : L2(Γ) → SH ⊆ L2(Γ) is a projection having

the local first-order approximation property (4.1) with respect to the energy norm.
Then,

ηA ≤ CH,q
apxμA.(5.9)

In particular, μM is reliable up to terms of higher order provided (5.4), (5.5) and,
additionally, P0(TH) ⊆ SH or P1(TH) ∩ C(Γ) ⊆ SH .

An application of the inverse estimate (3.2) shows that μA is efficient if and only
if ηA is efficient.

Corollary 5.5. Let C9 := max
Γj∈Th

(‖H‖L∞(Γj)/hj)
1/2. Provided SH ⊆ Pq(Th)

there holds

μA ≤ C9C
h,q
inv ηA.(5.10)

In particular, μM is efficient up to terms of higher order.
Remark 5.5. Note that the assumption SH ⊆ Pq(Th) is quite weak and, in

particular, satisfied if Th is obtained by refinements of TH .

5.5. Efficiency of ηA and μA for the L2-projection. For the remaining
part of this section, we suppose that the interpolation operator AH = ΠH is just the
L2-projection onto SH ⊆ H1(Γ).

Definition 2. The L2-projection AH : L2(Γ) → SH onto SH is called H1-stable
if there holds

‖AHv‖H1(Γ) ≤ C10‖v‖H1(Γ) for all v ∈ H1(Γ),(5.11)

where the constant C10 > 0 depends only on Γ, q, and the shape of the elements in TH
but not on their number or size.

Theorem 5.6. Provided (5.4), (5.5) and H1-stability of the L2-projection AH :
L2(Γ) → SH onto SH , the error estimator ηA is reliable and efficient up to terms of
higher order.

Proof. Define the operator Tα = (1l − AH) : Hα(Γ) → Hα(Γ) which is linear
and continuous for α = 0 and α = 1, respectively. Interpolation yields continuity of
T1/2 with operator norm ‖T1/2‖ ≤ ‖T1‖1/2 since ‖T0‖ = 1. We consider the adjoint

operator T ∗
1/2 : H̃−1/2(Γ) → H̃−1/2(Γ) defined formally by

〈T ∗
1/2w ; v〉 = 〈w ;T1/2v〉 for w ∈ H̃−1/2(Γ), v ∈ H1/2(Γ).(5.12)

Notice that, for w ∈ L2(Γ), we have T ∗
1/2w = T1/2w according to the symmetry of the

orthogonal projection T0 and the L2 scalar product on the right-hand side of (5.12)
in case w ∈ L2(Γ). Since T ∗

1/2 is continuous, let C11 < ∞ denote the operator norm
of T ∗

1/2 with respect to the energy norm. As above, a simple triangle inequality shows

ηA ≤ |||(1l −AH)(u− uh)||| + |||(1l −AH)u||| ≤ C11|||u− uh||| + |||(1l −AH)u|||,(5.13)
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where we have used u−uh ∈ L2(Γ) and T ∗
1/2(u−uh) = (1l−AH)(u−uh). Theorem 4.1

and a standard approximation result in L2 yield

|||(1l −AH)u||| ≤ CapxH
1/2
max‖(1l −AH)u‖L2(Γ) = O(H q̂+1/2

max ) with q̂ := min{q + 1,m}.

Therefore, the last term in (5.13) is of higher order; cf. the proof of Theorem
5.2.

The efficiency of μA follows from the previous section.

Corollary 5.7. Provided P1(TH) ∩ C(Γ) ⊆ SH ⊆ Pq(Th), there holds

μA ≤ C9C
h,q
inv ηA and ηA ≤ CH,q

apxμA,(5.14)

whence the error estimator μA is reliable and efficient up to terms of higher order
under the assumptions of Theorem 5.6.

Remark 5.6. For special cases it is easy to derive the efficiency of ηA although
SH �⊆ H1(Γ). For instance, assume Sh = P0(Th) and SH = P1(TH) ⊆ P1(Th).
Suppose that AH is the L2-projection onto SH and ΠH is the L2-projection onto
P1(TH) ∩ C(Γ). An application of the derived results shows

ηA � ‖H1/2(1l −AH)uh‖L2(Γ) ≤ ‖H1/2(1l − ΠH)uh‖L2(Γ) � |||u− uh|||,

where � denotes ≤ up to a mesh size independent constant.

6. Numerical realization in two dimensions. For the numerical experi-
ments, we choose Sh = P0(Th) and SH = P1(TH). The finer mesh Th is obtained
from the coarser TH by uniform refinements; cf. section 6.3 for details. This ensures
SH = P1(TH) ⊆ P1(Th). The approximation uh ∈ Sh is then defined by uh|Γj = xj ,
where x ∈ R

n is the solution of a linear system

Ax = b.(6.1)

In all numerical experiments we consider the error estimators ηM , μM based on the
Galerkin projection GH and the error estimators ηA, μA based on the L2-projection
AH = ΠH .

