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Abstract. Residual-based a posteriori error estimates were derived within one
unifying framework for lowest-order conforming, nonconforming, and mixed finite
element schemes in [C. Carstensen, Numerische Mathematik 100 (2005) 617-637].
Therein, the key assumption is that the conforming first-order finite element space
V c

h
annulates the linear and bounded residual ℓ written V c

h
⊆ ker ℓ. That excludes

particular nonconforming finite element methods (NCFEMs) on parallelograms in
that V c

h
6⊂ ker ℓ. The present paper generalises the aforementioned theory to more

general situations to deduce new a posteriori error estimates, also for mortar and
discontinuous Galerkin methods. The key assumption is the existence of some
bounded linear operator Π : V c

h
→ V nc

h
with some elementary properties. It is

conjectured that the more general hypothesis (H1)-(H3) can be established for all
known NCFEMs. Applications on various nonstandard finite element schemes for
the Laplace, Stokes, and Navier-Lamé equations illustrate the presented unifying
theory of a posteriori error control for nonconforming finite element methods.

1. Unified Mixed Approach to Error Control

Suppose that the primal variable u ∈ V (e.g., the displacement field) is accom-
panied by a dual variable p ∈ L (e.g., the flux or stress field). Typically L is some
Lebesgue and V is some Sobolev space; suppose throughout this paper that L and
V are Hilbert spaces and X := L× V . Given bounded bilinear forms

(1.1) a : L× L→ R and b : L× V → R

and well established conditions on a and b [16, 20], the linear and bounded operator
A : X → X∗, defined by

(1.2) (A(p, u))(q, v) := a(p, q) + b(p, v) + b(q, u),

is bijective. Then, given right-hand sides f ∈ L∗ and g ∈ V ∗, there exists some
unique (p, u) ∈ X with

a(p, q) + b(q, u) = f(q) for all q ∈ L,(1.3)

b(p, v) = g(v) for all v ∈ V .(1.4)
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Suppose (ph, ũh) ∈ L× V is some approximation to (p, u) and define

ResL(q) := f(q) − a(ph, q) − b(q, ũh) for all q ∈ L,(1.5)

ResV (v) := g(v) − b(ph, v) for all v ∈ V .(1.6)

Here and throughout, ũh is some continuous and not necessarily discrete function
established as the key ingredient in [23]; however, the subindex in ũh refers to the
fact that ũh might be closely related (or designed with some post-processing) to
some discrete function uh and hence that ũh is on our disposal. Since A : X → X∗

is an isomorphism, there holds

(1.7) ‖p− ph‖L + ‖u− ũh‖V ≈ ‖ResL‖L∗ + ‖ResV ‖V ∗ .

Here and throughout, an inequality a . b replaces a ≤ C b with some multiplicative
mesh-size independent constant C > 0 that depends only on the domain Ω and
the shape (e.g., through the aspect ratio) of elements (C > 0 is also independent
of crucial parameters as the Lamè parameter λ below). Finally, a ≈ b abbreviates
a . b . a.

Remark 1.1. Note that (1.3)-(1.4) are a primal mixed formulation with L := L2(Ω)m×n

for the Laplace, Stokes, and Navier-Lamé equations under consideration. Through-
out this paper, the discrete component ph is derived from uh, e.g, ph = ∇T uh in
case p = ∇u for the Laplace equation; while uh is solved from the discrete problem
in the displacement-oriented formulation (Sections 4-6 below).

The examples in [23] include conforming, nonconforming and mixed finite ele-
ment schemes for the Laplace, Stokes, and Navier-Lamé equations. This paper will
consider such applications in Section 4, 5, and 6 below for with focus on NCFEMs
displayed in Table 4.1, 5.1, 6.1, and 6.2. The applications of the present theory to
mortar and discontinuous Galerkin methods are also condidered in Section 4 for the
Poisson problem. Therein, the norms of ResL and ResV are estimated under the
general hypothesis that each of those has the form

(1.8) Res(v) :=

∫

Ω

g · v dx+

∫

∪E

gE · v ds for v ∈ V .

Here and below, V belongs to some Sobolev space V = H1
0 (Ω)m and g ∈ L2(Ω)m,

while gE ∈ L2(∪E)m with some domain Ω ⊂ Rn and the union ∪E of edges (if
n = 2) or faces (if n = 3) related to a regular triangulation of Ω. Some required key
property in [23] on both Res = ResL and Res = ResV reads

(1.9) V c
h ⊂ kerRes ⊂ V .

In this situation, a typical result of an explicit residual-based error estimation reads

(1.10) ‖Res‖2
V ∗ . ‖hT g‖

2
L2(Ω) +

∑

E∈E

hE‖gE‖
2
L2(E) =: η2 .

Here and throughout, hT and hE denote local mesh-sizes in the underlying triangu-
lation, i.e.,

hT |T = diam(T ) for any T ∈ T , and hE = diam(E) for any E ∈ E .
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V c
h includes the first-order finite element functions to ensure (1.10). Details on

the notation and the concrete examples will be given below. The terms in (1.8)
often result from some discretisation of the equilibration condition (1.4),e.g., via an
integration by parts, and hence the term ResV is referred to as the equilibration
residual.

The first aim of this paper is the generalisation of (1.10) for Res = ResV in
Theorem 2.1 of Section 2 to allow the control of certain nonstandard finite element
schemes without the condition (1.9) in Sections 4-6. Here, one key theory is to
replace (1.9) by assumptions (H1)-(H3) on some Clement-type operator J and some
linear bounded operator Π between the conforming and nonconforming finite element
spaces.

For the Laplace, Stokes, and Navier-Lamé equations considered herein, one can
observe from the definitions of a(·, ·) and b(·, ·) in Sections 4-6 below that the con-
sistency residuum ResL from (1.5) can also be written in the form (1.8). With some
bounded linear operator A : L := L2(Ω)m×n → L, the norm of ResL allows the form

(1.11) min
ũh∈V

‖ResL‖L∗ ≈ min
ũh∈V

‖A(ph) −Dũh‖L2(Ω).

Therein Dũh denotes the functional matrix of all first-order partial derivatives (e.g.,
the gradient and possibly also the Green strain of linear elasticity) of the Sobolev
function ũh in Sections 4-6.

Remark 1.2. This observation can also be found in [23, Theorem 2.2] for the Laplace
equation with A = id the identity operator. For the Stokes and Navier-Lamé equa-
tions, the operators A are dev

µ
and C−1 with the operators dev (and µ) and C−1 of

Sections 5 and 6.

Since ‖A(ph)−Dũh‖L2(Ω) . ‖DT uh−Dũh‖L2(Ω) for the aforementioned problems,
the second aim of this paper reads

min
ũh∈V

‖DT uh −Dũh‖
2
L2(Ω) .

∑

E∈E

∑

z∈K(E)

hE‖γτE
([DT (ψz uh)])‖

2
L2(E) =: µ2

for the jumps [DT (uh ψz)] of a discrete nonconforming finite element function uh

times a weight-function ψz across some side E with vertex z; details on the notation
can be found in Section 3. The second main result (Theorem 3.1) holds for all
piecewise gradients and employs a localisation argument with the (modified) hat
functions (ψz : z ∈ K) of the free nodes K.

Then, a summary of these two aims (See, Theorem 2.1 and Theorem 3.1) and
(1.7) concludes the main result of this paper

(1.12) ‖p− ph‖L . η + µ+ osc(g)

for the unified a posterior error estimate of the nonconforming finite element methods
with (H1)-(H3) of Section 2 and for all aforemented problems. This conclusion
will be exhibited for each problem in Sections 4-6, what is left is to check the
well-posdeness of (1.3)-(1.4) (or (1.2)) for each problem and (H1)-(H3) for each
nonconforming finite element scheme; see Sections 4-6 for further details.
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The rest of this paper is organized as follows. While Section 2-3 treat general as-
sertions on (1.10)-(1.11) where condition (1.9) is substituted by (H1)-(H3), Sections
4-6 conclude this paper with particular model examples in 2D (and some in 3D)
with first reliability proofs for many nonstandard finite element error estimates.

