
P2Q2Iso2D = 2D ISOPARAMETRIC FEM IN MATLAB∗

S. BARTELS, C. CARSTENSEN†, AND A. HECHT

Abstract. A short Matlab implementation realizes a flexible isoparametric finite element method

up to quadratic order for the approximation of elliptic problems in two-dimensional domains with

curved boundaries. Triangles and quadrilaterals equipped with varying quadrature rules allow for

mesh refinement. Numerical examples for the Laplace equation with mixed boundary conditions

indicate the flexibility of isoparametric finite elements.

1. Introduction

Various software packages are available for the numerical approximation of elliptic boundary value
problems by finite elements on grids consisting of triangles or parallelograms. Such methods are
well understood and advanced techniques such as geometric grids, hp-methods, or adaptive mesh-
refinement are well established. In some applications one aims to approximate problems on rather
general domains with a few degrees of freedom. Therefore, the approximation of non-polygonal
domains is an important issue. Isoparametric finite elements can recover domains with piecewise
quadratic boundary exactly and are therefore a good tool to approximate elliptic problems on
domains with piecewise smooth boundary. We present a short Matlab implementation of this finite
element method for the Laplace equation in two dimensions which can easily be modified to more
general, even non-linear, elliptic boundary value problems. We refer to [Ba, S] for an introduction
to isoparametric finite element methods, to [BaSt, G] for the related blending function technique,
and describe our program in the spirit of [ACF, ACFK, CK].

Wisdom from many practical computer experiments tells that quadratic finite elements are hard
to beat (e.g. by hp-, adaptive, or other finite element schemes). Therefore, as a proposed method of
choice, the employed data structure allows for the simultaneous usage of lowest order finite elements
on triangles and parallelograms, of piecewise quadratic elements, and of curvilinear elements to
resolve a piecewise quadratic boundary. The key concept is the definition of at most quadratic
degree polynomial diffeomorphisms on a reference triangle or a reference square depicted in Figure 1.

Tref

T
Ψ

T

1

2

3

4

5

6

Qref

Q

1

2

3

4

5

6
7

8

9

Φ
Q

Figure 1. Diffeomorphisms on the reference triangle Tref onto a curved triangle
T (left) and on the reference square Qref onto a curved quadrilateral Q (right).

Date: April 25, 2005.
∗ Supported by the DFG Research Center Matheon ”Mathematics for key technologies” in Berlin.
† Corresponding author.

1

The diffeomorphisms are defined by specifying vertices of an element, optional nodes on the
edges of an element, and optional nodes in the interior of elements with four vertices. Only two
data files are needed to define lowest order elements, quadratic elements, and curvilinear elements
with three or four vertices. Then, the isoparametric basis functions are given as

ϕj ◦ ΨT or ψj ◦ ΦQ

for a standard P2 or Q2 shape function on the reference element. This paper provides details on
the implementation and quadrature rules for the stiffness matrices and right-hand sides.

The rest of the paper is organized as follows. We describe the model problem, the Laplace
equation with mixed boundary conditions in two space dimensions, its weak formulation, and a
general Galerkin scheme in Section 2. Section 3 defines admissible decompositions of Lipschitz
domains that are the basis for the definition of the approximation scheme. Then, in Section 4 we
present a procedure to compute the stiffness matrix and to incorporate volume forces as well as
Neumann and Dirichlet boundary conditions. The numerical results of our Matlab tool applied to a
stationary flow problem, the simulation of a semiconductor, and a problem from linear elasticity on
a part of a disk with a corner singularity are shown in Section 5. Section 6 discusses the numerical
realization of various quadrature rules. Finally, in Appendices A-C we present the entire Matlab
code which consists of less than 400 lines using only standard Matlab commands for elementary
matrix and list manipulations, comment on the realization of right-hand sides, and give a Matlab
routine that displays the numerical solutions without artifacts. The software is downloadable at
http://www.math.hu-berlin.de/~cc/ under the item “Software”.

2. Model Problem and Galerkin Approximation

Given a bounded Lipschitz domain Ω ⊆ R
2, a closed subset ΓD ⊆ ∂Ω with positive length, and

functions f ∈ L2(Ω), uD ∈ H1(Ω), and g ∈ L2(ΓN) for ΓN := ∂Ω \ ΓD, the model problem under
consideration reads: Find u ∈ H1(Ω) such that

(2.1) −∆u = f in Ω, u = uD on ΓD, ∂u/∂n = g on ΓN .

We incorporate inhomogeneous Dirichlet conditions through a decomposition v = u−uD ∈ H1
D(Ω),

where H1
D(Ω) = {w ∈ H1(Ω) : w|ΓD

= 0}. Then, the weak formulation of (2.1) reads: Find
v ∈ H1

D(Ω) such that, for all w ∈ H1
D(Ω), there holds

(2.2)

∫

Ω
∇v · ∇w dx =

∫

Ω
fw dx+

∫

ΓN

gw ds−
∫

Ω
∇uD · ∇w dx.

The Lax-Milgram Lemma guarantees existence of a unique solution v ∈ H1(Ω) to (2.2). Here, we
use standard notation for Lebesgue and Sobolev functions.

For a finite dimensional subspace S ⊆ H1(Ω) and an approximation UD ∈ S of uD we define
SD := S ∩H1

D(Ω) and aim to solve the following variational formulation: Find V ∈ SD such that,
for all W ∈ SD, there holds

(2.3)

∫

Ω
∇V · ∇W dx =

∫

Ω
fW dx+

∫

ΓN

gW ds −
∫

Ω
∇UD · ∇W dx.

For a basis (Nz : z ∈ N) of S and a basis (Nz : z ∈ K) of SD, with K ⊆ N , formulation (2.3) is
equivalent to: Find V ∈ SD such that, for all z ∈ K, there holds

(2.4)

∫

Ω
∇V · ∇Nz dx =

∫

Ω
fNz dx+

∫

ΓN

gNz ds−
∫

Ω
∇UD · ∇Nz dx.

2

With the representations V =
∑

z∈K vzNz and UD =
∑

z∈N uzNz formulation (2.4) leads to the
linear system of equations

(2.5) Av = b,

where A ∈ R
K×K and b ∈ R

K are given by

(2.6) A =
(

∫

Ω
∇Nz · ∇Nz′ dx

)

z,z′∈K

and

(2.7) b =
(

∫

Ω
fNz dx+

∫

ΓN

gNz ds−
∑

z′∈N

uz′

∫

Ω
∇Nz′ · ∇Nz dx

)

z∈K
.

Then, A is a positive definite matrix and there exists unique v ∈ R
K which defines an approximation

U = V + UD ∈ S of the solution of (2.2).

3. Decomposition of Ω and Data Representation

3.1. Curved Edges. We assume that Ω is decomposed into finitely many finite element domains
T ∈ T with curved boundaries and which either have three or four vertices. To guarantee that
neighboring elements match we suppose that each of the four or three edges (or sides) of elements
with respectively four or three vertices are defined through a reference parameterization. If A and
B are the endpoints of an edge E which may be curvilinear with a point C on E then E is given
by the parameterization

(3.1) ΦE : Eref → R
2, t 7→ A(1 − t)/2 +B(1 + t)/2 + C̃(1 − t)(1 + t),

where C̃ = C − (A+ B)/2 and Eref = [−1, 1] as in Figure 2. We will assume that the restriction
of ΦE to (−1, 1) is an immersion. This is guaranteed if A, B, and C are distinct and either C lies
on the line segment connecting A and B or A, B, and C are not colinear.

t

E

1

Φ

C

B

A

−1 0

Figure 2. Immersion ΦE that parameterizes an edge E defined through the points A,B,C.

3.2. Curved quadrilaterals. Given any element T ∈ T with four vertices P
(T)
1 , P

(T)
2 , P

(T)
3 , and

P
(T)
4 in the plane, the boundary ∂T consists of four smooth parameterized curves. Those curves

interpolate two vertices A = P
(T)
j and B = P

(T)
(j+1)/4, where (j+1)/4 is the remainder after division

of j + 1 by 4, and a given point C = P
(T)
j+4 as in (3.1). Moreover, we allow a node P

(T)
9 in the

interior of T . The nodes P
(T)
5 , ..., P

(T)
9 are optional; if for j ∈ {1, ..., 4} the node P

(T)
j+4 is not initially

specified it is obtained by linear interpolation of P
(T)
j and P

(T)
(j+1)/4, i.e.,

P
(T)
j+4 :=

(

P
(T)
j + P

(T)
(j+1)/4

)

/2.

