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The need to develop reliable and efficient adaptive algorithms using mixed finite element methods arises from various ap-
plications in fluid dynamics and computational continuum mechanics. In order to save degrees of freedom, not all but just
some selected set of finite element domains are refined and hence the fundamental question of convergence requires a new
mathematical argument as well as the question of optimality.

We will present a new adaptive algorithm for mixed finite element methods to solve the model Poisson problem, for which
optimal convergence can be proved. The a posteriori error control of mixed finite element methods dates back to Alonso (1996)
Error estimators for a mixed method. and Carstensen (1997) A posteriori error estimate for the mixed finite element method.
The error reduction and convergence for adaptive mixed finite element methods has already been proven by Carstensen and
Hoppe (2006) Error Reduction and Convergence for an Adaptive Mixed Finite Element Method, Convergence analysis of an
adaptive nonconforming finite element methods .

Recently, Chen, Holst and Xu (2008) Convergence and Optimality of Adaptive Mixed Finite Element Methods. presented
convergence and optimality for adaptive mixed finite element methods following arguments of Rob Stevenson for the confor-
ming finite element method. Their algorithm reduces oscillations, before applying and a standard adaptive algorithm based on
usual error estimation. The proposed algorithm does this in a natural way, by switching between the reduction of either the
estimated error or oscillations.
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1 Introduction

The need to develop optimal adaptive algorithms to approximate solutions of PDEs arises from several application. Complex
problems need to be solved in a reasonable amount of time and computational costs. Especially for mixed finite element me-
thods the theory of adaptive algorithms is still under development, in particular the design of algorithms, for which optimality
can be proven is a challenging task.

A posteriori error control for mixed finite element methods (MFEM) dates back to Alonso (1996) [1] and Carstensen
(1997) [2]. The proof of error reduction and convergence by Carstensen and Hoppe [3, 4] in 2006 was a mile stone into that
direction.

In contrast to the algorithm proposed by [5] our approach is to reduce the error and oscillations simultaneously, rather than
to to reduce oscillations first up to a given tolerance and then approximate the solution by some standard adaptive algorithm.
Chen, Holst and Xu proved convergence and optimality for their method.

This talk proposes an optimal adaptive mixed finite element algorithm for the Poisson model problem

p + ∇u = 0, div p = f in Ω, u = 0 on ∂Ω (1.1)

with f ∈ L2(Ω). The discrete mixed variational formulation reads: Seek (p�, u�) ∈ RT0(T�) × P0(T�) such that ∀(q�, v�) ∈
RT0(T�) × P0(T�) the following equations hold

(p�, q�)L2(Ω) = (div q�, u�)L2(Ω) , (div p�, v�)L2(Ω) = (f, v�)L2(Ω) ,

on lowest order Raviart Thomas FEM spaces

RT0(T�) = {q ∈ H(div, Ω) | ∀T ∈ T ∃a ∈ R
2, b ∈ R ∀x ∈ T q(x) = a + bx}.

It is well known, that the Ladyschenskaja-Babuška-Brezzi (LBB) condition holds and insures existence and uniqueness of
the discrete solution.

The essential steps in the algorithm are the steps MARK & REFINE. Having calculated the edge-based error estimator η�

and the oscillations osc� in step ESTIMATE the mesh is refined with respect to the chosen refinement indicator, depending on
whether the error estimator dominates oscillations or κη2

� < osc2
� for given κ > 0.
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2 Adaptive Mixed Finite Element Method (AMFEM)

The standard loop of adaptive FEM reads

Solve → Estimate → Mark → Refine

and has to be modified as follows to ensure optimal convergence rate for the lowest order mixed finite element method.

Anmerkung 2.1 The main challenge in designing optimal adaptive algorithms for mixed finite element methods is to
overcome the lack of Galerkin-orthogonality. For that purpose quasi-orthogonality is needed [4, 5]. Beyond orthogonality, the
major objective is to embed both Cases (A) and (B) in an optimal refinement strategy, which allows the return to standard
arguments for adaptive schemes.

The proposed algorithm reduces estimated error and oscillations simultaneously, in contrast to the one introduced by Chen,
Holst and Xu [5] where an initial triangulation approximating the data up to a given tolerance, is generated, before the solution
is approximated by an adaptive algorithm for mixed methods.

The basic scheme of AMFEM reads as follows:

Algorithm 2.2 (AMFEM) For given positive κ and 0 < θ < 1, do until termination

SOLVE: Solve the discrete problem (1.1) on T�.

ESTIMATE: Compute data oscillations and edge-based error estimator.
Choose refinement indicator: osc� or η� depending on whether osc2

� ≤ κη2
� .

MARK: Mark elements or edges with respect to the refinement indicator.

REFINE: Generate T�+1 by refining T� with respect to the marked set by applying Newest Vertex Bisection.
Possible refinments of a triangle T ∈ T� depending on which edges are marked for refinement are depicted
in Figure 2.1.

Whereas the procedure of the first two steps follows standard adaptive algorithms, the design of the two steps MARK

and REFINE is crucial for the proof of contraction and optimal convergence and needs to be modified properly. Each step of
AMFEM is described in detail in the remaining part of this section.
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(a) Triangle T
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(b) green (T )
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(c) blueleft (T )
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(d) blueright (T )
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(e) bisec3 (T )

Abb. 2.1 Possible refinement of a triangle T . The reference edge of each (sub-)triangle is identified through an additional parallel line,
while themarked edges of T are drawn in black.

