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Abstract

A unified a posteriori error analysis has been developed in [18, 21–23] to analyze the

finite element error a posteriori under a universal roof. This paper contributes to the finite

element meshes with hanging nodes which are required for local mesh-refining. The two-

dimensional 1−irregular triangulations into triangles and parallelograms and their combi-

nations are considered with conforming and nonconforming finite element methods named

after or by Courant, Q1, Crouzeix-Raviart, Han, Rannacher-Turek, and others for the

Poisson, Stokes and Navier-Lamé equations. The paper provides a unified a priori and

a posteriori error analysis for triangulations with hanging nodes of degree ≤ 1 which are

fundamental for local mesh refinement in self-adaptive finite element discretisations.

Mathematics subject classification: 65N10, 65N15, 35J25.
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1. Introduction

More and more accurate scientific simulations in less and less CPU time on smaller and

smaller computational resources are one important new feature in natural sciences, engineer-

ing, medicine, and business with huge impact on our modern technological societies. The

presently most important area of worldwide scientific activities in the design of more effective

and accurate numerical predictions in the computational sciences is the proper mesh-design

within the discretisation of partial differential or integral equations.

Nonconforming finite element methods on parallelograms are of particular attraction in

computational fluid and solid mechanics because of their conservation properties. Their appli-

cation in adaptive local mesh-refining algorithms, however, involves a partition with triangles

or with hanging nodes of at least first order. This paper is devoted to a universal a priori and

a posteriori error analysis for those 1-irregular meshes specified in Section 2 below. Tables 1.1

and 1.2 display practical solutions for the Laplace, Stokes and Navier Lamé equations problem

discussed in this paper.

At first glance, the concept of hanging nodes appears straightforward: If a vertex x of a finite

element domain (with polygonal boundary) belongs to the interior of an edge E (of another

element domain) in the sense that it is a nontrivial convex combination of the end points of

E, then z is called a hanging node. However, in case of continuous discrete functions, the
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Table 1.1: FEMs with hanging nodes: bullets mark the degrees of freedom and circles mark hanging

nodes subsect to internal restrictions.
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organization of the degrees of freedom is not too easy. Many authors assume a master-slave

concept in the sense that there are free nodes and the hanging nodes follow by interpolation.

Fig. 1.1 displays some mesh which, in case of continuous discrete functions and vanishing

Dirichlet boundary conditions, has not a single free node. Moreover, the concept of parents

and children is not immediate here. Hence, at second glance, the concept of hanging nodes is

associated with a hierarchy of discretisations and so a sequence of meshes. This is outlined in

Section 2 with definitions of concepts like 1-irregular meshes and associated conforming and

nonconforming first-order finite element spaces.

Throughout the paper, we discuss five assumptions (A1)-(A5) which we comment very briefly
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Table 1.2: FEMs with hanging nodes: bullets mark the degrees of freedom and circles mark hanging

nodes subsect to internal restrictions.
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on in the sequel:

(A1) states that the meshes are obtained by red-refinement and thereby hanging nodes are

produced in a very structured way.

(A2) states that the integral means of the jumps along some edges vanish. This is obvious

for conforming discrete functions and standard for nonconforming ones.

(A3) assumes the existence of some Fortin interpolation operator into the discrete space Vh

with conservation and stability properties.

(A4) assumes the existence of a discrete stress field based on the discrete solutions uh and

ph which serves in the residual error estimators.

(A5) assumes the existence of a local operator from [22, 23] with elementwise conservation

properties for the a posteriori error analysis.
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Fig. 1.1. Mesh excluded from this paper as it is not partly red-refined from some regular mesh T0. The

degree of hanging nodes in the displayed mesh is hard to specify and patches of free nodes can contain

an unbounded number of elements (since the figure can be extended in a self-similar sense).



218 C. CARSTENSEN AND J. HU

The assumptions (A1)-(A5) guarantee compactly-supported nodal basis functions and op-

timal a priori convergence rates for the consistency error. They allow for an application of

the unifying theory of a posteriori finite element error control and thereby allow for a unified

analysis for a large class of finite element technologies and applications.

The outline of the remaining part of paper is as follows: Section 2 introduces irregular

triangulations with (A1) and provides a main approximation result. The a priori error analysis

is given in an abstract format in Section 3 under conditions (A2)-(A3) which we regard as fairly

weak but to allow for optimal a priori convergence rates for the consistency error, compactly-

supported nodal basis functions, and Assumption (A5). Section 4 is devoted to the a posteriori

error analysis and continues the unifying error analysis of [18,21–23] to hanging nodes. Section 5

illustrates the abstract findings and discusses the Poisson problem, the Stokes equations, and

linear elasticity. An adaptive finite element algorithm concludes the paper.

Throughout the paper, standard notation on Lebesgue and Sobolev spaces and associated

norms is employed. Moreover, an inequality A . B replaces A ≤ C B with some multiplicative

mesh-size independent constant C > 0 that depends only on the domain Ω and the shape (e.g.,

through the aspect ratio) of elements (C > 0 is also independent of crucial parameters as the

Lamè parameter λ below). Finally, A ≈ B abbreviates A . B . A.

2. 1-Irregular Triangulations

This section introduces 1-irregular triangulations as shape-1-irregular partitions with max-

imal one hanging node and some of their properties.

Definition 2.1 (T0) Throughout this paper, T0 is supposed to be a regular triangulation of the

2D bounded Lipschitz domain Ω ⊂ R
2 with polygonal boundary ∂Ω into closed triangles and

parallelograms. While refinements of T0 may have hanging nodes, T0 has none, i.e., two distinct

elements T1 and T2 are either disjoint, or share exactly one vertex (called node), or share exactly

one common edge.