3

Similarly, if P
(T)
9 is not specified initially then we employ

P
(T)
9 := −

(

P
(T)
1 + P

(T)
2 + P

(T)
3 + P

(T)
4

)

/4 +
(

P
(T)
5 + P

(T)
6 + P

(T)
7 + P

(T)
8

)

/2.

For a representation of the elements with four vertices we define a reference element Qref and
functions ϕ1, ..., ϕ9 ∈ H1(Qref) such that each element T ∈ T with four vertices is the image of
the map

(3.2) ΦT =

9
∑

j=1

C
(T)
j ϕj : Qref → R

2.

The coefficients C
(T)
1 , ..., C

(T)
9 ∈ R

2 are related to the given vertices P
(T)
1 , ..., P

(T)
4 of T , to the points

P
(T)
5 , ..., P

(T)
8 (either initially prescribed or obtained by interpolation) on the boundary of T , and

to the midpoint P
(T)
9 (either initially prescribed or obtained by interpolation) of T for j = 1, ..., 4

in the following way,

C
(T)
j := P

(T)
j ,

C
(T)
j+4 := P

(T)
j+4 − (P

(T)
j + P

(T)
(j+1)/4)/2,

C
(T)
9 := P

(T)
9 + (P

(T)
1 + P

(T)
2 + P

(T)
3 + P

(T)
4)/4 − (P

(T)
5 + P

(T)
6 + P

(T)
7 + P

(T)
8)/2.

(3.3)

Note that C
(T)
j+4 = 0 if P

(T)
j+4 is not initially specified or if it is the midpoint of the line segment

connecting P
(T)
j and P

(T)
(j+1)/4. Similarly, C

(T)
9 = 0 if P

(T)
9 is not initially specified or if, e.g., T is a

square and P
(T)
9 is the midpoint of T .

For Qref := [−1, 1]2 the functions ϕ1, ..., ϕ9 are defined by

ϕ1(ξ, η) := (1 − ξ)(1 − η)/4, ϕ2(ξ, η) := (1 + ξ)(1 − η)/4,
ϕ3(ξ, η) := (1 + ξ)(1 + η)/4, ϕ4(ξ, η) := (1 − ξ)(1 + η)/4,
ϕ5(ξ, η) := (1 − ξ2)(1 − η)/2, ϕ6(ξ, η) := (1 + ξ)(1 − η2)/2,
ϕ7(ξ, η) := (1 − ξ2)(1 + η)/2, ϕ8(ξ, η) := (1 − ξ)(1 − η2)/2,
ϕ9(ξ, η) := (1 − ξ2)(1 − η2).

Note that owing to this definition the vertices of Tref are mapped to the vertices of T . Figure 3
displays the functions ϕ1, ϕ5, and ϕ9.

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η
ξ

ηξ

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η
ξ

ηξ

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η
ξ

ηξ

Figure 3. Shape functions ϕ1 (left), ϕ5 (middle), and ϕ9 (right) on the reference square.

4

3.3. Curved triangles. Given any element T ∈ T with three prescribed vertices P
(T)
1 , P

(T)
2 , P

(T)
3 ,

we assume that the boundary ∂T consists of three smooth parameterized curves. Each of those

curves interpolates vertices A = P
(T)
j and B = P

(T)
(j+1)/3, where (j+1)/3 denotes the remainder after

division of j + 1 by 3, and a point C = P
(T)
j+3 as in (3.1). The nodes P

(T)
4 , P

(T)
5 , P

(T)
6 are optional;

if for j ∈ {1, 2, 3} the point P
(T)
j+3 is not initially specified it is obtained by linear interpolation of

P
(T)
j and P

(T)
(j+1)/3, i.e.,

P
(T)
j+3 :=

(

P
(T)
j + P

(T)
(j+1)/3

)

/2.

For a representation of the elements with three vertices we define a reference element Tref and
functions ϕ1, ..., ϕ6 ∈ H1(Tref) such that each element T ∈ T with three vertices is the image of
the map

(3.4) ΨT =
6

∑

j=1

D
(T)
j ψj : Tref → R

2.

The coefficients D
(T)
1 , ...,D

(T)
6 ∈ R

2 are related to the given vertices P
(T)
1 , P

(T)
2 , P

(T)
3 of T and to the

nodes P
(T)
4 , P

(T)
5 , P

(T)
6 (either initially prescribed or obtained by interpolation) on the boundary of

T for j = 1, 2, 3 in the following way,

(3.5) D
(T)
j := P

(T)
j and D

(T)
j+3 := P

(T)
j+3 − (P

(T)
j + P

(T)
(j+1)/3)/2.

Note that D
(T)
j+3 = 0 if P

(T)
j+3 is not initially specified or if it is the midpoint of the line segment

connecting P
(T)
j and P

(T)
(j+1)/3. We choose Tref := {(r, s) ∈ R

2 : r, s ≥ 0, r + s ≤ 1} and define

ψ1(r, s) := 1 − r − s, ψ2(r, s) := r,
ψ3(r, s) := s, ψ4(r, s) := 4 r(1 − r − s),
ψ5(r, s) := 4 rs, ψ6(r, s) := 4 s(1 − r − s).

As in the case of elements with four vertices, the vertices of Tref are mapped to the vertices of T
under the mapping ΨT . Figure 4 displays the functions ψ1 and ψ4.

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

sr

r
s

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

sr

r

s

Figure 4. Shape functions ψ1 (left) and ψ4 (right) on the reference triangle.

5

3.4. Assumptions on the triangulation to ensure C0 conformity. We make the following
assumptions on the triangulation T which imply restrictions on the choice of the vertices, points
on the sides of elements, and points in the interior of elements. The assumptions imply that the
elements with three and four vertices define a proper decomposition of Ω in the sense that edges
(or sides) of neighboring elements match and that the mappings ΦT and ΨT are diffeomorphisms.

(1) a) There exist T4,T3 ⊆ T such that T4 ∪ T3 = T and T4 ∩ T3 = ∅.
b) For each T ∈ T4 there exist {1, ..., 4} ⊆ JT ⊆ {1, ..., 9} and initially prescribed points

P
(T)
j ∈ R

2, j ∈ JT , such that T is the image of Qref under ΦT .

c) For each T ∈ T3 there exist {1, 2, 3} ⊆ KT ⊆ {1, ..., 6} and initially prescribed points

P
(T)
j ∈ R

2, j ∈ KT , such that T is the image of Tref under ΨT .

(2) The closure of Ω is covered exactly by T , i.e., Ω = ∪T∈T T and the interior of the elements
is non-intersecting, i.e., int(T) ∩ int(T ′) = ∅ for all T, T ′ ∈ T .

(3) If T ∩ T ′ = {x} for T, T ′ ∈ T and some x ∈ R
2 then x is a vertex of both elements T and

T ′.
(4) If T ∩ T ′ ⊇ {x, y} for T, T ′ ∈ T and distinct x, y ∈ R

2 then T and T ′ share an entire side.
(5) There exists c > 0 such that |detDΦT | > c for all T ∈ T4 and |detDΨT | > c for all T ∈ T3.
(6) The parts ΓD and ΓN of the boundary ∂Ω are matched exactly by the union of entire sides

of elements.

3.5. Data structures. The relevant information about the elements T ∈ T are stored in three
data files. The file coordinates.dat contains the coordinates of the vertices, the nodes defining
the sides of the elements, and the nodes in the interior of the elements. Hence, coordinates.dat is
a table with two columns which define the coordinates of the points. A numbering of these initially
prescribed points is defined by the numbers of the corresponding rows in the file.

coordinates.dat

0.0 0.0

1.0 0.0

1.0 1.0

0.0 1.0

0.6 0.08

1.1 0.6

0.6 0.92

-0.2 0.4

0.5 0.6

2.0 -0.5

2.0 1.5

-1.0 -0.5

-1.0 0.5

-1.0 1.5

-0.75 1.0

-1.25 0.0

11

5 2

10

7
4

13

16

15

14

12

8

1

9 6

3

D

DΓ

D

Γ

Γ

x

x

1

2

Figure 5. Example of an admissible triangula-
tion. On the left is the content of the complete
file coordinates.dat.

