MATHEMATICS OF COMPUTATION

Volume 75, Number 256, October 2006, Pages 1599-1616
S 0025-5718(06)01819-9

Article electronically published on June 7, 2006

A POSTERIORI FE ERROR CONTROL
FOR P-LAPLACIAN BY GRADIENT RECOVERY
IN QUASI-NORM

CARSTEN CARSTENSEN, W. LIU, AND N. YAN

ABSTRACT. A posteriori error estimators based on quasi-norm gradient recov-
ery are established for the finite element approximation of the p-Laplacian on
unstructured meshes. The new a posteriori error estimators provide both up-
per and lower bounds in the quasi-norm for the discretization error. The main
tools for the proofs of reliability are approximation error estimates for a local
approximation operator in the quasi-norm.

1. INTRODUCTION

In this work we introduce a class of a posteriori error estimators for the finite
element approximation of the p-Laplacian with homogeneous Dirichlet data

(1.1) —div(|Vu|P?>Vu) = fin Q and wu =0 on 9Q.

Here, 1 < p < oo,  is a bounded open subset of R? with a Lipschitz boundary
011, and f is a given right-hand side. This equation is viewed as one of the typical
examples of a large class of nonlinear problems. Indeed it is believed that essential
difficulties in studies of finite element approximations for nonlinear systems are
contained in (LI)) where many techniques, e.g., the linearization or deformation
procedure, do not seem to work well.

Finite element approximations of the p-Laplacian have been studied extensively
in the literature [Cil [GM] [Ch|. The quasi-norm approach for sharp a priori error
bounds is summarized in [LY1)[LY2]. An important aspect is the a posteriori error
estimation of the p-Laplacian. In the contributions [ODSD) [BAL [BL2, [Pl [V1] there
are gaps in the power between the established upper and lower estimates. Recently
[LYT] [LY2], the quasi-norm techniques and improved a posteriori error estimates of
residual type were derived for the p-Laplacian. Initial analysis and numerical tests
indicate that the new estimators are sharper than the very different existing ones,
and, indeed, lead to more efficient computational meshes [CK] [LY1].

In engineering simulations, a posteriori error estimators based on gradient recov-
ery are widely used; see [AOL [V2] for an introduction and [Cal [CBl [CF1l [CF2] for
their mathematical justification. There seems to be no difficulty in designing and
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1600 CARSTEN CARSTENSEN, W. LIU, AND N. YAN

using such estimators for the p-Laplacian using the standard Sobolev semi-norms,
but, their mathematical justification was found difficult [CK].

The quasi-norm was used in [LY3] to construct a posteriori error estimators
based on gradient recovery, but the construction approach therein is restricted to
uniform meshes. This paper aims at a justification for unstructured and locally
refined meshes with different mathematical ideas. We derive upper and lower error
bounds for the estimators and establish several approximation error estimates in
the quasi-norms for the operator 7 from [Cal (see Definition 2] below).

Efficient and reliable averaging techniques are very popular tools in practice.
But they are also of particular importance for the understanding of a posteriori
error estimation because they show that polution is excluded in the sense that the
local approximation error dominates the global error.

The plan of this paper is as follows. In Section 2 we state some important
inequalities and give the p-Laplacian its variational formulation. In Section 3 we
set up the finite element approximation for the equation. We also introduce some
quasi-norms and related results. In Section 4, we introduce the weighted Clement-
type interpolator and we prove quasi-norm estimates for the interpolation error. In
Section 5, we construct a posteriori error estimators based on quasi-norm gradient
recovery on unstructured meshes, and we prove upper and lower error bounds for
these estimators. Numerical experiments [CK] proved that the averaging estimators
were surprisingly accurate in practice —quite in agreement with linear situations
in [CB| ICF1 [CEF2]— provided the error measure is the quasi-norm.

2. PRELIMINARIES

Throughout this paper we adopt the standard notation W"9(Q) for Sobolev
spaces on 2 with norm || - [[ym.¢(q) and semi-norm |- [yym.a(q). We set W™ ?(Q) =
{w € Wm9(Q) : w|sqa = 0}. We denote W™2(Q) by H™(2). In addition ¢ or
C denotes a general positive constant independent of h and A < C'B abbreviates
A<B.

The generic constant C' is only allowed to depend on p, ), and the aspect ratio
of the finite elements or the polynomial degree of piecewise polynomials under
consideration.

The trace theorem [Al BS| for v € W4(Q) and 1 < ¢ < oo reads

vl zaon) S llvllLa) + [vlwra)-

For a triangle K € 7" and for all v € W19(K), this is

_1 1—1
[0l Laor) S bk vllLacr) +hie “lolwrag).
We need a quasi-norm version of the trace theorem for polynomials.

