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The Navier–Lamé equation for linear elasticity has evoked the design of various non-standard finite ele-
ment methods (FEM) in order to overcome the locking phenomenon. Recent developments of Arnold and
Winther in 2002 involve a stable mixed method which strongly fulfils the symmetry constraint. Subse-
quently, two H(div) non-conforming symmetric mixed methods arose. This paper comments on the
implementation of all those mixed FEM and provides a numerical comparison of the different symmetric
mixed schemes for linear elasticity. The computational survey also includes the low-order elements of
weak symmetry (PEERS), the non-conforming Kouhia and Stenberg (KS) elements plus the conforming
displacement Pk-FEM for k = 1, 2, 3, 4. Numerical experiments confirm the theoretical convergence rates
for sufficiently smooth solutions and illustrate the superiority of the symmetric MFEM amongst the
methods of second or third order.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The numerical solution of the Navier–Lamé equation with mixed
weak formulations allows a robust approximation even if the cru-
cial Lamé parameter passes to the incompressible limit when the
Poisson ratio approaches 1/2, see [8, Chapter IV Section 3]. In low-
order displacement formulations, the well-known locking effect
causes a priori error estimates to deteriorate. While there are many
known stable mixed finite element methods (MFEM), the additional
symmetry constraint implied for the stress tensor proved to be dif-
ficult to impose in numerical schemes. This has resulted in the
introduction of discretisations with no or reduced symmetry incor-
porated in the discrete stress space [2,19,11]. The first MFEM which
were designed especially to fulfil the stress symmetry without the
need of a sub-grid are due to Arnold and Winther [1, 4, 5, 6, 7]. As
discussed in [7], the continuity property imposed on the stress field
in the conforming MFEM substantially increases complexity of the
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finite elements. Since (complete) continuity is not required in the
mixed formulation of linear elasticity, non-conforming MFEM can
be an efficient and easier to implement alternative to conforming
elements. Table 1 displays the MFEM compared in this paper. While
the conforming lowest-order MFEM of Arnold and Winther AW30
and AW24 have 30 and 24 degrees of freedom and are based on a
polynomial basis of degree 3, the non-conforming AW21 and
AW15 MFEM are based on a quadratic polynomial basis with 21
and 15 degrees of freedom, as depicted in the first row of Table 1.
The recently introduced S15 and S27 MFEM due to Schöberl and
Sinwel [18] are based on linear and quadratic polynomials and have
15 and 27 degrees of freedom.

This paper is devoted to the computational competition of
several FEM displayed in Table 2 for the Navier–Lamé equation
of linear elasticity. Our interest hereby lies on the numerical exam-
ination of the rather novel MFEM of Arnold and Winther [5,7,13]
and the elements introduced by Schöberl and Sinwel [18]. For
some of these elements we discuss the implementation topics that
have not been presented yet. Of particular interest is the numerical
competition of the many newly available mixed finite elements of
order one up to three with traditional displacement-oriented FEM
of the same orders. Since P4 is locking free [9] in contrast to Pk,
k = 1, 2, 3, it is included in the survey as well as the low-order
MFEM of weak symmetry [2] (PEERS) and the non-conforming
KS-FEM [17]. We note that there are some recent elements which
we could not include in this survey such as [14,15]. Moreover,
while there are several MFEM with weak symmetry constraints
that might also have been worth to consider in our comparison,
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Table 1
Symmetric mixed finite elements schemes.

Name Finite element schemes Function spaces Continuity constraints

AW21 RT :¼ fr 2 P2ðT; SÞjmE � ðrmEÞ 2 P1ðEÞ8E 2 @Tg 8E 2 @T; v 2 P1ðE; R2Þ
(15 + 6 dofs) VT :¼ P1ðT; R2Þ

R
EðrmEÞ � v ds

AW15 RT :¼ fr 2 P2ðT; SÞjdivr 2 RMðTÞ; mE � ðrmEÞ 2 P1ðEÞ8E 2 @Tg 8E 2 @T; v 2 P1ðE; R2Þ
(12 + 3 dofs) VT :¼ RMðTÞ

R
EðrmEÞ � v ds

AW30 RT :¼ fr 2 P3ðT;SÞ \ Hðdiv;X; SÞjdivr 2 P1ðT; R2Þg rm
(24 + 6 dofs) VT :¼ P1ðT; R2Þ

AW24 RT :¼ fr 2 P3ðT; SÞ \ Hðdiv;X; SÞjdivr 2 RMðTÞg rm
(21 + 3 dofs) VT :¼ RMðTÞ

S15 RT :¼ r 2 P1ðT; SÞ \ Hðdivdiv;X; SÞf g
"E 2 @T

(9 + 6 dofs) VT :¼ fv 2 P1ðT; R2Þ \ Hðcurl;X; R2Þg
mE�(rmE)
v�sE

S27 RT :¼ fr 2 P2ðT; SÞ \ Hðdivdiv;X; SÞg
"E 2 @T

(15+12 dofs) VT :¼ v 2 P2ðT; R2Þ \ Hðcurl;X; R2Þ
� � mE�(rmE) 2 P1(E)

v�sE

Table 2
Theoretical convergence rates of different mixed FEM, the non-conforming KS-FEM
and the conforming Pk-FEM. The constant C is independent of material parameters
(except for Pk, k = 1, 2, 3) and independent of the (sufficiently small) mesh size h.