Definition 2.2 (Triangulations) Throughout this paper, a triangulation T is a set of trian-

gles or parallelograms obtained by a finite number L of red-refinements from T0, i.e., T = TL,

where for every ℓ = 1, . . . , L there exists one K ∈ Tℓ−1 and Tℓ is just the former triangulation

except that K is red-refined into four elements K1, . . .K4 as depicted in Fig. 2.1. Then, one

says that T is some red-refinement of T0.
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Fig. 2.1. Red-refinement of element domain K = K1 ∪ K2 ∪ K3 ∪ K4 into 4 congruent subdomains

K1, . . . , K4 in case of a triangle (left) and a parallelogram (right): red(K) = {K1, . . . K4} .
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We introduce the concept of generation of an element in a mesh. We call T ′ a refinement

of T when T ′ is constructed by replacing one or more elements K ∈ T by four sub-elements

through a red-refinement bisection illustrated in Fig. 2.1 or a recursive application of this

refinement. In this situation, K is called the parent of its four sub-elements, called children of

K. The children of children of K are named as grandchildren of K.

Definition 2.3 (Generation, Node, Edge) Given some element T of a triangulation T which

is some red-refinement of T0, |T | denotes its area, N (T ) its vertices, E(T ) its edges, and

gen(T) ∈ N0 its generation provided K ∈ T0 denotes the one with T ⊆ K and gen(T) :=

log |K|/|T|. For any edge E, gen(E) is similarly defined. Obviously gen(E) = gen(K) provided

E ∈ E(K).

The set of nodes of the triangulation reads N :=
⋃

T∈T N (T ), while the set of edges reads

E :=
⋃

T∈T E(T ).

Definition 2.4 (Hanging Node, k-Irregular Triangulation) Given a triangulation T which

is some red-refinement of T0, some node z ∈ N is called hanging node if some element K ∈ T

satisfies

z ∈ ∂K \ N (K)

(i.e., z belongs to its boundary but is not a vertex of it). Otherwise the node z ∈ N is called

regular. In case any edge E ∈ E contains at most k hanging nodes in its inside, T is called

k-irregular. Let NH denote the set of all hanging nodes.

Note that a 0-irregular mesh is a regular mesh (without hanging nodes) also called regular

triangulation or even regular triangulation in the sense of Ciarlet [26]. In this paper, we restrict

to regular and 1-irregular meshes which allow for some local mesh-refinement.

Example 2.1. Fig. 1.1 displays some mesh excluded in this paper.

Lemma 2.1. Suppose T is some 1-irregular mesh and contains two distinct T and K with

intersection E := ∂K ∩ ∂T 6= ∅, which includes two nodal points. Then E ∈ E is an edge and

exactly one of the three cases (1), (2), (3) holds:

1. gen(K) = gen(T) and {E} = E(K)∩E(T ), i.e. E is a common edge and does not contain

any hanging node.

2. gen(K) = gen(T) + 1 and E ∈ E(K) \ E(T ), but E ⊆ F for exactly one edge F ∈ E(T ),

which includes a hanging node mid(F).

3. gen(T) = gen(K) + 1 and E ∈ E(T ) \ E(K), but E ⊆ F for exactly one edge F ∈ E(K),

which includes a hanging node mid(F).

Proof. This is an immediate consequence of the definitions. �

Suppose that the closure Ω is covered exactly by an 1-irregular triangulation T of Ω into

(closed) triangles or parallelograms or mixtures of triangles and parallelograms in 2D. It is

assumed that

Ω = ∪T , int(K1 ∩ K2) = 0, for K1,K2 ∈ T , K1 6= K2. (2.1)

Here and throughout this paper, we use the concept of 1-irregular mesh from [4] with at most

one hanging node on each edge.
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Definition 2.5 (Hanging Edge, Child) An edge E of an element K is called a hanging edge

if its midpoint mid(E) is a hanging node. The two edges E1 and E2 with vertex mid(E) which

belong to the neighbor elements K1 and K2, are called children of E. Fig. 2.2 illustrates the

definition of a hanging edge E and a child E1.

K1 K2E K1 E1

mid(E)

K

E

No hanging node on E Hanging node mid(E).

Fig. 2.2. Edges without (left) resp. with (right) hanging node.

Let EH denote the set of all hanging edges with the set of all child edges denoted by EC .

The set of interior edges of Ω is denoted by E(Ω). Set ER = E\(EH ∪ EC).

Let N (ω) = N ∩ ω̄ and N (∂Ω) = N ∩ ∂Ω. With the set of endpoints of hanging edges NE ,

we set NR = N\(NH ∪NE). By hK and hE we denote the diameter of the element K ∈ T and

of the edge E ∈ E , respectively.

For any hanging node z, we denote by E1,z and E2,z the two edges taking z as one endpoint

and by Ez the hanging edge taking z as its midpoint, with K1,z and K2,z we denote the two

elements such that Ei,z ∈ E(Ki,z) with i = 1, 2, and with Kz denoted the element such that

Ez ∈ E(Kz); cf. Fig. 2.3. For the triangle, we denote by K3,z the element with z ∈ K3,z and

E1,z, E2,z , Ez /∈ E(K3,z); cf. Fig. 2.3. For convenient notation, the index z is omitted, when

there is no risk of confusion (as in Fig. 2.2).
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Fig. 2.3. Mesh with hanging Nodes: Ez is a hanging edge with its two children E1,z and E2,z.

Let ωK denote the union of elements K ′ ∈ T that share a vertex, or an edge, or a child

edge of an edge with K, or share the hanging node as a vertex. Let ωE denote the patch of

elements having in common the edge E or one of the child edges of E, or share the hanging
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node as a vertex. For example, ωE = K1 ∪K2 ∪Kz in the left mesh depicted in Fig. 2.3, and

ωE = K1 ∪K2 ∪K3 ∪Kz in the right mesh.

Given any edge E ∈ E we assign one fixed unit normal νE ; if (ν1, ν2) are its components,

τE denotes the orthogonal vector of components (−ν2, ν1). For E ∈ E(∂Ω) on the boundary we

choose νE = ν, the unit outward normal to Ω, and concordantly the tangent vector τ . Once νE

and τE have been fixed on E, in relation to νE one defines the elements K− ∈ T and K+ ∈ T ,

with E = K+ ∩K−.

For the analysis, we need the following assumption on the series of meshes arising from some

adaptive procedure:

(A1) Assume that the initial mesh T0 of Ω is regular in the sense of Ciarlet [13, 26], such

that
⋃

K∈T0
K = Ω, and two distinct elements K and K ′ in T0 are either disjoint, or share

the common edge E, or a common vertex, that is, there is no hanging node. Also, we

assume that a 1-irregular mesh Tj+1 is obtained from Tj by bisecting some triangles (resp.

quadrilaterals) in Tj into four subtriangles (resp. subquadrilaterals) through connecting

their midpoints of their edges.