Throughout this paper, V c
h and V nc

h denote conforming and nonconforming finite
element spaces based on a regular triangulation T of Ω; ν denotes the normal unit
vector along the boundary ∂Ω; τ denotes the tangent vector along the boundary for
2D. Colon ”:” denotes the scalar product in Rm×n, i.e., A : B :=

∑m
j=1

∑n
k=1AjkBjk.

2. Reliability control of the equilibrium residual

This section establishes an explicit residual-based error estimate (1.8) for a class
of nonstandard finite element schemes.

Let V = H1
0 (Ω)m and L = L2(Ω; Rm×n) denote standard Sobolev and Lebesgue

spaces on some bounded Lipschitz domain Ω in R
n with a piecewise flat boundary

Γ. Suppose that the closure Ω is covered exactly by a regular triangulation T of
Ω into (closed) triangles or parallelograms in 2D, tetrahedrons or parallelepipeds in
3D (or other unions of simplices). It is assumed, that

(2.1) Ω = ∪T and |T1 ∩ T2| = 0 for T1, T2 ∈ T with T1 6= T2 ,

where | · | denotes the volume (as well as the modulus of a vector etc. where there
is no real risk of confusion). The remaining assumptions on the shape regularity of
T are hidden in the following abstract conditions.

(H1) There exists a Clement-type operator J : V → V c
h into some (conforming)

subspace V c
h ⊆ V of T -piecewise smooth functions such that, for all v ∈ V and

T ∈ T

h−1
T ‖v − Jv‖L2(T ) + h

−1/2
T ‖v − Jv‖L2(∂T )

+‖D(v − Jv)‖L2(T ) . ‖Dv‖L2(ωT ),
(2.2)

with some neighbourhood ωT of T such that (ωT : T ∈ T ) has finite overlap

(2.3) max
x∈Ω

card{T ∈ T : x ∈ ωT} . 1.

(H2) There exists a nonconforming space V nc
h ⊆ L2(Ω)m of T -piecewise smooth

and, in general, discontinuous functions V nc
h ⊆ H1(T )m 6⊂ V . Given distinct T1, T2 ∈

T , their intersection T1∩T2 has zero volume measure by (2.1) but possibly a positive
surface measure hE. The set of all interior (edges or faces etc.) T1∩T2 = E is denoted
by E . For any vh ∈ V nc

h , the jump

(2.4) [vh]E(x) := (vh|T2
)(x) − (vh|T1

)(x) for x ∈ E.

across E ∈ E with E = T1 ∩ T2 is fixed up to the sign which results from the
orientation of the unit vector νE on E (e.g. νE points outward of T2). The shape
regularity of T and E is described by the assumption

(2.5) hE ≈ hT ≈ diam(ωT ) for all E ∈ E , T ∈ T with E ∩ T 6= ∅.
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Remark 2.1. The trace inequality yields, for v ∈ V and T ∈ T [44, 18],

(2.6) ‖v‖L2(∂T ) . h
−1/2
T ‖v‖L2(T ) + h

1/2
T ‖Dv‖L2(T ).

Hence the trace term with L2(∂T ) in (2.2) is estimated by the other two L2(T ) norms.
More over, if E(T ) denotes the set of all E with E ⊆ ∂T , the shape regularity (2.5)
shows that

(2.7)
∑

E∈E(T )

h−1
E ‖v − Jv‖2

L2(E) . ‖Dv‖L2(ωT ).

Remark 2.2. The conforming functions are given as those with vanishing jumps, i.e.,
vh ∈ V c

h implies [vh]E = 0 for all E ∈ E .

The aforementioned standard assumptions are typical in finite element simula-
tions. The innovative condition on the nonstandard finite element space V nc

h and
the conforming counterpart V c

h of (H1)-(H2) is the following.
(H3) There exists some operator Π : V c

h → V nc
h such that, for all vh ∈ V c

h and all
T ∈ T , there holds

(2.8) ‖∇(Πvh)‖L2(T ) . ‖∇vh‖L2(ωT ) and

∫

T

vh dx =

∫

T

Πvh dx.

Moreover, for some given discrete approximation ph ∈ L2(Ω; Rm×n) and the T -
piecewise gradient DT , there holds

(2.9)

∫

Ω

ph : DT vh dx =

∫

Ω

ph : DT (Πvh) dx.

A direct consequence of (2.8) is

(2.10) h−1
T ‖vh − Πvh‖L2(T ) . ‖Dvh‖L2(ωT ) for all T ∈ T .

Given g ∈ L2(Ω)m and ph as above, the residual ResV ∈ V ∗ is, for v ∈ V + V nc
h ⊂

L2(Ω,Rm×n) defined by

(2.11) ResV (v) :=

∫

Ω

g · v dx−

∫

Ω

ph : DT v dx.

The residual is supposed to stem from a nonstandard finite element scheme with
V nc

h and hence

(2.12) ResV (vh) = 0 for all vh ∈ V nc
h .

With the abbreviation gT := |T |−1
∫

T
g(x)dx ∈ Rm, the data oscillation reads

(2.13) osc(g) := (
∑

T∈T

h2
T‖g − gT‖

2
L2(T ))

1/2.

Under the assumptions of (H1)-(H3), the residual-based error estimator

(2.14) η := (
∑

T∈T

h2
T‖g + div ph‖

2
L2(T ))

1/2 + (
∑

E∈E

hE‖[ph]E · νE‖
2
L2(E))

1/2

is reliable in the following sense.

Theorem 2.1. There holds ‖ResV ‖V ∗ . η + osc(g).
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Proof. Given any v ∈ V with ΠJv ∈ V nc
h , (2.12) leads to

ResV (v) =

∫

Ω

g · (v − ΠJv) dx−

∫

Ω

ph : DT (v − ΠJv) dx.

An elementwise integration by parts and a careful re-arrangement of boundary pieces
leads to

∫

Ω

ph : D(v − Jv) dx = −

∫

Ω

(divT ph) · (v − Jv) dx

+
∑

E∈E

∫

E

[ph] · νE(v − Jv) ds.

The combination of the two identities with (2.9), i.e.,
∫

Ω
ph : DT (Jv−ΠJv) dx = 0,

where vh is replaced by Jv ∈ V c
h , reads

ResV (v) =

∫

Ω

(g + divT ph) · (v − Jv) dx+

∫

Ω

g · (Jv − ΠJv) dx

−
∑

E∈E

∫

E

[ph] · νE(v − Jv) ds =: I1 + I2 + I3.

The first integral I1 on the right-hand side is controlled with (2.2)-(2.3), Hölder
inequality and Cauchy inequalities. This leads to

I1 . (
∑

T∈T

h2
T‖g + div ph‖

2
L2(T ))

1/2‖Dv‖L2(Ω).

The second term I2 requires (2.8), (2.10) and (2.13). This yields

I2 =
∑

T∈T

∫

T

g · (Jv − ΠJv) dx

=
∑

T∈T

∫

T

(g − gT ) · (Jv − ΠJv) dx

6
∑

T∈T

hT‖g − gT‖L2(T )h
−1
T ‖Jv − ΠJv‖L2(T )

. osc(g)(
∑

T∈T

‖Dvh‖
2
L2(ωT ))

1/2

. osc(g)‖Dv‖L2(Ω).