Name Convergence result

AW21 kr� rhkL2ðXÞ 6 ChkukH2ðXÞ

AW15 kr� rhkL2ðXÞ 6 ChkukH2ðXÞ

AW30 kr� rhkL2ðXÞ 6 ChmkrkHmðXÞ for 1 6 m 6 3

AW24 kr� rhkL2ðXÞ 6 ChmkrkHmðXÞ for 1 6 m 6 2

S15 kr� rhkL2ðXÞ 6 Chm�1kukHmðXÞ for 1 6 m 6 2

S27 kr� rhkL2ðXÞ 6 Chm�1kukHmðXÞ for 1 6 m 6 3

KS kr� rhkL2ðXÞ 6 ChkrkH1ðXÞ

PEERS kr� rhkL2ðXÞ 6 ChkrkH1ðXÞ

Pk kr� rhkL2ðXÞ 6 CðkÞhkkukHkþ1ðXÞ for k ¼ 1;2;3

P4 kr� rhkL2ðXÞ 6 Ch4kukH5ðXÞ
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see e.g. [3,16,12], our focus lies on symmetric methods. The reason
for including PEERS and KS-FEM is the great popularity of these
methods in the engineering community. We also mention that,
although out of the scope of this paper, higher-order PEERS are
available which probably would show a more favourable perfor-
mance than the lowest-order version used in the examples.

While robustness, locking and computational complexity usu-
ally play a pivotal role, singularities in the solution or high regular-
ity may dominate the choice for the method and the mesh-design.
The first academic numerical example on the unit square is de-
signed such that the linear P1 finite element shows locking. The
experiments with several Poisson ratios m close to 1/2 confirm
the theoretical locking-free property of the symmetric MFEM.
The theoretical findings of [9], that Pk, k = 1, 2, 3, show locking
while P4 is locking free, are empirically verified. For this smooth
example the higher-order schemes show faster convergence rates
and higher accuracy. However, this example is not representative
from a practical point of view. Experiments for the Cook’s mem-
brane and the example with rigid circular inclusion show that sin-
gular solutions or curved boundaries can reduce the convergence
rates of the methods. For the Cook’s membrane problem even the
low-order schemes lead to suboptimal convergence rates. This
motivates the use of local mesh refinement which is investigated
more closely for some L-shaped domain. The experiments show
that graded meshes in contrast to uniform meshes lead to optimal
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convergence rates. However, the right choice of the grading param-
eter is not known in practise because it depends on the material
parameters. The experiments show that a too small grading param-
eter results in suboptimal convergence rates while a too large va-
lue can lead to errors of different order of magnitude in accuracy.
Therefore adaptive mesh refinement strategies for the symmetric
MFEM have to be investigated which is postponed to forthcoming
work.

The problem we are concerned with in this paper is assumed on
some plane elastic body X � R2 with boundary oX = C = CD \ CN

which consists of some closed part CD of positive length for dis-
placement boundary conditions uD and its complement CN = CnCD

subject to surface loads g with exterior unit normal m. Given a vol-
ume force f 2 L2ðX; R2Þ and a traction g 2 L2ðCN; R2Þ, we seek the
displacement field u 2 V :¼ L2ðX; R2Þ and the stress tensor
r 2 R :¼ Hðdiv;X; SÞ which satisfy

�divr ¼ f and r ¼ CeðuÞ in X;

u ¼ uD on CD and rm ¼ g on CN:
ð1:1Þ

Here and throughout this paper, e(v) :¼ symDv is the linearised
Green strain tensor and C is the symmetric fourth-order bounded
and positive definite isotropic elasticity tensor. In computations,
we seek an approximation ðrh; uhÞ 2 Rh � Vh in possible discrete
spaces Rh and Vh discussed in detail in the next section. The stan-
dard notation for Lebesgue spaces L2(X) and Sobolev spaces H1(X)
is used throughout the paper. Additionally, in the context of the
examined Lamé problem described above, S :¼ R2�2

sym denotes the
space of symmetric matrices.

The paper is organised as follows: Section 2 outlines the design
and implementation of the two non-conforming Arnold–Winther
MFEM [7] as a continuation of the examinations in [13] for the con-
forming MFEM of [5]. Since the formulation of the MFEM by Schö-
berl and Sinwel [18] is similar to the former MFEM, we suggest a
new design of the base functions. The computational competition
in Section 3 compares the four Arnold–Winther and two Schö-
berl–Sinwel symmetric MFEM to the weakly symmetric PEERS
MFEM and the KS and Pk, k = 1, 2, 3, 4, displacement FEM. Section
4 outlines some conclusions.

2. Mixed non-conforming finite element formulation

This section summarises the design of the non-conforming
mixed finite element AW21 and the simplified AW15 finite ele-
ment of [7]. We detail the derivation of the coefficient matrices
which determine the discrete basis functions and comment on
the discretisation of the (local) operator matrices.