Lemma 2.1 (Lemma 3.6 in [LY2]). Let K € T" and let v be a polynomial of degree
< k. Then

(2.1) hK/ (|vuh|+|vu\)p*2|vu\2dmg/ ([Vun| + [Vo|)?~%|Vo|? da.
oK K

The generic constant depends only on k and the aspect ratio of the finite elements.
O

A display of elemetary (but sometimes tricky) estimates in R™ that play an
essential role in our error analysis concludes this section.
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Lemma 2.2 (Main tools for quasi-norm from [LY1], BL3]).
(A) Foralla, £, 1>0,0 >0, it holds that

(a+&)P2n <0 (a+ P2+ 0(a+n)P 22,
where
1 fl<p<2 60€[l,0) orif2<p<oo, 6e€(0,1),
’7 =

1 f1<p<2,0€(0,1) orif2<p<oo, §ell,00).

(B) Foralla,&n >0, and § > 0, it holds that
& < 6P (@ + P2 + S(a + )P
where (3 is such that 67 = max{6=", 6"/} and 1/p+1/p = 1.
(C) Forallg,neR™ and a > 0, it holds that
(a+ I+ nDP2IE + 0 S (a+ €)1 + (a + )P~ |nl*.

The generic constant depends only on 1 < p < co.

3. FINITE ELEMENT APPROXIMATION OF THE P-LAPLACIAN

In this section we consider the finite element approximation of (WP) and intro-
duce some quasi-norms. Given f € L?(2), the weak formulation of the p-Laplacian
reads (WP) seek u € Wy?(Q) with

(3.1) a(u,v) = (f,v) for all v € Wy P(Q).
Here and throughout this paper,

a(u,v):/ |VulP~2Vu - Vodr and (w,v):/wvdx.
Q Q

It is well established that there exists a unique solution to (WP).

Let T" be a regular triangulation [Ci, BS] of €2 into disjoint open regular triangles
K, so that Q = Uxern K . Each element has at most one edge on 92, and K and
K’ have either only one common vertex or a whole edge if K and K’ € T". Let
hx denote the maximum diameter of the element K in T" and let pk denote the
diameter of the largest ball contained in K. We assume that there is a regularity
constant R of T", independent of h, such that 1 < maxycpn(hi/pr) < R. Let
h = maXpecrh hK.

Associated with T" is a finite dimensional subspace V" of C(Q"), such that x|x
are linear functions for all y € V" and K € T" and

Vi ={veV":v=0o0n0Q}.
The weak formula of the finite element approximation for [&I)) reads (WP") seek
up € Voh with
(3.2) alup,vy) = (f,vp) for all vy, € V.

One of the key ideas in our approach is to introduce some quasi-norms to handle
the degeneracy of the p-Laplacian in order to obtain sharp error bounds. We briefly
introduce a quasi-norm and some relations between it and the standard Sobolev
norms. Given v,w € W1P(Q), set

(3.3) w2, z/ Vol2(|Va| + Vo) P2 da.
Q
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1602 CARSTEN CARSTENSEN, W. LIU, AND N. YAN

Proposition 3.1. (i) It holds that |v|(yp) > 0, and, when v € Wol’p(Q)7
|U|(w,p) =0 Zf and OTZly ’Lf’U =0.

(ii) It holds that |vy + val(wp) S V1l (w,p) + V2] (wp) for any vi,va € WHP(S).

(iil) Furthermore, for 1 < p < 2, it holds that

(3.4) olwrr) S (Jwlwre@), [olwre@) 0l wp) ond [0ff, ,) < Vs q)-
(iv) For2<p< oo, s € [2,p], r=5(2—p)/(2—s), it holds that

(3.5) oy < 101fwp < Cllwlwir @), [vlwir@) vl q)-

Proof. The conclusion (ii) can be proved with Lemmal[Z2|C). The rest of the propo-
sition can be shown as in [BL3]. O

Remark 3.1. Throughout an a priori error analysis, w is chosen to be u, the solution
of (WP). To ensure the computability of the a posteriori error estimators it is
replaced uy, (or some postprocessed approximation of w) [LY1l [LY2]. A triangle
inequality yields

[ = tnlwp) S |t = unlnp) S [u = hlp)-
We shall simply write |- |(,) as |- [y when no confusion is likely to be caused.

Remark 3.2. The essential relations between the quasi-norm and the equation are
reflected in the following inequalities. If u solves (WP) and v € W1P(Q), then

(3.6) lu — v|%u,p) Sa(u,u —v) —alv,u —v).
For any 6 > 0, v,w € WP(Q), and ~ from Lemma Z2(A),
(3.7) la(u, w) — a(v,w)| < 6|u— v\%%p) + 9|w\%u7p).

It follows from (B.6)-((.7) that, for any u,v € W1P(Q),
a(u,v —u) —a(v,u —v) < |u— v|%u,p) Sa(u,u—v) —a(v,u —v).
Thus the quasi-norm is naturally related to the total energy difference.

