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Abstract. We consider an adaptive finite element method (AFEM) for obstacle problems associated with linear
second order elliptic boundary value problems and prove a reduction in the energy norm of the discretization error
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1. Introduction. Adaptive finite element methods (AFEMs) for partial differential equa-
tions based on residual- or hierarchical-type estimators,local averaging techniques, the goal-
oriented dual weighted approach, or the theory of functional-type error majorants have been
intensively studied during the past decades (see, e.g., themonographs [1, 3, 4, 16, 25, 33]
and the references therein). As far as elliptic obstacle problems are concerned, we refer to
[2, 5, 7, 8, 14, 19, 23, 26, 27, 31].

More recently, substantial efforts have been devoted to a rigorous convergence analysis
of AFEMs, initiated in [15] for standard conforming finite element approximations of linear
elliptic boundary value problems and further investigatedin [24]. Using techniques from
approximation theory, under mild regularity assumptions optimal order of convergence has
been established in [6, 29]. Nonstandard finite element methods such as mixed methods,
nonconforming elements and edge elements have been addressed in [11, 12, 13]. A nonlinear
elliptic boundary value problem, namely for the p-Laplacian, has been treated in [32]. The
basic ingredients of the convergence proofs are the reliability of the estimator, its discrete
local efficiency, and a bulk criterion realizing an appropriate selection of edges and elements
for refinement.

For elliptic obstacle problems, the issue of error reduction in the energy functional as-
sociated with the formulation of the obstacle problem as a constrained convex minimization
problem has been studied in [9] and [28]. The approach in [28]relies on techniques from
nonlinear optimization, whereas the convergence analysisin [9] is restricted to the case of
affine obstacles.

In this paper, we focus on the error reduction property with respect to the energy norm
for general obstacles. The error estimator is of residual type and consists of element and edge
residuals. The a posteriori error analysis reveals that in contrast to the unconstrained case the
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local residuals only have to be taken into account for elements and edges within the discrete
noncoincidence set.

The paper is organized as follows: In section 2, we introducethe elliptic obstacle problem
as a variational inequality involving a closed, convex subset K ⊂ H1

0 (Ω) and address its
unconstrained formulation in terms of a Lagrange multiplier inH−1(Ω). We further consider
a finite element approximation by means of P1 conforming finite elements with respect to a
simplicial triangulation of the computational domain. Theunconstrained formulation of the
discrete approximation gives rise to discrete multiplierswhich are Radon measures, namely
a linear combination of point functionals associated with nodal points within the discrete
coincidence set. The evaluation of the discrete multipliers for the nodal basis functions of
the underlying finite element space and the specification of aconsistency error due to the
extension of the discrete multipliers toH−1(Ω) and the mismatch between the continuous
and discrete coincidence and noncoincidence sets are the essential keys for the subsequent
a posteriori error analysis. In section 3, we present the error estimator, data oscillations,
a bulk criterion taking care of the selection of elements andedges for refinement, and the
refinement strategy. Furthermore, the main convergence result is stated in terms of a reduction
of the discretization error in the energy norm up to the consistency error. The subsequent
section 4 is devoted to the proof of the error reduction property which uses the reliability
of the estimator, its discrete local efficiency, and a perturbed Galerkin orthogonality as basic
tools. Finally, section 6 contains a detailed documentation of numerical results for some
selected test examples displaying the convergence historyof the AFEM and thus illustrating
its numerical performance.

2. The obstacle problem and its finite element approximation. We assumeΩ ⊂ R
2

to be a bounded, polygonal domain with boundaryΓ := ∂Ω. We use standard notation from
Lebesgue and Sobolev space theory, refer toHk(Ω), k ∈ N, as the Sobolev spaces based on
L2(Ω), and denote their norms as‖ · ‖k,Ω. We refer to(·, ·)0,Ω as the inner product of the
Hilbert spaceL2(Ω). Fork = 1, | · |1,Ω stands for the associated seminorm onH1(Ω) which
actually is a norm onV := H1

0 (Ω) := {v ∈ H1(Ω) | v|Γ = 0}. We refer toV ∗ := H−1(Ω)
as the dual ofV and to〈·, ·〉 as the associated dual pairing. Likewise,〈·, ·〉Γ stands for the dual
pairing between the trace spaceH1/2(Γ) and its dual. We denote byV+ := {v ∈ V | v ≥
0 a.e. onΩ} the positive cone ofV and byV ∗

+ the positive cone ofV ∗, i.e., σ ∈ V ∗
+ iff

〈σ, v〉 ≥ 0 for all v ∈ V+.
We further refer toC(Ω) as the Banach space of continuous functions onΩ. Its dual

M(Ω) = C(Ω)∗ is the space of Radon measures onΩ with 〈〈·, ·〉〉 standing for the associated
dual pairing. We refer toC+(Ω) andM+(Ω) as the positive cones ofC(Ω) andM(Ω). In
particular,σ ∈ M+(Ω) iff 〈〈σ, v〉〉 ≥ 0 for all v ∈ C+(Ω).

For givenf ∈ L2(Ω) andψ ∈ H1(Ω) with ψ|Γ ≥ 0, we consider the obstacle problem

inf
v∈K

J(v) , J(v) :=
1

2
a(v, v) − (f, v)0,Ω, (2.1)

whereK stands for the closed, convex set

K := {v ∈ V | v ≤ ψ a.e. onΩ}.

anda(·, ·) : V × V → R is the bilinear form

a(v, w) :=

∫

Ω

∇v · ∇w dx , v, w ∈ V.
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It is well-known [21] that (2.1) admits a unique solution andthat the necessary and sufficient
optimality conditions are given by the variational inequality

a(u, v − u) ≥ (f, v − u)0,Ω , v ∈ K. (2.2)

We define the coincidence set (active set)A as the maximal open set inΩ such thatu(x) =
ψ(x) f.a.a. x ∈ A and the noncoincidence set (inactive set)I according toI :=

⋃

ε>0Bε,
whereBε is the maximal open set inΩ such thatu(x) ≤ ψ(x) − ε for almost allx ∈ Bε.

Introducing a Lagrange multiplierσ ∈ V ∗ for the constraints, (2.2) can be written in
unconstrained form as follows

a(u, v) = (f, v)0,Ω − 〈σ, v〉 , v ∈ V, (2.3)

where〈·, ·〉 stands for the dual pairing ofV ∗ andV . We note thatσ ∈ V ∗
+. Moreover, the

following complementarity condition is satisfied

〈σ, u− ψ〉 = 0. (2.4)

We assume{Tℓ}ℓ∈N0
to be a shape regular family of simplicial triangulations ofthe

computational domainΩ. GivenD ⊆ Ω, we refer toNℓ(D) andEℓ(D) as the sets of vertices
and edges ofTℓ in D, and we simply writeNℓ andEℓ, if D = Ω. ForD ⊆ Ω andE ∈ Eℓ we
denote by|D| and|E| the area ofD and length ofE, and we refer tofD as the integral mean
of f with respect toD, i.e.,fD := |D|−1

∫

D
fdx. Moreover, forT ∈ Tℓ(Ω) andE ∈ Eℓ(T ),

we denote byνE the exterior unit normal onE. Forp ∈ Nℓ, E ∈ Eℓ, andT ∈ Tℓ we refer to

ωpℓ :=
⋃

{T ∈ Tℓ | p ∈ Nℓ(T )},

ωEℓ :=
⋃

{T ∈ Tℓ | E ∈ Eℓ(T )},

ωTℓ :=
⋃

{T ′ ∈ Tℓ | Nℓ(T
′) ∩Nℓ(T ) 6= ∅}

as the patches of elements associated withp, E andT , respectively. Further,

Epℓ :=
⋃

{E ∈ Eℓ | p ∈ Nℓ(E)}

is the set of edges sharingp as a common vertex.
We denote bySℓ the finite element space of continuous, piecewise linear finite elements

with respect toTℓ and set

Vℓ := Sℓ ∩ V.