Remark 2.1. Fig. 1.1 shows that Assumption (A1) is necessary in some sense, otherwise one

will suffering from a possible global not-compact support for some nodal basis.

Remark 2.2. As shown in Fig. 2.4, a strong refinement is possible in this class of meshes with

1-irregular hanging nodes.

→ → →

Fig. 2.4. Refinement with (A1).

Lemma 2.2. Suppose (A1) and let | · | denote the length of the arc. Any two distinct elements

T and K with |∂T ∩ ∂K| > 0 satisfy that E := ∂T ∩ ∂K ∈ E(T ) ∪ E(K). If E ∈ E(T )\E(K)

then E ⊂ F ∈ E(K).

Proof. The proof is immediate from (A1). �

In what follows, we give a precise description of a partition with hanging nodes of degree

≤ 1. Given a 1-irregular mesh T , we first mark some elements according to the a posteriori

error estimate η with some criterion, and refine the marked elements with the red bisection, and

denote the resulting mesh by T (0). Since there may exist edges on which there are more than

two hanging nodes, T (0) may be not a 1-irregular mesh. These situations happen when one

of K1,z and K2,z was refined or both of them were refined, but Kz was not refined during the

aforementioned marked-refined procedure (see Fig. 2.3). Since T is a 1-irregular mesh, there

are at most three hanging nodes on each edge of T (0). In what follows, we propose a closure

algorithm to reduce these hanging nodes of degree = 2, 3 with the destination of a 1-irregular

mesh.
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Algorithm 2.1 (Compute 1-Irregular Hull) Input: Triangulation T (0) with the follow-

ing properties: Given some regular triangulation T0, let the 1-irregular triangulation T be

obtained from T0 with a finite number of successive red-refinements. Given T , red-refine

some elements in T to construct the input T (0).

Loop for ℓ = 0, 1, 2, . . . until termination on level L do

1. Set Pℓ := {K ∈ T (ℓ) : ∃E ∈ E(K) such that E contains more than one hang-

ing node} and Mℓ = max{(gen(K)) : K ∈ Pℓ}

2. Red-refine all elements K ∈ Pℓ with gen(K) = Mℓ to generate T (ℓ+1)

3. Terminate if T (ℓ+1) is a 1-irregular triangulation and set L := ℓ+ 1 od.

Output: Finite number of triangulations T (1), . . . , T (L) with ML < · · · < M1 < M0 and the

1-irregular triangulation T (L).

Proof. Since it is the content of the termination criterion in Algorithm 2.1, obviously T (L) is

a 1-irregular triangulation. It remains to prove that the algorithm terminates in a finite number

of steps. To see this, notice from the definition of Mℓ that 0 ≤ Mℓ+1 < Mℓ. Since M0 < ∞,

this implies that the algorithm has to stop in at most M0 + 1 steps. �

Lemma 2.3. Let z be a new hanging node which is the midpoint of an edge E in a 1-irregular

triangulation T from Algorithm 2.1. Then, neither of its two endpoints z1 and z2 is a hanging

node.

Proof. The only non trivial case is that one of them is a hanging node in T . In this case,

with the refinement to create the hanging node z, there will be more than one hanging node

on the edge with the midpoint z1 resp. z2 provided it is not bisected so far (if it is bisected, z1
resp. z2 is already not a hanging node). With the above algorithm, the edge(s) will be bisected

to guarantee that there is only one hanging node on it, whence z1 resp. z2 will be not a hanging

node. �

Throughout this paper, V := H1
0 (Ω; Rm) is approximated by some piecewise smooth func-

tions.

Definition 2.6 (Broken Sobolev Spaces) Given any triangulation T , set

H1(T ) =
{

v ∈ L2(Ω) : ∀K ∈ T , v|K ∈ H1(K)
}

.

For any v ∈ H1(T ), let ∇hv be the piecewise gradient operator (piecewise with respect to T ),

∇hv|K := ∇(v|K). Moreover, let [v]E = v|K+
− v|K−

denote the jump of v ∈ H1(T ) across the

edge E = K+ ∩K−.

Definition 2.7 (Finite Element Spaces) For a non-negative integer k, Qk(ω) denotes the

polynomial space of total degree ≤ k for triangular elements and degree ≤ k in each variable for

quadrilateral elements. For this presentation it will suffice to assume k = 1. The corresponding

conforming space will be denoted by

V C
h :=

{

v ∈ V : ∀K ∈ T , v|K ∈ Q1(K; Rm)
}
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Theorem 2.1 (Approximation and Stability) Given the finite element space V C
h ⊂ V :=

H1
0 (Ω; Rm) based on an aforementioned 1-irregular triangulation T there exists an approxima-

tion operator J : V → V C
h such that, for all v ∈ V ,

‖∇J v‖2
L2(Ω) +

∑

T∈T

h−2
T ‖(v − J v)‖2

L2(T ) +
∑

E∈E

h−1
E ‖(v − J v)‖2

L2(E) . ‖∇v‖L2(Ω).

Proof. The nodal basis of the space V C
h is described in the sequel. For any z ∈ NR the

nodal basis function ϕz is defined in a usual way by ϕz ∈ Q1(K) for any K ∈ T with ϕz(z) = 1

and ϕz(P ) = 0 for all P ∈ N\{z}. We define the nodal function for any node z ∈ NH by

ϕz ∈ Q1(Ki,z), i = 1, · · · , ℓ with ℓ = 2 for the quadrilateral mesh and ℓ = 3 for the triangle

mesh, ϕz(z) = 1, and ϕz(P ) = 0 for all P ∈ N (K1,z ∪ · · ·Kℓ,z)\{z}, and ϕz(x) = 0 for all

x ∈ Ω\(K1,z ∪ · · ·Kℓ,z). To define the nodal basis function for node z ∈ NE , we first define

ϕ′
z |K = ϕK for any K ∈ T (z). (2.2)

Here, T (z) denotes the set of elements having the vertex z, and ϕK is defined as

ϕK(z) = 1, ϕK(P ) = 0 for all P ∈ N (K)\{z}, ϕK ∈ Q1(K). (2.3)