Remark 3.3. The relations [B.6)-([B1) are important to prove the optimal a priori
error bound in the quasi-norm [BLI1l [LB5]

—upl?. < mi — o2, < h?
U—u min |u —wv
fu—unlgy S min fu—vilg) S
when u is smooth enough, where
= vl = lu—vff,,) = /Q(\Vul +[V(u—0))P*|V(u— )| da.
Thus when 1 < p < 2, one has the optimal a priori error bound in WP,

[|w— Uh||W1=P(Q) S lu— uh|(:0) S he

Remark 3.4. In [LY1l LY2], the quasi-norm has been used to derive improved a
posteriori error estimates for the p-Laplacian. For instance, let ujp be the finite
element approximation of [B.1]) and let 1/p+ 1/p’ = 1. Then

M+ s e Slu—unlfyy St 5+ e
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A POSTERIORI FE ERROR CONTROL FOR P-LAPLACIAN 1603

with higher order terms €; and €5 and

noo= Z/K(|Vuh|p_1+hK|f|)p/_2h%<|f|2d$7
K

(3.8) B o=y / (VP + | Al 242 da,
YK

A = ((VunP"2Vun) gr — ([Vun|P 2 Vup) g2 )n,

where n is the unit normal vector on | = K} N K7 outward K.

4. NEW RESULTS ON QUASI-NORM APPROXIMATION

This section establishes essential approximation error estimates in the quasi-
norm. Here we take a general approach so that the arguments can be applied to a
more general class of degenerate systems of Remark

Definition 4.1. For z,y > 0 and 1 < p < oo, let

2 —2 :
| y=+yP ifx+y >0,
G(x,y).{o ife=y=0.

Remark 4.1. Without further (explicit) notice, we shall use that G(z, y) is monotone
increasing and convex with respect to the variable y.

First, we prove a quasi-norm version of the quotient theorem.

Lemma 4.1. Let Q be a nonempty bounded convex open set in R2. Let 1 < p < 0o
and f € (WHP(Q))* with R N Ker f = {0}, where R is the space of functions
constant on the domain ). Then there exists a constant ¢; = ¢ (f,p,Q) such that,
foralla€ R, a>0, and v € W1P(Q),

/G(a, |v|)dx§ch(a,|f(v)|)+cl/ G(a, |Vo|) dz.
Q Q

Proof. We argue by contradiction and suppose that the lemma is false. Then there

would exist a sequence v; in WP(Q) with §; := ||vj||w1.a) > 0, ¢ = min{2, p},
and a sequence a; of nonnegative real numbers such that
@ Gl )+ [ Gl ulde <1/ [ Glay oo

for all j € N. We observe in any case there exists a u € W14() with
(4.2) uj = v;/0; satisfies |luj|wra) =1, wu; = uin WHI(Q).

Here we have chosen a weak convergent subsequence with Banach Alaoglu’s theo-
rem. In the first case we suppose that there exists a constant v, 0 < v < oo, with

(4.3) a; <vyd; forj=1,2,3,....

At least we suppose (3] for a subsequence we have not relabelled. If 1 < p < 2,
then G(a,z) < aP for all > 0. Therefore, even without (@3],

/Q Glay /3y, lus) do < |20 < 1.
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1604 CARSTEN CARSTENSEN, W. LIU, AND N. YAN
If 2 < p, then G(-, |u;|) is monotone increasing. Hence, (£2)-(E3) yields
[ Gtassituhde < [ Gl P e

< Iy + sl 0y < (14719277,

Hence, for all 1 < p < oo, [, G(a;/d;, |u;|) dz is bounded. A scaling of I then
shows

(4.4)

J—00

(4.5) fim | Gla;/0;,[Vug)) dv = Tim Gla;/0;,1f(uj)]) = 0.
If 1 < p <2, a Holder inequality with exponents 2/p and 2/(2 — p) leads to
Vel = [ 19003/ + Va6 + [Ty P22 o

(4.6)

IN

a;/d;, |Vu;|) dz)P/? aj/d; ui|)P dx) P2,
([ Gas/5,. 19w a2 [ (a6 + 9,7 do)

The last factor is bounded as j — oo by ([£2)-(@3) and the second to last factor
tends to zero by ([I). Again, for 1 < p < 2 (when G(.,|f(u;)|) is monotone
decreasing), ([AH) shows that G(v, |f(u;)|) tends to zero and, hence, so does | f(u;)|.
Consequently,

(2.7) Tim [y o) = lim [ (a;)] =0.