Standard arguments with (2.1)—(2.3) and (2.7) control the last term

I3 6
∑

E∈E

h
1/2
E ‖[ph]E · νE‖L2(E)h

−1/2
E ‖v − Jv‖L2(E)

. (
∑

E∈E

hE‖[ph]E · νE‖
2
L2(E))

1/2‖Dv‖L2(Ω).

Altogether, there follows the assertion

ResV (v) = I1 + I2 + I3 . (η + osc(g))‖Dv‖L2(Ω). �
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3. Reliability control of the consistency residual

This section establishes a general control of the consistency residual (1.11). Given
uh ∈ V nc

h withDT uh ∈ L2(Ω; Rm×n) and the conforming finite element space V c
h from

(H1)-(H3), let (ψz : z ∈ K) denote a Lipschitz continuous partition of unity,

(3.1)
∑

z∈K

ψz = 1 in Ω.

Moreover, for any z ∈ K, suppose that, ψz vanishes outside an open and connected
set Ωz ⊆ Ω

(3.2) suppψz ⊆ Ωz and max
x∈Ω

card{z ∈ K : x ∈ Ωz} . 1.

Given z ∈ K, let E(z) := {E ∈ E : ψz|E 6≡ 0} denote the set of edges, where ψz is
nonvanishing. For any edge E let K(E) denote the set of all z ∈ K with E ∈ E(z).
The tangential component of a vector v ∈ Rn is defined as

(3.3) γτE
(v) :=

{

v · τE if n = 2,
v × νE if n = 3.

The general estimator

(3.4) µ :=

(

∑

E∈E

∑

z∈K(E)

hE‖γτE
([DT (ψz uh)])‖

2
L2(E)

)1/2

is reliable in the following sense.

Theorem 3.1. For n = 2, 3, there holds min
ũh∈V

‖DT uh −Dũh‖L2(Ω) . µ.

Remark 3.1. In the examples below, 0 ≤ ψz ≤ 1 is a finite sum of hat functions and
continuous such that γτE

([DT (ψzuh)]) = γτE
(Dψz)[uh] + ψzγτE

([DT uh]). Moreover,
the polynomial [uh] has some zero on E and allows an estimate

(3.5) ‖[uh]‖L2(E) . hE‖γτE
([DT uh])‖L2(E).

With ‖Dψz‖L∞ ≈ h−1
E , one deduces

(3.6) µ . (
∑

E∈E

hE‖γτE
([DT uh])‖

2
L2(E))

1/2.

This estimator is the frequently found version of the consistency error control [36,
37, 31, 27].

Remark 3.2. Theorem 3.1 generalizes [31]. To control the nonconformity, it was
assumed therein that

(3.7)

∫

E

[vh] ds = 0 for E ∈ E and

∫

E

vh ds = 0 for E on ∂Ω for all vh ∈ V nc
h .

The condition (3.7) is removed in Theorem 3.1 of the present paper.

Proof of Theorem 3.1. Given z ∈ K let az and bz denote the functions of the
Helmholtz decomposition of DT (ψzuh), i.e.,

DT (ψzuh) = Daz + curl bz ∈ L,
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Here az ∈ H1
0 (Ωz), bz ∈ H1(Ωz)

k with
∫

Ωz
bz(x) dx = 0, and k = 1 for n = 2 while

k = 3 for n = 3. Since
∫

Ωz
curl bz : Dadx = 0 for any a ∈ H1

0 (Ωz),

‖ curl bz‖
2
L2(Ωz) = min

a∈H1
0
(Ωz)

‖Da−DT (ψzuh)‖
2
L2(Ωz)

=

∫

Ωz

(curl bz) : DT (ψzuh) dx.

An elementwise integration by parts followed by curlT DT ≡ 0 yields
∫

Ωz

(curl bz) : DT (ψzuh) dx = ±

∫

S

E(z)

bz · γτE
([DT (ψzuh)]) ds

6 ‖γτE
([DT (ψzuh)])‖L2(

S

E(z))‖bz‖L2(
S

E(z)),

where E(z) := {E ∈ E : ψz|E 6≡ 0}. The well-known trace theorem on each element
domain K, namely

‖bz‖L2(∂K) 6 h
−1/2
K ‖bz‖L2(K) + h

1/2
K ‖Dbz‖L2(K),

leads to the estimate

‖bz‖L2(
S

E(z)) . h−1/2
z ‖bz‖L2(Ωz) + h1/2

z ‖Dbz‖L2(Ωz).

A Poincaré inequality gives

‖bz‖L2(Ωz) . hz‖Dbz‖L2(Ωz) . hz‖ curl bz‖L2(Ωz).

The latter inequality results from the stability of the Helmholtz decomposition [27,
44] with an hz-independent constant; it reads ‖Dbz‖L2(Ωz) = ‖ curl bz‖L2(Ωz) in 2D.
The combination of the proceeding three inequalities leads to

‖bz‖L2(
S

E(z)) . h1/2
z ‖ curl bz‖L2(Ωz).

Since hT |Ωz
≈ hz := diam(Ωz), z ∈ K, the aforementioned arguments imply

‖Daz −DT (ψzuh)‖L2(Ωz) . ‖h1/2
E
γτE

([DT (ψzuh)])‖L2(
S

E(z)).

Since
∑

z∈K

ψz ≡ 1 and ũh :=
∑

z∈K

az ∈ H1
0 (Ω), this estimate plus the finite overlap of

all Ωz and E(z) prove the assertion. In fact,

‖DT uh −Dũh‖
2
L = ‖

∑

z∈K

(DT (ψzuh) −Daz)‖
2
L

.
∑

z∈K

‖Daz −DT (ψzuh)‖
2
L2(Ωz)

.
∑

z∈K

‖h1/2
E
γτE

([DT (ψzuh)])‖
2
L2(

S

E(z))

≈ (
∑

E∈E

∑

z∈K(E)

hE‖γτE
([DT (ψzuh)])‖

2
L2(E)). �
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4. Application to Laplace Equation

This section is devoted to the Poisson problem and its residual-based a posteri-
ori finite element error control. Subsection 4.1 introduces the model problem and
Subsection 4.2 some required notations. Subsection 4.3 presents a list of examples.
Subsections 4.4-4.5 present the applications of the theory to the mortar and dG
finite element methods. Subsection concerns the extension of the present theory to
the high-order nonconforming finite element method.

4.1. Model Problem. The Lebesgue and Sobolev spaces L2(Ω) and H1(Ω) are
defined as usual and

(4.1) L := L2(Ω)n and V := H1
0 (Ω) := {w ∈ H1(Ω) : w = 0 on ∂Ω}.

The gradient operator ∇ maps V into L. Given g ∈ L2(Ω) let u ∈ V denote the
solution to the Poisson Problem

(4.2) ∆u+ g = 0 in Ω and u = 0 on ∂Ω.

Then, the flux p := ∇u ∈ L and u ∈ V satisfy

(A(p, u))(q, v) := a(p, q) + b(p, v) + b(q, u)

!
= −

∫

Ω

gv dx for all (q, v) ∈ X = L× V .
(4.3)

Throughout this section, (1.1)-(1.7) hold for

(4.4) a(p, q) :=

∫

Ω

p · q dx and b(p, v) := −

∫

Ω

p · ∇v dx.

The operator A : X → X∗ is bounded, linear, and bijective [23].