6.1. Poisson problem and Symm’s integral equation. In the numerical
experiments we consider three examples where the right-hand side f in (1.1) comes
from a Poisson problem

ΔU = 0 in Ω and U = g on Γ = ∂Ω(6.2)

with given Dirichlet data g on Γ [plus boundary conditions at infinity if Ω is un-
bounded]. This problem is equivalent to Symm’s integral equation (1.1), where f
takes the form f = (K + 1l)g with the double-layer potential operator K, defined as
Cauchy principal value by

(Kg)(x) := − 1

π

∫
Γ

C g(y)
(y − x) · n(y)

|x− y|2 dsy for x ∈ Γ.(6.3)

Then, the exact solution of (1.1) is just the normal derivative u = ∂U/∂n of U on the
boundary Γ. Notice that Kg vanishes on Γ whenever Γ is a slit.



1238 CARSTEN CARSTENSEN AND DIRK PRAETORIUS

6.2. Computation of the discrete solution. The coefficients of the stiffness
matrix A ∈ R

n×n
sym are computed by

Ajk := 〈〈χj ;χk〉〉 = − 1

π

∫
Γj

∫
Γk

log |x− y| dsydsx.(6.4)

Here, χj denotes the characteristic function of the set Γj ⊆ R
2 [i.e., χj(x) = 1 if

x ∈ Γj and χj(x) = 0 else]. The right-hand side b ∈ R
n is given by

bj :=

∫
Γj

f(x) dsx(6.5)

with f from (1.1). While Ajk can be computed analytically [Ma], the computation of
bj involves proper quadrature rules—in particular, if the right-hand side is induced
by a Poisson problem; cf. [CP1, section 6].

6.3. Adaptive algorithm. All mesh refinements are performed with the fol-
lowing adaptive algorithm based on the refinement indicators μM,j or μA,j defined
as follows: Given the coarse mesh TH = {γ1, . . . ,ΓN} and the L2-projection ΠH :
P0(Th) → P1(TH), we define

μM,j := H
1/2
j ‖(1l − GH)uh‖L2(γj), respectively, μA,j := H

1/2
j ‖(1l − ΠH)uh‖L2(γj)

(6.6)

for j = 1, . . . , N,

i.e., μM =
(∑N

j=1 μ
2
M,j

)1/2
and μA =

(∑N
j=1 μ

2
A,j

)1/2
, respectively.

Algorithm 6.1. Choose an initial mesh T (0)
H , k = 0, � ∈ N≥2, and 0 ≤ θ ≤ 1.

(i) Obtain T (k)
h = {Γ1, . . . ,Γn} from T (k)

H = {γ1, . . . , γN} by uniform splitting of

each element γj ∈ T (k)
H into � elements of equal length.

(ii) Compute the approximation u
(k)
h for the current mesh T (k)

h .
(iii) Compute error estimators ηM and ηA and refinement indicators μM,j and

μA,j.
(iv) Mark element γj provided the corresponding refinement estimator satisfies

μM,j ≥ θ max {μM,1, . . . , μM,N} and μA,j ≥ θ max{μA,1, . . . , μA,N}, respec-
tively.

(v) Halve all marked elements γj ∈ T (k)
H and so generate a new coarse mesh

T (k+1)
H , update k, and go to (i).

7. Numerical experiments in two dimensions. This section reports on some
numerical experiments to study the accuracy of the introduced error estimators and
the performance of the proposed adaptive strategy. All computations are done with
Matlab. Example 7.1 corresponds to a Dirichlet problem with smooth solution such
that the smoothness assumptions in section 5 are satisfied and guarantee reliabil-
ity and efficiency of our error estimators. Examples 7.2–7.4 are taken from [CP1]
and [ChS], respectively. They have been realized and studied in [CP1] for adap-
tive mesh-refinement with respect to the residual-based error estimator introduced by
Faermann [F1, F2, F3]; cf. (7.3). Example 7.2 considers Symm’s integral equation
corresponding to a Dirichlet problem on the L-shaped domain. The exact solution
is known and has a singularity at the reentrant corner. Therefore, adaptivity is nec-
essary to retain the optimal convergence rate. Example 7.3 deals with a constant
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Fig. 1. Initial coarse mesh T (0)
H in Poisson problem 7.1 with N = 4 elements [nodes indicated

by o] (top) and the corresponding refined mesh T (0)
h for � = 3 in Algorithm 6.1, i.e. n = 12 [nodes

indicated by x]. The related discrete solution uh on T (0)
h (bottom) is plotted over the arclength

s = 0, . . . , 2 of Γ. The exact solution u from (7.6) is shown for comparison (bottom); u is piecewise
smooth and jumps together with the outer normal in the corners of Γ [for arclength parameters
s = 1/2, 1, 3/2, and 2].

right-hand side to exclude positive and negative effects due to quadrature errors. The
exact solution is unknown. The sequence of discrete solutions shows singularities at
the five rectangular corners of the L-shape. Example 7.4 taken from [ChS] considers
a slit problem, where the known exact solution u lacks almost any smoothness, more
precisely u �∈ L2(Γ). Finally, Example 7.5 involves the approximation of a smooth
boundary by a polygonal boundary. We approximate a smooth eigenfunction of the
single-layer potential on the sphere with radius 1/2.