So far we established (1) for 1 < p < 2. For 2 < p < oo, |Vu,|P < G(a;/6;, |Vu;|)
and |f(u;)|P < G(a;j/é;,|f(u;)|) and so [@E) implies (£1) directly. From [.7) we
deduce a contradiction to [@2): Since W14(Q) is compactly embedded in L9()
we have u; — w in L9(Q). With @), u; — u in W9(Q) and so [Julwr.a@) = 1.
Conversely, u is constant (as Vu; — 0 in L9(Q)). Since f is a bounded linear
form, f(u;) — f(u) and f(u) = 0. Since u € Py(2) NKerf, we have u = 0. This
contradiction with |[u|y1.4(q) = 1 concludes the proof in case (E3).

In the remaining second case we suppose that a;/d; is not bounded (even not
for a subsequence). Hence, lim;_, a;j/d; = +00. One can assume that

(4.8) d; < va; for ¢ = min{2,p} and for j =1,2,3,...

for a constant v (and at least for sufficiently large j which we have not relabelled).
If 1 <p<2 weuse (1+0d;/a;lu;|)P~2 < 1. If 2 < p < oo, we use d;/a; < ~. This
leads to

(4.9) 1/1'/9(1+5;‘/%‘|Uj|)pfz|uj|2 dx

{ HWH%?(Q)/j ifl<p<2,

< . .
(sl o) + 122/ if 2 < p < oo.

Since ¢ = min{2,p} and [ju;||w1.4q) = 1, we conclude that (£9) tends to zero as
j — oo from embedding. Therefore, a scaling of ([@.1]) yields

(4.10)  lim [ (1+0;/a;|Vu,|)P~2|Vu;|? do

j—o0 Jo
= jlggo(l + 05 /ag | f (uy))P2( f (ug)]? = 0.
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If 2 < p < o0, we directly deduce [T for ¢ = 2 and finish the proof as in the first
case since |luj| g1y = 1. If 1 < p <2, we argue with a Holder inequality analogy

to ([@6]) and infer
||wj||2Lp(Q) < /Q(l +6;/a;|Vu;|)P~3Vu, |* da (/Q(l +3;/a;|Vug|)P d)?P.

The last factor is bounded according to (@8] and [|u;|w1.»(q) = 1. This and @I0)
show (@7) with p = ¢ < 2. The proof is then finished as in the first case. O

Remark 4.2. Lemma [£1]is employed in connection with a scaling argument. If we
scale the domain € from a reference size 1 to a patch-size h, the first term obtains
the factor h? from a change of variables while the last term in values ah |Vv| instead
of [Vuv|. With a different a, this yields

/G(a,v)de/G(a,MVv\)dfc
Q Q

for all v € WP(Q) N Ker(f) and h = diam(f2); the generic constant depends on
the shape of €2 but is h-independent.

Recal a weighted Clement-type interpolation on the finite element space V.
Definition 4.2 (|[Ca]). Let D be the set of nodes,
A={z€D: 2no0 =0}
Given the nodal basis function ¢, of z in V", set w, = {z C Q: ¢.(x) > 0},
Y, = L)Oz/'(/J and ¢ = Z‘pz-
zEA

Then, for all v € VVO1 P(Q), define the interpolation of v by

ﬂv:sznpze‘/g‘, vzz/wzvdx//gozdx.
Q Q

zEN

It is essential for later analysis to establish approximation error estimates in the
quasi-norm for the operator .

Lemma 4.2. For any 1 < p < oo and positive integers d and n there exists a
constant cy = c(p,d,n) such that, for all ay,as,...,a, € R%, it holds that
n

j—1 n—1
j=1k=

G(lajl,la; —ar) <e2 Y min G(|aml, |arsr — acl).
1 = m=1,...,n

Proof. Let o := (a1+---+a,)/n € R and b; := aj—a € R% so that by +- - -+b,, = 0.
Define

j—1

flasby, ... by) = G(lo+ bl [b; — bil),

1 k=

—

3 .
HMs

gla;by,....by) = in G(la+ bnl, [bec1 — bel).

7 m=1,....n

~
Il

Observe that g(«, -) is positive for nonzero arguments on

X::{(blﬂ"'abn)GRan; bl++bn:0},
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1606 CARSTEN CARSTENSEN, W. LIU, AND N. YAN

since g(a; by,...,b,) = 0 implies by = by = --- =b,. Let B := {(by,...,b,) € X :
|b1]? + -+ + |bn|? = 1} denote the unit ball surface in X. Then, for any 3 € R4,

c(B):= max  f(B;b1,...,b,)/9(B;01,...,bn) < 00,

(b1,...,bn)EB

since the denominator is positive and f(«;-), g(«; ) are continuous on the compact
set B. The same argument shows

g1 n—1
Coo = b. —b 2 b b 2<oo_
(b1s-ebn )EX\{O}Zlg‘ j — bl /;| 01— by

Note that limsup g ¢(8) < co < 00 and so ¢(f) is a bounded continuous
function in 8 € R%. For all a1,...,a, € R? we have a € R?, and (by,...,b,) € X

as above. Since f and g are positively homogeneous functions we have, for A\ :=
(1o 4+ b )2 > 0,

Flasby, .. b)) = Af(a/Aibi/A, ... b /N)
S Ag(a/A b/, ba/A)
S 9(a; b,y by). O

Let [w]; = w|g; — w[gz along | = K} N K?. Then, we have the following
interpolation error estimates for the operator 7 in the quasi-norm.