We assume some regular triangulation T � X � R2 with the set
of edges E and the set of nodes N , i.e., it holds for any triangles
T1; T2 2 T

T1 \ T2 2 T [ E [ N [ f;g:

Unit outer normal and tangent vectors with respect to an edge E 2 E
are then defined to be mE and sE, respectively.

In addition to the spaces defined above, the spaces

R0 :¼ r 2 Hðdiv;X; SÞj
Z

CN

w � ðrmÞ ds ¼ 0 for all w 2 DðCN; R2Þ
� �

;

Rg :¼ fr 2 Hðdiv;X; SÞj
Z

CN

w � ðrmÞds

¼
Z

CN

w � g ds for all w 2 DðCN; R2Þg

involve the traction boundary conditions where D is the space of
test functions.
The weak formulation of (1.1) reads: given data uD 2 H1ðX; R2Þ;
f 2 L2ðX; R2Þ; g 2 L2ðCN; R2Þ, seek the solution ðr;uÞ 2 Rg � V withZ

X
r : C�1s dxþ

Z
X

u � divsdx ¼
Z

CD

uD � ðsmXÞ ds for all s 2 R0;Z
X

v � divrdx ¼ �
Z

X
f � v dx for all v 2 V:

ð2:1Þ
2.1. MFEM design (AW21)

According to [7], the discrete spaces for stress and displacement
for the non-conforming mixed finite element denoted AW21 in Ta-
ble 1 are defined on a triangle T 2 T � X by

RT :¼ fr 2 P2ðT;SÞ j mE � ðrmEÞ 2 P1ðEÞ for each edge E 2 Tg;
VT :¼ P1ðT;R2Þ:

ð2:2Þ

For each triangle T 2 T and the barycentric coordinates k1, k2, k3

on T a basis (u1, . . . ,u6) of P2ðT; RÞ reads

u1 ¼ k1; u2 ¼ k2; u3 ¼ k3;

u4 ¼ k1k2; u5 ¼ k2k3; u6 ¼ k1k3:

The 18 coefficients a1; . . . ; a6; b1; . . . ; b6; c1; . . . ; c6 2 R of an arbitrary
stress field rT 2 P2ðT; SÞ read

rT :¼
X6

k¼1

uk

ak ck

ck bk

� �
: ð2:3Þ

The 15 degrees of freedom n1, . . . ,n15 of rT 2 RT are specified accord-
ing to (2.2) by the following.

(a) The values of the moments of degree 0 and 1 of the two nor-
mal components of r on each edge E1, E2, E3 of T (12 degrees
of freedom), namely, for j = 1, 2, 3,
jEjj�1
Z

Ej

rmEj
ds ¼

n4ðj�1Þþ1

n4ðj�1Þþ2

 !
;

jEjj�2
Z

Ej

ððx�midðEjÞÞsEj
ÞrmEj

ds ¼
n4ðj�1Þþ3

n4ðj�1Þþ4

 !
:

(b) The values of the three components of the integral mean of r
on T (3 degrees of freedom), i.e.,
jTj�1
Z

T
r dx ¼

n13 n15

n15 n14

� �
:

The coefficients of the basis functions in (2.3) for some triangle
T 2 T and rT 2 RT are specified by the linear relation

Cða1; b1; c1; . . . ; a6; b6; c6ÞT ¼ ðn1; . . . ; n18ÞT ð2:4Þ

with the 18 � 18 matrix C. By the definition (a)–(b) of the degrees of
freedom and the constraints with regard to the considered stress
space (2.2)

C :¼ 1
60

R S

20eI 5eI
0 60K

0B@
1CA:

The evaluation of the integrals in (a) for the P2 basis yields the en-
tries in the first row and involves the degrees of freedom n1, . . . ,n12

given by
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R :¼

30Nð1Þ 30Nð1Þ 0
�5Mð1Þ 5Mð1Þ 0

0 30Nð2Þ 30Nð2Þ

0 �5Mð2Þ 5Mð2Þ

30Nð3Þ 0 30Nð3Þ

5Mð3Þ 0 �5Mð3Þ

0BBBBBBBBB@

1CCCCCCCCCA
;

S :¼

10Nð1Þ 0 0
0 0 0
0 10Nð2Þ 0
0 0 0
0 0 10Nð3Þ

0 0 0

0BBBBBBBBB@

1CCCCCCCCCA
with the normals matrix

NðjÞ :¼
mEj
ð1Þ 0 mEj

ð2Þ
0 mEj

ð2Þ mEj
ð1Þ

 !
2 R2�3

for the kth component mEj
ðkÞ of the global unit normal mEj

along the
jth edge Ej of a triangle T. We define the element-dependent nor-
mals matrix M which is identical to N with the difference that, in-
stead of unique global normal vectors, it contains the outer unit
normals along the edges of the elements. The conditions (b) for de-
grees of freedom n13, . . . ,n15 are encoded in the second row of C with
3 � 3 identity matrices I3�3 andeI :¼ ðI3�3 I3�3 I3�3Þ 2 R3�9:

Since any stress field rT 2 RT has to satisfy mEj
� ðrmEj

Þ 2 P1ðEjÞ on the
edges E1,E2,E3 of T, the remaining degrees of freedom n16, . . .,n18

vanish and the respective conditions are included in C by

KðjÞ :¼ ððmEj
ð1ÞÞ2; ðmEj

ð2ÞÞ2; 2mEj
ð1ÞmEj

ð2ÞÞ 2 R3

with

K :¼
Kð1Þ 0 0

0 Kð2Þ 0
0 0 Kð3Þ

0B@
1CA 2 R3�9:
2.2. Local stiffness matrix (AW21)

The fourth-order material tensor C and its inverse C�1 read

C :¼
2lþ k k 0

k 2lþ k 0
0 0 l

0B@
1CA; C�1 :¼

kþ2l
4lðkþlÞ

�k
4lðkþlÞ 0

�k
4lðkþlÞ

kþ2l
4lðkþlÞ 0

0 0 1
l

0BB@
1CCA:

On each triangle T 2 T the local stiffness matrix, resulting from
(2.1),

STIMAðTÞ :¼
A B
BT 0

� �
2 R21�21

sym

requires the computation of

Ajk :¼
Z

T
rj : C�1rk dx for j; k ¼ 1; . . . ;15; ð2:5aÞ

Bjk :¼
Z

T
divrj � vk dx for j ¼ 1; . . . ;15; k ¼ 1; . . . ;6: ð2:5bÞ

Any basis function r1, . . . ,r15 of RT resulting from the coefficient
evaluation in (2.4) can be represented as

rj ¼
aj cj

cj bj

 !
and

aj

bj

cj

0B@
1CA :¼

P6
k¼1aðkÞj ukP6
k¼1bðkÞj ukP6
k¼1cðkÞj uk

0BBB@
1CCCA:
The entry Ajk of the local stiffness matrix is given for the base func-
tions rj and rk by

Ajk ¼
Z

T
rj : C�1rk dx ¼

Z
T
ðaj;bj; cjÞC

�1ðak;bk; ckÞ
T dx

¼ C�1
1;1

Z
T
ðajak þ bjbkÞ dxþ C�1

1;2

Z
T
ðajbk þ bjakÞ dx

þ C�1
3;3

Z
T
cjck dx:

The integrals occurring in the Ajk can be integrated exactly on any
T 2 TZ

T
ajbk dx ¼

X6

m¼1

X6

n¼1

aðjÞm bðkÞn

Z
T
umun dx ¼ jTjaðjÞT MbðkÞ

with the mass matrix

M :¼ 1
180

30 15 15 6 3 6
15 30 15 6 6 3
15 15 30 3 6 6
6 6 3 2 1 1
3 6 6 1 2 1
6 3 6 1 1 2

0BBBBBBBB@

1CCCCCCCCA
:

For the evaluation of the second part of the stiffness matrix (2.5b)
we recall the conditions imposed on elements of RT and note that
the divergence of any base function rj yields the form

divrj ¼
dðjÞ1 u1 þ dðjÞ3 u2 þ dðjÞ5 u3

dðjÞ2 u1 þ dðjÞ4 u2 þ dðjÞ6 u3

 !
for some coefficients dðjÞk . From this we derive the coefficient matrix
D :¼ (d(1), . . . ,d(18)) given by

D :¼
L1 L2 L3 L2 0 L3

L1 L2 L3 L1 L3 0
L1 L2 L3 0 L2 L1

0B@
1CAX

with the derivative matrices L1, L2, L3,

Lk :¼
Dxkk 0 Dykk

0 Dykk Dxkk

� �

and

X ¼ ðxð1Þ; . . . ; xð15ÞÞ 2 R18�15;

xðjÞ ¼ aðjÞ1 ; b
ðjÞ
1 ; c

ðjÞ
1 ; . . . ; aðjÞ6 ; b

ðjÞ
6 ; c

ðjÞ
6

� 	T
2 R18:

The second part of the stiffness matrix (2.5b) reads

B :¼ jTj
12

2 1 1 0 0 0
1 2 1 0 0 0
1 1 2 0 0 0
0 0 0 2 1 1
0 0 0 1 2 1
0 0 0 1 1 2

0BBBBBBBB@

1CCCCCCCCA

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
D:
Remark 2.1. Neumann boundary condition are essential condi-
tions in the mixed formulation (2.1) and have to be imposed on the
discrete stresses. Opposite to the treatment with Lagrange multi-
pliers in [13], the current implementation eliminates respective
boundary degrees of freedom by condensation.
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2.3. MFEM design (AW15)

In addition to the element described above, a simplified non-
conforming element was derived in [7] which only includes the re-
duced velocity space VT :¼ RMðTÞ of discontinuous piecewise rigid
body motions, see AW15 in Table 1. More specifically, a function in
RM(T) has a representation (a, b)T + c(�y, x)T for some coefficients
a; b; c 2 R. The reduced local stress space bRT is given bybRT :¼ fs 2 RT jdivs 2 RMðTÞg:

When compared to the non-conforming element of Section 2.1, the
degrees of freedom corresponding to the first two moments of the
normal derivatives on the edges are still used while the integral
mean values on the element were dropped. Moreover, the con-
straint on the divergence of the stress fields now is more restricted
by means of the space RM(T).