Denote by EH,z the set of hanging edges taking node z as one of its endpoints with NH,z the

set of midpoints. Then the nodal basis function for any node z ∈ NE can be defined as

ϕz = ϕ′
z +

1

2

∑

P∈NH,z

ϕP ∈ V C
h := span

{

ϕz : z ∈ (NE ∪ NR)\N (∂Ω)
}

. (2.4)

Notice that (ϕz : z ∈ NE ∪ NR) forms a partition of unity. With this partition of unity, one

can define the Clément interpolation operator [17] (or any other regularized conforming finite

element approximation operator) J : H1
0 (Ω) 7→ V C

h with

‖∇Jϕ‖L2(K) + ‖h−1
K (ϕ− Jϕ)‖L2(K) . ‖∇ϕ‖L2(ωK), (2.5)

‖h
−1/2
E (ϕ− Jϕ)‖L2(E) . ‖∇ϕ‖L2(ωE), (2.6)

for all K ∈ T , E ∈ ER ∪ EH , and ϕ ∈ H1
0 (Ω).

Based on the basis functions {ϕz : z ∈ NE ∪ NR}, one can construct [17] a Lipschitz

continuous partition of unity

{

ψz : z ∈ NE ∪ NR

}

(Lipschitz partition of unity) (2.7)

with
∑

z∈K

ψz = 1 in Ω, K = NR ∪ NE\∂Ω. (2.8)

Moreover, for any z ∈ K, suppose that ψz vanishes outside an open and connected set Ωz ⊆ Ω

suppψz ⊆ Ωz, max
x∈Ω

card
{

z ∈ K : x ∈ Ωz

}

. 1. (2.9)

Given z ∈ K, let E(z) := {E ∈ ER ∪ EH : ψz|E 6≡ 0} denote the set of edges, where ψz is

nonvanishing. For any edge E let K(E) denote the set of all z ∈ K with E ∈ E(z).

The finite overlap and the summation of (2.5)-(2.6) lead to the assertion. �



224 C. CARSTENSEN AND J. HU

3. A Priori Error Analysis

This section is devoted to the a priori error analysis of a mixed formulation which covers

applications of Section 5 and which provides the setting for a unified a posteriori error analysis

of Section 4. Throughout this paper, we will consider some Lebesgue space Q and some Sobolev

space V and bounded bilinear forms

a : V × V → R, b : Q× V → R, c : Q×Q→ R. (3.1)

Suppose a, b, and c satisfy

‖v‖2
V . a(v, v) ∀v ∈ V, (3.2)

‖q‖Q . sup
v∈V \{0}

b(q, v)

‖v‖V
, (3.3)

0 ≤ c(q, q) . ‖q‖2
Q ∀q ∈ Q. (3.4)

Then, the exact problem has a unique solution [11, 15] in the sense that, given right-hand side

g ∈ V ∗, there exists some unique (u, p) ∈ V ×Q := H1
0 (Ω)m × L2

0(Ω) with

a(u, v) + b(p, v) = g(v) ∀v ∈ V , (3.5)

b(q, u) − t2c(p, q) = 0 ∀q ∈ Q. (3.6)

The well-posedness of (3.5)-(3.6) is t-independent, in the sense that the norm of the inverse

operator does not depend on t. Define the following norm

|||(v, q)|||2 := a(v, v) + ‖q‖2
Q + t2c(q, q) for any v ∈ V, q ∈ Q. (3.7)

Let Qh ⊂ Q and Vh + V ⊂ H1(T ; Rm) be some (conforming and nonconforming) discrete

spaces associated to some 1-irregular triangulation T . It is assumed that integral means of

jumps of discrete functions vanish:

(A2) For all vh ∈ Vh it holds

∫

E

[vh] ds = 0, E ∈ ER ∪ EH . (3.8)

Moreover, let ah : (V + Vh)× (V + Vh) → R and bh : Q× (V + Vh) → R be some extensions

of a and b in the sense that ah|V ×V = a and bh|Q×V = b.

(A3) There exists a (Fortin interpolation) operator ΠF : V → Vh with

bh(q, v − ΠF v) = 0 ∀q ∈ Qh, ‖ΠF v‖h . ‖v‖V ∀v ∈ V. (3.9)

Given gh ∈ V ∗
h , let (uh, ph) be the unique solution of the discrete problem

ah(uh, vh) + bh(ph, vh) = gh(vh) ∀vh ∈ Vh, (3.10)

bh(qh, uh) − t2c(qh, ph) = 0 ∀qh ∈ Qh. (3.11)

The associated discrete norms read, for all v ∈ V + Vh and q ∈ Q,

‖v‖2
h := ah(v, v), |||(v, q)|||2h := ‖v‖2

h + ‖q‖2
Q + t2c(q, q). (3.12)
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Let Du denote the functional matrix of all first-order partial derivatives (e.g., the gradient

and possibly also the Green strain of linear elasticity) of the Sobolev function u with Dh the

piecewise counterpart of the operator D.

Theorem 3.1 (A Priori Error Estimates) Let (u, p) ∈ V ×Q and (uh, ph) ∈ Vh ×Qh solve

the Problem (3.5)-(3.6) and Problem (3.10)-(3.11), respectively. Assume that the spaces Qh and

Vh satisfy (A2)-(A3). (a) It holds

|||(u − uh, p− ph)|||h . inf
(vh,qh)∈Vh×Qh

|||(u − vh, p− qh)|||h

+ sup
wh∈Vh\{0}

ah(u,wh) + bh(p, wh) − gh(wh)

‖wh‖h
.

(b) Suppose that there exists some σ ∈ H1(Ω; Rm×n) such that gh ∈ V ∗
h and (u, p) ∈ V × Q

satisfy, for all vh ∈ Vh,

gh(vh) = −

∫

Ω

vh · divwσ dx, ah(u, vh) + bh(p, vh) =

∫

Ω

σ : Dhvh dx. (3.13)

Let hT denote the piecewise constant local mesh-size, i.e., hT |K = hK for all K ∈ T . Then it

holds

sup
wh∈Vh\{0}

ah(u,wh) + bh(p, wh) − gh(wh)

‖Dhwh‖L2(Ω)
. ‖hTDσ‖L2(Ω).