4.2. Nonconforming finite element methods and unified a posteriori error

estimators. Let Pk(T ) andQk(T ) denote the space of algebraic polynomials of total
and partial degree ≤ k, respectively, and set Pk(T ) = Pk(T ) and Pk(T ) = Qk(T )
for a triangle (or tetrahedron) and parallelogram (or parallelepiped), respectively.
Define

Pk(T ) := {v ∈ L2(Ω) : ∀T ∈ T , v|T ∈ Pk(T )} for k = 0, 1;

S1(T ) := P1(T ) ∩ C(Ω) and V c
h := S1

0 (T ) := S1(T ) ∩ V.
(4.5)

Let N denote the set of nodes (i.e., vertices of elements in T )u. hT and hE denote
T - and E-piecewise constant functions on Ω and ∪E = ∪E∈EE defined by hT |T :=
hT := diam(T ) and hE |E := hE := diam(E) for T ∈ T and E ∈ E . For a given

quadrilateral or parallelepiped element T ∈ T , FT : T̂ = [−1, 1]n → T denotes the
canonical bilinear transformation.

Let V nc
h denote some nonconforming finite element space specified in Table 4.1.

For the moment solely suppose that ∇T vh ∈ L for any vh ∈ V nc
h , where ∇T denote

the T -piecewise action of the gradient operator. The finite element solution uh ∈ V nc
h

is the unique solution to

(4.6)

∫

Ω

∇T uh · ∇T vh dx =

∫

Ω

gvh dx for all vh ∈ V nc
h .
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picture name reference space

�� AAr
r r

Crouzeix-Raviart [35] V CR
h

r r

rr

r

r

Wilson [73, 64] V Wil
h

r

r

r

r r

Han [45] V Han
h

- 6
�

? NR (midpoint) [60] V RT,P
h

r

r

r

r

NR (average) [60] V RT,A
h

r r

rr

CNR [50] V CRT
h

r

r

r

r

DSSY [40] V DSSY
h

Table 4.1. Nonconforming Elements for the Laplace Equation (4.2)
with (H1)-(H3) and the Error Estimate (4.8).

The aim is to estimate the flux error p− ph for the discrete flux ph := ∇T uh ∈ L =
L2(Ω)n.

For any ũh ∈ V there holds (1.7) for ResL ∈ L∗ and ResV ∈ V ∗ defined, for all
q ∈ L and v ∈ V , by

ResL(q) :=

∫

Ω

q · (∇ũh − ph) dx and

ResV (v) := −

∫

Ω

gv dx+

∫

Ω

ph · ∇v dx.

(4.7)

4.3. Examples. This subsection presents a list of 2D and 3D nonconforming finite
element spaces V nc

h of Table 4.1 with (H1)-(H3), so that

(4.8) ‖p− ph‖L2(Ω) . η + µ+ osc(g)

with η from (2.14), µ from (3.4), and osc(g) from (2.13). This list below is not
comprehensive. In fact, we conjecture that all known NCFEMs could be analyzed
in the present framework. Only the triangular Crouzeix-Raviart element has already
been analyzed in [23]. The present unifying theory leads to new error control (4.8)
for all nonconforming finite elements of Subsubsections 4.3.2—4.3.6.

4.3.1. The triangular Crouzeix-Raviart element. Based on the regular triangulation
T into simplices, the set of midpoints M of edges (or faces), the non-conforming
Crouzeix-Raviart finite element space reads (in 2D and 3D)

(4.9) V CR
h := {v ∈ P1(T ) : v continuous at M ∩ Ω and v = 0 at M ∩ ∂Ω}.

Since V C
h ⊂ V CR

h , then there holds (H1)-(H3) with Π = id; cf. Section 4 of [31]
for proofs. Similar arguments verify (H1)-(H3) in 3D as well; we therefore omit the
details.
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4.3.2. The Quadrilateral Wilson element. Let B denote one of the nonconforming
quadratic bubble function spaces on the reference element T̂ = [−1, 1]n, i.e.,

B :=

{

span{1 − (ξ2 + η2)/2} or span{1 − ξ2, 1 − η2} for n = 2,

span{1 − ξ2, 1 − η2, 1 − ζ2} for n = 3.

The nonconforming quadrilateral Wilson finite element space V Wil
h [73, 64] reads

V Wil
h = Sh ⊕ Bh with the factors(4.10)

Sh := {v ∈ H1
0 (Ω) : ∀T ∈ T , v̂ = v ◦ FT ∈ Q1(T̂ )},

Bh := {v ∈ L2(Ω) : ∀T ∈ T , v̂ = v ◦ FT ∈ B}.

This element is excluded from the analysis of [31, 23] since (3.7) is violated. However,
there holds (H1)-(H3) with Π = id, the proof is immediate since V c

h ⊂ V Wil
h .

4.3.3. The parallelogram nonconforming Han element. Consider the functional

(4.11) FE(v) = |E|−1

∫

E

v ds for all E ∈ E(T ) and T ∈ T .

The parametric formulation of rectangular and parallelogram elements of Han [45]
is introduced by

(4.12) Qnc
H := span{ 1, ξ, η, ξ2 −

5

3
ξ4, η2 −

5

3
η4 } .

The nonconforming Han finite element space then reads (with [·] := · along ∂Ω)

(4.13) V Han
h :=

{

v ∈ L2(Ω) : ∀T ∈ T , v|T ◦ FT ∈ Qnc
H and ∀E ∈ E ,FE([v]) = 0

}

.

Then there holds (H1)-(H3) with the associated interpolation operator Π for V Han
h

[45], the proof follows from ΠV c
h = V CRT

h ⊂ V Han
h [50] with V CRT

h from Subsubsec-
tion 4.3.5 below. Further details for the properties of Π can be found in Section 4
of [31], Remark 2.5 and Lemma 3.1 of [50]

4.3.4. The parallelogram nonconforming rotated Q1 elements. Rannacher and Turek
introduce two types of parallelogram nonconforming elements [60], called the NR
elements. The first element RTA uses the average of the function over the edge ( or
face) as the local degree of freedom, and the second one RTP uses the value at the
midside point ( or midpoint ) of the edge ( or face ) instead. Define

(4.14) Qnc
R :=

{

span{ 1, ξ, η, ξ2 − η2 } for n = 2,

span{ 1, ξ, η, ζ, ξ2 − η2, ξ2 − ζ2 } for n = 3

then nonconforming space V RT,A
h is defined in (4.13) with Qnc

H replaced by Qnc
R , and

V RT,P
h is defined in (4.9) with P1(T ) replaced by Qnc

R .
For 2D, following a similar argument for the Han element, one proves that the

average version element satisfies (H1)-(H3) with the canonical interpolation operator

Π for V RT,A
h ; [31] contains further details.
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The midside point version element is not included in [31] since the condition (3.7)
is violated by this element. However, there holds equally (H1)-(H3) for it with the

canonical interpolation operator Π of V RT,P
h . In fact, we have

(4.15) ΠV c
h = V CRT

h ⊂ V RT,P
h ,

and V CRT
h contains the linear part of V c

h , and only the nonlinear part is excluded
[50]. With this fact, (H3) follows from straight forward investigations.

For 3D, define the local interpolation operator ΠT : H1(T ) → Qnc
R ◦ F−1

T by

(4.16) FE(ΠTv) = FE(v) for E ∈ E(T ) for all v ∈ H1(T ).

Since FÊ(v) = 0 for v = ξη , ξζ , ηζ , ξηζ with Ê ∈ E(T̂ ) , we conclude for any v =
a0 + a1ξ + a2η + a3ζ + a4ξη + a4ξζ + a6ηζ + a7ξηζ that

(4.17) ΠTv = a0 + a1ξ + a2η + a3ζ ,

with some interpolation constants a0, . . . , a7. The global interpolation operator Π
is defined by Π|T = ΠT for any T ∈ T . Then (H1)-(H3) eventually follows from
(4.17).

Remark 4.1. The analysis does not cover the non-parametric variant of this element
except on parallelogram meshes.