In order to obtain the unknown coefficients a1,b1,c1, . . . ,a6,b6,c6

of the basis functions for a discrete rT 2 bRT on a triangle T, we
solve a linear system

Cða1; b1; c1; . . . ; a6; b6; c6ÞT ¼ ðn1; . . . ; n18ÞT : ð2:6Þ

The constraints of bRT lead to the coefficient matrix

C :¼ 1
60

R S

0 60eQ
0 60K

0B@
1CA 2 R18�18

which encodes 12 base functions in terms of the aforementioned P2

basis. The first row represents the degrees of freedom resulting
from the first two moments of the normal derivatives on the edges
of a triangle with matrices R; S 2 R12�9 from Section 2.1. The con-
straints of the space RM are encoded in the second row of C by
means of the matrix

Q ðjÞ :¼ diamðTÞ
Dxv ðjÞ 0 Dyv ðjÞ

0 DywðjÞ DxwðjÞ

DxwðjÞ Dyv ðjÞ DywðjÞ þ Dxv ðjÞ

0B@
1CA

with

v ð1Þ���ð3Þ :¼ ððk1 � k2Þ; k3;�k3Þ;
wð1Þ���ð3Þ :¼ ð�k2; k2; ðk1 � k3ÞÞ;eQ :¼ ðQ ð1Þ;Q ð2Þ;Q ð3ÞÞ 2 R3�9:

Note that the matrix eQ is scaled in relation to the size of the triangle
in order to avoid ill-conditioning of the coefficient matrix. The
remaining vanishing quadratic degrees of freedom are encoded in
the matrix K 2 R3�9 from Section 2.1.

2.4. Local stiffness matrix (AW15)

The evaluation of the local stiffness matrix follows the deriva-
tion in Section 2.2. While A is evaluated as before, by definition
of the base functions and the constraints on the stress space, the
divergence of some rj has the form

divrj ¼
dj

1 � dj
3u3

dj
2 þ dj

3u2

 !

for some coefficients dðjÞk 2 R. The coefficient matrix D :¼ (d(1), . . . ,
d(15)) reads

D :¼
F1 F2 F3 F2 0 F3

G1 G2 G3 G2 0 G3

0 0 0 G1 � G2 G3 �G3

0B@
1CAX
with

Fk :¼ ðDxkk 0 DykkÞ;

Gk :¼ ð0 Dykk DxkkÞ

and

X ¼ ðxð1Þ; . . . ; xð12ÞÞ 2 R18�12;

xðjÞ ¼ aðjÞ1 ; b
ðjÞ
1 ; c

ðjÞ
1 ; . . . ; aðjÞ6 ; b

ðjÞ
6 ; c

ðjÞ
6

� 	T
2 R18:

The second part of the stiffness matrix simplifies to

B :¼ jTj
3

3 0 �1

0 3 1

�1 1 1

0BB@
1CCAD:
2.5. Other symmetric MFEM

In addition to providing details about the implementation of the
non-conforming Arnold–Winther elements in the previous section,
we also aim to compare it to other symmetric MFEM developed
recently. A detailed account on the conforming Arnold–Winther
element [5] was given in [13] and we only summarise the main
properties for the sake of completeness. Another set of symmetric
element is due to [18]. Instead of using the explicit base functions
listed in the reference, our implementation follows the lines of the
Arnold–Winther element implementation. It thus is instructive to
provide some details about the required modifications for the de-
sign of the shape functions.

2.5.1. Conforming Arnold–Winther elements
The conforming elements of Arnold and Winther for the mixed

formulation are based on polynomials of degree 3 for the symmetric
stresses and of degree 1 for the displacement, see AW30 and AW24
in Table 1. In order to obtain continuity of the stress field in normal
direction along the boundary of elements, it was shown in [5] that
vertex degrees of freedom cannot be circumvented. The non-con-
forming elements AW21 and AW15 described above on the one
hand lack normal-stress continuity due to missing vertex degrees
of freedom which, on the other hand, enables to employ a lower
polynomial degree for the stress space. For the conforming AW30
element, a reduced AW24 element was described as well. Since
the design of the AW24 element is similar to the one of the AW30
element [13] and to the ones presented above, we omit the details.
Experimental results for the two lowest order conforming Arnold–
Winther elements as depicted in Table 1 are presented in Section 3.