We further defineψℓ ∈ Sℓ as some approximation ofψ ∈ H1(Ω). For instance, ifψ ∈ C(Ω̄),
we may chooseψℓ ∈ Sℓ as the nodal interpoland ofψ (cf. [17]).

The finite element approximation of (2.1) amounts to the solution of the finite dimen-
sional constrained minimization problem

min
vℓ∈Kℓ

J(vℓ) , J(vℓ) :=
1

2
a(vℓ, vℓ) − (f, vℓ)0,Ω . (2.5)

Here, the constrained discrete setKℓ is given by

Kℓ := {vℓ ∈ Vℓ | vℓ(x) ≤ ψℓ(x) , x ∈ Ω} .
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Again, the optimality conditions give rise to the variational inequality

a(uℓ, vℓ − uℓ) ≥ (f, vℓ − uℓ)0,Ω , vℓ ∈ Kℓ. (2.6)

We define the discrete coincidence set according toAℓ := {x ∈ Ω | uℓ(x) = ψℓ(x)} and
refer toIℓ := Ω \ Aℓ as the discrete noncoincidence set. We note thatAℓ may consist of
vertices and/or edges only.

The corresponding Lagrange multiplierσℓ can be written as a linear combination of Dirac
delta functionalsδp associated withp ∈ Nℓ according to

σℓ :=
∑

p∈Nℓ

αℓ(p)δp , αℓ(p) ∈ R , p ∈ Nℓ. (2.7)

As in the continuous setting, (2.6) can be written in unconstrained form as

a(uℓ, vℓ) = (f, vℓ)0,Ω − 〈〈σℓ, vℓ〉〉 , vℓ ∈ Vℓ . (2.8)

In particular,σℓ ∈ M+(Ω̄) and the complementarity condition

〈〈σℓ, ψℓ − uℓ〉〉 = 0 (2.9)

is satisfied.

Residual-type a posteriori error estimators for obstacle problems that contain the standard
edge residualsηE := h

1/2
E ‖νE · [∇uℓ]E‖0,E , where[∇uℓ]E denotes the jump of∇uℓ across

E, for edges within the discrete coincidence set cannot be efficient: Assumeψℓ to have a
kink that aligns with some edgeE in the discrete coincidence set. Then, the edge residual
ηE = h

1/2
E ‖νE · [∇ψℓ]E‖0,E will be large, although the discretization error|u − uℓ|1,Ω can

be arbitrarily small. The same applies to the discrete localefficiency. As will be shown in
the subsequent a posteriori error analysis, the standard element and edge residuals within
the discrete coincidence set do not contribute to the error estimator. They will be eliminated
in essence by the discrete multiplier. However, the a posteriori error analysis requires an
extension of the discrete multiplier toV ∗ = H−1(Ω). This extension is motivated by the
following explicit representation ofσℓ.

LEMMA 2.1. The discrete Lagrange multiplierσℓ has the representation

αℓ(p) =







∑

T∈ωp

ℓ

(f, ϕpℓ )0,T −
∑

E∈Ep

ℓ

(νE · [∇uℓ]E , ϕ
p
ℓ )0,E , p ∈ Nℓ(Aℓ),

0, p ∈ Nℓ(Iℓ),
(2.10)

whereϕpℓ is the nodal basis function associated with the nodal pointp.
Proof. It is an immediate consequence of (2.9) thatαℓ(p) = 0 for p ∈ Iℓ. On the other

hand, ifp ∈ Aℓ, we choosevℓ = ϕpℓ . It follows from (2.8) that

αℓ(p) = 〈〈σℓ, ϕ
p
ℓ 〉〉 = (f, ϕpℓ )0,ωp

ℓ
− (∇uℓ,∇ϕ

p
ℓ )0,ωp

ℓ
. (2.11)

An elementwise application of Green’s formula to the secondterm on the right-hand side in
(2.11) yields

(∇uℓ,∇ϕ
p
ℓ )0,ωp

ℓ
=

∑

T∈ωp

ℓ

(∇uℓ,∇ϕ
p
ℓ )0,T =

∑

E∈Ep

ℓ

(νE · [∇uℓ], ϕ
p
ℓ )0,E . (2.12)

Inserting (2.12) in (2.11) we obtain the assertion. �
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In the a posteriori error analysis of obstacle problems, theLagrange multiplierσℓ is
considered as a functional onVℓ and extended toV ; see, e.g., [8]. Usually this is done via
a representation as anL2 function. Here, for the reasons mentioned above, the construction
refers to Lemma 2.1 and edge terms are included. We set

〈σ̃ℓ, v〉 :=
∑

p∈Nℓ(Aℓ)

(1

3

∑

T∈ Ωp

ℓ

(f, v)0,T −
1

2

∑

E∈ Ep

ℓ

(νE · [∇uℓ], v)0,E
)

. (2.13)

REMARK 2.1. The sum in the definition of̃σℓ, i.e., in (2.13) is restricted to points in
the active set. If the summation runs over all nodal points ofthe grid and the factors are
adjusted at the boundary, then we obtain an extensionσ̂ℓ with 〈σ̂ℓ, v〉 = a(uh, v)− (f, v) for
all v ∈ V ; see [10].

We denote byEℓ(Aℓ) and Tℓ(Aℓ) the sets of edges and elements having all vertices
within the discrete coincidence setAℓ, i.e.,

Eℓ(Aℓ) :=
⋃

{E ∈ Eℓ(Ω) | Nℓ(E) ⊂ Aℓ} , (2.14a)

Tℓ(Aℓ) :=
⋃

{T ∈ Tℓ(Ω) | Nℓ(T ) ⊂ Aℓ} , (2.14b)

and we refer toEℓ(Iℓ) andTℓ(Iℓ) as the complements

Eℓ(Iℓ) := Eℓ \ Eℓ(Aℓ) , Tℓ(Iℓ) := Tℓ \ Tℓ(Aℓ) . (2.15)

We further introduceE(i)
Aℓ

⊂ Eℓ andT (i)
Aℓ

⊂ Tℓ as the subsets of edges and elements having
i vertices in the discrete coincidence setAℓ, i.e.,

E
(i)
Aℓ

:=
⋃

{E ∈ Eℓ | card(Nℓ(E) ∩ Aℓ) = i} , i ∈ {0, 1, 2} , (2.16a)

T
(i)
Aℓ

:=
⋃

{T ∈ Tℓ | card(Nℓ(T ) ∩ Aℓ) = i} , i ∈ {0, 1, 2, 3} , (2.16b)

and we defineE(i)
Iℓ

andT (i)
Iℓ

analogously. In particular,Eℓ(Aℓ) = E
(2)
Aℓ

andTℓ(Aℓ) = T
(3)
Aℓ

.
Moreover, we set

TFℓ
:= Tℓ \ (T

A
(3)
ℓ

∪ T
I

(3)
ℓ

)) , EFℓ
:= Eℓ \ (E

A
(2)
ℓ

∪ T
I

(2)
ℓ

)). (2.17)

Now the summation in (2.13) can be reorganized such that eachtriangle and each edge
enters only once. Taking (2.14) and (2.16) into account, from (2.13) we easily deduce that
for v ∈ V there holds