Preliminaries. Uniform and adaptive meshes as well as plots of discrete and
exact solutions uh and u are shown in Figures 1, 4, and 10 as functions of its arc-
length parametrization s, 0 ≤ s ≤ length(Γ) = 2. Furthermore, errors and estimators
are considered for the energy norm. Various numbers are provided in Tables 1, 2, and
3 and even more convergence results are visualized in Figures 2, 5–7, 9, 11, 13, and
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Fig. 2. Error and error estimators ηM , ηA, μM , and μA for uniform [indicated by unif.] and
μA-adaptive [indicated by ad.] mesh refinement in Poisson problem 7.1 and � = 2 in Algorithm 6.1.
The P0 boundary element method leads to the optimal convergence rate h3/2. For comparison, also
the error for the P1 boundary element method [dashed lines] on the generated meshes [i.e., uniform,
resp., μA-adaptive] is shown. As expected, one again observes the optimal experimental convergence
rate h5/2.

16. Some adaptively generated meshes are shown in Figures 3, 12, and 14.
We compute the experimental convergence rate of the error

E(k) := |||u− u
(k)
h ||| =

(
|||u|||2 − |||u(k)

h |||2
)1/2

(7.1)

by the formula

κ(k) = log(E(k−1)/E(k)) / log(n(k)/n(k−1)).(7.2)

Here, n(k) = card(T (k)
h ) denotes the number of elements. The energy norm of the

discrete solution uh reads |||uh|||2 = x·Ax with the stiffness matrix A and the coefficient
vector x introduced in section 6. The energy norm |||u||| of the exact solution is either
computed exactly or obtained by Aitkin’s Δ2 extrapolation of the sequence of values
for discrete solutions on uniformly refined meshes.

For comparison, in Figures 2, 5–7, 11, 13, and 16 we also show the residual-based
error estimator �F introduced by Faermann,

�F :=

⎛⎝ n∑
j=1

�2
F,j

⎞⎠1/2

,(7.3)

where the refinement indicators
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Table 1

Experimental error, error estimator ηM and ηA, and convergence rates for Poisson problem 7.1,
� = 2, and uniform (top), respectively, μA-adaptive mesh refinement (bottom).

Uniform mesh refinement

k n E ηM ηA ηM/E ηM/ηA κ

0 8 2.9820e+00 3.5112e+00 3.6134e+00 1.18 0.97
1 16 1.0276e+00 9.3703e-01 9.8030e-01 0.91 0.96 1.54
2 32 3.5630e-01 3.3380e-01 3.5308e-01 0.94 0.95 1.53
3 64 1.2519e-01 1.1730e-01 1.2496e-01 0.94 0.94 1.51
4 128 4.4187e-02 4.1356e-02 4.4168e-02 0.94 0.94 1.50
5 256 1.5615e-02 1.4609e-02 1.5614e-02 0.94 0.94 1.50
6 512 5.5202e-03 5.1640e-03 5.5201e-03 0.94 0.94 1.50
7 1024 1.9514e-03 1.8256e-03 1.9516e-03 0.94 0.94 1.50

Adaptive mesh refinement

k n E ηM ηA ηM/E ηM/ηA κ

0 8 2.9820e+00 3.5112e+00 3.6134e+00 1.18 0.97
1 10 1.0570e+00 9.8846e-01 1.0292e+00 0.94 0.96 4.65
2 18 4.3445e-01 4.4375e-01 4.6590e-01 1.02 0.95 1.51
3 24 2.1601e-01 1.8876e-01 1.9815e-01 0.87 0.95 2.43
4 40 1.0226e-01 9.5542e-02 1.0109e-01 0.93 0.95 1.46
5 48 5.7202e-02 5.2676e-02 5.5940e-02 0.92 0.94 3.19
6 76 2.9243e-02 2.6660e-02 2.8243e-02 0.91 0.94 1.46
7 96 1.8958e-02 1.7670e-02 1.8807e-02 0.93 0.94 1.86
8 144 9.0153e-03 8.2982e-03 8.8322e-03 0.92 0.94 1.83
9 176 6.6515e-03 6.1626e-03 6.5680e-03 0.93 0.94 1.52

10 272 3.2840e-03 3.0642e-03 3.2651e-03 0.93 0.94 1.62

Table 2

Experimental error and error estimator μM , μA, and �F for Poisson problem 7.1, � = 2, and
uniform (top), respectively, μA-adaptive mesh refinement (bottom).

Uniform mesh refinement

k n E μM μA �F μM/E μA/E μM/μA �F /E

0 8 2.982e+00 1.302e+01 1.278e+01 1.328e+01 4.37 4.29 1.02 4.45
1 16 1.028e+00 3.592e+00 3.496e+00 4.593e+00 3.50 3.40 1.03 4.47
2 32 3.563e-01 1.307e+00 1.264e+00 1.602e+00 3.67 3.55 1.03 4.50
3 64 1.252e-01 4.655e-01 4.484e-01 5.638e-01 3.72 3.58 1.04 4.50
4 128 4.419e-02 1.649e-01 1.586e-01 1.991e-01 3.73 3.59 1.04 4.51
5 256 1.562e-02 5.835e-02 5.607e-02 7.036e-02 3.74 3.59 1.04 4.51
6 512 5.520e-03 2.063e-02 1.982e-02 2.487e-02 3.74 3.59 1.04 4.51
7 1024 1.951e-03 7.295e-03 7.009e-03 8.794e-03 3.74 3.59 1.04 4.51