Remark 3.1. The characterisation of σ in (3.13) reflects consistency of the continuous solution

(u, p) in the discrete situation with exact integration of the right-hand sides and then controls

the inconsistency error in (b).

Proof. For any (vh, qh) ∈ Vh ×Qh, the Fortin interpolation operator from Assumption (A3)

yields the discrete inf-sup condition (cf., e.g., [10, Theorem 1] for a proof). That guarantees

the existence of (wh, rh) ∈ Vh ×Qh with norm |||(wh, rh)|||h ≈ 1 and

|||(uh − vh, ph − qh)|||h

. ah(uh − vh, wh) + bh(rh, uh − vh) + bh(ph − qh, wh) − t2c(rh, ph − qh).

This and standard manipulations with the discrete and exact equations show

|||(uh − vh, ph − qh)|||h

. ah(uh − u,wh) + bh(rh, uh − u) + bh(ph − p, wh) − t2c(rh, ph − p)

+ ah(u− vh, wh) + bh(rh, u− vh) + bh(p− qh, wh) − t2c(rh, p− qh)

. |||(u − vh, p− qh)|||h − ah(u,wh) − bh(p, wh) + gh(wh).

Together with a triangle inequality, this proves (a).

The extra conditions in (b) on the field σ allow for, for any wh ∈ Vh,

ah(u,wh) + bh(p, wh) − gh(wh) =

∫

Ω

(wh · divwσ + σ : Dhwh)dx.

An elementwise integration by parts with the Sobolev function σ and the T -piecewise smooth

function wh result in a cancelation of the element volume contributions and remaining jump

terms along the edges. In fact,

ah(u,wh) + bh(p, wh) − gh(wh) =
∑

E∈EH∪ER

∫

E

(σνE)[wh] ds.
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For any E ∈ ER,
∫

E
[wh] ds = 0 by (A2). This allows for

∫

E

(σνE)[wh] ds =

∫

E

((σ − σ)νE)[wh] ds

for some integral mean σ ∈ R
m×n. A standard trace inequality followed by a Poincaré inequality

leads to
∫

E

(σνE)[wh] ds . h
1/2
E ‖Dσ‖L2(ωE)‖[wh]‖L2(E). (3.14)

Similar arguments for the jump term of wh − wh on the patch ωE yield

∫

E

(σνE)[wh] ds . hE‖Dσ‖L2(ωE)‖Dhwh‖L2(ωE). (3.15)

To analyse the second case, let z be the hanging node on E = E1 + E2 ∈ EH and let πE
0 v =

1
hE

∫

E
v ds denote the integral mean along E. Let Kj,z be some element domain with vertex

z and edge Ej for j = 1, 2 and let wh|K1,z∪···Kℓ,z
denote the restriction of wh to the one-sided

neighborhood K1,z ∪ · · ·Kℓ,z ⊂ ωE of E with integral mean πE
0 w|K1,z∪···Kℓ,z

along E. The

estimate

‖wh|K1,z∪···Kℓ,z
− πE

0 wh|K1,z∪···Kℓ,z
‖L2(E) . h

1/2
E ‖∇hwh‖L2(K1,z∪···Kℓ,z) (3.16)

again follows from standard arguments on piecewise trace inequalities and elementwise Poincaré

inequalities. Let K denote the element domain with edge E opposite of K1,z ∪ · · ·K2,z. Then,

as in (3.16), one deduces

‖wh|K − πE
0 wh|K‖L2(E) . h

1/2
E ‖∇hwh‖L2(K). (3.17)

The above arguments from the first case allow for (3.14), (3.16) and (3.17) yield (3.15) in the

second case as well. Since the edge patches have finite overlap, the aforementioned inequalities

(3.14) result in
∑

E∈ER∪EH

∫

E

(σνE)[wh] ds . ‖hTDσ‖L2(Ω)‖Dhwh‖L2(Ω). �

4. A Posteriori Error Analysis

This section is devoted to the a posteriori error analysis of the methods of the previous

section and adopts its notation. The unified theory of a posteriori error analysis [18, 20, 22, 23]

considers the operator A : V ×Q→ V ∗ ×Q∗ with V = H1
0 (Ω; Rm) and Q = L2(Ω; Rm×n) and

(

A(p, u)
)

(q, v) := a(u, v) + b(p, v) + b(q, u) − t2c(p, q) (4.1)

for all (u, p), (q, v) ∈ V ×Q. Then the continuous problem (3.5)-(3.6) is equivalent to

(

A(p, u)
)

(q, v) := a(u, v) + b(p, v) + b(q, u) − t2c(p, q) = g(v). (4.2)

The norm in Q is defined as in [25, 33] by

|||q|||Q = sup
v∈V \{0}

b(q, v)

‖v‖V
+ t

√

c(q, q), ∀q ∈ Q. (4.3)
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It follows from (3.3) that

|||q|||Q ≈ ‖q‖Q uniformly with respect to 0 ≤ t ≤ 1. (4.4)

The condition (3.2) and the general theory of mixed finite element formulations [10, Theorem

2] show that the bilinear form A is an isomorphism between V ×Q and its dual. This means

|||(u, p)||| ≈ sup
(v,q)∈V ×Q\{(0,0)}

(A(p, u))(q, v)

|||(v, q)|||
. (4.5)

Suppose (ũh, ph) ∈ V × Q is some approximation to the exact solution (u, p) and define the

residuals

ResV (v) :=g(v) − a(ũh, v) − b(ph, v), ∀v ∈ V , (4.6)

ResQ(q) :=b(q, ũh) − t2c(ph, q), ∀q ∈ Q. (4.7)

Here and throughout, ũh belongs to V and denotes some continuous and not necessarily discrete

function; however, the subindex in ũh refers to the fact that ũh might be closely related (or

designed with some post-processing) to some discrete function uh (which, typically, does not

belong to V for nonconforming finite element methods). Below we choose ũh as some best

approximation to uh in V in the sense of

‖uh − ũh‖h ≈ min
v∈V

‖uh − v‖h.