2.5.2. Schöberl–Sinwel TD-NNS Elements
In [18], a class of mixed finite elements were presented which

employ subspaces of Hðcurl;X; R2Þ for the displacement and of
Hðdivdiv;X; SÞ for the stress. According to the continuity require-
ments, the method is coined Tangential-Displacement-Normal-
Normal-Stress (TD-NNS) formulation of elasticity. In this paper,
for the sake of simpler notation, we call these elements S15 and
S27 of polynomial degree 1 and 2 and overall number of degrees
of freedom 15 and 27 as depicted in Table 1 for comparison with
Arnold–Winther elements. The homogeneous spaces of order k
are defined by

Rh;k :¼ fr2 L2
symðXÞ j rjT 2 PkðT;SÞ; mE � ðrmEÞ ¼ 0 on CN

8E2 @T : mE � ðrmEÞ 2 Pmaxð1;k�1ÞðEÞ\C0ðXÞg;

Vh;k :¼ fv 2 L2ðXÞ2 j v jT 2 PkðT;R2Þ; v �sE 2 C0ðXÞ; v �sE ¼ 0 on CDg:
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Note that Vh;k is the second family of Nédélec edge elements. The
homogeneous problem is given by: find ðr; uÞ 2 Rh;k � Vh;k such
that

aðr;qÞ þ bðq;uÞ ¼ 0 8q 2 Rh;k;

bðr; vÞ ¼ �ðf ;vÞ 8v 2 Vh;k

with the bilinear forms

aðr;qÞ :¼
Z

X
r : C�1q dx;

bðq;vÞ :¼ hdivq;vi ¼
X
T2T

Z
T

divq � v dx�
Z
@T
ðs � ðqmÞÞðv � sÞ ds:

Opposite to the basis functions derived in [18], we prefer an ap-
proach similar to the design of the Arnold–Winther mixed FEM pre-
sented above and in [13]. In what follows, we discuss the design of
the S27 element of order 2. The design of the order 1 element S15 is
a mere reduction of the shown approach.

As in Section 2.3, some stress field rT 2 PkðT; SÞ and some
displacement field uT 2 PkðT; R2Þ on some triangle T have the
form

rT :¼
XNk

j¼1

uj

ak ck

ck bk

� �
and uT :¼

XNk

j¼1

uj

dk

ek

� �

with (3 + 2)Nk coefficients overall, according to degree k of the poly-
nomial space. The 15 + 12 degrees of freedom for the S27 element
are defined by (a)–(d).

(a) The values of the moments of degree 0 and 1 of the two nor-
mal–normal components of r on each edge E1,E2,E3 of T (6
degrees of freedom), namely, for j = 1,2,3,
jEjj�1
Z

Ej

ðrmEj
Þ � mEj

ds ¼ n2ðj�1Þþ1;

jEjj�2
Z

Ej

ððx�midðEjÞÞsEj
ÞðrmEj

Þ � mEj
ds ¼ n2ðj�1Þþ2:
(b) The values of the three components of the integral mean of r
on T tested with a basis {uj} of P1ðT; SÞ (9 degrees of
freedom)
Fig. 3.1. Energy error jjjr � rhjjj for the academic example
jTj�1
Z

T
r : uj dx ¼ njþ6 for j ¼ 1; . . . ;9:
For instance a basis of P1ðT; SÞ is given by

(
kk 0
0 0

� �
;

0 0
0 kk

� �
; 1

2
0 kk

kk 0

� �)
; k ¼ 1;2;3.

(c) The values of the moments of degrees 0, 1 and 2 of the tan-
gential components of u on each edge E1,E2,E3 of T (9 degrees
of freedom), namely, for j = 1,2,3,
jEjj�1
Z

Ej

u � sEj
ds ¼ n3ðj�1Þþ16;

jEjj�2
Z

Ej

ððx�midðEjÞÞsEj
Þu � sEj

ds ¼ n3ðj�1Þþ17;

jEjj�3
Z

Ej

ððx�midðEjÞÞsEj
Þ2u � sEj

ds ¼ n3ðj�1Þþ18:
(d) The values of the integral mean on the element tested
with a basis {qj} of the space P0ðT; R2Þ � xP0ðTÞ such as

1
0

� �
;

0
1

� �
;

k2

k3

� �� �
(3 degrees of freedom)
jTj�1
Z

T
u � qj dx ¼ njþ24 for j ¼ 1; 2; 3:
With the notation from Section 2.1 the coefficient matrix for the
stress space RT :¼ Rh,2jT reads

CRT :¼ 1
60

R S

IR IS

0 60K

0B@
1CA 2 R18�18:

It is formed according to the moments and constraints described in
(a) and (b). The evaluation of the integrals in (a) for the P2 basis
yields the entries in the first row and involves the degrees of free-
dom n1, . . . ,n6 given by
with Poisson ratio m = 0.3, 0.49, 0.4999.



Fig. 3.2. Survey of the energy error jjjr � rhjjj for the academic example with Poisson ratio m = 0.499.

Fig. 3.3. The Cook’s membrane.
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R :¼

30Nð1Þ 30Nð1Þ 0
�5Mð1Þ 5Mð1Þ 0

0 30Nð2Þ 30Nð2Þ

0 �5Mð2Þ 5Mð2Þ

30Nð3Þ 0 30Nð3Þ

5Mð3Þ 0 �5Mð3Þ

0BBBBBBBBB@

1CCCCCCCCCA
;

S :¼

10Nð1Þ 0 0
0 0 0
0 10Nð2Þ 0
0 0 0
0 0 10Nð3Þ

0 0 0

0BBBBBBBBB@

1CCCCCCCCCA
with the normal–normal vectors

NðjÞ :¼ ððmEj
ð1ÞÞ2; ðmEj

ð2ÞÞ2; 2mEj
ð1ÞmEj

ð2ÞÞ 2 R3

for the kth component mEj
ðkÞ of the globally unique normal mEj

along
the jth edge Ej of a triangle T. As mentioned before in Section 2.1, the
matrix M contains the normal-normal entries with element-depen-
dent outer unit normals. The conditions (b) for degrees of freedom
n7, . . . ,n15 are encoded in the second row of CRT with 3 � 3 identity
matrices I and