Adaptive mesh refinement

k n E μM μA �F μM/E μA/E μM/μA �F /E

0 8 2.982e+00 1.302e+01 1.278e+01 1.328e+01 4.37 4.29 1.02 4.45
1 10 1.057e+00 3.755e+00 3.667e+00 4.721e+00 3.55 3.47 1.02 4.47
2 18 4.344e-01 1.710e+00 1.660e+00 1.952e+00 3.94 3.82 1.03 4.49
3 24 2.160e-01 7.278e-01 7.072e-01 9.458e-01 3.37 3.27 1.03 4.38
4 40 1.023e-01 3.738e-01 3.616e-01 4.546e-01 3.66 3.54 1.03 4.45
5 48 5.720e-02 2.078e-01 2.005e-01 2.560e-01 3.63 3.51 1.04 4.47
6 76 2.924e-02 1.046e-01 1.011e-01 1.297e-01 3.58 3.46 1.03 4.43
7 96 1.896e-02 6.998e-02 6.742e-02 8.484e-02 3.69 3.56 1.04 4.48
8 144 9.015e-03 3.287e-02 3.167e-02 4.026e-02 3.65 3.51 1.04 4.47
9 176 6.651e-03 2.448e-02 2.356e-02 2.979e-02 3.68 3.54 1.04 4.48

10 272 3.284e-03 1.216e-02 1.171e-02 1.472e-02 3.70 3.57 1.04 4.48
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Fig. 4. Initial coarse mesh T (0)
H in Poisson problems 7.2 and 7.3 with N = 8 elements (top)

and the corresponding discrete solution uh on T (0)
h for � = 4, i.e., n = 32 fine grid elements, in

Poisson problem 7.2 (bottom). The exact solution u from (7.8) is shown for comparison (bottom).
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Fig. 5. Error and error estimators ηM , ηA, μM , and μA for uniform [indicated by unif.] and
μA-adaptive [indicated by ad.] mesh refinement in Poisson problem 7.2 and � = 2 in Algorithm 6.1.
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μA-adaptive [indicated by ad.] mesh refinement in Poisson problem 7.2 and � = 3 in Algorithm 6.1.
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Fig. 7. Error and error estimators ηM , ηA, μM , and μA for uniform [indicated by unif.] and
μA-adaptive [indicated by ad.] mesh refinement in Poisson problem 7.2 and � = 4 in Algorithm 6.1.

�F,j :=

∫
Γj∪Γj+1

∫
Γj∪Γj+1

|rh(x) − rh(y)|2
|x− y|2 dsydsx(7.4)

are local Sobolev–Slobodeckij seminorms of the residual rh := f − V uh ∈ H1/2(Γ).
This estimator is known to be reliable and efficient for the Galerkin method. Details
on the numerical realization of these double boundary integrals are provided in [CP1].
Since the reliability and efficiency of this estimator depends in 2D on the local mesh
ratio

κ(Th) = max{hTj/hTk
: Tj , Tk ∈ Th neighbors},(7.5)

we extend the marking strategy in (iv) of Algorithm 6.1 to ensure that there holds
κ(TH) ≤ 2, i.e., that the mesh size of two neighboring coarse elements varies at most
by 2.

7.1. Poisson-problem with smooth solution. We consider problem (6.2) on
the halved unit square Ω = [0, 1/2]2 with exact solution U(x, y) = sinh(2π x) cos(2π y)
and solve the corresponding Symm’s integral equation V u = f with right-hand side
f = (K + 1)g and g = U |Γ. Then, u = ∂U/∂n is smooth on each affine boundary
piece,

u(x, y) = 2π
( cosh(2πx) cos(2πy)
− sinh(2πx) sin(2πy)

)
· n(x, y)(7.6)

with the outer normal n(x, y) of Ω on Γ = ∂Ω, and we expect to obtain optimal
convergence rate O(n3/2) even for uniform mesh refinement. Notice that u vanishes
on [0, 1/2] × {0, 1/2}, i.e., on the lower and upper boundary of Ω.
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Figure 1 shows the initial coarse mesh T (0)
H , the exact solution u from (7.6) plotted

over the arclength s = 0, . . . , 2, and a discrete solution uh corresponding to T (0)
h with

� = 3 in Algorithm 6.1. As can be seen, u vanishes on the parameter intervals
0 ≤ s ≤ 1/2 and 1 ≤ s ≤ 3/2. On the other two affine boundary pieces, u is smooth
and jumps with the normal vector in the corners of Γ.