For all applications we have in mind, the minimum can be controlled with the help of the

Lipschitz partition of unity (2.7) and one fundamental result from [22, Theorem 3.1],

min
ũh∈V

‖DT uh −Dũh‖
2
L2(Ω) . µ2 :=

∑

E∈E

∑

z∈K(E)

hE‖τE · [Dh(ψz uh)]‖2
L2(E). (4.8)

Notice that here the boundary edges are included in E which, indeed, clarifies the notational

gap of [22]; τE denote the tangential vectors and (4.8) holds without any further assumption

on the piecewise gradient of uh.

Coming back to the abstract situation and ũh in V , it holds

|||(u − ũh, p− ph)||| ≈ ‖ResV ‖V ∗ + ‖ResQ‖Q∗ (4.9)

and it remains to estimate the residuals.

Recall that (u, p) ∈ V ×Q solves (3.5)-(3.6) and (uh, ph) ∈ Vh ×Qh solves (3.10)-(3.11).

Assume that Qh and Vh satisfy (A2)-(A3) plus a further assumption (A4) and (A5) from

[22,23] which involves the existence of σh and an interpolation operator Πh as follows:
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(A4) There exists some σh ∈ H1(T ; Rm×n) which satisfies

ah(uh, vh) + bh(ph, vh) =

∫

Ω

σh : Dhvh dx, ∀v ∈ V + Vh.

(A5) There exists some bounded, linear operator Πh : V C
h → Vh with the properties (4.10)-

(4.11) for every vh ∈ V C
h and all K ∈ T ,

∫

Ω

σh : Dh(vh − Πhvh) dx = 0,

∫

K

(vh − Πhvh) dx = 0, (4.10)

‖DΠhvh‖L2(K) . ‖Dvh‖L2(ωK). (4.11)

For some given f ∈ L2(Ω), let gh ∈ V ∗
h be defined by

g(v) = gh(v) :=

∫

Ω

fv dx, ∀v ∈ V.

For f and its piecewise constant approximation fh with respect to T , we refer to osc(f) as

oscillation of f [40],

osc2(f) :=
∑

K∈T

h2
K‖f − fh‖

2
L2(K). (4.12)

The piecewise smooth σh from (A4) defines jumps [σh]E of the discontinuous discrete stress

across an interior edge E with unit normal νE ,

[σh]E(x) =
(

σh|K+
(x) − σh|K−

(x)
)

, x ∈ E = K− ∩K+.

Then, the residual-based a posteriori error estimator reads

η2 :=
∑

K∈T

h2
K‖g + divwσh‖

2
L2(K) +

∑

E∈E(Ω)∩(ER∪EH)

hE‖[σh]E · νE‖
2
L2(E). (4.13)

Since the norm in Q is some Lebesgue norm, the dual norm

ξ := ‖bh(·, uh) − t2c(·, ph)‖Q∗

can be estimated easily.

Theorem 4.1 (A Posteriori Error Estimates) For (A1)-(A5) holds

|||(u − ũh, p− ph)||| . η + ‖uh − ũh‖h + ξ + osc(f). (4.14)

Proof. Given v ∈ V \ {0}, set vC
h = J v as in Theorem 2.1 and set vNC

h := Πhv
C
h . Then

(A4) yields

ResV (v) := g(v) − a(ũh, v) − bh(ph, v) = a(uh − ũh, v) +

∫

Ω

(f · v − σh : Dv)dx.

The right-hand side g equals gh and hence the discrete equation shows

0 =

∫

Ω

(

f · vNC
h − σh : DvNC

h

)

dx.
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With (A5) follows

∫

Ω

(

f · vC
h − σh : DvC

h

)

dx =

∫

Ω

f ·
(

vC
h − Πhv

C
h

)

dx

and vC
h − Πhv

C
h has piecewise integral means zero, e.g.,

∫

Ω

fh ·
(

vC
h − ΠvC

h

)

dx = 0.

This and an elementwise Poincaré inequality show

∣

∣

∣

∣

∫

Ω

(

f · vC
h − σh : DvC

h

)

dx

∣

∣

∣

∣

. osc(f)‖Dh

(

vC
h − ΠvC

h

)

‖L2(Ω).

Consequently, with w := v − vC
h ,

ResV (v) . a(uh − ũh, v) +

∫

Ω

(f · w − σh : Dw)dx + osc(f)‖Dh

(

vC
h − ΠvC

h

)

‖L2(Ω).

The stability of operators J and Πh plus the boundedness of a yields

ResV (v)/‖v‖V . ‖uh − ũh‖V +

∫

Ω

(f · w − σh : Dw)dx/‖w‖ + osc(f).

The estimation of
∫

Ω

(f · w − σh : Dw)dx . ‖w‖ η

is well-established and may follow [1,7,18,40]. The second residual is obviously bounded by its

norm ξ. �

5. Applications

This section applies the theory from the previous sections to three problems, i.e., the Poisson

problem, the Stokes problem, and the linear elasticity problem. We shall briefly give some

examples with Assumptions (A2)-(A5).

5.1. Remarks on the Poisson Equation

Given the right-hand side f ∈ L2(Ω), seek u ∈ V := H1
0 (Ω) with

−∆u = f ∈ V ∗ ≡ H−1(Ω).

The abstract framework covers the weak form with the bilinear forms a and ah,

ah(u, v) :=

∫

Ω

∇hu : ∇hv dx, for any u, v ∈ H1(T ), (5.1)

and m = 1, b ≡ 0, and t = 0. Moreover, σ := ∇u and σh := ∇huh.

Since (3.3) is violated, the a priori and a posteriori error analysis of Sections 3 and 4 is not

applicable. However, the above arguments on a := ah|V ×V and ah are applicable and prove the

standard estimates of the unifying theory [18, 20, 22] for triangulations with hanging nodes.
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Fig. 5.1. Triangulation with conforming (left) and nonconforming (right) P1 and Q1 elements and one

hanging edge EH = EH,1 ∪ EH,2 .

For this problem, these assumptions (A2)-(A5) are satisfied by the Courant element, the

bilinearQ1 element, the Crouzeix-Raviart element [27], the Han element [32], the nonconforming

rotated Q1 element [37], the constrained nonconforming rotatedQ1 element [34], the DSSY [30];

the justification immediately follows from the definitions of these elements and the arguments

of [22, 23]. These elements are illustrated in Table 1.1.