Lemma 4.3. Let ™ be the operator of Definition [£2, 1 < p < oo, up € Vj,
ve W, P(), and K e T". Set T, == {K € T" : K Cw.}, U&. == U{0K : K €
7.}, and let [Ouy,/On.| denote the jump of the discrete normal fluzes across inner
element boundaries. Then it holds that

(4.11) /KG(|Vuh|,|vf7rv|/hK)dx+/ G(|Vup|, V(v — mv)|) dz

S X ([ covmbiwydr s pin [ 60Tl [ onel]) ds)

zEANK

and (where ) 50_q denotes a sum over all interior edges 1)

Z/ (| V), |v77rv\/hK)dx+/ G(|Vuy|, |V (v — 7)) dz

KET}‘
(4.12) S [ G(Vul Vel da
Q
. ou ou
+ 3 min [ (Tl GG e
1NON=0 niz

Proof. In the first step, we show that the first term of the left-hand side of ([@ITl)
is bounded by the right-hand side. Fix a := Vuy|g and set v, := (mv)(z) for all
z € D. Since (¢.).eank 18 a partition of unity on K, and G satisfies a triangle
inequality in the sense of Lemma 22/ C),

/ G(|Vun, v — w0l /hg)dz = / Gllal,| S (v — vapa)|/huc)de

K zEANK

(4.13) < ¥ / Glal, v, — vog.|/hr) de
zEANK
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Since K C w,, we have, for any fixed z € AN K,

(4.14) /KG(M,\MbZ — v, /hK) dx < G(lal, v, — v.0.|/hK) d.

Wz
In the first case, we suppose 1, = ¢, i.e., all nodes in @, are free nodes. A scaled
version of Lemma BT with w := (v —v.)/hk, f(w) = [ @.wdz, and 1, = ¢, and
02| <1 yield

G(lal, [vz —vz:|/hi ) dx < G(lal, [v — vzl /hi) dx

Wz Wz

(4.15) < G(|al, |Vv|) dz.

~
Wz

In the remaining second case, ¥ Z 1 on w, and so, dw, N IR includes at least one
outer edge E. With f(w) = fE wdx, we deduce from Lemma ] that

Glal, [v=| /b )de < | G(lal, [vl/hi)dz S [ G(|al, [Vol)da.

Since |v.| S| £, v dx| and G(|al,-/hk) is convex, Jensen’s inequality shows that

Glal, josl/h) de < [ Gllal, | devdel/hic) dy
(4.16) w= e w=
< / ][ G(Jal, -0] /i) dedy = / G(lal, =0l hxc) de.

Here and throughout, the sign J%; represents the integral average over w,. The
triangle inequality of Lemma [2Z2)C), (£I5)—(@.I4]), the monotonicity in the second
argument of G, and the inequalities 0 < ¢, < 1,0 < ¢ < 1 prove that

(4.17) / Glal, |z — vapsl /) di < / GJal, Jvw | /hu) d

Wz

+ [ G(al,[vz:l/hk)dz S [ G(lal,[Vo]) da.

Notice that a + |Vup, — a| = a + |Vuy| = |Vuy| + |a — Vuy,| and so
G(lal,[Vo]) < G(lal, [Vo] +[a = Vu|)
= (la| + |a — Vaup| + |[Vo))P72(|Vv| + |a — Vuy|)?
(4.18) < (|Vup| + Vol + |a — Vug|)P~2(|Vo] + |a — Vaug|)?
= G(la],|Vv| + |a — Vuyl).
The triangle inequality of Lemma 2:2(C) shows that
(4.19) G(lal, [Vo]) © G(IVunl, [Vv]) + G([Vunl, |a = Vuy|) dz.

This, (EI5), and ({I7) result in
(4.20) / G(la|, v, — vp.|/hK) dx

fJ\/
w2

This and Lemmal.2 with a; = Vuy |k, for Ki,..., K, € T" with KU - UK, = @,
and {K; N Ks,...,K,_1NK,} ={FE € £ : E C ©,\00} proves that {{.I3) is

G(|Vupl,|Vv|) dx + / G(|Vupl, la — Vug]) dz.