〈σ̃ℓ, v〉 =

3∑

i=1

i

3

∑

T∈T
(i)
Aℓ

(f, v)0,T −
2∑

i=1

i

2

∑

E∈E
(i)
Aℓ

(νE · [∇uℓ]E , v)0,E . (2.18)

It follows that forvℓ ∈ Vℓ

〈〈σℓ, vℓ〉〉 − 〈σ̃ℓ, vℓ〉 =
∑

T∈TFℓ

κT (f, vℓ)0,T −
∑

E∈EFℓ

κE(νE · [∇uℓ]E , vℓ)0,E , (2.19)

where

κT := 1 −
i

3
, T ∈ T

(i)
ℓ , κE := 1 −

i

2
, E ∈ E

(i)
ℓ . (2.20)

We note that̃σℓ does not inherit the complementarity properties fromσℓ, in particular,σ̃ℓ /∈
V ∗

+. Obviously, the contribution of̃σℓ reminds of the well-known residual estimators for
linear problems. Section 4 will highlight its role in the a posteriori error analysis.
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3. The a posteriori error estimator and the error reduction property. We consider
the residual-type a posteriori error estimator

ηℓ :=
( ∑

T∈Tℓ(Iℓ)

η2
T +

∑

E∈Eℓ(Iℓ)

η2
E

)1/2

, (3.1)

whereTℓ(Iℓ) andEℓ(Iℓ) are given by (2.15). The element residualsηT are weighted elemen-
twiseL2-residuals and the edge residualsηE are weightedL2-norms of the jumpsνE · [∇uℓ]
of the normal derivatives across the interior edges according to

ηT := hT ‖fT ‖0,T , ηE := h
1/2
E ‖νE · [∇uℓ]E‖0,E . (3.2)

They are defined as in the linear regime (see, e.g., [33]), butin contrast to that case they only
have to be considered for elementsT and edgesE within the discrete non-coincidence setIℓ.

The refinement of a triangulationTℓ is based on a bulk criterion that has been previously
used in the convergence analysis of adaptive finite elementsfor nodal finite element methods
[15, 24]. For the obstacle problem under consideration, thebulk criterion is as follows: Given
a universal constantΘ ∈ (0, 1), we create a set of elementsM(1)

ℓ ⊂ Tℓ(Iℓ) and a set of edges

M
(2)
ℓ ⊂ Eℓ(Iℓ) such that

Θ
∑

T∈Tℓ(Iℓ)

η2
T ≤

∑

T∈M
(1)
ℓ

η2
T , (3.3a)

Θ
∑

E∈Eℓ(Iℓ)

η2
E ≤

∑

E∈M
(2)
ℓ

η2
E . (3.3b)

The bulk criterion is realized by a greedy algorithm [12, 13]. Based on the bulk criterion, we
generate a fine meshTℓ+1 as follows: IfT ∈ M

(1)
ℓ or E = T+ ∩ T− ∈ M

(2)
ℓ , we refineT

or T± by repeated bisection such that an interior nodal pointpT in T or interior nodal points
p+ ∈ T+ andp− ∈ T− are created [24]. In order to guarantee a geometrically conforming
triangulation, new nodal points are generated, if necessary.

We further have to take into account data oscillations and a data term with respect to the
right-hand sidef and the obstacleψ. The data oscillationsoscℓ are given by

osc2ℓ := osc2ℓ(f) + osc2ℓ(ψ) , (3.4)

whereoscℓ(f) andoscℓ(ψ) are defined by means of

osc2ℓ(f) :=
∑

T∈Tℓ(Ω)

osc2T (f) +
∑

E∈Eℓ(Ω)

osc2ωE
ℓ

(f) , (3.5a)

osc2ℓ(ψ) :=
∑

T∈Tℓ(Ω)

osc2T (ψ) +
∑

E∈Eℓ(Ω)

osc2ωE
ℓ

(ψ) , (3.5b)

oscD(f) := diam(D) ‖f − fD‖0,D ,

oscD(ψ) := |ψ − ψℓ|1,D , D ∈ {T, ωEℓ } .

On the other hand, the data termµℓ is of the form

µ2
ℓ :=

∑

E∈M̂
(2)
ℓ

µ2
E(ψ) , µE(ψ) := hE ‖νE · [∇ψ]E‖0,E , (3.6)
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where

M̂
(2)
ℓ := {E ∈ M

(2)
ℓ |mE ∈ Aℓ+1 andp+ ∈ Iℓ+1 or p− ∈ Iℓ+1}

with p± denoting the interior nodal points inT± (E = T+ ∩ T−) (cf. case(ii)2,1 in the
proof of Lemma 5.3 in section 5 below which is the only situation whereµ2

ℓ occurs in the a
posteriori error analysis).
The refinement and the new meshTℓ+1 shall also take care of a reduction of the data oscilla-
tions (cf., e.g., [24]). In particular, we require that

osc2ℓ+1 ≤ ρ2 osc
2
ℓ (3.7)

for some0 < ρ2 < 1. This can be achieved by additional refinements if necessary. Likewise,
we require that

µ2
ℓ+1 ≤ ρ3 µ

2
ℓ , (3.8)

where0 < ρ3 < 1. Since these terms can be expected to arise only in the discrete noncoinci-
dence set close to the discrete free boundary, (3.8) can be achieved by including edges in the
vicinity of the discrete free boundary in the refinement process.

The convergence analysis is based on the reliability and thediscrete efficiency of the esti-
matorηℓ as well as on a perturbed Galerkin orthogonality which will be addressed in detail in
the subsequent section. These properties involve consistency errors due to the extensionσ̃ℓ of
the discrete multiplierσℓ and the mismatch between the continuous and discrete coincidence
and noncoincidence sets. In particular, we define

conℓ := conrelℓ + conortℓ . (3.9)

Here,conrelℓ andconortℓ refer to the consistency errors associated with the reliability of ηℓ
and the perturbed Galerkin orthogonality:

conrelℓ := |〈σ̃ℓ, ψ − u〉| , conortℓ := 2 〈σ, ψℓ − uℓ〉. (3.10)

Due to the construction of̃σℓ, the consistency errorconrelℓ is nonzero only in the small patch
TFℓ

∪ EFℓ
in the vicinity of the discrete free boundary (cf. (2.17)) and in C1 := Aℓ ∩ I.

On the other hand, the consistency errorconortℓ is nonzero only inC2 := A ∩ Iℓ. The
setsC1 andC2 represent the mismatch between the continuous and discretecoincidence and
noncoincidence sets. Usually, the setsTFℓ

∪ EFℓ
andCν , 1 ≤ ν ≤ 2, are small and the

consistency errorsconrelℓ andconortℓ turn out to be at least one order of magnitude smaller
than the other error terms as it is the case, for instance, in the numerical examples presented
in section 6. However, if necessary, the marking strategy can be extended by marking the
elements and edges inTFℓ

∪ EFℓ
andCν , 1 ≤ ν ≤ 2, for refinement. To do so, we need to

provide approximations of the mismatch setsC1 andC2. We denote byχ(D),D ⊂ Ω, the
characteristic function ofD and, following [18] and [22], define

χA
ℓ := I −

ψℓ − uℓ
γhrℓ + ψℓ − uℓ

with appropriately chosenγ, r > 0 as an approximation ofχ(A). Indeed, it can be shown
that‖χA

ℓ −χ(A)‖0,T → 0 ashℓ → 0 for eachT ∈ Tℓ(Ω) (cf. [18, 22]). Then,χI
ℓ := I−χA

ℓ

is an approximation ofχ(I) and hence,χC1

ℓ := χ(Aℓ)χ
I
ℓ andχC2

ℓ := χ(Iℓ)χ
A
ℓ provide

approximations of the characteristic functionsχ(C1) andχ(C2).
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The main result of this paper states an error reduction in the| · |1,Ω-norm up to the
consistency errorconℓ.