The files elements4.dat and elements3.dat specify the elements with four and three vertices,
i.e., the elements in T4 and T3, through the numbers of the points, respectively through the number
of the corresponding row, in coordinates.dat.

Hence, each row in the file elements4.dat has nine entries. We use the convention that the

first to fourth entries are positive integers that specify the vertices P
(T)
1 , P

(T)
2 , P

(T)
3 , and P

(T)
4 ,

respectively, of the element in mathematical positive orientation. The fifth to eighth entries are
6

non-negative integers which are either positive and then specify a point P
(T)
5 , P

(T)
6 , P

(T)
7 , or P

(T)
8 ,

respectively, on a side of an element by the coordinates given in the file coordinates.dat or it is
zero which means that it is not specified. Similarly, the ninth entry is a non-negative integer which

is either a positive number and then defines P
(T)
9 or it is zero.

Analogously, each row in the file elements3.dat has six entries. We use the convention that the

first to third entries are positive integers that specify the vertices P
(T)
1 , P

(T)
2 , and P

(T)
3 , respectively,

of the element in mathematical positive orientation. The fourth to sixth entries are non-negative

integers which are either positive and then specify the points P
(T)
4 , P

(T)
5 , or P

(T)
6 , respectively, on

a side of an element or it is zero which means that it is not specified. The following two files define
the five elements shown in Figure 3.

elements4.dat

1 2 3 4 5 6 7 8 9

2 10 11 3 0 0 0 6 0

elements3.dat

1 13 12 0 16 0

1 4 13 8 0 0

4 14 13 0 15 0

Finally, we define the parts ΓD and ΓN of the boundary through files Dirichlet.dat and
Neumann.dat. We define each curve which is a side of an element on ∂Ω by specifying the points
that define the curve through providing the numbers of the end-points and the possible point on
the curve. Note that by assumptions on the triangulation this curve has to be an entire side of an
element so that the third point is specified, i.e., the third entry of the corresponding row in the file
is positive, if and only if it was used to define a side of an element. The files Dirichlet.dat and
Neumann.dat define ΓD and ΓN = ∂Ω \ ΓD from Figure 3.

Dirichlet.dat

2 10 0

10 11 0

11 3 0

Neumann.dat

3 4 7

4 14 0

14 13 15

13 12 16

12 1 0

1 2 5

3.6. Subordinated Ansatz Space. With the help of the diffeomorphisms ΦT and ΨT for T ∈ T4

and T ∈ T3, respectively, and the functions ϕ1, ..., ϕ9 and ψ1, ..., ψ6 we define a discrete subspace
S ⊆ H1(Ω) as follows. The union of all positive numbers occurring in the files elements4.dat and
elements3.dat defines the set of nodes N , i.e.,

N := {z ∈ R
2 : ∃T ∈ T4 ∃j ∈ JT , z = P

(T)
j } ∪ {z ∈ R

2 : ∃T ∈ T3 ∃j ∈ KT , z = P
(T)
j }.

Given a node z ∈ N , an element T ∈ T4 and j ∈ JT or T ∈ T3 and j ∈ KT , such that z = P
(T)
j ∈ T

we define

Nz|T :=







ϕj ◦ Φ−1
T if z ∈ T and T ∈ T4,

ψj ◦ Ψ−1
T if z ∈ T and T ∈ T3,

0, if z 6∈ T.
7

One easily checks Nz ∈ H1(Ω). Then, S consists of all functions which are linear combinations of
functions Nz,

S :=
{

∑

z∈N

αzNz : ∀z ∈ N , αz ∈ R
}

=
{

v ∈ H1(Ω) : ∀T ∈ T4∀j ∈ JT∃βj ∈ R, v|T =
∑

j∈JT

βjϕj ◦ Φ−1
T ,

∀T ∈ T3∀j ∈ KT∃γj ∈ R, v|T =
∑

j∈KT

γjψj ◦ Ψ−1
T

}

.

Letting K := N \ ΓD, the space SD = S ∩H1
D(Ω) is the span of all Nz with z ∈ K,

SD :=
{

∑

z∈K

αzNz : ∀z ∈ K, αz ∈ R
}

.

4. Computation of the Discrete System

To compute the entries of the matrix A in (2.6) we have to calculate the integrals
∫

Ω
∇Nz · ∇Nz′ dx =

∑

T∈T

∫

T
∇Nz · ∇Nz′ dx

for all z, z′ ∈ K. Since suppNz ∩ suppNz′ 6= ∅ if and only if z and z′ belong to the same element

it suffices to compute for each T ∈ T4 the matrix M (T) = (M
(T)
jk)j,k∈JT

defined by

M
(T)
jk =

∫

T
∇(ϕj ◦ Φ−1

T) · ∇(ϕk ◦ Φ−1
T) dx

and for each T ∈ T3 the matrix M (T) = (M
(T)
jk)j,k∈KT

defined by

M
(T)
jk =

∫

T
∇(ψj ◦ Ψ−1

T) · ∇(ψk ◦ Ψ−1
T) dx.

We will compute matrices M (T) ∈ R
9×9 and M (T) ∈ R

6×6 for T ∈ T4 and T ∈ T3 and then use only
those entries of M (T) that correspond to indices j, k ∈ JT and j, k ∈ KT , respectively.

4.1. Local stiffness matrix for elements with four vertices. Employing the substitution rule
for the diffeomorphism ΦT : Qref → T and using the identity (DΦ−1

T) ◦ ΦT = (DΦT)−1 we have

M
(T)
jk =

∫

T
∇(ϕj ◦ Φ−1

T) · ∇(ϕk ◦ Φ−1
T) dx

=

∫

Qref

∇(ϕj ◦ Φ−1
T)

(

ΦT (ξ, η)
)

(

∇(ϕk ◦ Φ−1
T)

(

ΦT (ξ, η)
)

)T
|detDΦT (ξ, η)| d(ξ, η)

=

∫

Qref

(

∇ϕj(ξ, η)DΦT (ξ, η)−1
)(

∇ϕk(ξ, η)DΦT (ξ, η)−1
)T |detDΦT (ξ, η)| d(ξ, η).

In order to evaluate DΦT we temporarily compute missing, i.e., not initially specified, points P
(T)
j+4

for j = 1, ..., 4 and P
(T)
9 by interpolation. The interpolation coefficients are stored in the array K

for nodes P
(T)
5 , ..., P

(T)
8 on the boundary of T and the coefficients to compute the possibly missing

point P
(T)
9 inside T are contained in L.

K = [1,1,0,0;0,1,1,0;0,0,1,1;1,0,0,1]/2;

L = [-1,-1,-1,-1,2,2,2,2]/4;

8

The boolean arrays (elements4(j,5:8)==0)’*[1,1] and (elements4(j,9)==0)’*[1,1] guar-
antee that only those nodes are interpolated which are missing.

J_T = find(elements4(j,:));

P = zeros(9,2);

P(J_T,:) = coordinates(elements4(j,J_T),:);

P(5:8,:) = P(5:8,:) + ((elements4(j,5:8)==0)’ * [1,1]) .* (K * P(1:4,:));

P(9,:) = P(9,:) + ((elements4(j,9)==0)’ * [1,1]) .* (L * P(1:8,:));

Having the complete set of points, we compute the coefficients C
(T)
j , j = 1, ..., 9.

C(1:4,:) = P(1:4,:);

C(5:8,:) = P(5:8,:) - (K * P(1:4,:));

C(9,:) = P(9,:) - (L * P(1:8,:));

The local stiffness matrix is then approximated using a quadrature rule on Qref which is defined
by points (ξm, ηm) ∈ Qref and weights γm for m = 1, ...,K4,

M
(T)
jk ≈

K4
∑

m=1

γm

(

∇ϕj(ξm, ηm)DΦT (ξm, ηm)−1
)(

∇ϕk(ξm, ηm)DΦT (ξm, ηm)−1
)T |detDΦT (ξm, ηm)|.