4.3.5. The parallelogram constrained nonconforming rotated Q1 elements. The con-
strained rotated nonconforming finite element (referred to as CNR element) intro-
duced in [50] is obtained by enforcing a constraint on theNR element on each element
for 2D. The space of the CNR element reads

V CRT
h := {v ∈ V RT,A

h : ∀T ∈ T ,

∫

E1

v ds+

∫

E3

v ds =

∫

E2

v ds+

∫

E4

v ds

with {E1, · · · , E4} = E(T ) numbered counterclockwise} .

(4.18)

For rectangular and parallelogram meshes, the element is equivalent to the P1-
quadrilateral element of [59]. Then there holds (H1)-(H3) with the interpolation
operator Π of V CRT

h . The proof follows from the argument for the NR element
with the midside point version. We refer to Section 4 of [31] for more details. The
goal-oriented error control of this element is given in [43].

4.3.6. The parallelogram DSSY elements. The DSSY element is obtained by intro-
ducing on the reference element [40] with θ1(t) = t2 − 5

3
t4 and θ2(t) = t2 − 25

6
t4 + 7

2
t6

and
(4.19)

Qnc
D :=

{

span{1, ξ, η, θℓ(ξ) − θℓ(η)} for ℓ = 1, 2 for n = 2,

span{1, ξ, η, ζ, (ξ2 − 5
3
ξ4) − (η2 − 5

3
η4), (ξ2 − 5

3
ξ4) − (ζ2 − 5

3
ζ4)} for n = 3.

The nonconforming finite element spaces V DSSY
h are defined as in (4.13) with Qnc

H
re-

placed by Qnc
D . There holds (H1)-(H3) with the interpolation operator Π of V DSSY

h ,
cf. the proof in Section 4 of [31] for 2D. Arguments similar to those of Subsec-
tion 4.3.4 verify (H1)-(H3) for 3D.
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Remark 4.2. The parallelogram nonconforming element of [57] can also be analyzed
by this unifying theory.

4.4. Comments on mortar finite element methods. Another class of noncon-
forming FEM is known as mortar FEM [13, 14] where the continuity of uh over the
common side of two subdomains K− and K+ in some locally quasi-uniform regular
decomposition TH of Ω into triangles is enforced by Lagrange multipliers. The a
posteriori error estimates with the saturation assumptions are presented in [15, 74].
A more general one is analyzed in [12]. For the ease of the discussion, suppose that
n = 2 and that the partition Th is obtained from TH by refining some of the triangles
in TH by some finite number ≤ k of successive red-refinements (i.e., cutting a tri-
angle into 4 congruent subtriangles by connecting its edges’ midpoints) so that the
ratio of the diameters of two neighbouring triangles with adjusted edges is bounded
by 2−k. Notice that (2.5) holds for all edges E of T while the equivalence with ωT

depends on k.
Let V nc

h be the mortar finite element space with respect to Th as in [12]. With
V c

h := V ∩ P1(TH) one can prove (H1) by along the lines of [24]. Since V c
h ⊆ V nc

h ,
(H3) holds for Π = id. Then, Theorem 2.1 reads

‖Res‖2
V ∗ .

∑

T∈Th

H2
T‖g + div ph‖

2
L2(T ) +

∑

E∈E

HE‖[ph] · νE‖
2
L2(E)

for HT := max{diam(K) : T ⊆ K ∈ TH} and HE := max{diam(K) : E ⊂ ∂K ,K ∈
TH}. Moreover, Theorem 3.1 yields ( with T = Th etc.)

min
ũh∈V

‖ResL‖
2
L∗ .

∑

E∈E

∑

z∈K(E)

HE‖γτE
([DT ((ψzuh)])‖

2
L2(E) .

Therein, ψz is the partition of unity based with respect to TH and ‖HEDψz‖L∞ ≈ 1.
This reliability error estimate is essential Theorem 3.4 in [12]. In fact, since (in

2D)

∂

∂s
[ψzuh] =

( ∂

∂s
ψz

)

[uh] + ψz [∂uh/∂s],

there holds (with an inverse estimate ‖∂[uh]/∂s‖L2(E) . H−1
E ‖[uh]‖L2(E)) that

HE‖
∂

∂s
[ψzuh]‖

2
L2(E) . HEH

−2
T ‖[uh]‖

2
L2(E) +HE · ‖[∂uh/∂s]‖

2
L2(E)

. (HEH
−2
T +H−1

E )‖[uh]‖
2
L2(E) . H−1

E ‖[uh]‖
2
L2(E) .

Altogether, the upper bounds for (1.7) with ph := DT uh and p = ∇u reads

‖p−ph‖L2(Ω) .
∑

T∈Th

H2
T‖g+div ph‖

2
L2(T )+

∑

E∈E

HE‖[ph]·νE‖
2
L2(E)+

∑

E∈E∪E∂Ω

H−1
E ‖[uh]‖

2
L2(E) .

Therein, E∂Ω denote the set of edges on the boundary ∂Ω. Notice [uh] = 0 on edges
interior to T ∈ TH .

In comparison to [12, Theorem 3.4], the factor 2−k therein is hidden herein the
mesh-sizes HT , HE.
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4.5. Comments on discontinuous Galerkin methods. The feature for the dis-
continous Galerkin(abbreviated dG hereafter) methods [4, 38, 71, 5, 7, 8, 52] lies in
that the trial and test spaces consist of piecewise discontinuous polynomials. A pos-
teriori error estimates for dG type methods are considered in [53, 62, 61, 21, 9, 48]
for second order elliptic problems, in [46] for the Stokes problem, and in [47, 72] for
plane elasticity. This subsection comments on the extension of the unifying theory
to dG FEM. For any vh ∈ Pk(T ), the average across E = T1 ∩ T2 reads

< v >E (x) := 1/2((vh|T1
)(x) + (vh|T2

)(x)) for x ∈ E.

With some appropriately chosen constant γ, the modified bilinear form is defined as

aγ
h(uh, vh) :=

∑

T∈T

∫

T

∇uh · ∇vh dx+ γ
∑

E∈E

h−1
E

∫

E

[uh]E[vh]E ds

−
∑

E∈E

∫

E

(< ∇huh >E ·νE [vh]E+ < ∇hvh >E ·νE [uh]E) ds

−
∑

E⊂∂Ω

∫

E

(∇huh · νEvh + ∇hvh · νE uh) ds+ γ
∑

E∈E

h−1
E

∫

E

uhvh ds

for any uh , vh ∈ Pk(T )+H1
0 (Ω). This is the symmetric dG method from [7, 8, 52, 53].

The discontinuous Galerkin solution uh ∈ Pk(T ) is characterized by

(4.20) aγ
h(uh, vh) = (g, vh)L2(Ω) for any vh ∈ Pk(T ) .

From V c
h ⊂ Pk(T ), there holds (H3) with Π = id. Theorem 3.1 yields

min
ũh∈V

‖ResL‖
2
L∗ .

∑

E∈E

∑

z∈K(E)

hE‖γτE
([DT ((ψzuh)])‖

2
L2(E) .

To bound ‖ResV ‖V ∗ , let v ∈ V and deduce

ResV (v) = −

∫

Ω

gv dx+

∫

Ω

∇T uv · ∇v dx

= −

∫

Ω

gv dx+

∫

Ω

∇T uv · ∇v dx

−
∑

E∈E

∫

E

< ∇huh >E ·νE [v]E ds+ γ
∑

E∈E

h−1
E

∫

E

[uh]E [v]E dx

−
∑

E⊂∂Ω

∫

E

< ∇huh >E ·νE [vh]E ds+ γ
∑

E⊂∂Ω

h−1
E

∫

E

uhv ds .