THEOREM 3.1. Let u ∈ V anduℓ ∈ Vℓ, uℓ+1 ∈ Vℓ+1, respectively, be the solutions
of (2.2) and (2.8), and letoscℓ, µℓ, andconℓ be the data oscillations, data terms, and the
consistency error as given by(3.4), (3.6), and(3.9), respectively. Assume that(3.7),(3.8)are
satisfied. Then, there exist constants0 < ρ1 < 1 andCi > 0, 1 ≤ i ≤ 3, depending only on
Θ and the local geometry of the triangulations, such that





|u− uℓ+1|
2
1,Ω

osc2ℓ+1

µ2
ℓ+1



 ≤





ρ1 C1 C2

0 ρ2 0
0 0 ρ3









|u− uℓ|
2
1,Ω

osc2ℓ
µ2
ℓ



 +





C3 conℓ
0
0



 . (3.11)

REMARK 3.1. If the consistency errorconℓ is negligible, the error reduction property
(3.11) implies R-linear convergence of the finite element approximations uℓ ∈ Vℓ to the
solutionu ∈ V of (2.2).

The proof of Theorem 3.1 will be presented in the next section.

4. Reliability. We will show that the residual-type error estimator from (3.1) provides
an upper bound for the energy norm error up to the data oscillations and the consistency error
conrefℓ .

Throughout this section, we denote byC > 0 a constant depending only on the geometry
of the triangulation, not necessarily the same at each occurrence. Moreover, forA,B ∈ R we
use the notationA . B, if A ≤ CB. Likewise,A ≈ B iff A . B andB . A.

THEOREM 4.1. Letu ∈ V anduℓ ∈ Vℓ be the solutions of(2.3)and (2.8), respectively,
and letηℓ, oscℓ, andconrelℓ be the error estimator(3.1), the data oscillations(3.4) and the
consistency error(3.10), respectively. Then, there holds

|u− uℓ|
2
1,Ω . η2

ℓ + osc2ℓ + conrelℓ . (4.1)

Proof. Settingeu := u−uℓ and denoting byPVℓ
: V → Vℓ Clément’s quasi-interpolation

operator (see, e.g., [33]), we find by straightforward computation

|eu|
2
1,Ω = a(eu, eu) = r(eu − PVℓ

eu) + ℓ1(PVℓ
eu) + ℓ2(eu), (4.2)

where

r(v) := (f, v)0,Ω − a(uℓ, v) − 〈σ̃, v〉 , v ∈ V ,

ℓ1(vℓ) := 〈〈σℓ, vℓ〉〉 − 〈σ̃ℓ, vℓ〉 , vℓ ∈ Vℓ,

ℓ2(v) := 〈σ̃ℓ − σ, v〉 , v ∈ V.

Elementwise integration by parts and the representation (2.18) leads to

r(v) =
∑

T∈Tℓ

(f, v)0,T −
∑

E∈Eℓ(Ω)

(νE · [∇uℓ]E , v)0,E − 〈σ̃ℓ, v〉 (4.3)

=
∑

T∈Tℓ(Iℓ)

κT (fT , v)0,T −
∑

E∈Eℓ(Iℓ)

κE(νE · [∇uℓ]E , v)0,E +

∑

T∈Tℓ(Iℓ)

κT (f − fT , v)0,T ,

8



whereκT andκE are given by (2.20). Standard estimation of the terms on the right-hand side
in (4.3) withv := eu − PVℓ

eu yields

|r(eu − PVℓ
eu)| .

∑

T∈Tℓ(Iℓ)

(

ηT + oscT (f)
)

|eu|1,ωT
ℓ

+
∑

E∈Eℓ(Iℓ)

ηE |eu|1,ωE
ℓ

≤
1

10
|eu|

2
1,Ω + C

(

η2
ℓ + osc2ℓ(f)

)

. (4.4)

For ℓ1(PVℓ
eu) in (4.2) we obtain

|ℓ1(PVℓ
eu)| ≤

1

10
|eu|

2
1,Ω + C

( ∑

T∈TFℓ

(η2
T + osc2T (f)) +

∑

E∈EFℓ

η2
E

)

. (4.5)

Moreover, forℓ2(eu) it follows that

ℓ2(eu) = 〈σ̃ℓ − σ, u− ψ〉 + 〈σ̃ℓ − σ, ψ − ψℓ〉 + 〈σ̃ℓ − σ, ψℓ − uℓ〉 .

From the complementarity property (2.4),(2.13) andσ ∈ V ∗
+ we deduce

〈σ̃ℓ − σ, eu〉 ≤
1

10
|eu|

2
1,Ω + C

( ∑

T∈TFℓ

(η2
T + osc2T (f)) +

∑

E∈EFℓ

η2
E

)

+ (4.6)

+ osc2ℓ(ψ) + conrelℓ + 〈σ̃ℓ − σ, ψ − ψℓ〉.

It remains to estimate〈σ̃ℓ−σ, ψ−ψℓ〉. Zero boundary conditions are not required forσ̃ℓ−σ.
We note thatu ∈ V anduℓ ∈ Vℓ satisfy

a(u, v) = (f, v)0,Ω + 〈νΓ · ∇u, v〉Γ − 〈σ, v〉 , v ∈ H1(Ω), (4.7)

a(uℓ, vℓ) = (f, vℓ)0,Ω + 〈νΓ · ∇uℓ, vℓ〉Γ − 〈σ̃ℓ, vℓ〉 , vℓ ∈ Sℓ, (4.8)

Settingδψ := ψ − ψℓ ∈ H1(Ω) and denoting byPSℓ
: H1(Ω) → Sℓ Clément’s quasi-

interpolation operator, we obtain

〈σ̃ℓ − σ, δψ〉 = 〈σ̃ℓ − σ, PSℓ
δψ〉 + 〈σ̃ℓ − σ, δψ − PSℓ

δψ〉. (4.9)

We have

〈σ̃ℓ − σ, PSℓ
δψ〉 = (〈σ̃ℓ, PSℓ

δψ〉 − 〈〈σℓ, PSℓ
δψ〉〉) + (〈〈σℓ, PSℓ

δψ〉〉 − 〈σ, PSℓ
δψ〉). (4.10)

For the first term on the right-hand side in (4.10) we get

|〈σ̃ℓ, PSℓ
δψ〉 − 〈〈σℓ, PSℓ

δψ〉〉| . osc2ℓ(ψ) +
∑

T∈TFℓ

(η2
T + osc2T (f)) +

∑

E∈EFℓ

η2
E . (4.11)

SincePSℓ
δψ is an admissible test function in (4.7) and (4.8), the trace inequality

‖νΓ · ∇(u− uℓ)‖−1/2,Γ . |u− uℓ|1,Ω, (4.12)

and Young’s inequality imply that the second term on the right-hand side in (4.10) can be
bounded from above as follows

|〈〈σℓ, PSℓ
δψ〉〉 − 〈σ, PSℓ

δψ〉| ≤ |a(u− uℓ, PSℓ
δψ)| + (4.13)

|〈νΓ · ∇(u− uℓ), PSℓ
δψ〉Γ| ≤

1

10
|u− uℓ|

2
1,Ω + C osc2ℓ(ψ).