Figure 2 shows errors and error estimators for both uniform and μA-adaptive mesh
refinement and � = 2 in Algorithm 6.1. All values are shown on a log-log scale so
that the experimental convergence rates (7.2) of both the error and the estimators are
visible as the slope of the corresponding curves. The error E = |||u−uh||| is computed
via (7.1), where the energy norm of the exact solution is obtained by extrapolation,
|||u|||2 = 162.1448097. As is to be expected from the regularity of u, uniform mesh
refinement leads to the optimal experimental convergence rate h3/2. The curve for
the error on adaptively generated meshes is parallel, but the absolute values are
improved by a factor of 5. This improvement can be explained by the fact that
the adaptive algorithm mainly resolves the strong growth of the function within the
arclength parameter intervals 1/2 ≤ s ≤ 1 and 3/2 ≤ s ≤ 2, where u does not
vanish; cf. Figure 1. The corresponding adaptive meshes are shown in Figure 3. For
comparison, Figure 2 also shows the error for the P1 boundary element methods on
the same meshes, since this term corresponds to the higher-order terms of our error
estimates. As expected, the P1-error shows the optimal experimental convergence
rate of h5/2.

For both P0 and P1 boundary element methods, the error shows no preasymptotic
behavior but converges with optimal convergence order from the very start. This is
reflected by the error estimation of the P0 error E = |||u−uh||| by the error estimators
ηM and ηA. The error is very sharply estimated: The values of both estimators almost
coincide with the corresponding error value. This is also underlined by several num-
bers in Table 1: The quotients ηM/E, respectively, ηM/ηA converge to approximately
0.94 and 0.93 for both uniform and adaptive mesh refinement. The performance of the
L2-error estimators μM and μA is examined in Table 2. The error estimator μM and
μA almost coincide. The quotient μM/μA stays bounded by approximately 1.04. The
error is overestimated by a factor 3.5–3.7. For comparison, note that the Faermann
error estimator �F overestimates the error by a factor 4.4, 4.5.

7.2. Poisson-problem on L-shaped domain. For a fixed parameter α > 0
we consider Problem (6.2) on the L-shaped domain Ω shown in Figure 4 with exact
solution

U(x) = rα cos(αϕ) in polar coordinates x = r (cosϕ, sinϕ).(7.7)

Then, the exact solution u of Symm’s integral equation reads in polar coordinates

u(x) = (w · n(x))αrα−1 with w :=

(
cos(ϕ) cos(αϕ) + sin(ϕ) sin(αϕ)
sin(ϕ) cos(αϕ) − cos(ϕ) sin(αϕ)

)
∈R

2.(7.8)

For the numerical experiment we choose α = 2/3. The Poisson problem then leads to
U �∈ H2(Ω). Aitkin’s Δ2 method gives |||u|||2 = 0.4041161973.

The initial coarse mesh T (0)
H with N = 8 equisized elements and the corresponding

discrete solution uh for � = 4 in Algorithm 6.1 as well as the exact solution are shown
in Figure 4. Here, u and uh are shown as plots over the arc length. The singularity
of u at (0, 0) is visible at arc-length parameter s = 0 and s = 2 by periodicity.
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To illustrate the performance of the proposed adaptive algorithm, we run Algo-
rithm 6.1 with T0 from Figure 4, � = 2, 3, 4, and θ = 0, 1/2. The values of the error
and the error estimators are visualized in Figures 5–7 and 9. The error E = |||u− uh|||
is computed via (7.1), where the energy norm of the exact solution is obtained by
extrapolation with Aitkin’s Δ2 method, |||u|||2 = 0.4041161973. For any choice of �,
the uniform mesh refinement, i.e., θ = 0, leads to suboptimal convergence rate 2/3 for
the error caused by a corner singularity of u which can be predicted theoretically. The
fact that the slope of the corresponding error estimators even is 2/3 gives empirical
evidence that the estimators are reliable and efficient although the solution lacks the
regularity assumed in section 5. The error estimators ηM and ηA, respectively, μM

and μA almost coincide. Due to numerical instabilities in computing the stiffness ma-
trix for the P1 boundary element method, the error estimators μM , ηM , and ηA are
only computed up to an error of 10−7/2. Up to this breakdown of the computation,
the μM - and μA-adaptive meshes coincide. Thus, for large numbers n of fine grid
elements, Figures 5–7 only show the error and the error estimators �F and μA.

The proposed adaptive mesh-refining strategy retains the optimal convergence
rate 3/2 expected for smooth solutions; cf. section 7.1. This observation is indepen-
dent of the choice of � in Algorithm 6.1. The larger �, the better is the estimation
of the error by the error estimators ηA and ηM which can be expected from the in-
volved constant L in Theorems 5.1 and 5.2; cf. (5.4) for the definition. We always
have ηM � |||u − uh||| � 1/(1 − L) ηM , where � denotes an inequality up to terms
of higher order. By definition of our mesh strategy in Algorithm 6.1, there holds
‖h‖L∞(γj)/Hj = 1/�, whence L → 0 for � → ∞. On the other hand, � should not

be chosen too large since the asymptotic behavior of h3/2 and H5/2 then might not
be visible for the number of elements considered. However, the effect is visible for
� = 2, 3, 4 as well; cf. Figures 5–7. For � = 2, the curves of ηM , ηA, and E are getting
closer for H,h → 0, and it is expected that the curves almost coincide for larger values
of n. For � = 3, the error and the error estimators ηM and ηA seem to coincide for
n ≥ 200. Finally, for � = 4, the error is sharply estimated by ηM and ηA even for
lower degrees of freedom; cf. Figure 7.