Wz
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1608 CARSTEN CARSTENSEN, W. LIU, AND N. YAN
bounded by the right-hand side of (£II]). The second step is to show that the
second term on the left-hand side of (£I1) is bounded in this way as well. To

this end, we let ¢ be the integral mean of v on K. The triangle inequality of
Lemma [Z2)C) shows that

(4.21) / G|V unl, |V (v — 70)|) da
K
< / G(|Vun), [Vo]) do +/ G(|Vunl, |V (v — o)) da.
K K
The first term on the right-hand side of ([{.21)) is already bounded as asserted. To

estimate the second term, note that mv — ¢ is an affine function on K. Then an
inverse estimate shows that

(4.22) |V (mv — ¢)] 5]{<|m}—c| dx/hg

(f represents the integral average). Jensen’s inequality leads to

A

/KG(\Vuh|,|V(7rv—c)\)dx /K]{(G(Vuh|,|7rv—c|/h;<)dmdy

/ G(|Vupl|, |mv — | /hk) dz.
K

The triangle inequality of Lemma 22(C) yields

(4.93) /K G(|Vun, [7v — ¢l /hic) da

< / G(IVunl, Jo — wol /) di + / G(Vunl, Jv— el /hrc) de.
K K

The first term on the right-hand side of ([23)) is already shown to be bounded by
the right-hand side of ([@IT]). The same conclusion for the second term follows from
Lemma BT with f(w) = [, wdz and Q = K as in @I5):

(4.24) / G(IVunl, v — el /hxe) da < / G(IVunl, Vo)) da.
K K
Then {21)-(@.24) imply that
(4.95) / G(|Vun|, [V (v — 70)]) da
K

5/ G(|Vuh|,|Vv|)dx+/ G(|Vun, [v — 70| /hic) da.
K K

Hence the desired estimate of the second term on the left-hand side of (£I1]) follows
from ([@28) and the first step of the proof. O

The next lemma establishes a quasi-norm estimate for the inner product of a

function and an interpolation error. Let h, = maxgc,, hx denote the maximal
mesh-size in the patch w,.
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Lemma 4.4. For any § > 0,1 < p,p’ < oo with 1/p +1/p' = 1, up, € Vj,
v e WPP(Q), and f € W' (Q) it holds that

/f(v—m;)dx < Cé/G(|Vuh|,|VU|)dx
Q Q

(4.26) +C)Y /

(IVun P~ + B2V > WAV 2 da
2NV Wz

+ 003 min [ G(ITunlicl. (Oun on) s,
gz

7.
zEA
With 1) of Lemma &3], it holds that

/f(v—m)dw < CO) Y /(|Vuh|”_1+h§<|Vf|)”/_2h‘§<\Vf|2dx
Q K

KeTh

(4.27) tos Y /(|Vuh|+|Vv|)p_2|Vv|2dx+C(5ﬁ2.
Kerh VK

Proof. First note that [(v¢, — v.¢.)dx = 0. Thus, with the integral mean f, :

£, f(z)dz,
/Qf(vfm;)dx = ;E;\/Qf(vwzvchz)dfc
(4.28) = 3 [ - £h (et~ v e do
z€N YWz

Lemma 22 B) allows an estimate of the product and so

/ (F = F ) (0 — v02) s da

(4.20) < 57 / (P~ 4+ 1f = fulho)? 212\ f — .2 da

z

+6 G(|a|,|v¢z _Uz@z)l/hz>d‘r'

Wz

Here a is one of the discrete gradients |Vuy| on w,. Lemma ] will be employed
for f — f. and the functional g(w) = fwz w (so it vanishes for w := f — f,). Notice

that a is replaced by |a|P~! and p is replaced by p’. Then we obtain

(4.30) / (a4 1f = folha)? ~2121f — £ da

S [ el + RV ARV o
Arguing as in proving (ZI4)-@IT), we deduce from ([E29)-Z30) that
@31) [ (F= Fhe (00— vap) s d

<5 / G(lal, |Vo]) dz + 57 / (P~ + K2V £ 2R3V £ de.

z z
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1610 CARSTEN CARSTENSEN, W. LIU, AND N. YAN

So far, a is a constant vector on w,. Depending on p’, we choose a so that |a| is
minimal or maximal amongst (|Vuy|k : K € T), and thus

/ (P~ + B2V F)Y 2R £ da

= / (IVun[P~! + BIIV F)P 2RV f | de

z

Arguing as in the first step of the proof of Lemma 3] we have

G(la|,|Vu|)dz < G(|Vup|, |Vv|) dx

~
Wz Wz

+ min / G(|Vup|k|, [Oun/0n.]) ds.
UE.

KeT,

Thus the desired estimate follows from (£3I]) and the above two inequalities. O

Remark 4.3. Tt follows from the above proofs that Lemmas IHZ4] hold for any
continuous function G(-,-) such that it is increasing (decreasing) as p > 2 (p < 2)
in the first argument, and is convex and increasing in the second argument.