9



Next, using (2.13) for dealing with̃σℓ and (4.7) withσ we get

〈σ − σ̃ℓ, δψ − PSℓ
δψ〉 = I1 + I2, (4.14)

where

I1 := (f, δψ − PSℓ
δψ)0,Ω −

∑

p∈Nℓ(Aℓ)

1

3

∑

T∈ωp

ℓ

(f, δψ − PSℓ
δψ)0,Ω,

I2 := 〈νΓ · ∇u, δψ − PSℓ
δψ〉Γ − a(u, δψ − PSℓ

δψ) +

+
∑

p∈Nℓ(Aℓ)

1

2

∑

E∈Ep

ℓ

(νE · [∇uℓ]E , δψ − PSℓ
δψ)0,Ω.

For the first term it follows that

|I1| ≤
∑

T∈Tℓ(Iℓ)

(1 − κT )
(

|(fT , δψ − PSℓ
δψ)0,T | + |(f − fT , δψ − PSℓ

δψ)0,T |
)

| .

.
∑

T∈Tℓ(Iℓ)

(

hT ‖fT ‖0,T + hT ‖f − fT ‖0,T

)

|δψ|1,ωT
.

.
∑

T∈Tℓ(Iℓ)

(

η2
T + osc2T (f)

)

+ osc2ℓ(ψ).

Moreover, using (4.12) and Young’s inequality again, the second termI2 is estimated from
above

|I2| ≤ |a(eu, δψ − PSℓ
δψ)| +

∑

E∈Eℓ(Iℓ)

(1 − κE) |(νE · [∇uℓ]E , δψ − PSℓ
δψ)0,E |

+
∑

E∈Eℓ(Γ)

|〈νE · ∇(u− uℓ), δψ − PSℓ
δψ〉E |

≤
1

10
|eu|

2
1,Ω + C

( ∑

E∈Eℓ(Iℓ)

η2
E + osc2ℓ(ψ)

)

.

The preceding two estimates give

|〈σ − σ̃ℓ, δψ − PSℓ
δψ〉| ≤

1

10
|eu|

2
1,Ω + C

(

η2
ℓ + osc2ℓ(f) + osc2ℓ(ψ)

)

. (4.15)

Finally, combining (4.4)-(4.6), (4.10), (4.11) (4.13) and(4.15) we complete the proof of (4.1).
�

5. Discrete local efficiency, perturbed Galerkin orthogonality, and proof of the er-
ror reduction property. We will prove discrete efficiency of the error estimator in the sense
that it provides a lower bound for the energy norm of the differenceuℓ − uℓ+1 between the
coarse and fine mesh approximation up to the data oscillations and the data terms.

THEOREM 5.1. Let uℓ ∈ Vℓ, uℓ+1 ∈ Vℓ+1 be the solutions of(2.8) and letηℓ, oscℓ as
well asµℓ be the error estimator, the data oscillations, and the data terms as given by(3.1),
(3.4), and(3.6), respectively. Then, there holds

η2
ℓ . |uℓ − uℓ+1|

2
1,Ω + osc2ℓ + µ2

ℓ . (5.1)

10



As usual in the convergence analysis of adaptive finite element methods, the proof of
Theorem 5.1 follows from the discrete local efficiency. The guaranteed improvements that
can be associated to the volume terms and the edge terms will be established by the subse-
quent two lemmas. We adjust the concept in [9] to general obstacles, but it would be possible
also to adopt ideas from [10] or [28].

LEMMA 5.2. LetT ∈ M
(1)
ℓ with an interior nodal pointp ∈ Nℓ+1(T ).

(i) If p ∈ Nℓ+1(Iℓ+1), we have

η2
T . |uℓ − uℓ+1|

2
1,T + osc2T (f). (5.2)

(ii) If p ∈ Nℓ+1(Aℓ+1), due toT ∈ M
(1)
ℓ there existŝp ∈ Nℓ(T ) ∩Nℓ(Iℓ), and there holds

η2
T . h2

T ‖f − fωp̂

ℓ

‖2
0,ωp̂

ℓ

+
∑

E∈Ep̂

ℓ

η2
E , (5.3)

wherefωp̂

ℓ

:= |ωp̂ℓ |
−1

∫

ωp̂

ℓ

fdx.

Proof. Let p ∈ Nℓ+1(T ) be an interior node. We chooseχ(p)
ℓ+1 := κϕ

(p)
ℓ+1, κ ≈ fT , as an

appropriate multiple of the levelℓ+ 1 nodal basis functionϕ(p)
ℓ+1 associated withp such that

h2
T ‖fT ‖

2
0,T ≤ h2

T (fT , χ
(p)
ℓ+1)0,T .

Observing∇uℓ ∈ P0(T ) we find by partial integration

a(uℓ, v) = 0 if supp v ⊂ T andv ∈ H1
0 (T ). (5.4)

In particular, the preceding inequality yields

h2
T ‖fT ‖

2
0,T ≤ h2

T

(

(fT , χ
(p)
ℓ+1)0,T − a(uℓ, χ

(p)
ℓ+1)

)

. (5.5)

Sinceχ(p)
ℓ+1 is an admissible levelℓ+ 1 test function in (2.8), we have

a(uℓ+1, χ
(p)
ℓ+1) − (f, χ

(p)
ℓ+1)0,T + 〈〈σℓ+1, χ

(p)
ℓ+1〉〉 = 0 . (5.6)

Adding (5.5) and (5.6) results in

h2
T ‖fT ‖

2
0,T = h2

T

(

(fℓ − f, χ
(p)
ℓ+1)0,T + (5.7)

+ a(uℓ+1 − uℓ, χ
(p)
ℓ+1) + 〈〈σℓ+1, χ

(p)
ℓ+1〉〉

)

.

Case (i): p ∈ Nℓ+1(Iℓ) implies that

〈〈σℓ+1, χ
(p)
ℓ+1〉〉 = καℓ+1(p) = 0 ,

and we readily deduce from (5.7)

h2
T ‖fT ‖

2
0,T ≤ |uℓ − uℓ+1|1,T h

2
T |χ

(p)
ℓ+1|1,T + oscℓ,T (f)hT ‖χ

(p)
ℓ+1‖0,T . (5.8)

Observing

h2
T |χ

(p)
ℓ+1|1,T ≈ h2

T |κ| ≈ hT ‖fT ‖0,T , (5.9a)

hT ‖χ
(p)
ℓ+1‖0,T ≈ hT |T |

1/2|κ| ≈ hT ‖fT ‖0,T , (5.9b)
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we obtain (5.2).

Case (ii): We have

h2
T ‖fT ‖

2
0,T ≤ h2

T (fT , χ
(p)
ℓ+1)0,T = h2

T (fT − f, χ
(p)
ℓ+1)0,T + h2

T (f, χ
(p)
ℓ+1)0,T . (5.10)

We setχ(p̂)
ℓ := κϕ

(p̂)
ℓ , whereϕ(p̂)

ℓ is the levelℓ nodal basis function associated withp̂, and
we chooseα > 0 such that

∫

ω̂ℓ

(

ϕ
(p)
ℓ+1 − αϕ

(p̂)
ℓ

)

dx = 0. (5.11)

Sinceχ(p̂)
ℓ is an admissible levelℓ test function, there holds

a(uℓ, χ
(p̂)
ℓ ) = (f, χ

(p̂)
ℓ )0,ωp̂

ℓ

. (5.12)

On the other hand, by Green’s formula

a(uℓ, χ
(p̂)
ℓ ) =

∑

E∈Ep̂

ℓ

(νE · [∇uℓ]E , χ
(p̂)
ℓ )0,E . (5.13)

Using (5.11)–(5.13) yields

h2
T (f, χ

(p)
ℓ+1)0,T = h2

T (f, χ
(p)
ℓ+1 − αχ

(p̂)
ℓ )0,ωp̂

ℓ

+ α h2
T (f, χ

(p̂)
ℓ )0,ωp̂

ℓ

= (5.14)

= h2
T (f − fωp̂

ℓ

, χ
(p)
ℓ+1 − αχ

(p̂)
ℓ )0,ωp̂

ℓ

+ α h2
T a(uℓ, χ

(p̂)
ℓ ) =

= h2
T (f − fωp̂

ℓ

, χ
(p)
ℓ+1 − αχ

(p̂)
ℓ )0,ωp̂

ℓ

+ α h2
T

∑

E∈Eℓ(p̂)

(νE · [∇uℓ]E , χ
(p̂)
ℓ )0,E .