IR :¼
10I 5I 5I

5I 10I 5I

5I 5I 10I

0B@
1CA and IS :¼

2I 1I 2I

2I 2I 1I

1I 2I 2I

0B@
1CA 2 R9�9:
The constraints mEj
� ðrmEj

Þ 2 P1ðEjÞ are encoded in the matrix
K 2 R3�9 from Section 2.1. Note that the coefficient matrix CRT is
somehow similar to the one for the non-conforming Arnold–Win-
ther elements.

The coefficient matrix

CVT :¼ 1
120

eR eSeIR
eIS

 !
2 R12�12

corresponds to the displacement degrees of freedom described in
(c) and (d). The evaluation of the integrals in (c) for the P2 basis
yields the entries in the first row and involves the degrees of free-
dom n16, . . . ,n24 given by
eR :¼

60Nð1Þ 60Nð1Þ 0

�10Mð1Þ 10Mð1Þ 0

5Nð1Þ 5Nð1Þ 0

0 60Nð2Þ 60Nð2Þ

0 �10Mð2Þ 10Mð2Þ

0 5Nð2Þ 5Nð2Þ

60Nð3Þ 0 60Nð3Þ

10Mð3Þ 0 �10Mð3Þ

5Nð3Þ 0 5Nð3Þ

0BBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCA

;

eS :¼

20Nð1Þ 0 0
0 0 0

Nð1Þ 0 0
0 20Nð2Þ 0
0 0 0
0 Nð2Þ 0
0 0 20Nð3Þ

0 0 0
0 0 Nð3Þ

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA



Fig. 3.5. Energy errors jjjr � rhjjj for the Cook’s membrane problem with Poisson ratio m = 0.499.

Fig. 3.4. Solution of the Cook’s membrane benchmark.
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with the global transpose tangents

NðjÞ :¼ ð�mEj
ð2Þ; mEj

ð1ÞÞ 2 R2

and the element-dependent equivalent M. The conditions (d) for de-
grees of freedom n25, . . . ,n27 are encoded in the second row of CVT and

eIR :¼
40 0 40 0 40 0
0 40 0 40 0 40

10 10 20 10 10 20

0@ 1A;

eIS :¼
10 0 10 0 10 0
0 10 0 10 0 10
4 2 4 4 2 4

0B@
1CA 2 R3�6:
3. Numerical experiments

This section presents the computational competition of the
standard continuous Pk, k = 1, . . . ,4, displacement finite elements,
the weakly symmetric mixed finite element PEERS [2], the non-
conforming displacement finite element KS [17] and the symmet-
ric mixed methods AW30, AW24, AW21, AW15, S15 and S27
described above. We begin with an academic example which rep-
resents an ideal benchmark for the locking phenomenon. Next
more realistic benchmark problems such as the Cook’s membrane
problem and the example of a rigid circular inclusion in an infinite
plate are considered. Finally, the rotated L-shaped domain with
singular solution motivates the need of local mesh refinement.

All methods will be compared with respect to the stress
tensor error in the energy norm jjjrjjj :¼ kC�1=2ðrÞkL2ðXÞ. The
implementation of the AW30 MFEM is presented in [13] and due
to the close relationship, a few modifications lead to an implemen-
tation of the AW24 MFEM. The implementation of PEERS is de-
scribed in [11], where the continuity constraints are enforced
using Lagrange multipliers. In order to compare the results of
PEERS to all other methods, the error is plotted with respect to
the theoretically necessary degrees of freedom and not to the size
of the discrete system involving a high number of degrees of



Fig. 3.6. Domain circular inclusion.
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freedom for the Lagrange multipliers. For the KS non-conforming
finite element, the first component is chosen to be non-conforming
Fig. 3.8. Energy errors jjjr � rhjjj for the circular in

Fig. 3.7. Solution of the circu
and the second component is chosen to be continuous. Note that in
[9] it is proven that Pk shows locking for k = 1, 2, 3 and is locking
free for k = 4, which is also confirmed by the following numerical
examples.

Throughout this section, let N denote the number of degrees of
freedom, i.e., the number of unknowns of the algebraic systems to
be solved.

3.1. Academic example

As a first academic example consider the model problem (1.1)
on the unit square X = (0,1) � (0,1) with homogeneous Dirichlet
boundary conditions. The elasticity modulus is set to E = 105 and
the Poisson ratio is chosen out of m 2 {0.3, 0.49, 0.4999}. The right
hand side is defined as
clusion example with Poisson ratio m = 0.499.

lar inclusion benchmark.