Figure 8 shows the sequence of (μA-) adaptively generated meshes TH . We observe
the expected mesh refinement towards the reentrant corner at the endpoints 0 and 2
and a moderate refinement elsewhere. The sequence of adaptive meshes for � = 2, 3
looks similar. Figure 9 shows the error and the error estimator μA for uniform and
μA-adaptive mesh refinement and, for comparison, � = 2, 3, 4. Note that not only
the slope of the errors for different choices of � but even the absolute values coincide
asymptotically.

Finally, Table 3 shows the calculated values of the error E = |||u− uh|||, the error
estimator, and the corresponding experimental convergence rate κ for uniform and
μA-adaptive mesh refinement and � = 4. The values underline the given interpretation
of the figures. For uniform mesh refinement, μA overestimates the error by a factor
2.75 independent of the number n of fine grid elements. For adaptively generated
meshes, the quotient μA/E varies between 2.75 and 5 and seems to converge to a
value about 3 for large n. This underlines the empirical efficiency and reliability of
μA as is proven for smooth solutions in section 5. For the error estimators μM and
μA, the quotient μM/μA is about 1 and both error estimators almost coincide. This
underlines why both refinement strategies lead to the same adaptive mesh refinement.

7.3. Symm’s integral equation with constant right-hand side. The bound-
ary integral equation V φ = 1 with constant right-hand side is considered for the L-
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Table 3

Experimental error, error estimator μA, and convergence rates for Poisson problem 7.2, � = 4,
and uniform (top), respectively, μA-adaptive mesh refinement (bottom).

Uniform mesh refinement

k n E μA μA/E μA/μM κ

0 32 4.5341e-02 1.2451e-01 2.75 0.979
1 64 2.8567e-02 7.8630e-02 2.75 0.984 0.67
2 128 1.7999e-02 4.9539e-02 2.75 0.984 0.67
3 256 1.1339e-02 3.1211e-02 2.75 0.984 0.67
4 512 7.1434e-03 1.9662e-02 2.75 0.984 0.67
5 1024 4.5001e-03 1.2387e-02 2.75 0.984 0.67
6 2048 2.8349e-03 7.8032e-03 2.75 n/a 0.67

Adaptive mesh refinement

k n E μA μA/E μA/μM κ

0 32 4.5341e-02 1.2451e-01 2.75 0.979
2 48 1.8094e-02 5.0731e-02 2.80 0.984 2.51
4 64 7.4020e-03 2.2723e-02 3.07 0.984 3.30
6 96 3.0431e-03 1.0351e-02 3.40 0.983 1.66
8 132 1.3706e-03 5.4421e-03 3.97 0.988 1.79

10 212 5.7738e-04 2.4396e-03 4.23 0.986 2.01
12 320 2.6589e-04 1.2230e-03 4.60 n/a 1.65
14 468 1.2698e-04 6.3510e-04 5.00 n/a 1.76
16 796 7.1773e-05 2.6601e-04 3.71 n/a 1.62
18 1284 3.8295e-05 1.3110e-04 3.42 n/a 1.15
20 1656 2.8272e-05 8.6995e-05 3.08 n/a 1.33

shaped domain Ω of Figure 4. To compute the error in the energy norm, we used
the extrapolated value |||u|||2 = 2.40769127 in (7.1). The exact solution u is unknown.
Figure 10 shows discrete solutions uh related to the initial mesh and an adaptively
generated mesh [with n = 32 and n = 656 fine grid elements, resp.]. The discrete so-
lutions show singularities at the five rectangular corners of the L-shape corresponding
to the arc-length parameters s = 1/4, 1/2, 1, 3/2, and 7/4. Figure 11 shows the errors
and the error estimators for uniform and μA-adaptive mesh refinement and � = 3, 4
in Algorithm 6.1. As in Poisson problem 7.2, the error is sharply estimated by the
error estimators ηM and ηA and the error estimators μM and μA coincide: The larger
�, the better is the error estimation. Again, the P1 boundary element stiffness matrix
showed instabilities for the error E ≈ 10−7/2. The corresponding adaptive meshes are
shown in Figure 12.

7.4. Exterior crack problem with nonsmooth solution. The fourth exam-
ple from [ChS] represents a typical endpoint singularity for open curves and concerns
the Poisson problem (6.2) exterior to a straight slit Γ := [−1, 1] × {0}, Ω := R

2\Γ.
For g(x, 0) := −x, the exact solution u of the corresponding Symm’s integral equation
reads

u(x, 0) = −x/
√

1 − x2 for − 1 < x < 1.(7.9)

There holds u ∈ Hα(Γ) for all α < 0, but u �∈ L2(Γ) since u is singular at the tips
of the domain, u(x, 0) → ±∞ for x → ±1. Since Kg vanishes on the straight slit Γ,
Symm’s integral equation (1.1) simplifies to

V u = g on Γ.(7.10)
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Fig. 9. Comparison of error and error estimator μA in Poisson problem 7.2 for uniform and
μA-adaptive mesh refinement and different choices of � = 2, 3, 4 in Algorithm 6.1.