It follows from Jv ∈ V ∩ Pk(T ) that

‖ResV ‖V ∗ . η + osc(g) +
(

∑

E∈E

h−1
E ‖[uh]E‖

2
L2(E) +

∑

E⊂∂Ω

h−1
E ‖uh‖

2
L2(E)

)1/2
.

Remark 4.3. A combination of the above estimates for ‖ResV ‖V ∗ and min
ũh∈V

‖ResL‖L∗

with (1.7) recovers the estimate

‖p− ph‖L2(Ω) . ‖ResV ‖V ∗ + min
ũh∈V

‖ResL‖L∗ ,
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which appeared in Theorem 3.1 of [9] and Theorem 3.1 from [53] without the as-
sumption u ∈ H2(Ω). Where p = ∇u and ph = ∇T uh.

Remark 4.4. For brevity, we only consider the a posteriori error estimate of the
symmetric dG methods for the Poisson equation, the analysis with corresponding
modifications can equally apply to the Stokes problem in Section 5, and the elasticity
in Section 6. In particular, this yields the a posteriori error control from Theorem
4.1 of [72] for the plane elasticity, and Theorem 3.1 of [46] for the Stokes problem.
Moreover, the unifying theory can be generalized to other dG methods reviewed in
[5].

4.6. Comments on high-order nonconforming schemes. In this paper, we
focus on the first-order nonconforming finite element method. The present unifying
theory can be extended to high-order nonconforming finite element methods with
the corresponding modifications in (H1)-(H3). In fact, Theorem 3.1 holds equally for
all nonstandard finite element methods. We only need to modify the the conforming
space V c

h in (H1) and (H3) and its associated Clemént interpolation operator. For
instance, (H3) reads

∫

T

Πvhqdx =

∫

T

vhqdx for any q ∈ Pk−1(T ) and for any vh ∈ V c
h .

5. Applications to the Stokes Problem

5.1. The Stokes Problem. The unsymmetric formulation of the Stokes problem
reads: Given g ∈ L2(Ω)n seek (u, p) ∈ H1

0 (Ω)n × L2
0(Ω), such that for all (v, q) ∈

H1
0 (Ω)n × L2

0(Ω),

(5.1) µ

∫

Ω

Du : Dv dx−

∫

Ω

p div v dx−

∫

Ω

q div u dx =

∫

Ω

g · v dx .

Here, L2
0(Ω) := {q ∈ L2(Ω) :

∫

Ω
q dx = 0} ≡ L2(Ω)/R fixes a global additive

constant in the pressure p (note that p is not the flux from the previous section).
The unique existence of solution to (5.1) is well known. Set
(5.2)

a(σ, τ) :=

∫

Ω

1

µ
dev σ : dev τ dx for all σ, τ ∈ L := {τ ∈ L2(Ω,Rn×n),

∫

Ω

tr τ dx = 0}.

The deviatoric-part operator dev is defined as

(5.3) devF = F − (tr(F )/n) id for any F ∈ R
n×n.

with tr(F ) = F11 + · · ·+ Fnn. It is known that the operator A : X = L× V → X∗,
defined for (σ, u) ∈ X by

(A(σ, u))(τ, v) := a(σ, τ) − (σ,Dv)L2(Ω) − (τ,Du)L2(Ω)(5.4)

is a linear, bounded and bijective, cf. e.g., [23].
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5.2. Nonconforming finite element methods and unified a posteriori error

estimators. Given some nonconforming finite element space V nc
h for V := H1

0 (Ω)n

and Qh ⊂ L2
0(Ω), the finite element solution (uh, ph) ∈ V nc

h × Qh to (5.1) satisfies,
for all (vh, qh) ∈ V nc

h ×Qh,

(5.5) µ

∫

Ω

DT uh : DT vh dx−

∫

Ω

ph divT vh dx+

∫

Ω

divT uh qh dx =

∫

Ω

g vh dx.

Given the unique discrete solution uh ∈ H1(T )n and ph ∈ L2
0(Ω), set

(5.6) σh := µDT uh − ph id ∈ L

and define the linear functional ResV : V := H1
0 (Ω)n → R by

(5.7) ResV (v) =

∫

Ω

(g · v − σh : Dv) dx for v ∈ V := H1
0 (Ω)n.

The theory of Section 3 shows that the norm of the residual ResL reads

(5.8) ‖ResL‖L∗ ≈ ‖D(ũh) − devDT (uh)‖L2(Ω) .

Given any ũh ∈ V with σ := µDu − p id, the unifying theory in the form of (1.7)
and (5.4) prove
(5.9)
‖σ − σh‖L + ‖u− ũh‖V . ‖D(ũh)−DT (uh)‖L2(Ω) + ‖ divT uh‖L2(Ω) + ‖ResV (v)‖V ∗ .

5.3. Examples. This subsection lists some examples of nonconforming finite ele-
ment schemes with (H1)-(H3) from the literature displayed in Table 5.1. Then, it
follows from (5.9), the definitions of σ and σh with a straightforward investigation,
Theorem 2.1, and Theorem 3.1, that

‖Du−DT uh‖L2(Ω) + ‖p− ph‖L2(Ω)

. min
ũh∈V

‖D(ũh) −DT (uh)‖L2(Ω) + ‖ divT uh‖L2(Ω) + ‖ResV (v)‖V ∗

. η + µ+ ‖ divT uh‖L2(Ω) + osc(g).

(5.10)

This recovers the result from [36, 33] for the Crouzeix-Raviart element, and is new
for five parallelogram elements of Subsubsection 5.3.2.

5.3.1. The Crouzeix-Raviart element. This is a triangular element with the velocity
space

V nc
h := V CR

h × V CR
h

for the space V CR
h from Subsection 4.3.1, and the piecewise constant pressure space

Qh ⊂ L2
0(Ω). Since V c

h × V c
h ⊂ V CR

h × V CR
h , there holds (H1)-(H3) with Π = id.

5.3.2. Four parallelogram elements. There are four parallelogram elements in the
literature including the parallelogram Han element, the parallelogram nonconform-
ing rotated (NR) element of Rannacher and Turek [60], the parallelogram CJY
element [22], and the parallelogram constrained nonconforming rotated element of
Hu, Man and Shi [49]. These elements employ the piecewise constant pressure space
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picture name reference space

�� AAr
r r

�� AAr
r r

Crouzeix-Raviart [35] V CR
h × V CR

h

r

r

r

r r

r

r

r

r r

Han [45] V Han
h × V Han

h

r

r

r

r

r

r

r

r

NR [60] V RT,A
h × V RT,A

h

r r

rr

r r

rr

Hu-Man-Shi [49] V CRT
h × V CRT

h

r

r

r

r

r

r

r

r

CJY [22] V DSSY
h × V DSSY

h

�� AA rr

r

�� AAr
r r

Kouhia-Stenberg [54] V c
h × V CR

h

Table 5.1. Nonconforming Elements for the Stokes Problem (5.1)
with (H1)-(H3) and the Error Estimate (5.10).

Qh ⊂ L2
0(Ω). The velocity spaces for these methods are chosen from the following

list.

V nc
h :=V Han

h × V Han
h , V RT,A

h × V RT,A
h ,

V CRT
h × V CRT

h , V DSSY
h × V DSSY

h .

Herein V Han
h , V RT,A

h , V CRT
h and V DSSY

h denote the nonconforming finite element
spaces from the respective Subsubsections 4.3.3-4.3.6. Then there holds (H1)-(H3)
with the canonical interpolation operators Π for these nonconforming finite element
spaces. The proof follows with the results of Section 4; further details are omitted.