We suppose that the values ϕj(ξm, ηm), ∂ξϕj(ξm, ηm), and ∂ηϕj(ξm, ηm), for j = 1, ..., 9 and m =
1, ...,K4 are stored in K4 × 9 arrays phi, phi_xi, and phi_eta, respectively. The weights are
contained in the 1 ×K4 array gamma. This allows to compute M (T) in a loop over m = 1, ...,K4

simultaneously for j, k = 1, ..., 9.

for m = 1 : size(gamma,2)

D_Phi = [phi_xi(m,:);phi_eta(m,:)] * C;

F = inv(D_Phi) * [phi_xi(m,:);phi_eta(m,:)];

det_D_Phi(m) = abs(det(D_Phi));

M = M + gamma(m) * (F’ * F) * det_D_Phi(m);

end

Since we do not incorporate functions that correspond to interpolated auxiliary points, we only
add those components of M (T) to the global stiffness matrix A that were originally prescribed and
which are stored in the array J_T. Note that the union of all positive entries in J_T equals the set
JT .

A(elements4(j,J_T),elements4(j,J_T)) = ...

A(elements4(j,J_T),elements4(j,J_T)) + M(J_T,J_T);

4.2. Local stiffness matrix for elements with three vertices. For an element T ∈ T3 there
holds

M
(T)
jk =

∫

Tref

(

∇ψj(r, s)DΨT (r, s)−1
)(

∇ψk(r, s)DΨT (r, s)−1
)T |detDΨT (r, s)| d(r, s).

To compute M (T) we first interpolate missing points P
(T)
j+3 for j = 1, 2, 3 employing interpolation

coefficients that are stored in an array N.

N = [1,1,0;0,1,1;1,0,1]/2;

The boolean array (elements3(j,4:6)==0)’*[1,1] guarantees that only the missing points are
interpolated.

K_T = find(elements3(j,:));

P = zeros(6,2);

P(K_T,:) = coordinates(elements3(j,K_T),:);

P(4:6,:) = P(4:6,:) + ((elements3(j,4:6)==0)’ * [1,1]) .* (N * P(1:3,:));

Then, the coefficients D
(T)
j , j = 1, ..., 6 are computed within the following two lines.

9

D(1:3,:) = P(1:3,:);

D(4:6,:) = P(4:6,:) - (N * P(1:3,:));

The integrals that contribute to the local stiffness matrix are approximated using a quadrature
rule on Tref that is defined by points (rm, sm) ∈ Tref and weights κm for m = 1, ...,K3,

M
(T)
jk ≈

K3
∑

m=1

κm

(

∇ψj(rm, sm)DΨT (rm, sm)−1
)(

∇ψk(rm, sm)DΨT (rm, sm)−1
)T |detDΨT (rm, sm)|.

We assume that the values ψj(rm, sm), ∂rψj(rm, sm), and ∂sψj(rm, sm) are stored in K3 × 6 arrays
psi, psi_r, and psi_s, respectively. The weights are stored in the 1 ×K3 array kappa. For m =
1, ..,K3 the contributions to the matrix M (T) are then computed simultaneously for j, k = 1, ..., 6
with the following commands.

for m = 1 : size(kappa,2)

D_Psi = [psi_r(m,:);psi_s(m,:)] * D;

F = inv(D_Psi) * [psi_r(m,:);psi_s(m,:)];

det_D_Psi(m) = abs(det(D_Psi));

M = M + kappa(m) * (F’ * F) * det_D_Psi(m);

end

By our conventions, interpolated points are no nodes so that we only add those entries of M to
the global stiffness matrix which correspond to initially defined points. The indices of those nodes
are stored in the array K_T. The positive entries in K_T are the elements of KT .

A(elements3(j,K_T),elements3(j,K_T)) = ...

A(elements3(j,K_T),elements3(j,K_T)) + M(K_T,K_T);

4.3. Volume forces. The integral on the right hand side of (2.4) that involves the volume force
f , i.e.,

∫

Ω
fNz dx =

∑

T∈T

∫

T
fNz dx,

is computed in the same loops over elements in T3 and T4 as the local stiffness matrices M (T). We
assume that f is continuous and employ the same quadrature rules as above, i.e.,

∫

T
f(x)ϕj ◦ Φ−1

T (x) dx =

∫

Qref

f ◦ ΦT (ξ, η)ϕj(ξ, η)|detDΦT (ξ, η)| d(ξ, η)

≈
K4
∑

m=1

γmf(ΦT (ξm, ηm))ϕj(ξm, ηm)|detDΦT (ξm, ηm)|

if T ∈ T4 and

∫

T
f(x)ϕj ◦ Ψ−1

T (x) dx ≈
K3
∑

m=1

κmf(ΨT (rm, sm))ψj(rm, sm)|detDΨT (rm, sm)|

if T ∈ T3. The sum for T ∈ T4 is realized simultaneously for j = 1, ..., 9 and m = 1, ...,K4 within
the following two lines. We add those contributions to b that correspond to initially specified nodes.

d = gamma .* det_D_Phi .* f(phi * C)’ * phi;

b(elements4(j,J_T)) = b(elements4(j,J_T)) + d(J_T)’;

Analogously, for T ∈ T3 we compute the contributions to b in the following two lines.

d = kappa .* det_D_Psi .* f(psi * D)’ * psi;

b(elements3(j,K_T)) = b(elements3(j,K_T)) + d(K_T)’;

10

In the above commands the function f.m returns the values of f at a list of given points, see
Appendix B.

4.4. Outer body forces. To incorporate Neumann boundary conditions we have to compute
integrals of the form

∫

ΓN

gNz|ΓN
ds =

∑

T∈T

∫

∂T∩ΓN

gNz|ΓN
ds.

Each proper curve E = ∂T ∩ ΓN is either defined through points A = P
(T)
j , B = P

(T)
(j+1)/4, and

C = P
(T)
j+4 for some j ∈ {1, ..., 4} and T ∈ T4, or through points A = P

(T)
j , B = P

(T)
(j+1)/3, and

C = P
(T)
j+3 for some j ∈ {1, 2, 3} and T ∈ T3. Then, the curve E is parameterized by

ΦE : Eref → R
2, t 7→ A(1 − t)/2 +B(1 + t)/2 + C̃(1 − t)(1 + t)

for C̃ = C−(A+B)/2 and Eref = [−1, 1]. Note that A, B, and C correspond to the points specified
in the file Neumann.dat. The three functions (1 − t)/2, (1 + t)/2, and (1 − t)(1 + t) coincide with
the functions ϕj(t,−1) for j = 1, 2, 5, respectively. We then compute, for all such E and j = 1, 2, 5,

∫

E
g(s)ϕj ◦ Φ−1

E (s) ds =

∫

(−1,1)
g(ΦE(t))ϕj(t,−1)‖Φ′

E(t)‖ dt,(4.1)

where ‖ · ‖ is the Euclidean norm. The latter integral is approximated by a quadrature rule on
Eref defined through points tm ∈ Eref and weights δm for m = 1, ...,KN . In a loop over all edges
on ΓN we compute missing nodes, approximate the integral in (4.1), and add the numbers which
correspond to initially defined points to the global vector b. The KN ×3 arrays phi_E and phi_E_dt
contain the values ϕj(tm,−1) and ∂tϕj(tm,−1). The weights for the quadrature rule are stored in
the 1×KN array delta_E. Notice that in the practical realization below the coefficients A, B, and
C̃ are stored in the array G.

J_E = find(Neumann(j,:));

P = zeros(3,2);

P(J_E,:) = coordinates(Neumann(j,J_E),:);

P(3,:) = P(3,:) + ((Neumann(j,3)==0)’ * [1,1]) .* (P(1,:) + P(2,:))/2;

G(1:2,:) = P(1:2,:);

G(3,:) = P(3,:) - (P(1,:) + P(2,:))/2;

norm_Phi_E_dt = sqrt(sum((phi_E_dt * C)’.^2));

d = delta_E .* g(phi_E * G)’ .* norm_Phi_E_dt * phi_E;

b(Neumann(j,J_E)) = b(Neumann(j,J_E)) + d(J_E)’;

As before, a function g.m returns the values of g in a list of given points, see Appendix B.