The energy norm of the exact solution can be computed exactly,

|||u|||2 = 〈V u ;u〉 =

∫ 1

−1

x2

√
1 − x2

dx =
π

2
.

Figure 13 shows the error and error estimators for � = 3, 4 and both uniform
and adaptive mesh refinement. Some adaptively generated meshes are provided in
Figure 14. As can be expected, we observe a high mesh refinement towards the ends
±1 of the slit and coarse local mesh sizes inbetween.

7.5. Smooth eigenfunction of the single-layer potential. Finally, we con-
sider an example on a smooth boundary with the discrete scheme involving the ap-
proximation of the boundary Γ by a piecewise-affine boundary Γh. Note that the
error due to the boundary approximation is not included in the analysis given above.

We consider the sphere Γ = ∂B(0, r) with radius r < 1. Then, for fixed k ∈ Z\{0},

φ(x) := cos(kt) with x = r (cos t, sin t)(7.11)

is an eigenfunction of the single-layer potential V corresponding to the eigenvalue
λ = r/|k|. For the numerical experiment, we used r = 1/2 and k = 3. Note that this
example satisfies the smoothness assumptions of section 5. For the implementational
realization, we approximate Γ by a (convex) polygonal ΓH with vertices on the sphere.
We therefore modify the adaptive Algorithm 6.1 as follows.

Algorithm 7.1. Choose an initial mesh T (0)
H consisting of affine boundary pieces

such that all nodes of T (0)
H are on the sphere. Let k = 0, � ∈ N≥2, and 0 ≤ θ ≤ 1.
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Fig. 10. Discrete solution uh (n = 32) in Example 7.3 related to � = 4 and the initial mesh

T (0)
H with N = 8 elements shown in Figure 4 (top) and discrete solution uh (n = 656) related to μA-

adaptive generated coarse mesh T (10)
H with N = 164 elements (bottom). Note the different scalings

on the y-axis of the plots.

(i) Obtain T (k)
h = {Γ1, . . . ,Γn} from T (k)

H = {γ1, . . . , γN} by uniform splitting of

each element γj ∈ T (k)
H into � elements of equal length.

(ii) Create a further mesh T̃ (k)
h by mapping all nodes of T (k)

h onto the sphere.

(iii) Compute the discrete solution ũ
(k)
h for the mesh T̃ (k)

h .

(iv) Since each element Γj ∈ T (k)
h corresponds to exactly one element Γ̃j ∈ T (k)

h

with nodes on the sphere, we may define uh ∈ P0(T (k)
h ) by uh|Γj := ũh|Γ̃j

for

all Γj ∈ T (k)
h .

(v) Compute error estimators ηM and ηA and refinement indicators μM,j and
μA,j.
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Fig. 11. Error and error estimators ηM , ηA, μM , and μA for uniform [indicated by unif.]
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preasymptotic range before the optimal convergence order 3/2 is visible for adaptive mesh refinement.



AVERAGING TECHNIQUES FOR SYMM’S INTEGRAL EQUATION 1253

T
(
0
)

H
N

=
8

T
(
1
)

H
N

=
1
6

T
(
2
)

H
N

=
2
6

T
(
3
)

H
N

=
4
3

T
(
4
)

H
N

=
5
3

T
(
5
)

H
N

=
6
3

T
(
6
)

H
N

=
1
0
3

T
(
7
)

H
N

=
1
1
6

T
(
8
)

H
N

=
1
3
0

T
(
9
)

H
N

=
1
5
0

T
(
1
0
)

H
N

=
1
6
4

T
(
1
1
)

H
N

=
2
2
7

F
i
g
.
1
2
.
A
d
a
p
ti
ve

m
es

h
re

fi
n
em

en
t
in

E
xa

m
p
le

7
.3

re
la

te
d

to
�

=
4

a
n
d

er
ro

r
es

ti
m

a
to

r
μ
A
.

A
d
a
p
ti
ve

m
es

h
re

fi
n
em

en
t
w
it
h

re
sp

ec
t
to

μ
M

le
a
d
s

to
th

e
sa

m
e

m
es

h
es

u
p

to
T

(1
1
)

H
[w

it
h
N

=
6
4

co
a
rs

e
gr

id
el

em
en

ts
]
w
h
en

th
e
P

1
bo

u
n
d
a
ry

el
em

en
t

m
et

h
od

be
co

m
es

u
n
st

a
bl

e.
T

h
e

a
d
a
p
ti
ve

ly
ge

n
er

a
te

d
m

es
h
es

a
re

h
ig

h
ly

a
d
a
p
te

d
to

w
a
rd

s
th

e
fi
ve

re
ct

a
n
gu

la
r

co
rn

er
s

o
f
th

e
L
-s

h
a
pe

,
w
h
er

e
th

e
d
is

cr
et

e
so

lu
ti
o
n
s

sh
o
w

si
n
gu

la
ri

ti
es

;
cf

.
F
ig

u
re

1
0
.