Steps SOLVE & ESTIMATE

On each level �, let T� denotes the partitioning of Ω into triangles, E� the set of interior edges.
In steps SOLVE & ESTIMATE, solve the discrete problem (1.1) on T� and compute edge-oriented error estimator

η2
� :=η2

� (E�) =
∑

E∈E�

η2
� (E), with

η�(E) := |E|1/2 ‖[p�]E‖L2(E) for all E ∈ E�
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and [q]E := qT+ − qT− denoting the jump of q across an edge E and element-wise oscillations

osc� := osc(f, T�) :=

(∑
T∈T�

osc2(f, T )

)1/2

, where

osc(f, T ) := |T |1/2 ‖f − fT ‖L2(T ) , and

fT :=
�

T

f dx := |ω|−1
�

ω

f(x) dx .

Implementational details are given in [6].

Anmerkung 2.3 For the chosen edge-error estimator η� efficiency and reliability hold

Ceffη
2
� ≤ ‖p − p�‖2

L2(Ω) ≤ Crel
(
η2

� + osc2
�

)
.

Steps MARK & REFINE

The design of these two steps is essential for embedding the two Cases (A) and (B) into an optimal mesh. Depending on
osc2

� ≤ κη2
� on each level either error estimator reduction or oscillation reduction is performed.

In Case (A): osc2
� ≤ κη2

� and the edge-based error estimator is to be reduced.
MARK: Compute minimal set of marked edges, which fulfil bulk criterion M� ⊆ E� such that

θη2
� ≤

∑
E∈M�

η2
E .

REFINE: Refine all edges in C�(M�) using Newest Vertex Bisection.

In Case (B): osc2
� > κη2

� the oscillations dominate the error estimator, therefore osc� is to be reduced in an optimal way.

MARK: Get triangulation Tε�
by Thresholding Second Algorithm [7] for Tol(�) := ρ

1/2
2 osc� with 0 < ρ2 < 1,

such that

osc2(f, Tε�
) < Tol(�)2 and |Tε�

| − |T0| � Tol−1/s(�).

REFINE: Compute overlay triangulation T�+1 := T� ⊕ Tε�
.

3 Contraction & Optimality

The convergence of adaptive algorithms is not obvious, since the intention of adaptivity is to let refine some regions of the
mesh, whereas in other regions, diam(T ) might stay well away from zero.

Satz 3.1 (Contraction [8]) For a special choice of positive reals α, β, κ, θ, for each level � with

ξ2
� :=η2

� + αε2
� + β osc2

�

there exists 0 < ρ < 1, such that the following contraction property holds

ξ�+1 ≤ρξ�.

Satz 3.2 (Overhead of CLOSURE [7,9]) Let T� be some triangulation refined from T0 refining with respect to some sequence
of marked edges Mk ⊆ Tk, 0 ≤ k < �. Then, there exists some constant C0 > 0, depending solely on the shape regularity of
T0 such that

|T�| − |T0| ≤ C0

�−1∑
k=1

|Mk| .

Anmerkung 3.3 (Maintain Shape Regularity and Controlling CLOSURE) To prove optimality of AMFEM the two strate-
gies of refining a mesh have to be combined to estimate the refinement costs in total. In the first case, where oscillations are
small compared to the estimated error, the standard estimate by Rob Stevenson is used.

Having marked a set of edges M� ⊆ E� in MARK, shape regularity is maintained by application of CLOSURE, which
computes C�(M�) ⊇ M�. Finally the triangulation is refined by bisecting exactly the edges in C�(M�) using Newest Vertex
Bisection, cf. Figure 2.1.
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(a) Set of marked edges M�
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(b) Set of marked edges after applying CLOSURE - C�(M�)

Abb. 3.1 Noncontrollable overhead of CLOSURE in only one level

Considering only one level �, the control depends on some C� > 0, such that for |M�| � |C�(M�)| there exists 1 � C�

with

|T�+1| − |T�| ≤ C� |M�| .

Clearly, the unboundedness of C� is not intentionally. One example is depicted in Figure 3.1, obviously the marking of one
edge leads to an unbounded number of elements in C�(M�).

Anmerkung 3.4 (Reducing oscillations) In the second case the number of refinement levels of the resulting triangulation
is not bounded. In that case there is need to bound the refinement cost in order to achieve optimality for AMFEM. For more
information see [8].

The major result and achievement is the following theorem, ensuring that AMFEM generates a sequence of optimal trian-
gulations in the sense of Stevenson [9]. Having proven contraction of the error, the next step is to consider optimality of the
algorithm.

Definition 3.5 (Approximation class) For s > 0 and an initial triangulation T0, set

As :=
{
(p, f) ∈ H(div, Ω)×L2(Ω) | ‖(p, f)‖As

< ∞
}

,

‖(p, f)‖As
:= sup

N∈N

Ns inf
|T |−|T0|≤N

(
dist2(p, RT0(T )) + osc2(f, T )

)
.

A triangulation Tε refined from T0 is called optimal, if for ε > 0, (p, f) ∈ As it holds

η2
ε + osc2 (f, Tε) ≤ε and |Tε| − |T0| � ε−1/s ‖(p, f)‖As

Satz 3.6 (Optimal convergence [8]) For a special choice of 0 < θ < 1 and positive reals α, β, κ, ρ with ρ < 1; the
sequence of triangulations T� with discrete MFEM solutions (p�, u�) ∈ RT0(T�) × P0(T�) and the weighted term

ξ2
� := η2

� + αε2
� + β osc2

�

generated by algorithm AMFEM is optimal in the sense

|T�| − |T0| � ξ
−1/s
� .
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