5. QUASI-NORM A POSTERIORI ERROR ESTIMATORS

In this section we construct a class of a posteriori error estimators based on
gradient recovery and derive a posteriori error estimates.

Definition 5.1. For any v;, € V", let its gradient recovery Gjv;, be defined by
Jz
Gpop = Z Ghvh(z)cpz with Ghvh(z) = Z Oéi(VUh)Kg.
z€D j=1
Here Uj; KJ = ., ¢., w,, D are defined in Definition @2 and 0 < o < 1,
j=1,...,J., are such that 7=, of = 1.

Remark 5.1. There are several possible selections on . For example,
(1) af = meas(K7)/meas(w.). That is, Gyup(z) = [ Vuy/meas(w;).

(2) of =1/J.. That is, Grun(2) = (3721 (Vun) )/ -

Using the above gradient recovery, we can construct some a posteriori error
estimators on any regular meshes, with upper and lower error bounds.

Theorem 5.1. Let u and up, be the solutions of BIl) and B2), respectively. Let
1<pp <ocowithl/p+1/p=1and f € Wl’p/(ﬂ). Then,

|U - uh|(2p) S T]2 + 627

where

61) =Y /(|Vuh|+|Vuh—G;Luh|)p_2|Vuh—Ghuh|2da:,
Kerh 'K

=y /K (V[P + B2V A1) 2 h |V 2 do.

KeTh
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Proof. Let e = u — uy, and let me € V{* be defined in Definition @2 It follows from

ED). G2), and (BB) that

clu— uh|fp) < /(|Vu\p_2Vu — |Vup|P~?Vuy) Ve d
Q
(5.2) = / (|VulP=2Vu — |Vuy, |P~?Vuy,) V(e — me) dx
Q
= / fle—me) — Z / |Vuh|p_2%(e —me) dx
Q Kerh /9K on
= L+D

Lemma (4] leads to

BoS Y [T iV R b
K

KeTh
(5.3) 5 S /(|vuh|+\ve|)P—2|ve\2dm

KGT’L K

o S uin [ (V4 GG da
lm{;m:(l)Km?é K

< 62+51(|u—uh|?p)

b 3 auin [ (Tun] GG o).

1noaey KNE#0JK on on

Define A; as in (39). With Lemmas 1] 22 and 3] we infer that

I, = - Z/ |Vuh\p_2%(e—7re)dx
Kern 9K on
= - Z Ai(e —me)ds
1noQ=0"!
> / |Adl(hidle — me| + |V (e — me)]) da
1noa=p* K1 VK7

(IVup [P~1 + |A)P 2 A2 da

A

“%
i M
—

+0y Y /(|Vuh|+h;(1|e—7re|)p_2h;(2|e—7re|2dx
Kerh 'K

s 3 [ (Tl + VG = m )2V~ me)

KeTh

S / (IVun|P~" + A" 2 A7 + bl — unffy) da
1noa=0* KiUK?
. ou _9,10U
w8 30 min [ (Fun]+ GG da
inon=p < 1#0 K
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1612 CARSTEN CARSTENSEN, W. LIU, AND N. YAN

Noting that for all K with K N1 # 0, it holds that

/K(\VUH’H + A 2 AT da

Oun
on

< / (IVun[P~1 + |[|Vun P2 Vun]i )P 2| Vun P2V )i da
K

8’U,h

:/(|Vuh\p_1+\[\VUh|p_2 D T e R
K

on

< /K (VunP~ + ([ Fun| + [V la )P [Vur i )P 2
x (| Vun| + |[Vun)i)*P~2|[Vup)i|? do
- / QUVun| + [Vunlu)P 2 [Vur s de,
K

where

Q= (" + (a+ b)) (a+b)P>
= (1 +bfa)'=? +1/(1 + a/b))"

and
a = |Vuh\l, b:.= |[Vuh]l|

It is directly verified that Q < 2P 2 for 1 < p<2<p < oo. When 1 < p’ <2 <
p < oo and a < b, it holds that

Q< (1+a/b)> 7 <227
Otherwise, when 1 < p’ <2< p < oo and a > b,
Q<1+ a/b)(l—p)(p/—Q) = (1+b/a)P"2 < 2P72
Hence, @ < 1. Utilizing @ < 1 above, we infer that
[ ™ 2 e
KUK}
< / (IVun| + |[Vunli P2V up)i|* da.
K}UK}
It follows from Lemma that
/ (IVun| + [Vunli)P2[[Vun]i|* da
K}UK}

< min /(|Vuh|+|[wh}l|)1’*2|[vuh]l\2dx.
Kni#0 J g
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Moreover, note that Gpuy, is continuous on . It follows from Lemma [2.1] that for
any edge [ with [ N 99 = 0, we have

nin / (IVun| + [Vun]i))? =2 [Vun)|? d
KNl#0 J K

(54) = min / (IVun| + |[Veun — Grunli)?2|[Vun — Guunli|? dz
Knl#0 J g

S / (\Vuh|+|Vuh—Ghuh|)p*2|Vuh—Ghuh\2d:c.
K}UK}?