Remark 5.1. The parallelogram nonconforming finite elements from [33] can also be
analyzed in the present framework to recover the a posteriori error estimation on
for the isotropic mesh therein.

5.4. The Kouhia-Stenberg element. The Stokes problem in its form (5.1) is
equivalent to the symmetric form with ε(u) := sym(Du) := 1/2(Du+DuT ) replacing
Du in (5.1). The velocity space [54] reads

V nc
h := V c

h × V CR
h .

Since V c
h × V c

h ⊂ V c
h × V CR

h , there holds (H1)-(H3) with Π = id, cf. [23].

6. Linear elasticity

This section is devoted to the Navier-Lamé equation and its locking-free non-
conforming finite element approximation. The presented unifying theory leads to
a posteriori error estimates which are robust with respect to the Lamé parameter
λ → ∞. Subsection 6.1 displays the model problem and Subsection 6.2 NCFEMs
and their unifying error control. Subsection 6.3 presents some examples. Subsection
6.4 discusses the unsymmetric formulation for linear elasticity and the examples for
this case are given in Subsection 6.5
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6.1. Model Problem. Adopt the notation of the previous sections and the follow-
ing linear stress-strain relation, for λ, µ > 0,
(6.1)

CF := λ tr(F ) id +2µF and C
−1F :=

1

2µ
F−

λ

2µ(nλ+ 2µ)
tr(F ) id, for F ∈ R

n×n.

The weak form of the linear elasticity problem reads: Given g ∈ L2(Ω)n find u ∈
V := H1

0(Ω)n with
∫

Ω

ε(v) : σ dx =

∫

Ω

g · v dx and σ = Cε(u) for all v ∈ V .(6.2)

Define the operator A : X = L× V → X∗ for any (σ, u) ∈ X by

(A(σ, u))(τ, v) := (C−1σ, τ)L2(Ω) − (σ, ε(v))L2(Ω) − (τ, ε(u))L2(Ω).(6.3)

Here, L := {σ ∈ L2(Ω,Rn×n
sym ),

∫

Ω
tr σ dx = 0}. The operator A is linear, bounded,

and bijective with λ-independent operator norms of A and A−1 [17, 28].

6.2. Nonconforming finite element methods and unified a posteriori error

estimators. With the nonconforming finite element approximation uh ∈ V nc
h to u

and the discrete Green strain εT (v) := (DT v +DT v
T ))/2 ∈ L2(Ω; Rn×n

sym), set

(6.4) σh = 2µεT (uh) + λΠ2 divT uh id .

Throughout this section, Π2 : L2(Ω) → L2(Ω) denotes some reduction operators
in the context of the locking phenomena, and the discrete stress σh is supposed to
satisfy

(6.5)

∫

Ω

σh : εT (vh) dx =

∫

Ω

g · vh dx for all vh ∈ V nc
h .

We define the continuous and discrete pressures as

(6.6) p = λ div u and ph = λΠ2 divT uh .

Theorem 6.1. For any ũh ∈ V there holds

‖ε(u) − εT (uh)‖L2(Ω) + ‖p− ph‖L2(Ω) + ‖ε(u− ũh)‖L2(Ω)

≈ ‖εT (uh) − ε(ũh)‖L2(Ω) + ‖ResV ‖V ∗ + ‖ divT uh − Π2 divT uh‖L2(Ω).
(6.7)

Proof. The unifying theory with (1.7) and (6.3) reads in the present notations

(6.8) ‖σ − σh‖L + ‖ε(u− ũh)‖L2(Ω) ≈ ‖C
−1σh − ε(ũh)‖L2(Ω) + ‖ResV ‖V ∗ .

Then the assertion follows from the definitions of σh, C−1, p, and ph. �

6.3. Examples. This subsection analyzes finite element methods depicted in Table
6.1 for the planar elasticity problem. These schemes satisfy (H1)-(H3). Then, the
estimate (6.7) with Theorem 2.1 and Theorem 3.1 leads to

‖ε(u) − εT (uh)‖L2(Ω) + ‖p− ph‖L2(Ω)

. min
ũh∈V

‖εT (uh) − ε(ũh)‖L2(Ω) + ‖ResV ‖V ∗ + ‖ divT uh − Π2 divT uh‖L2(Ω)

. µ+ η + ‖ divT uh − Π2 divT uh‖L2(Ω) + osc(g).

(6.9)
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picture name reference space

�� AA rr

r

�� AAr
r r

Kouhia-Stenberg [54] V c
h × V CR

h

r r

rr

r

r

r r

rr

r

r

Zhang [75] V Wil
h × V Wil

h

r

r

r

r

r r

rr

Ming [56] V c
h × V RT,A

h

Table 6.1. Nonconforming Elements for the Linear Elasticity Prob-
lem (6.2) with (H1)-(H3) and the Error Estimate (6.9).

The error control for the Kouhia-Stenberg element has already been analyzed in [23].
The a posteriori error estimator (6.9) for the Falk elements, the Zhang element, and
the Ming element is new.

6.3.1. The Falk elements. Two nonconforming triangular finite element methods are
proposed in [41] for the linear elasticity equation for k = 2, 3 with Π2 = id and

V nc
h := {v ∈ L2(Ω)2 : ∀T ∈ Th, v|T ∈ Pk(T )2 and v is continuous (res. vanishes) at the

k Gauss points on each interior (resp. boundary) edge}.

(6.10)

Since V c
h × V c

h ⊂ V nc
h there holds (H1)-(H3) with Π = id.

6.3.2. The Kouhia-Stenberg element. This triangular element for the symmetric for-
mulation (6.1) and Π2 = id [54] is defined by the nonconforming finite element space

V nc
h := V c

h × V CR
h .(6.11)

Since V c
h × V c

h ⊂ V c
h × V CR

h there holds (H1)-(H3) with Π = id, cf. also [23].

6.3.3. The Zhang element. This element is proposed in [75] based on the noncon-
forming quadrilateral Wilson element [73, 64] with Π2 = id. In this element,

V nc
h := V Wil

h × V Wil
h .(6.12)

Since V c
h × V c

h ⊂ V Wil
h × V Wil

h there holds (H1)-(H3) with Π = id.

6.3.4. The Ming element. In Ming’s dissertation [56], a parallelogram nonconform-
ing element is proposed based on the nonconforming rotated Q1 space from [60] for
planar elasticity. The nonconforming finite element space reads

V nc
h := V c

h × V RT,A
h(6.13)

where Π2 = Π0 : L2(Ω) → Q0 denotes the piecewise constant projection operator
with Q0 the piecewise constant space. Following the arguments in Subsubection
4.3.4 and [31], one proves (H1)-(H3) for the associated interpolation operator Π.
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picture name reference space

�� AAr
r r

�� AAr
r r

Brenner-Sung [19] V CR
h × V CR

h

r

r

r

r

r

r

r

r

Lee-Lee-Sheen [55] V RT,A
h × V RT,A

h

r r

rr

r r

rr

Hu-Man-Shi [49] V CRT
h × V CRT

h

Table 6.2. Nonconforming Elements for the Linear Elasticity Prob-
lem in Unsymmetric Formulation with (H1)-(H3) and the Error Esti-
mate (6.19).

6.4. The unsymmetric formulation. For the pure Dirichlet boundary condition
under consideration, one can use the equivalent unsymmetric formulation and then
define the following formal stress-strain relation, for F ∈ R

n×n,

(6.14) CF := (λ+µ) tr(F ) id+µF and C
−1F :=

1

µ
F−

λ+ µ

µ(nλ+ (n + 1)µ)
tr(F ) id .

Given some nonconforming finite element space V nc
h , the finite element solution

uh ∈ V nc
h satisfies

(6.15)

∫

Ω

σh : DT vh dx =

∫

Ω

g · vh dx for all vh ∈ V nc
h .