4.5. Dirichlet conditions. To incorporate Dirichlet boundary conditions we define a function
UD ∈ S,

UD =
∑

z∈N

uzNz,

that satisfies UD(z) = uD(z) for all z ∈ N ∩ ΓD and UD(z) = 0 for all z ∈ K. We set uz = 0 for
all z ∈ K. Note that for z ∈ N ∩ ΓD which is a vertex of an element we have Nx(z) = 0 for all
x ∈ N \ {z} so that uz = uD(z). For z ∈ N ∩ ΓD which is not a vertex of an element there are
exactly two functions Nx, Ny for x, y ∈ N \ {z} such that Nx(z) = Ny(z) 6= 0 so that we have
to set uz = uD(z) − uxNx(z) − uyNy(z) = uD(z) − (ux + uy)/2. The following lines compute the
coefficients of the function UD in terms of the basis functions Nz.

11

u(unique(Dirichlet(:,1:2))) = u_D(coordinates(unique(Dirichlet(:,1:2)),:));

ind = find(Dirichlet(:,3));

u(Dirichlet(ind,3)) = u_D(coordinates(Dirichlet(ind,3),:)) - ...

(u(Dirichlet(ind,1)) + u(Dirichlet(ind,2)))/2;

The function uD is represented by a file u_D.m, which returns the values of uD in a list of given
points, see Appendix B. We then subtract Au from the right-hand side as in (2.4).

b = b - A * u;

4.6. Solving the linear system of equations. Having computed the stiffness matrix and the
right-hand side, the computation of the solution V in the free nodes K is done in the next two lines.

freeNodes = setdiff(1:size(coordinates,1),unique(Dirichlet));

v(freeNodes) = A(freeNodes,freeNodes) \ b(freeNodes);

The Matlab command x = A \ b efficiently solves a linear system of equations Ax = b.

4.7. Displaying the solution. The discrete solution can be visualized with curved edges by the
functions submeshplot3.m for the triangles in the mesh and submeshplot4.m for the quadrilaterals.
Since Matlab’s internal functions fail to interpolate P2/Q2 polynomials reliably, this is performed
on each triangle/quadrilateral. The solution is interpolated on a submesh with a chosen granularity
to be adjusted to the complexity of the plot. The original mesh is added to the plot by the routine
drawgrid.m, which draws the grid with the same granularity as the meshes. The program is shown
in Appendix C.

5. Numerical examples

This section on seven illustrative examples concerns flows, semiconductors, corner singularities,
curved boundaries, and hanging nodes.

5.1. Reduced flow problem. A reduced model for a stationary flow problem reads

−∆u = 0 in Ω, u = 1 on Γ1, u = −1 on Γ2, ∂u/∂n = 0 on ΓN = ∂Ω \ (Γ1 ∪ Γ2).

Here, Ω := (0, 55)×(0, 20)\([20, 25]×[15, 20]∪[30, 35]×[15, 20]∪{20, 35}×[10, 15]). Note that Ω has
two slits and is hence not a Lipschitz domain. We set Γ1 := [0, 20]×{20} and Γ2 := [35, 55]×{20}.
Figure 6 shows the numerical solution on a triangulation with 126 elements, each of them with four
vertices.

0 5 10 15 20 25 30 35 40 45 50 55
0

2

4

6

8

10

12

14

16

18

20

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 6. Numerical solution for a reduced flow problem.

12

5.2. Simulation of a semiconductor. The charge density in a semiconductor can be modeled
by the equations

−∆u = 0 in Ω, u = −1 on Γ1, u = 1 on Γ2 and u = 0 on Γ3

on the domain Ω = (0, 51) × (0, 45) \
(

([15, 18] ∪ [33, 36]) × [15, 30]
)

and its boundary parts Γ1 =
∂([15, 18]× [15, 30]), Γ2 = ∂([33, 36]× [15, 30]), and Γ3 = [0, 51]×{0, 45}∪{0, 51}× [0, 45]. Figure 7
shows the numerical solution on a triangulation with 565 elements each of them with four vertices.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 7. Numerical solution for the simulation of a semiconductor.

5.3. Solution with a corner singularity. Figure 8 shows the numerical solution for a subproblem
in linear elasticity on a part of the unit disk. The gradient of the solution has a singularity at the
origin. The problem is described by the equations

−∆u = 0 in Ω, u = 0 on ΓD and ∂u/∂n = g on ΓN .

Here, Ω := {(x1, x2) ∈ R
2 : x2

1+x
2
2 < 1}\[−1, 0]2, ΓD := [0, 1]×{0}∪{0}×[−1, 0], and ΓN = ∂Ω\ΓD.

The function g is in polar coordinates given by

g(r, φ) = (2/3)r−1/3 sin(2φ/3).

Note that in this example we cannot recover the domain Ω exactly, but very accurately with the
non-affine elements.

5.4. Domain with piecewise curved boundary. Given the points A1 = (−41,−62), A2 =
(41,−62), A3 = (41,−42), A4 = (51,−42), A5 = (71, 42), A6 = (−2.6386, 57.9227), A7 =
(−41,−41), A8 = (0,−26), A9 = (0,−45), and A10 = A8, and circles of radii r1 = 26 and

r2 = 41
√

2 around M1 = (0, 0) and of radii r3 = 17 and r4 =
√

342 + 212 around M2 = (37, 63)
the slid domain Ω is defined as in Figure 9. The domain is discretized into 13 elements with four
vertices as shown in the right plot of Figure 9.

We used our program to solve the equations

−∆u = 0 in Ω, u = 0 on Γ1
D,

u(x, y) = sign(x)(26 − y)/52 for (x, y) ∈ Γ2
D,

u = 1 on Γ3
D and ∂u/∂n = 0 on ΓN = ∂Ω \ (Γ1

D ∪ Γ2
D ∪ Γ3

D).

The numerical solution is displayed in Figure 10.
13

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

Figure 8. Numerical solution of an example with a corner singularity.

M
1

M
2

Ω

ΓD

ΓD

ΓD

A
2

2

1

3

A
1

A
3 A

4

A
5

A
6

A
7

A
8

A
10

A
9

15
14

12

35

37

11
1

30

31

26

25

24

29
28

27

34
33

32

6

36

5

16

13

23

2221

20

19

18
17

7 8
3

4

2

9=10

Figure 9. Domain with piecewise curved boundary and its triangulation after [BaSt].

5.5. Hanging nodes. The following example illustrates the possible treatment of hanging nodes
in the algorithms of this paper. Given the mesh of Figure 5, suppose that the first quadrilat-
eral element with nodes 1, . . . , 9 is refined in four sub-quadrilaterals as shown in Figure 11 with
additional nodes 17, . . . , 28. The new data file coordinates.dat is partly shown below, the com-
plete matrix is obtained by concatenation of the entries coordinates(1:16,:) of Figure 5 and
coordinates(17:28,:) shown below.

In the geometry at hand, the nodes 18, 22, 29 and 20, 24, 30 belong to a neighbor element of
elements 2, 3, 4 and 5. Those nodes are called hanging nodes. The corresponding data files are
displayed below with elements3.dat and Dirichlet.dat unchanged.

14

−60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

100

120

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 10. Numerical solution for the problem defined on a domain with piecewise
curved boundary.