The right-hand sides in (5.14) can be estimated as follows

h2
T |(f − fωp̂

ℓ

, χ
(p)
ℓ+1 − αχ

(p̂)
ℓ )0,ωp̂

ℓ

| . (5.15)

. hT ‖f − fωp̂

ℓ

‖0,ωhatp

ℓ

(

hT ‖χ
(p)
ℓ+1‖0,T + α |ωp̂ℓ |

1/2 ‖χ
(p̂)
ℓ )‖0,ωp̂

ℓ

)

,

h2
T |(νE · [∇uℓ], χ

(p̂)
ℓ )0,E . h

1/2
E ‖νE · [∇uℓ]E‖0,E h

3/2
E ‖χ

(p̂)
ℓ ‖0,E . (5.16)

Using (5.9b) and

|ωp̂ℓ |
1/2 ‖χ

(p̂)
ℓ )‖0,ωp̂

ℓ

= |ωp̂ℓ |
1/2 |κ| ‖ϕ

(p̂)
ℓ )‖0,ωp̂

ℓ

. hT ‖fT ‖0,T ,

h
3/2
E ‖χ

(p̂)
ℓ ‖0,E = h

3/2
E |κ| ‖ϕ

(p̂)
ℓ ‖0,E . hT ‖fT ‖0,T ,

in (5.15),(5.16), we find that (5.14) results in

h2
T |(f, χ

(p)
ℓ+1)0,T | .

(

hT ‖f − fωp̂

ℓ

‖0,ω̂ℓ
+ (5.17)

+
∑

E∈Ep̂

ℓ

h
1/2
E ‖νE · [∇uℓ]E‖0,E

)

hT ‖fT ‖0,T .

Finally, using (5.9a),(5.17) in (5.10), we deduce (5.3). �
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FIG. 5.1.Notation forE ∈ M
(2)
ℓ

and the adjacent elementsT+, T−.

LEMMA 5.3. LetE ∈ M
(2)
ℓ , E = T+ ∩ T−, T± ∈ Tℓ, be a refined edge with midpoint

mE ∈ Nℓ+1(E) and associated patchωEℓ := T+ ∪ T−. Then, there holds

η2
E . |uℓ − uℓ+1|

2
1,ωE

ℓ

+ osc2ωE
ℓ

(f) + osc2ωE
ℓ

(ψ) + µ2
E(ψ) . (5.18)

Proof. Let p± ∈ Nℓ+1(T±) be interior nodes inT± andwℓ+1 := uℓ+1 − ψℓ+1 (cf. Fig.
5.1). We distinguish the two cases

(i) wℓ+1(p+) = wℓ+1(p−) = 0 ,

(ii) wℓ+1(p+) < 0 or wℓ+1(p−) < 0 .

Case (i): Forwℓ := uℓ − ψℓ we have

hE‖νE · [∇uℓ]‖
2
0,E . hE‖νE · [∇wℓ]‖

2
0,E + µ2

E(ψ). (5.19)

Since∇wℓ|T , T ∈ {T±}, is a constant vector, there exists at least one elementT ′ ∈ Tℓ+1(T )
such thatνE · ∇wℓ|T ′ andνE · ∇wℓ+1|T ′ have different signs or are zero onT ′. Hence,

|νE · ∇wℓ|T ′ | ≤ |νE · ∇(wℓ − wℓ+1)|T ′ | ≤ |∇(wℓ − wℓ+1)|T ′ |.

Since|T ′| ≈ |T | ≈ hE |E|, it follows that

hE‖νE · [∇wℓ]E‖
2
0,E . |wℓ − wℓ+1|

2
1,T+

+ |wℓ − wℓ+1|
2
1,T−

. (5.20)

. |uℓ − uℓ+1|
2
1,ωE

ℓ

+ osc2ωE
ℓ

(ψ).

Combining (5.20) and (5.19) we obtain (5.18).

Case (ii): Without loss of generality we may assume thatwℓ+1(p+) < 0. We distinguish the
subcases

(ii)1 wℓ+1(mE) < 0 , (ii)2 wℓ+1(mE) = 0.

Case(ii)1: Denoting byϕ(mE)
ℓ+1 andϕ(p+)

ℓ+1 the nodal basis functions associated withmE and
p+, we have

a(uℓ+1, ϕ
(mE)
ℓ+1 ) = (f, ϕ

(mE)
ℓ+1 )0,Ω and a(uℓ+1, ϕ

(p+)
ℓ+1 ) = (f, ϕ

(p+)
ℓ+1 )0,Ω. (5.21)

The latter and (5.4) yield

a(uℓ+1 − uℓ, ϕ
(p+)
ℓ+1 ) = (f, ϕ

(p+)
ℓ+1 )0,Ω. (5.22)
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We setϕ(E)
ℓ+1 := ϕ

(mE)
ℓ+1 − αϕ

(p+)
ℓ+1 , α > 0, and chooseα such thatϕ(E)

ℓ+1 ∈ H1
0 (ωEℓ ) and

∫

ΩE
ℓ

ϕ
(E)
ℓ+1 dx = 0. It follows from (5.21) and (5.22) that

1

2

∫

E

νE · [∇uℓ]E ds =

∫

E

νE · [∇uℓ]E ϕ
(E)
ℓ+1 ds

= a(uℓ − uℓ+1, ϕ
(E)
ℓ+1) + (f, ϕ

(E)
ℓ+1)0,ΩE

ℓ

= a(uℓ − uℓ+1, ϕ
(E)
ℓ+1) + (f − fωE

ℓ
, ϕ

(E)
ℓ+1)0,ωE

ℓ
.

We deduce

η2
E . |uℓ − uℓ+1|

2
1,ΩE

ℓ

+ osc2ωE
ℓ

(f),

which proves (5.18).

Case(ii)2: We distinguish between

(ii)2,1 νE · [∇uℓ]E ≤ 0 and (ii)2,2 νE · [∇uℓ]E > 0.

Case(ii)2,1: There existT ′
± ∈ Tℓ+1(T±) such that

νE · ∇wℓ+1|T ′
+

≥ 0 ≥ νE · ∇wℓ+1|T ′
−
,

and hence,

0 ≤ − νE · [∇uℓ]E = −
(

νE · ∇wℓ|T ′
+
− νE · ∇wℓ|T ′

−

)

− νE · [∇ψℓ]E ≤

≤ −
(

νE · ∇(wℓ − wℓ+1)|T ′
+
− νE · ∇(wℓ − wℓ+1)|T ′

−

)

− νE · [∇ψℓ]E ≤

≤ |∇(wℓ − wℓ+1)|T ′
+
| + |∇(wℓ − wℓ+1)|T ′

−
| + |νE · [∇ψℓ]E |.