Then, it follows from (&3)—(E4) that

(5.5) LS E+a(lu—ulg) +n7),
(5.6) L S 0+ 8(lu—uplfy +n°).

Then (E1) follows from (G.2)), (CH)—(E.0), and 61 = d; = ¢/(4C). O

Remark 5.2. The above estimates require f € wie' (©), which may not be always
true in an application. It follows from the proofs of Lemma 4] and Theorem [B.1]
that the estimates still hold for the general case f € )i () as long as one replaces
the term €2 in Theorem .11 by

A= 3 [ OVul 17 - Sl il - P
Kern 'K
with f = [ f dz/meas(K).

Theorem 5.2. Let u and uy, be the solutions of B1) and B2), respectively. Then
we have the lower bound

(5.7) NS |u—up|p +e with € = kinf . |u — v’,§|(p),
vy €V

n defined in Theorem B.11, the space Py of polynomials of the k-degree, and
VE={vF e CYQ): VK € T", vf|x € P}
Proof. Set Sk = Ugini K' for any K € T". Note that for each 2 € D,

Jz

Ghuh(z) = Z ai(vuh)Kg,

j=1
where Zj;l ad = 1. Then, on the element K,

Jz

(Vun)e = D 02D ad(Vun) o)l

2NK#0 Jj=1
I
= | Z ¢z(zai((vuh)1{*(vuh)xg))|
NEAD G=1

Y (Vun)k = (Vup)r|-

K'CSk

|Vuh — Ghuh|

A
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Moreover, |Vuy —op Vuy| is less than or equal to a convex combination of |(Vup) g —
(Vup)k|. Since o(z,y) is monotone increasing and convex in y, we have

’172 = /(|Vuh\ + |Vuy, — Ghuh|)p‘2|Vuh — Ghuh|2dx

N

> > / (IVun| + [Vun = (Vup) k)P~ 2 Vg, = (Vug) ko | da.

KeTh K'CSk
It follows from Lemma 2] that

#os 3 S min [ (Vunl Vsl Van) P da
K

Kelh 1CSx KNI#)
< min / (1Vun| + |[Vunli P2 [Vunl? da.
Inoa—g KN K

It follows from Lemma 1] that, for any v} € V¥,

P < min / (V] + [ Funli)?~2([Vun)|? da
inaa=p KN K
= Y min / (V] + 119 (un — o))V (un — )2 de
inoa—p K0Sk
S X [ (Tl T — o))V - )
inon=p ’ KIUK?
S 3 [Vl + 1V = ) (= o) P e

KeTh

Hence

DY / (IVul + ¥ up — ) )P~V (aap — ) ?

KeTh
+ Z/ (V] + [V (of — )2V (of — u)|? da
KeT}L
S \“—Uh|(p) + ()2 O

Remark 5.3. By combining Theorems 5.1l and 5.2, we have that |u — up|(,) —
N < |u —uppy + €, where 7 is the a posteriori error estimator defined in Theorem

b1l
Z/ (|Vun|P~* + B |V )P 2R |V f|? de,

KeTh
and, with V}¥ from Theorem [£.2] €* = infeeyn [u— vl f € WL (Q). Then,
2— - -2
2 < (|uh|W1pp @ Th° 2|f\f’p,’9)h4|f\wl ) S <ht forl<p<?2,
~) ¥ |f|W1p(Q < n2 for 2 < p.
Similarly, if u € W3P?(Q) and vh is the piecewise quadratic interpolation of wu,
(6*)2 < ||V(u - Uﬁ)“ip(g) S th‘umvs,p(g) for1<p<?2,
[V (u— UE)H%p(Q) S h4‘“|%/vs,p(g) for 2 < p.
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The conclusions above can be proved under weaker conditions. For example, it can
be proved that (see [LY2])

& = oh?) ifueW' PP(Q) 1<p<20ruecWP(Q),p>2,
e = oh?) i fel’(Q),1<p<2orfeW?’ 17 Q) p>2
Furthermore, using the results in [EL], it can be shown that ¢ = o(h?) and €* =
o(h?) if

/ |VulP~2|D?ul? de < oo,
Q
and this condition is indeed achievable; see [EL] for details.

Remark 5.4. The idea used in constructing n can be generalized to obtain new a
posteriori error estimators. For example, one could define the a posteriori error
estimator

2= /K (Vun] + 19 (un — uf))P~2|V (u, — ) e,

KeTh

where v} is the solution of a local approximation problem of (WP) as defined in
the linear case [V2].
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