14

15

13

16

12

1 17 5
21

2

18

29 6

22

319723

27
26

9
25

28

4

20

308

24

10

11

Figure 11. Triangulation with hanging nodes of Section 5.5 based on a refinement
of the triangulation of Figure 5.

coordinates(17:32,:)

0.325 0.06

1.075 0.325

0.825 0.94

-0.15 0.675

0.825 0.06

1.075 0.825

0.325 0.94

-0.15 0.175

0.525 0.365

0.8125 0.625

0.525 0.785

0.1625 0.525

1.1 0.6

-0.2 0.4

elements4.dat

2 10 11 3 0 0 0 6 0

1 5 9 30 17 25 28 24 0

5 2 29 9 21 18 26 25 0

9 29 3 7 26 22 19 27 0

30 9 7 4 28 27 23 20 0

Neumann.dat

3 7 19

7 4 23

4 14 0

14 13 15

13 12 16

12 1 0

1 5 17

5 2 21

15

The definition of a hanging node is in fact more complicated. The situation along the two edges
with nodes 4, 8, 1 and 2, 6, 3 is depicted with (P1, P2, P3) in Figure 12. The six nodes in Figure 12

P

P5

P3

P4

P2

P6

1

Figure 12. Upper and lower side of a curved edge from Figure 2 in the discussion
of two types of hanging nodes.

correspond to six degrees of freedom with nodal values at P1, P2 and P4 and edge-midpoints at
P3, P5 and P6. The hierarchical organisation of the shape functions of Figure 3 or Figure 4 leads
to a different treatment of the points P3 and P4. On the lower element, the degrees of freedom
V1, V2, V3 associated with (P1, P2, P3) determine the displacement V (x(t)) and the geometry of the
edge x(t) through

(5.1)

(

V (x(t))
x(t)

)

=

(

V1

P1

)

1 − t

2
+

(

V2

P2

)

1 + t

2
+

(

(

V3

P3

)

− 1

2

(

(

0
P1

)

+

(

0
P2

)

))

(1 − t)(1 + t)

for any x(t) = ΦE(t) on the edge parameterization as shown for −1 ≤ t ≤ 1 as in (3.1). A
corresponding representation holds along the two edges (P1, P4, P5) and (P4, P3, P6) of Figure 12.

The global continuity of the piecewise polynomial displacement V requires that P5 and P6 belong
to the edge (P1, P2, P3) and, for simplicity, we suppose that the corresponding parameterizations
are t = −1

2 and t = 1
2 , namely

8P5 = 3P1 − P2 + 6P3 and 8P6 = 3P2 − P1 + 6P3.

Then, the continuity condition at P3 = P4 (they share the coordinates, but refer to different degrees
of freedom V3 and V4) reads

(5.2) V4 =
1

2
V1 +

1

2
V2 + V3

(because V4 = V (P3) with t = 0 in (5.1)). After some straightforward calculations on the continuity
condition on P5 and P6, i.e. at Pj+4 for j = 1 or j = 2, respectively, one obtains

(5.3) 3Vj + V3−j + 3V3 = 4Vj+4 + 2V4 + 2Vj .

All three equations can be written as




1 1 2 −2 0 0
1 1 3 −2 −4 0
1 1 3 −2 0 −4











V1
...
V6






= 0.

The 3x6 dimensional coefficient matrix is called M in the Matlab code below. A Lagrange multiplier
technique enforces the three conditions per hanging node in the discrete system.

The data for hanging nodes is stored in the file hn.dat. The 6 columns contain the degrees of
freedom in the order depicted in Figure 12, with one row for each hanging node. The data file
corresponding to the mesh given in Figure 11 is given below.

hn.dat

4 1 8 30 20 24

2 3 6 29 18 22
16

The Matlab realisation is given where only the additional lines are displayed. These are to be
inserted between the Dirichlet conditions as described in Section 4.5 and the (modified) solution of
the linear system of equations (Section 4.6).

If lhn hanging nodes are specified for a test problem, the stiffness matrix is augmented with
matrices B and B’, and the solution vector is augmented by the 3*lhn Lagrange multipliers, yielding
the modified system

[

A B′

B 0

] [

x
λ

]

=

[

b
0

]

where B has 3*lhn rows, three for each hanging node, containing the entries of M on the columns
of the nodes on the edge.

% Hanging nodes

eval(’load hanging_nodes.dat’,’hn = [];’);

if ~isempty(hn)

M = [1,1,2,-2,0,0;1,1,3,-2,-4,0;1,1,3,-2,0,-4];

B = sparse(3*size(hn,1), size(coordinates,1));

for j = 1:size(hn,1)

B((1:3)+(j-1)*3,hn(j,:)) = M;

end

lambdas = size(coordinates,1)+(1:3*size(hn,1));

A = [A,B’;B,sparse(3*size(hn,1), 3*size(hn,1))];

b = [b;zeros(3*size(hn,1),1)];

v = [v;zeros(3*size(hn,1),1)];

else

lambdas = [];

end

% Compute solution in free nodes

freeNodes = [setdiff(1:size(coordinates,1),unique(Dirichlet)), lambdas];

Note that the indices of the Lagrange multipliers stored in lambdas contribute to the free nodes
and are included in the solution of the linear system of equations.

The solution of the testcase without hanging nodes as depicted in Figure 5 and the solution of
the testcase with hanging nodes (Figure 11) are shown for comparison in Figure 13.

−1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

Figure 13. Numerical solution without and with hanging nodes.

5.6. Locally refined triangulations. Solutions of elliptic boundary value problems typically
have singularities at re-entrant corners (cf. example 5.3). The simultaneous usage of linear ansatz-
functions on small elements and the usage of quadratic functions on larger elements can lead to
very efficient approximations. In order to refine larger elements to smaller elements and to keep the

17

conformity assumptions stated in Section 3.4 we propose to employ decompositions as in Figure 14.
This is an alternative to introducing hanging nodes.

Figure 14. Refinement of large elements with quadratic ansatz functions to
smaller elements with bilinear ansatz functions.

6. Quadrature rules

This section defines some quadrature rules that can be employed in our Matlab code. More
details and other quadrature rules can be found in [S]. The proposed routines provide the values
needed for the approximation of local stiffness matrices and for the incorporation of volume forces
and Neumann boundary conditions.

6.1. Quadrature rules on Qref . We employ Gaussian quadrature rules with one, four, and nine
nodes on the reference square Qref . Figure 15 displays the location of the points (ξm, ηm), m =
1, ...,K4, in Qref for K4 = 1, 4, 9. The following function quad4.m computes the values ϕj(ξm, ηm),
∂ξϕj(ξm, ηm), and ∂ηϕj(ξm, ηm) for j = 1, ..., 9, m = 1, ...,K4, and stores them in K4 × 9 arrays
phi, phi_xi, and phi_eta, respectively.

ξ

η

3/5

1/3

1/3−

3/5−

3/51/31/3−3/5− 0

0

Figure 15. Quadrature rules on Qref with one (hexagon), four (circles), and nine
(crosses) nodes.

18

function [phi,phi_xi,phi_eta,gamma] = quad4(K_4);

switch K_4

case 1

xi = 0;

eta = 0;

gamma = 4;

case 4

xi = sqrt(1/3) * [-1,1,1,-1]’;

eta = sqrt(1/3) * [-1,-1,1,1]’;

gamma = [1,1,1,1];

otherwise

xi = sqrt(3/5) * [-1,0,1,-1,0,1,-1,0,1]’;

eta = sqrt(3/5) * [-1,-1,-1,0,0,0,1,1,1]’;

gamma = [25,40,25,40,64,40,25,40,25]/81;

end

phi = [(1-xi).*(1-eta)/2,(1+xi).*(1-eta)/2,...

(1+xi).*(1+eta)/2,(1-xi).*(1+eta)/2,...

(1-xi.^2).*(1-eta),(1+xi).*(1-eta.^2),...

(1-xi.^2).*(1+eta),(1-xi).*(1-eta.^2),...

2*(1-xi.^2).*(1-eta.^2)]/2;

phi_xi = [-(1-eta)/2,(1-eta)/2,(1+eta)/2,-(1+eta)/2,...

-2*xi.*(1-eta),1-eta.^2,-2*xi.*(1+eta),-1+eta.^2,...

-4*xi.*(1-eta.^2)]/2;

phi_eta = [-(1-xi)/2,-(1+xi)/2,(1+xi)/2,(1-xi)/2,...

-1+xi.^2,-2*(1+xi).*eta,1-xi.^2,-2*(1-xi).*eta,...

-4*(1-xi.^2).*eta]/2;

1

0

s

r1/2 1

1/2

Figure 16. Quadrature rules on Tref with one (hexagon), three (circles), and
seven (crosses) nodes.