Given the unique discrete solution uh ∈ V nc
h , set

(6.16) σh = µDT uh + (λ+ µ)Π2 divT uh id ,

The continuous and discrete pressures reads

(6.17) p = (λ+ µ) div u and ph = (λ+ µ)Π2 divT uh .

Define the operator A : X = L×V := {τ ∈ L2(Ω,Rn×n),
∫

Ω
tr τ dx = 0}×H1

0(Ω)n →
X∗ for any (σ, u) ∈ X as

(A(σ, u))(τ, v) := (C−1σ, τ)L2(Ω) − (σ,Dv)L2(Ω) − (τ,Du)L2(Ω) .

The arguments for the symmetric case in [17] show that the operator A is linear,
bounded, and bijective with λ-independent operator norms of A and A−1. Following
the argument for the symmetric case, one proves

Theorem 6.2. For any ũh ∈ V there holds that

‖Du−DT uh‖L2(Ω) + ‖p− ph‖L2(Ω) + ‖D(u− ũh)‖L2(Ω)

≈ ‖DT uh −Dũh‖L2(Ω) + ‖ResV ‖V ∗ + ‖ divT uh − Π2 divT uh‖L2(Ω).(6.18)

6.5. Examples. Three nonconforming finite elements are listed below as examples
with the unsymmetric formulation and are summarized in Table 6.2. There holds
that

‖Du−DT uh‖L2(Ω) + ‖p− ph‖L2(Ω)

. µ+ η + ‖ divT uh − Π2 divT uh‖L2(Ω) + osc(g).(6.19)

This a posteriori error estimator is brand new for these elements.
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6.5.1. The Brenner-Sung element. This triangular element is proposed in [19] with
Π2 = id, and

V nc
h := V CR

h × V CR
h .(6.20)

Since V c
h × V c

h ⊂ V CR
h × V CR

h there holds (H1)-(H3) with Π = id.

6.5.2. The Lee-Lee-Sheen element. In this parallelogram element [55], both compo-
nents of the displacement are approximated by the nonconforming rotated Q1 space
from [60], namely

V nc
h := V RT,A

h × V RT,A
h .(6.21)

The reduction integration operator is the same as in the Ming elements. (H1)-(H3)
is satisfied by this element with the canonical interpolation operator Π for V nc

h . It
follows the arguments for the nonconforming rotated Q1 element in Subsubsection
4.3.4.

6.5.3. The Hu-Man-Shi element. This parallelogram element is designed in [49]
without reduction integration. The nonconforming finite element space is the con-
strained nonconforming rotated Q1 from [50]. There also holds (H1)-(H3) with the
canonical interpolation operator Π. The proof can be found in Subsubsection 5.3.2.

Remark 6.1. Our conditions and therefore analysis in this paper can be extended
to other nonstandard finite element methods for the elasticity, for instance, the
Wang-Qi element from [70] and the enhanced strain finite element from [63, 17].
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[33] E.Creusé, G.Kunert and S.Nicaise, A posteriori error estimation for the Stokes problem:
Anisotropic and isotropic discretications, M3AS, 14(2004), 1–48.

[34] M. Crouzeix, R.S. Falk, Nonconforming finite elements for the Stokes problem, Math.Comp.,
52(1989), 437–456.

[35] M. Crouzeix, P.-A. Raviart, Conforming and nonconforming finite element methods for
solving the stationary Stokes equations, RAIRO Anal. Numér., 7 (1973), 33–76.

[36] E. Dari, R. Duran, C. Padra, Error estimators for nonconforming finite element approxima-
tions of the Stokes problem, Math. Comp., 64 (1995), 1017–1033.

[37] E. Dari, R. Duran, C. Padra, V. Vampa, A posteriori error estimators for nonconforming
finite element methods, Math. Model. Numer. Anal., 30 (1996), 385–400.

[38] J. Douglas, Jr. and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin
methods, In Lectures Notes in Physics, Vol. 58. Springer-Verlag, 1976.

[39] R.H.W. Hoppe and B. Wohlmuth, Element-orientated and edge-orientated local error esti-
mates for nonconforming finite element methods, Math. Modeling Numer. Anal., 30(1996),
237–263.

[40] J. Douglas Jr, J.E. Santos, D. Sheen, X. Ye, Nonconforming Galerkin methods based on
quadrilateral elements for second order elliptic problems, Math. Model. Numer. Anal., 33
(1999), 747–770.

[41] R.S. Falk, Nonconforming finite element methods for the equations of linear elasticity, Math.
Comp., 57(1991), 529–550.

[42] M. Grajewski, J.Hron and Stefan Turek, Numerical analysis for a new non-conforming linear
finite element on quadrilaterals, Journal of Computational and Applied Mathematics, In
Press.

[43] M. Grajewski, J.Hron and Stefan Turek, Dual Weighted a posteriori error estimation
for a new nonconforming linear finite element on quadrilaterals, www.mathematik.uni-
dortmund.de/lsiii/static/ showpdffile GrajewskiHronTurek2004.pdf

[44] V. Girault, P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Springer
Verlag, 1986.

[45] Hou-De Han, Nonconforming elements in the mixed finite element method, J. Comp. Math.,
2 (1984), 223–233

[46] Paul Houston, Dominik Schotzau an Thomas P. Wihler, Energy norm shape a posteriori
error estimation for mixed discontinuous Galerkin approximations of the Stokes problem,
J.Scientific Computing, 22(2005), 347–370 .

[47] Paul Houston, Dominik Schotzau and Thomas P. Wihler, An hp-adaptive mixed dis-
continuous Galerkin FEM for nearly incompressible linear elasticity, Comp.Methods
Appl.Mech.Engrg., 195(2006), 224–3246.

[48] Paul Houston, Dominik Schotzau and Thomas P. Wihler, Energy norm a posteriori error
estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems, to appear
in M3AS.

[49] Jun Hu, Hong-Ying Man and Zhong-Ci Shi, Constrained nonconforming rotated Q1 element
for Stokes flow and planar elasticity, Mathematica Numerica Sinica (in Chinese), 27(2005),
311–324.

[50] Jun Hu, Zhong-Ci Shi, Constrained quadrilateral nonconforming rotated Q1-element, J.
Comp. Math., 23(2005), 561–586.

[51] G. Kanschat, F.-T. Suttmeier, A posteriori error estimates for nonconforming finite element
schemes, Calcolo, 36 (1999), 129–141.

[52] O.A. Karakashian and W.N. Jureidini, A nonconforming finite element method for the sta-
tionary Navier-Stokes equations, SIAM J. Numer. Anal. 35 (1998), 93–120.

[53] O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin
approximation of second-order elliptic problems. SIAM J. Numer. Anal., 41(2003), 2374–
2399.



24 C. CARSTENSEN AND JUN HU

[54] R. Kouhia, R. Stenberg, A linear nonconforming finite element method for nearly incompress-
ible elasticity and Stokes flow, Comput.Methods Appl.Mech.Engrg., 124(1995), 195–212.

[55] C.O. Lee, J. Lee, D.W. Sheen, A locking-free nonconforming finite element method for planar
linear elasticity, Advances in Computational Mathematics, 19(2003), 277–291.

[56] Ping-Bing Ming, Nonconforming finite element vs locking problem, Doctorate Dissertation
(in Chinese), Institute of Computational Mathematics, Chinese Academy of Science (1999).

[57] Q.Lin, L.Tobiska and A.Zhou, On the superconvergence of nonconforming low order finite
elements applied to the Poisson equation, IMA.J.Numer.Anal.,25(2005), pp. 160-181.
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