Let us briefly comment on the underlying assumptions (A1)-(A5) of which only the last one

may be seen as questionable. We illustrate the fact that the arguments of [22,23] validate (A5)

on the simplest relevant example of nonconforming rotated Q1 element after Rannacher and

Turek [37] combined with some nonconforming P1 element after Crouzeix-Raviart [27].

Given any continuous and piecewise P1 or Q1 function vC
h on the left mesh of Fig. 5.1, the

interpolant vNC
h := Πhv

C
h ∈ Vh in the nonconforming finite element space associated to the

right mesh is defined through the integral of each edge E of some element domain K. In other

words,
∫

E

(vC
h − vNC

h |K) ds = 0,

for all edges E and neighbouring K. This definition applies to EH and EH,j of Fig. 5.1 as well

and then implies (A2). The verification of (A5) is a local argument: An integration by parts

on any K proves (where E(K) denotes the set of edges of K)

∫

K

D(vC
h − vNC

h )dx =

∫

∂K

(vC
h − vNC

h )νT ds =
∑

E∈E(K)

±νE

∫

E

(vC
h − vNC

h )ds = 0.

Here we did not care about the orientation of νT along the edges and wrote ±νE knowing that

it is, by design of vC
h , multiplied by zero anyway. In cases where σh = Dhuh is constant on

K, this proves the first part of (4.10). The only nonconstant case is studied on the reference

element K = Qref = (−1, 1)2 where, as a typical model case,

uh(ξ, η) := (ξ2 − η2)/2

and hence σh(ξ, η) = (ξ,−η). Then, divwσh vanishes and, moreover, σh · νE is constant for any

edge E ∈ E(Qref). Therefore, for this model case, the integration by parts argument shows the

first part of (4.10) on K as well.

The remaining hypothesis of the second part of (4.10) follows for affine functions and appears
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crucial only for the model situation where, again on K = Qref,

vC
h (ξ, η) = (1 + ξ)(1 + η)

and so vNC
h (ξ, η) = 1 + ξ + η is in fact affine. A direct calculation shows the second part of

(4.10) for this particular case. The general situation follows immediately by symmetry and

combination of it.

The moral of the example analysis is that the edge-oriented definition of the operator Πh

in the previous papers [22, 23] remains valid because it is an elementwise design. Therefore,

the assumption (A5) follows in all cases as well and we leave out the details here: There is no

change of arguments in the situation with hanging nodes.

The error estimators are essentially the ones from the literature with small modifications in

the weight functions which are the nodal basis functions in V C
h for 1-irregular triangulations of

Section 2. Therefore, more details are omitted.

5.2. The Stokes Problem

In the well-established weak form of the Stokes problem [11, 13, 15, 31], the bilinear forms

a := ah|V ×V and ah read

a(u, v) = µ

∫

Ω

Dhu : Dhv dx for the unsymmetric formulation,

a(u, v) = µ

∫

Ω

εh(u) : εh(v) dx for the symmetric formulation,

for all u, v ∈ H1(T ; Rn), m = n, with the (piecewise) symmetric gradient

εh(u) =
1

2

(

Dhu+Dhu
T
)

.

Moreover,

Q = L2(Ω)/R =

{

q ∈ L2(Ω) :

∫

Ω

q dx = 0

}

and, for all q ∈ L2(Ω) and v ∈ H1(T ; Rn),

b(q, u) =

∫

Ω

q divwhu dx, c ≡ 0, t = 0.

For this problem, Assumptions (A2)-(A5) are satisfied by all examples listed in Table 1.2 and

analyzed in [22] except the Hu-Man-Shi element. The stress fields read

σ = µDu− p I, σh = µDhuh − ph I for the unsymmetric formulation,

σ = µεu− p I, σh = µεhuh − ph I for the symmetric formulation,

Notice that

ξ = ‖divwσh‖L2(Ω)

monitors the incompressibility constraints in the discrete situation [18, 22, 24, 28].

Remark 5.1. Since (A3) does not hold for the Hu-Man-Shi element, the a priori analysis

herein is inapplicable for it. However the a posteriori analysis of this paper equally holds for it.
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5.3. Linear Elasticity

The linear elastic problem encounters the locking phenomenon as the Lamé parameter λ

becomes larger and larger in an incompressible limit scenario. One particular model of this

yields a weak formulation with a pressure variable p and, in fact, leads to the weak formulation

(3.5)-(3.6) with a, ah, b, and bh as in the previous subsection and the bilinear form c : Q×Q→ R

defined by

c(p, q) =

∫

Ω

p q dx, t2 =
1

λ
.

Then, with the stress fields σ and σh as above, all assumptions (A2)-(A5) are satisfied by all

examples analyzed in [22] except the Hu-Man-Shi element.

With some projection operator Π2 from the context of the locking (see [22] for details), it

holds

ξ = ‖Π2divwhuh − divwhuh‖L2(Ω).

5.4. Adaptive finite element method

An element-oriented adaptive mesh-refining algorithm is described in this subsection with

1−irregular triangulations T generated by Algorithm 5.1.

Algorithm 5.1. Input: Coarse regular triangulation T0 with rectangular and/or triangular

elements.

Loop for ℓ = 0, 1, 2, . . . until termination on level L do

1. Solve discrete problem on Tℓ with N degrees of freedom.

2. For all K ∈ Tℓ compute

η2
K := h2

K‖f + divw∇uh‖
2
L2(K) +

1

2

∑

E∈E(K)

hE‖[∂huh]‖2
L2(E).

and set ηN := (
∑

K∈T η
2
K)1/2.

3. Mark K ∈ M ⊂ Tℓ for refinement into four congruent elements by connecting the

midside points of its edges provided θmaxT∈Tℓ
ηT ≤ ηK .

4. Run Algorithm 2.1 with input red(M) ∪ (Tℓ \M) and output Tℓ+1 od.

Output: Sequence of triangulations T1, . . . , TL and discrete solutions plus error estimators

ηN .