6.2. Quadrature rules on Tref . On Tref we employ quadrature rules with one, three, or seven
points. The points (rm, sm), m = 1, ...,K3, for K3 = 1, 3, 7 are shown in the plot of Figure 16; their
exact values can be found in the following code which stores the values ψj(rm, sm), ∂rψj(rm, sm),
and ∂sψj(rm, sm), for j = 1, ..., 6 and m = 1, ...,K3 in K3 × 6 arrays psi, psi_r, and psi_s,
respectively.

19

function [psi,psi_r,psi_s,kappa] = quad3(K_3);

switch K_3

case 1

r = 1/3;

s = 1/3;

kappa = 1/2;

case 3

r = [1,4,1]’/6;

s = [1,1,4]’/6;

kappa = [1,1,1]/6;

otherwise

pos = [6-sqrt(15),9+2*sqrt(15),6+sqrt(15),9-2*sqrt(15),7]/21;

r = pos([1,2,1,3,3,4,5])’;

s = pos([1,1,2,4,3,3,5])’;

wts = [155-sqrt(15),155+sqrt(15),270]/2400;

kappa = wts([1,1,1,2,2,2,3]);

end

one = ones(size(kappa,2),1);

psi = [1-r-s,r,s,4*r.*(1-r-s),4*r.*s,4*s.*(1-r-s)];

psi_r = [-one,one,0*one,4*(1-2*r-s),4*s,-4*s];

psi_s = [-one,0*one,one,-4*r,4*r,4*(1-r-2*s)];

6.3. Quadrature rules on Eref . On Eref we use KN = 1 with t1 = 0 and δ1 = 2 or KN = 3

with t1 = −
√

3/5, t2 = 0, t3 =
√

3/5 and corresponding weights δ1 = δ3 = 5/9 and δ2 = 8/9. As
above, we store the values of ϕj(tm,−1) and ϕ′

j(tm,−1) for j = 1, 2, 5 at the quadrature points tj
in KN × 3 arrays phi_E and phi_E_dt, respectively. The weights are stored in the 1 ×KN array
delta_E.

function [phi_E,phi_E_dt,delta_E] = quadN(K_N);

switch K_N

case 1

t = 0;

delta_E = 2;

otherwise

t = sqrt(3/5) * [-1,0,1]’;

delta_E = [5,8,5]/9;

end

one = ones(size(delta_E,2),1);

phi_E = [1-t,1+t,2*(1-t).*(1+t)]/2;

phi_E_dt = [-one,one,-4*t]/2;

Appendix A: The complete Matlab code

The following Matlab code implements the approximation scheme described in this article.

% Initialize

load coordinates.dat;

eval(’load elements3.dat’,’elements3 = [];’);

eval(’load elements4.dat’,’elements4 = [];’);

load Dirichlet.dat;

eval(’load Neumann.dat’,’Neumann = [];’);

A = sparse(size(coordinates,1),size(coordinates,1));

b = zeros(size(coordinates,1),1); u = b; v = b;

20

% Local stiffness matrix and volume forces for elements with three vertices

[psi,psi_r,psi_s,kappa] = quad3(7);

N = [1,1,0;0,1,1;1,0,1]/2;

for j = 1 : size(elements3,1)

K_T = find(elements3(j,:));

P = zeros(6,2);

P(K_T,:) = coordinates(elements3(j,K_T),:);

P(4:6,:) = P(4:6,:) + ((elements3(j,4:6)==0)’ * [1,1]) .* (N * P(1:3,:));

D(1:3,:) = P(1:3,:);

D(4:6,:) = P(4:6,:) - (N * P(1:3,:));

M = zeros(6,6);

for m = 1 : size(kappa,2)

D_Psi = [psi_r(m,:);psi_s(m,:)] * D;

F = inv(D_Psi) * [psi_r(m,:);psi_s(m,:)];

det_D_Psi(m) = abs(det(D_Psi));

M = M + kappa(m) * (F’ * F) * det_D_Psi(m);

end

A(elements3(j,K_T),elements3(j,K_T)) = ...

A(elements3(j,K_T),elements3(j,K_T)) + M(K_T,K_T);

d = kappa .* det_D_Psi .* f(psi * D)’ * psi;

b(elements3(j,K_T)) = b(elements3(j,K_T)) + d(K_T)’;

end

% Local stiffness matrix and volume forces for elements with four vertices

[phi,phi_xi,phi_eta,gamma] = quad4(9);

K = [1,1,0,0;0,1,1,0;0,0,1,1;1,0,0,1]/2;

L = [-1,-1,-1,-1,2,2,2,2]/4;

for j = 1 : size(elements4,1)

J_T = find(elements4(j,:));

P = zeros(9,2);

P(J_T,:) = coordinates(elements4(j,J_T),:);

P(5:8,:) = P(5:8,:) + ((elements4(j,5:8)==0)’ * [1,1]) .* (K * P(1:4,:));

P(9,:) = P(9,:) + ((elements4(j,9)==0)’ * [1,1]) .* (L * P(1:8,:));

C(1:4,:) = P(1:4,:);

C(5:8,:) = P(5:8,:) - (K * P(1:4,:));

C(9,:) = P(9,:) - (L * P(1:8,:));

M = zeros(9,9);

for m = 1 : size(gamma,2)

D_Phi = [phi_xi(m,:);phi_eta(m,:)] * C;

F = inv(D_Phi) * [phi_xi(m,:);phi_eta(m,:)];

det_D_Phi(m) = abs(det(D_Phi));

M = M + gamma(m) * (F’ * F) * det_D_Phi(m);

end

A(elements4(j,J_T),elements4(j,J_T)) = ...

A(elements4(j,J_T),elements4(j,J_T)) + M(J_T,J_T);

d = gamma .* det_D_Phi .* f(phi * C)’ * phi;

b(elements4(j,J_T)) = b(elements4(j,J_T)) + d(J_T)’;

end

% Neumann conditions

[phi_E,phi_E_dt,delta_E] = quadN(3);

for j = 1 : size(Neumann,1)

J_E = find(Neumann(j,:));

21

P = zeros(3,2);

P(J_E,:) = coordinates(Neumann(j,J_E),:);

P(3,:) = P(3,:) + ((Neumann(j,3)==0)’ * [1,1]) .* (P(1,:) + P(2,:))/2;

G(1:2,:) = P(1:2,:);

G(3,:) = P(3,:) - (P(1,:) + P(2,:))/2;

norm_Phi_E_dt = sqrt(sum((phi_E_dt * G)’.^2));

d = delta_E .* g(phi_E * G)’ .* norm_Phi_E_dt * phi_E;

b(Neumann(j,J_E)) = b(Neumann(j,J_E)) + d(J_E)’;

end

% Dirichlet conditions

ind = find(Dirichlet(:,3));

u(unique(Dirichlet(:,1:2))) = u_D(coordinates(unique(Dirichlet(:,1:2)),:));

u(Dirichlet(ind,3)) = u_D(coordinates(Dirichlet(ind,3),:)) - ...