Observing|ωEℓ | ≈ |T ′
±| ≈ h2

E , it follows that

η2
E . |uℓ − uℓ+1|

2
1,ωE

ℓ

+ µ2
E(ψℓ),

which shows (5.18).

Case(ii)2,2: We have

a(uℓ+1, ϕ
(mE)
ℓ+1 ) ≤ (f, ϕ

(mE)
ℓ+1 )0,Ω and a(uℓ+1, ϕ

(p+)
ℓ+1 ) = (f, ϕ

(p+)
ℓ+1 )0,Ω.

We constructϕ(E)
ℓ+1 as in Case(ii)1 and obtain

0 <
1

2

∫

E

νE · [∇uℓ]E ds =

∫

E

νE · [∇uℓ]E ϕ
(E)
ℓ+1 ds

≤ a(uℓ − uℓ+1, ϕ
(E)
ℓ+1) + (f, ϕ

(E)
ℓ+1)0,ΩE

ℓ

= a(uℓ − uℓ+1, ϕ
(E)
ℓ+1) + (f − fωE

ℓ
, ϕ

(E)
ℓ+1)0,ωE

ℓ
,

from which we deduce (5.18). �

Proof of Theorem 5.1. The upper bound (5.1) follows directly from (5.2), (5.3) inLemma 5.2
and from (5.18) in Lemma 5.3 by summing over allT ∈ M

(1)
ℓ and allE ∈ M

(2)
ℓ and taking

advantage of the finite overlap of the patchesωEℓ . �
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The final ingredient of the proof of the error reduction property is the following perturbed
Galerkin orthogonality:

THEOREM 5.4. Let u ∈ V and uk ∈ Vk, k ∈ {ℓ, ℓ + 1}, be the solutions of(2.2),
(2.8), and letoscℓ andconortℓ be the data oscillations(3.4)and the consistency error(3.10).
Assume that(3.7) is satisfied. Then, for anyε > 0 there holds

|uℓ − uℓ+1|
2
1,Ω ≤ (1 +

ε

2
) |u− uℓ|

2
1,Ω − (1 − ε) |u− uℓ+1|

2
1,Ω + (5.23)

+
4

ε
ρ2 osc

2
ℓ(f) +

2

ε
(1 + ρ3) osc

2
ℓ(ψ) + conortℓ .

Proof. By straightforward computation

|uℓ − uℓ+1|
2
1,Ω = |u− uℓ|

2
1,Ω − |u− uℓ+1|

2
1,Ω + 2 a(u− uℓ+1, uℓ − uℓ+1) . (5.24)

Now, (2.2) and (2.8) imply

2a(u− uℓ+1, uℓ − uℓ+1) = 2(f − fℓ+1, uℓ − uℓ+1)0,Ω + (5.25)

+2
(

〈〈σℓ+1, uℓ − uℓ+1〉〉 − 〈σ, uℓ − uℓ+1〉
)

.

Using thatf − fℓ+1 has zero integral mean on eachT ∈ Tℓ+1, applying Young’s inequality
and (3.5), we obtain

2 |(f − fℓ+1, uℓ − uℓ+1)0,Ω| ≤
ε

2

(

|u− uℓ|
2
1,Ω + |u− uℓ+1|

2
1,Ω

)

+
4

ε
ρ2osc

2
ℓ(f). (5.26)

On the other hand, taking advantage ofσℓ+1 ∈ M+(Ω), the complementarity condition (2.9),
andσ ∈ V ∗

+, we find

2
(

〈〈σℓ+1, uℓ − uℓ+1〉〉 − 〈σ, uℓ − uℓ+1〉
)

= (5.27)

= 2〈〈σℓ+1, uℓ − ψℓ〉〉
︸ ︷︷ ︸

≤ 0

+ 2
(

〈〈σℓ+1 − σ, ψℓ − ψℓ+1〉〉 − 〈σ, ψℓ − ψℓ+1〉
)

+

+ 2〈〈σℓ+1, ψℓ+1 − uℓ+1〉〉
︸ ︷︷ ︸

= 0

+ 2〈σ, ψℓ − uℓ〉
︸ ︷︷ ︸

= conort
ℓ

− 2 〈σ, ψℓ+1 − uℓ+1〉
︸ ︷︷ ︸

≤ 0

.

For the estimation of the second term on the right-hand side in (5.27) we setδψℓ
:= ψℓ−ψℓ+1

and recall (4.7) as well as

a(uℓ+1, vℓ+1) = (f, vℓ+1)0,Ω − (5.28)

− (νΓ · ∇uℓ+1, vℓ+1)0,Γ − 〈〈σℓ+1, vℓ+1〉〉 , vℓ+1 ∈ Sℓ+1.

Sinceδψℓ
∈ Sℓ+1 is an admissible test function in (4.7) and (5.28), by the trace inequality

(4.12) and by Young’s inequality we find

|2
(

〈〈σℓ+1 − σ, δψℓ
〉〉 − 〈σ, δψℓ

〉
)

| ≤ (5.29)

≤ |2a(u− uℓ+1, δψℓ
)| + |〈νΓ · ∇(u− uℓ+1), δψℓ

〉Γ| ≤

≤
ε

2
|u− uℓ+1|

2
1,Ω +

2

ε
(1 + ρ3) osc

2
ℓ(ψ).

Using (5.25)–(5.27) and (5.29) in (5.24) gives (5.23). �
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We have now provided the prerequisites to prove the error reduction property (3.11) as
stated in Theorem 3.1.

Proof of Theorem 3.1.The reliability (4.1), the bulk criterion (3.3a), (3.3b), the discrete
efficiency (5.1), and the assumption (3.7) imply the existence of a constantC > 0, depending
only onΘ and on the local geometry of the triangulation, such that

|u− uℓ|
2
1,Ω ≤ C

(

|uℓ − uℓ+1|
2
1,Ω + osc2ℓ + conrefℓ

)

.

Now, invoking the perturbed Galerkin orthogonality (5.23), we deduce

|u− uℓ+1|
2
1,Ω ≤

C(1 + ε/2) − 1

C(1 − ε)
|u− uℓ+1|

2
1,Ω + CCε

(

osc2ℓ + µ2
ℓ

)

+ C conℓ,

whereCε := max((4/ε + ε/2)ρ2, 8(1 + ρ3)/ε). Together with (3.5) this proves (3.11) with
ρ1 := (C(1 + ε/2) − 1)/(C(1 − ε)) < 1 for ε < 2/(3C). �

6. Numerical results. In this section, we provide a detailed documentation of the con-
vergence history of the AFEM for two illustrative elliptic obstacle problems.

Example 1.We consider an obstacle problem of the form (2.1) in an L-shaped domain where
the obstacle is an ’inverted’ pyramid. The data are as follows

Ω := (−2, 2)2 \ ([0, 2] × [−2, 0]) , ψ(x) := 0.5(2.01 − dist(x, ∂[−2, 2]2) , x ∈ Ω,

f(r, ϕ) := −r2/3 sin(2ϕ/3)(γ′1(r)/r + γ′′1 (r)) −
4

3
r−1/3γ′1(r) sin(2ϕ/3) − γ2(r) ,

γ1(r) =







1, r̄ < 0,
−6r̄5 + 15r̄4 − 10r̄3 + 1, 0 ≤ r̄ < 1,
0, r̄ ≥ 1,

γ2(r) =

{
0 , r ≤ 5/4,
1 , elsewhere,

wherer̄ = 2(r − 1/4) and(r, ϕ) stand for polar coordinates.