5.5. Numerical example

In [23], Algorithm 5.1 was run for the NR element from [37] to approximate the Dirichlet

problem with g ≡ 0 and smooth Dirichlet data uD on the L-shaped domain with exact solution

(written in polar coordinates)

u(r, θ) = r2/3sin

(

2

3
θ

)

.
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The adaptive algorithm of the previous subsection involves approximation error terms on the

Dirichlet data in the tangential jump and generates a sequence of meshes displayed in Fig. 5.2

with a local refinement towards the reentrant corner with Fig. 5.3 displays experimental con-

vergence rates for the exact error and the estimate ηN .

Fig. 5.3 displays experimental convergence rates for the exact error and the estimate ηN for

uniform and adaptive refinement with the corresponding triangulations depicted in Fig. 5.2.

The adaptive refinement improves the convergence rate of uniform refinement to the optimal

one θ(N−1/2) with respect to the number N of degrees of freedom, and the convergence rate

of the estimate mirrors the one of the exact error both for uniform and adaptive refinement. A

more detailed analysis on the numbers shows that

2.13 ≤ ηN/‖∇heN‖ ≤ 2.83

for adaptive and

2.13 ≤ ηN/‖∇heN‖ ≤ 2.35

for uniform mesh refinement. This confirms the theoretical predictions.

T0 T1 T2

T3 T4 T5

Fig. 5.2. Adapted triangulations T0, . . . , T5 generated with the Algorithm 5.1 with θ = 1/2 .
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[6] I. Babuška and T. Strouboulis, The Finite Element Method and its Reliability, The Clarendon

Press Oxford University Press, 2001.

[7] S. Brenner and C. Carstensen, Finite Element Methods, Chapter 4 in Encyclopedia of Computa-

tional Mechanics, John Wiley & Sons, 2004.

[8] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite

element methods, Acta Numerica, 2001, 1-102.

[9] C. Bernardi and V. Girault, A local regularisation operator for triangular and quadrilateral finite

elements, SIAM J. Numer. Anal., 35 (1998), 1893-1916.

[10] D. Braess, Stability of saddle point problems with penalty, M2AN, 30 (1996), 731-742.

[11] D. Braess, Finite Elements, Cambridge University Press, 1997.



Hanging Nodes in Finite Element Error Control 235

[12] D. Braess, C. Carstensen and B.D. Reddy, Uniform convergence and a posteriori error estimators

for the enhanced strain finite element method, Numer. Math., 96 (2004), 461-479.

[13] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer

Verlag, 2nd Edition, 2002.

[14] S.C. Brenner and L.Y. Sung, Linear finite element methods for planar linear elasticity, Math.

Comput., 59 (1992), 321-338.

[15] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, Berlin, 1991.

[16] Z. Cai, J. Douglas, Jr., and X. Ye, A stable nonconforming quadrilateral finite element method

for the stationary Stokes and Navier-Stokes equations, Calcolo, 36 (1999), 215-232.

[17] C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods, M2AN

Math. Model. Numer. Anal., 33 (1999), 1187-1202.

[18] C. Carstensen, A unifying theory of a posteriori finite element error control, Numer. Math., (2005).

[19] C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control

in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM,

Math. Comput., 71 (2002), 945-969.

[20] C. Carstensen, S. Bartels, and S. Jansche, A posteriori error estimates for nonconforming finite

element methods, Numer. Math., 92 (2002), 233-256.

[21] C. Carstensen, T. Gudi and M. Jensen, A unifying theory of a posteriori error control for discon-

tinuous Galerkin FEM. Numer Math, submitted, (2008).

[22] C. Carstensen and Jun Hu, A unifying theory of a posteriori error control for nonconforming finite

element methods, Numer. Math., 107 (2007), 455-471.

[23] C. Carstensen, Jun Hu and A. Orlando, Framework for the a posteriori error analysis of noncon-

forming finite elements, SIAM J. Numer. Anal., 45 (2007), 68-82.

[24] C. Carstensen and S.A. Funken, A posteriori error control in low-order finite element discretisations

of incompressible stationary flow problems Math. Comput., 70:236 (2001), 1353-1381.

[25] C. Carstensen and J. Schöberl, Residual-Based a posteriori error estimate for a mixed Reissner-

Mindlin plate finite element, Numer. Math., 103 (2006), 225-250.

[26] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, 1978; reprinted

as SIAM Classics in Applied Mathematics, 2002.

[27] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving

the stationary Stokes equations, RAIRO Anal. Numér., 7 (1973), 33-76.

[28] E. Dari, R. Duran and C. Padra, Error estimators for nonconforming finite element approximations

of the Stokes problem, Math. Comput., 64 (1995), 1017-1033.

[29] E. Dari, R. Duran, C. Padra and V. Vampa, A posteriori error estimators for nonconforming finite

element methods, Math. Model. Numer. Anal., 30 (1996), 385-400.

[30] J. Douglas Jr, J.E. Santos, D. Sheen and X. Ye, Nonconforming Galerkin methods based on

quadrilateral elements for second order elliptic problems, Math. Model. Numer. Anal., 33 (1999),

747-770.

[31] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Springer

Verlag, 1986.

[32] H.-D. Han, Nonconforming elements in the mixed finite element method, J. Comput. Math., 2

(1984), 223-233.

[33] J. Hu and Y.Q. Huang, A posteriori error analysis of finite element methods for the Ressiner-

Mindlin Plates, Preprint document of institute of mathematics of PeKing University, NO.30,

2007.

[34] J. Hu and Z.-C. Shi, Constrained nonconforming rotated Q1-element, J. Comput. Math., 23 (2005),

561-586.

[35] G. Kanschat and F.-T. Suttmeier, A posteriori error estimates for nonconforming finite element

schemes, Calcolo, 36 (1999), 129-141.

[36] C. Park and D. Sheen, P1-nonconforming quadrilateral finite element methods for second-order



236 C. CARSTENSEN AND J. HU

elliptic problems, SIAM J. Numer. Anal., 41 (2003), 624-640.

[37] R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Meth.

Part. D. E., 8 (1992), 97-111.

[38] Z.-C. Shi, A convergence condition for quadrilateral Wilson element, Numer. Math., 44 (1984),

349-361.

[39] Z.-C. Shi, The FEM-Test for nonconforming finite elements, Math. Comput., 49 (1987), 391-405.

[40] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Tech-

niques, Wiley–Teubner, 1996.