(u(Dirichlet(ind,1)) + u(Dirichlet(ind,2)))/2;

b = b - A * u;

% Hanging nodes

eval(’load hanging_nodes.dat’,’hn = [];’);

if ~isempty(hn)

M = [1,1,2,-2,0,0;1,1,3,-2,-4,0;1,1,3,-2,0,-4];

B = sparse(3*size(hn,1), size(coordinates,1));

for j = 1:size(hn,1)

B((1:3)+(j-1)*3,hn(j,:)) = M;

end

lambdas = size(coordinates,1)+(1:3*size(hn,1));

A = [A,B’;B,sparse(3*size(hn,1), 3*size(hn,1))];

b = [b;zeros(3*size(hn,1),1)];

v = [v;zeros(3*size(hn,1),1)];

else

lambdas = [];

end

% Compute solution in free nodes

freeNodes = [setdiff(1:size(coordinates,1),unique(Dirichlet)), lambdas];

v(freeNodes) = A(freeNodes,freeNodes) \ b(freeNodes);

if ~isempty(hn)

v(size(coordinates,1)+1:end,:) = [];

end

% Display solution

submeshplot3(coordinates, elements3, v+u, granularity);

hold on

submeshplot4(coordinates, elements4, v+u, granularity);

drawgrid(coordinates, elements3, elements4, v+u, granularity);

hold off

Appendix B: Implementation of right-hand sides

The following functions are examples for realizations of possible right-hand sides uD, g, and f .
They are stored in files u_D.m, g.m, and f.m, respectively.

function val = u_D(x);

val = zeros(size(x,1),1);

function val = g(x);

val = zeros(size(x,1),1);

22

function val = f(x);

val = ones(size(x,1),1);

Appendix C: Matlab routine to display the numerical solution

The following Matlab routines display the numerical solution. We only show the surface draw-
ing function for quadrilaterals for the sake of brevity, the corresponding function for triangles
submeshplot3.m is trivially similar.

function h = submeshplot4(coordinates, elements, u, granularity)

[Y,X] = meshgrid(-granularity:2:granularity, -granularity:2:granularity);

sm_coords_ref = [X(:), Y(:)]/granularity;

% generate triangles on the reference quadrilateral

% as patch doesn’t interpolate nicely, have P1 on the submesh

N = granularity + 1;

pnts = reshape(1:N*N, N, N);

pnts_ll = pnts(1:end-1, 1:end-1); %% lower left

pnts_lr = pnts(1:end-1, 2:end); %% lower right

pnts_ul = pnts(2:end, 1:end-1); %% upper left

pnts_ur = pnts(2:end, 2:end); %% upper right

sm_elems = [pnts_ll(:), pnts_ul(:), pnts_lr(:); ...

pnts_ul(:), pnts_ur(:), pnts_lr(:)];

% generate the patches for each triangle and interpolate solution

vertices = [];

coords = [];

U = [];

inc = size(sm_coords_ref,1);

pm = 1 - sm_coords_ref;

pp = 1 + sm_coords_ref;

p2 = 1 - sm_coords_ref.^2;

psi = [pm(:,1).*pm(:,2), pp(:,1).*pm(:,2), ...

pp(:,1).*pp(:,2), pm(:,1).*pp(:,2)]/4;

psi = [psi, [p2(:,1).*pm(:,2), p2(:,2).*pp(:,1), ...

p2(:,1).*pp(:,2), p2(:,2).*pm(:,1)]/2, p2(:,1).*p2(:,2)];

% compute offsets on edges

edgeOff = zeros(4,2,size(elements,1));

ind1 = find(elements(:,5:8));

if ~isempty(ind1)

[r,c] = ind2sub([size(elements,1),4],ind1);

ind2 = sub2ind([size(elements,1),4], r, rem(c,4)+1);

indM = ind1 + 4*size(elements,1);

tmp = coordinates(elements(indM),:) - ...

(coordinates(elements(ind1),:) + coordinates(elements(ind2),:))/2;

ind = sub2ind([4,size(elements,1)*2],c,2*r-1);

edgeOff(ind) = tmp(:,1);

edgeOff(ind+4) = tmp(:,2);

end

% compute offsets on the center

centerOff = zeros(size(elements,1),2);

ind = find(elements(:,9));

if ~isempty(ind)

contEdge = reshape(sum(edgeOff(:,:,ind),1)/2, 2, length(ind))’;

23

linearmid = mean(reshape(coordinates(elements(ind,1:4),:), ...

[length(ind),4,2]), 2);

centerOff(ind,:) = coordinates(elements(ind,9),:) - ...

reshape(linearmid, length(ind), 2) - contEdge;

end

% assemble the submeshes

for n = 1:size(elements,1)

vertices = [vertices; sm_elems + inc*(n-1)];

K_T = find(elements(n,:));

uloc = zeros(9,1);

uloc(K_T) = u(elements(n,K_T));

coords = [coords; psi*[coordinates(elements(n,1:4),:); ...

edgeOff(:,:,n); centerOff(n,:)]];

U = [U; psi*uloc];

end

% plot

col = mean(U(vertices),2);

hh = trisurf(vertices, coords(:,1), coords(:,2), U, col, ’edgecolor’,’none’);

if nargout

h = hh;

end

The routine to draw the mesh, drawgrid.m, plots the mesh for both the triangles and quadrilaterals.

function h = drawgrid(coordinates, elements3, elements4, u, granularity)

% create the edges

if ~isempty(elements3)

vert = reshape([elements3(:,1:3), elements3(:,[2,3,1])], ...

3*size(elements3,1), 2);

middle = reshape(elements3(:,4:6), 3*size(elements3,1), 1);

else

vert = [];

middle = [];

end

if ~isempty(elements4)

vert = [vert; reshape([elements4(:,1:4), elements4(:,[2,3,4,1])], ...

4*size(elements4,1), 2)];

middle = [middle; reshape(elements4(:,5:8), 4*size(elements4,1), 1)];

end

[verts,I] = unique(sort(vert, 2),’rows’);

mids = middle(I);

% curved edges

I = find(mids);

if ~isempty(I)

offset = coordinates(mids(I),:) - ...

(coordinates(verts(I,1),:) + coordinates(verts(I,2),:))/2;

l = (0:granularity)/granularity;

lx = coordinates(verts(I,1),1)*l + ...

coordinates(verts(I,2),1)*(1-l) + offset(:,1)*((1-l).*l)*4;

ly = coordinates(verts(I,1),2)*l + ...

coordinates(verts(I,2),2)*(1-l) + offset(:,2)*((1-l).*l)*4;

U = u(verts(I,1))*l + u(verts(I,2))*(1-l) + u(mids(I))*((1-l).*l)*4;

24

hh = plot3(lx’, ly’, U’, ’k-’);

else

hh = [];

end

hld = ishold;

hold on;

% linear edges

I = find(~mids);

if ~isempty(I)

lx = reshape(coordinates(verts(I,:),1), length(I), 2);

ly = reshape(coordinates(verts(I,:),2), length(I), 2);

U = reshape(u(verts(I,:)), length(I), 2);

hh = [hh; plot3(lx’, ly’, U’, ’k-’)];

end

if ~ishold

hold off;

end

if nargout

h = hh;

end

Acknowledgments. The first author acknowledges support by the DFG through the priority program 1095

“Analysis, Modeling and Simulation of Multiscale Problems”. The paper was finished when the second

author enjoyed hospitality by the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK. The
support by the EPSRC (N09176/01), FWF (P15274 and P16461), the DFG Multiscale Central Program is

thankfully acknowledged. The third author acknowledges support by the DFG through the project “Platten
und Schalen mit plastischer Verformung”.

References

[ACF] Alberty, J., Carstensen, C., Funken, S. A. Remarks around 50 lines of Matlab: Short Finite Element

Implementation. Numer Algorithms 20, 117–137, 1999.

[ACFK] Alberty, J., Carstensen, C., Funken, S. A., Klose, R. Matlab Implementation of the Finite Element

Method in Elasticity. Computing 69:239-263, 2002.

[BaSt] Babuska, I., Strouboulis, T. The Finite Element Method and Its Reliability Oxford University Press,

Oxford, 2001.

[Ba] Bathe, K.-J. Finite-Elemente-Methoden [Finite-element procedures in engineering analysis]. Springer-

Verlag, Berlin, 1986.

[Br] Braess, D. Finite Elemente. Springer-Verlag, Berlin, 1991.

[BrSc] Brenner, S.C., Scott, L.R. The Mathematical Theory of Finite Element Methods. Texts in Applied

Mathematics, 15. Springer-Verlag, 1994.

[CK] Carstensen, C., Klose, R. Elastoviscoplastic Finite Element Analysis in 100 lines of Matlab. J. Numer.

Math. 10, 157-192, 2002.

[Ci] Ciarlet, P.G. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.

[G] Gordon, W.J. Blending-Function Methods for Bivariate and Multivariate Interpolation and Approximation.

SIAM J. Numer. Math. 8, 158-177, 1971.

[S] Schwarz, H.-R. Methode der Finiten Elemente. Teubner, Stuttgart, 1991.

Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin. Germany.

E-mail address: sba@math.hu-berlin.de, cc@math.hu-berlin.de, hecht@math.hu-berlin.de

25