FIG. 6.1.Visualization of the solution of the obstacle problem in Example 1

Figure 6.1 displays a visualization of the solution, whereas Figure 6.2 shows the adap-
tively generated finite element meshes after 7 (left) and 10 (right) refinement steps of the
adaptive loop (Θ = 0.6 in the bulk criterion (3.3), (3.3a)). The coincidence set isa small
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FIG. 6.2.Adaptive refined grid after 7 (left) and 10 (right) refinementsteps (Θ = 0.6 in the bulk criterion)

region at the upper fore side of the hill-like structure seenin Figure 6.1 where the solution is
in contact with the inverted pyramid. We see that the refinement is dominant along the diag-
onal and in a circular region around the reentrant corner where the solution exhibits singular
behavior.

Table 6.1 reflects the convergence history of the AFEM whereℓ stands for the refinement
level andNℓ for the total number of degrees of freedom at levelℓ. Further,εℓ, ηℓ, oscℓ(f),
andµℓ(ψ) denote the energy norm of the discretization error, the error estimator, and the
data oscillations inf andψ, respectively. The quantityMη,ℓ refers to the percentage of ele-
ments/edges refined at levelℓ due to the bulk criterion (3.3a), (3.3b). Finally,Mosc,ℓ denotes
the percentage of additional elements/edges that had to be refined in order to guarantee a
reduction of the data oscillations.

TABLE 6.1
Convergence history of the adaptive refinement process in Example 1

ℓ Nℓ εℓ ηℓ oscℓ(f) µℓ(ψ) Mη,ℓ Mosc,ℓ

1 15 1.19e+00 5.61e+00 7.96e+00 2.45e+00 49.5 34.9
2 37 1.09e+00 5.57e+00 5.29e+00 1.73e+00 33.1 19.4
3 76 7.18e-01 3.90e+00 2.07e+00 1.37e+00 27.3 15.4
4 171 5.08e-01 2.70e+00 8.12e-01 1.09e+00 33.4 14.1
5 361 3.38e-01 1.82e+00 3.78e-01 8.79e-01 36.7 9.9
6 851 2.16e-01 1.20e+00 2.22e-01 7.29e-01 31.0 3.2
7 1596 1.54e-01 8.52e-01 1.46e-01 6.06e-01 34.5 3.6
8 3273 1.06e-01 5.85e-01 7.29e-02 5.04e-01 34.1 2.4
9 6356 7.54e-02 4.17e-01 4.50e-02 4.21e-01 35.2 2.0

10 12340 5.41e-02 2.98e-01 2.57e-02 3.51e-01 35.4 1.2
11 23988 3.90e-02 2.16e-01 1.60e-02 2.92e-01 34.4 0.9
12 45776 2.79e-02 1.56e-01 9.63e-03 2.44e-01 35.4 0.6
13 88439 1.99e-02 1.14e-01 5.92e-03 2.04e-01 36.0 0.4
14 166926 1.37e-02 8.36e-02 3.46e-03 1.71e-01 33.8 0.3

Figure 6.3 displays the energy norm of the discretization error εℓ as a function of the
degrees of freedom (DOFs) for adaptive and uniform refinement. We see that in this case the
adaptive refinement is only slightly beneficial with both refinements showing the same rate
of convergence.
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FIG. 6.3.Energy norm of the error as a function of the DOFs for adaptiveand uniform refinement in Example 1

Example 2. We consider the torsion of an elastic, perfectly plastic cylindrical barQ :=
Ω × (0, L) of cross sectionΩ ⊂ R

2 and lengthL > 0. Denoting by∂QL := Ω × {L},
∂Q0 := Ω × {0}, and∂Qs := ∂Ω × (0, L) the top and the bottom of the bar as well as its
lateral surface, at∂QL the bar is twisted about thex3-axis by an angleθ > 0, whereas∂Qs
is supposed to be stress free.

FIG. 6.4.Visualization of the solution of the elastic-plastic problem

Using Hencky’s law for an isotropic material, modeling the plastic region by the von
Mises yield criterion, and normalizing physical constants, it can be shown that the equilibrium
stress tensorσ = (σij)

3
i,j=1 is given byσij = ∂u/∂x2, (i, j) ∈ {(1, 3), (3, 1)}, σij =

−∂u/∂x1, (i, j) ∈ {(2, 3), (3, 2)}, andσij = 0 otherwise. Hereu ∈ H1
0 (Ω) is the solution

of the variational inequality
∫

Ω

∇u · ∇(v − u) dx ≥ 2C

∫

Ω

(v − u) dx , v ∈ K, (6.1)

andK stands for the closed, convex set

K := {v ∈ H1
0 (Ω) | v ≤ ψ := dist(·, ∂Ω) a.e. onΩ}.

18



FIG. 6.5.Adaptive refined grid after 7 (left) and 12 (right) refinementsteps (Θ = 0.6 in the bulk criterion)

We have chosenΩ as the L-shaped domainΩ := (−2, 2)2 \ ([0, 2] × [−2, 0]) andC = 5.
The computed solution and adaptively refined grids after 7 (left) and 12 (right) refine-

ment steps (Θ = 0.6 in the bulk criterion (3.3a), (3.3b)) are shown in Figure 6.4and 6.5. The
coincidence and non-coincidence sets correspond to the plastic and elastic region, respec-
tively. The non-coincidence set consists of the union of a neighborhood of the edges forming
the reentrant corner and a neighborhood around the diagonals. As can be expected from the
properties of the solution, the refinement is concentrated within the non-coincidence set.

The convergence history of the AFEM is documented in Table 5.2 with the same no-
tations as in the first example. Since the right-hand side in the variational inequality is a
constant, the associated data oscillations are zero. Figure 6.6 displays the energy norm of the
discretization error as a function of the degrees of freedomfor adaptive and uniform refine-
ment and demonstrates the benefits of the adaptive approach for this example.

TABLE 6.2
Convergence history of the adaptive refinement process in Example 2

ℓ Nℓ εℓ ηℓ µℓ(ψ) Mη,ℓ Mµ,ℓ

2 65 2.49e+00 8.42e+00 3.46e+00 7.5 6.2
3 84 1.95e+00 4.99e+00 2.83e+00 10.9 4.3
4 113 1.73e+00 5.73e+00 2.29e+00 9.8 4.9
5 192 1.21e+00 5.91e+00 1.90e+00 18.3 4.1
6 336 9.26e-01 4.72e+00 1.57e+00 18.6 2.6
7 533 7.21e-01 3.67e+00 1.26e+00 20.1 3.6
8 1151 5.22e-01 2.49e+00 1.05e+00 20.0 1.3
9 1849 3.77e-01 1.77e+00 8.79e-01 25.2 2.1

10 3373 2.69e-01 1.30e+00 7.36e-01 24.2 0.9
11 5720 2.01e-01 9.50e-01 6.15e-01 26.2 1.4
12 11014 1.47e-01 6.85e-01 5.14e-01 27.1 0.5
13 19461 1.08e-01 5.06e-01 4.30e-01 26.1 0.8
14 34942 7.73e-02 3.71e-01 3.60e-01 31.8 0.4
15 67114 5.52e-02 2.75e-01 3.01e-01 26.5 0.4
16 123427 3.75e-02 2.01e-01 2.52e-01 30.8 0.2

19



10-2

10-1

100

101

101 102 103 104 105 106

N

ε
l

θ = 0.2
θ = 0.4
θ = 0.6
uniform

0.4

1.0

0.55

1.0

FIG. 6.6.Energy norm as a function of the DOFs for adaptive and uniformrefinement
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