1254 CARSTEN CARSTENSEN AND DIRK PRAETORIUS

(vi) Mark element γj ∈ T (k)
H provided the corresponding refinement estimator sat-

isfies μM,j ≥ θ max {μM,1, . . . , μM,N} and μA,j ≥ θ max{μA,1, . . . , μA,N},
respectively.

(vii) Halve all marked elements γj ∈ T (k)
H , map the new nodes onto the sphere,

and so generate a new coarse mesh T (k+1)
H , update k, and go to (i).

To clarify the mesh organization, Figure 15 shows the initial coarse mesh with

N = 6 elements and the refined meshes T (0)
h and T̃ (0)

h for � = 3 with n = 18 elements.
Experimental results are shown in Figure 16 for � = 4 and both uniform and adaptive
mesh refinement. As can be expected from the smoothness of u, the adaptive mesh
refining strategy leads to almost uniform meshes. The experimental convergence
orders for uniform and adaptive mesh refinement stay optimal. The curves of the
error and error estimators almost coincide.

8. Conclusions. In this paper we introduced a new class of error estimators
based on averaging techniques. We gave the analytical fundament that these error
estimators estimate the (unknown) error |||u− uh||| both reliably and efficiently, under
weak assumptions on the boundary elements used. The strongest assumption is a
(piecewise) high regularity of the exact solution u. However, this regularity assump-
tion might be nonsatisfied in practice. We introduced an adaptive algorithm which
steers the mesh refinement with respect to the localized error estimators μM and
μA, respectively. In the numerical experiments we treated examples with different
regularity. In all experiments the introduced adaptive strategy retains the optimal
convergence rate O(h3/2) and is therefore superior to uniform mesh refinement.

Finally, we highlight some of our computational and analytical results.

8.1. Error estimation with ηM , ηA and choice of �. The numerical experi-
ments underline the good performance of the introduced error estimators. The values
of the error estimators ηM and ηA almostcoincide with the error |||u−uh||| provided � is
chose large enough. The explicit choice of � is not discussed in this paper and is part
of a generalized eigenvalue problem to compute CΠC

H,q
inv in (5.4). For the numerical

experiments treated, the choice of � = 3, 4 was sufficient to ensure that the error is
sharply estimated by ηM and ηA. The efficiency and reliability constants, i.e.,

C−1
eff η ≤ |||u− uh||| ≤ Crelη

for an error estimator η, are unknown except that we know Ceff = 1 [up to higher
order terms] for ηM . At least in the numerical experiments in section 7 we observed
Ceff , Crel → 1 for h → 0.

8.2. Adaptive mesh-refinement with respect to μM , μA. The exam-
ples 7.2–7.4 show that the proposed adaptive strategy can retain the optimal con-
vergence rate O(h3/2) even for examples with nonsmooth exact solution. Poisson
problem 7.2, also a benchmark for 2D finite element schemes, has exactly one corner
singularity. Therefore the asymptotic convergence rates are visible from the begin-
ning. This is not typical and so we addressed a generic example with smooth right-
hand side, namely f = 1, which is [according to the authors’ knowledge] not explicitly
accompanied with an equivalent Poisson problem. Figure 11 shows a larger preasymp-
totic range for N ≤ 20 and adaptive mesh refinement. The final Example 7.5 shows
how the averaging based error estimation can be employed in combination with the
approximation of a smooth boundary.
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8.3. Computational cost of the introduced error estimators. The naive
computational cost for the estimators μM , ηM , ηA is quadratic in the number of
unknowns since we have to compute the stiffness matrix for the P1 boundary element
methods to compute GHuh for μM and ηM , respectively, |||GHuh||| and |||AHuh||| for
ηM and ηA. This can be overcome by use of approximation techniques like panel
clustering or H-matrices which compute, store, and evaluate the stiffness matrix in
almost linear complexity. Nevertheless, the computational cost for computing μA

seems to be striking: The computation of μA for the L2-projection AH only needs
the assembly of the usual L2 mass matrix M. This matrix is sparse and therefore
assembled and stored in linear complexity. Moreover, the computation of AHuh

involves the solution of My = c for a given right-hand side c, and the condition
number of M is bounded, i.e., O(1) for h → 0.

8.4. Applicability to 3D problems. We stress that the presented analysis
works for 3D problems, i.e., 2D boundary pieces, as well. In the numerical exper-
iments we restricted ourselves to 2D problems for ease of presentation, since the
implementation of the boundary element schemes and even the data structures are
much more involved for the 3D boundary element method.

8.5. Further developments and open problems. From an analytical point
of view, Theorem 5.1 is the core result for providing the averaging error estimators.
The proof is only based on the validity of a local inverse estimate; cf. section 3.2,
and the existence of an appropriate (local) first order approximation operator. In a
forthcoming paper, we will provide both the hypersingular integral equation as well
[CP2, FP]. Is is expected that the ideas carry over to a quite general class of integral
equations.

The analytical verification of the introduced error estimators needs high regularity
assumptions on u. Since our numerical experiments indicate that these assumptions
can be weakened, it would be desirable to have a refined analysis that covers these
cases as well, i.e. which either avoids the regularity assumptions on u or explains the
good performance of the indicator-based strategy analytically.
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h is obtained by projecting the nodes onto the sphere [marked by *].
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