Fig. 3.9. The L-shaped domain.
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fxðx; yÞ ¼ �2lp3 cosðpyÞ sinðpyÞð2 cosð2pxÞ � 1Þ;
fyðx; yÞ ¼ 2lp3 cosðpxÞ sinðpxÞð2 cosð2pyÞ � 1Þ;

and depends only on the Lamé parameter l and not on the critical
Lamé parameter k. The corresponding displacement solution is gi-
ven as

uxðx; yÞ ¼ p cosðpyÞ sin2ðpxÞ sinðpyÞ;
uyðx; yÞ ¼ �p cosðpxÞ sinðpxÞ sin2ðpyÞ:

Notice that for the displacement solution it holds div(u) � 0. The
experiments of Fig. 3.1 verify the theoretical findings of [7] and
[18]. Since the convergence graphs for m = 0.3, 0.49 and 0.4999 are
very close or even cover each other, these results demonstrate
empirically the locking-free property of the methods, i.e., the
robustness for m tending to 1/2. Moreover, for this convex example
with smooth solution, uniform refinement leads to optimal order of
convergence. Fig. 3.2 shows that P1,P2 and P3 lead to suboptimal
convergence rates for coarser meshes because of the locking effect.
However since locking is a pre-asymptotic phenomenon, the graphs
show optimal convergence rates for larger number of degrees of
freedom. It can be observed that all other first order methods lead
to smaller errors with optimal convergence without pre-asymptotic
ranges and thus no locking phenomena. Among those, the AW15
MFEM shows the smallest errors. Note that the KS non-conforming
0 0 0

Fig. 3.10. Solution of the
FEM and the S15 and PEERS MFEM lead to significantly larger errors
than the AW21 or AW15 MFEM. The locking of the P2 element leads
to the fact that the AW24 and S27 MFEM, which are of the same or-
der of convergence, show similarly better results. The AW30 MFEM
leads to smaller errors than the P3 FEM. Since the fourth-order P4

FEM is locking free, it shows faster convergence rates and smaller
errors than the third-order AW30 MFEM.

3.2. Cook’s membrane problem

The Cook’s membrane benchmark problem considers the model
problem (1.1) with X depicted in Fig. 3.3. The domain describes a
tapered panel which is clamped on the left side and subject to a
surface load in vertical direction on the right side. The interior load
is zero, f � 0. For (x,y) 2CN, the surface load is given by
g(x,y) = (0,1) if x = 48 and g(x,y) = 0 elsewhere. Since the plate is
clamped, uD � 0 on CD. This benchmark problem is a standard test
for bending dominated response. In the experiments, the elasticity
modulus is E = 105 and the Poisson ratio m = 0.499. Fig. 3.4 shows
the displacement solution magnified by a factor of 2 � 103 and the
modulus of the deviatoric part jdev(r)j pictured as grey scales for
the AW15 element. The unknown solution is singular because of
the chosen mixed boundary conditions. Therefore, the error is
approximated by the difference between the discrete solution
and a fine grid approximation. The fine grid approximation is com-
puted on a uniform refinement of the grid for the last level. For the
Pk, k = 1, . . . ,4, FEM, the fine grid solution is computed additionally
with one order higher polynomials. Fig. 3.5 shows the convergence
history for uniform refined meshes. The first observation is that the
convergence rate is suboptimal for all FEM due to the regularity
constraints. Remark that it is unclear how to use graded meshes
to improve the convergence rates. Hence, adaptive refinement
strategies have to be investigated. For this benchmark example it
turns out to be a crucial point for the KS FEM, that the first compo-
nent is non-conforming. Choosing the second component to be
non-conforming and hence the first continuous, results in singular
discrete algebraic systems. This could be avoided by bisection the
upper right triangle such that not all nodes of the resulting trian-
gles lay on the Neumann boundary. The locking-effect is visible
only for the linear P1 FEM because of the dominating regularity
constraints. The P4 FEM shows the best results. The P3 or P2 FEM
lead to similar errors as the MFEM or the KS FEM. Among the
L-shaped benchmark.



Fig. 3.11. Energy errors jjjr � rhjjj for different grading parameters d for the low-order AW15 MFEM for the L-shaped example with Poisson ratio m = 0.499.
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MFEM and the KS FEM, the AW15 shows the best results while
PEERS and on the finest grid also KS show the largest error.

3.3. Circular inclusion

As a third example, consider a rigid circular inclusion in an infi-
nite plate for the domain X as shown in Fig. 3.6. The exact solution
[17] to the model problem (1.1) in polar coordinates (r, /) reads

ur ¼
1

8lr
ðj� 1Þr2 þ 2ca2 þ 2r2 � 2ðjþ 1Þa2

j
þ 2a4

jr2

� �
cosð2/Þ

� �
;

u/ ¼ �
1

8lr
2r2 � 2ðj� 1Þa2

j
� 2a4

jr2

� �
sinð2/Þ;

where j = 3 � 4m, c = 2m � 1, a = 1/4 and l is the Lamé parameter
determined by E = 105 and the Poisson ratio m = 0.499. Fig. 3.7 shows
Fig. 3.12. Energy errors jjjr � rhjjj for different grading parameters d for the high
the displacement solution magnified by a factor of 5 � 104 and the
modulus of the deviatoric part jdev(r)j as grey scales for the
AW21 element. The numerical comparison in Fig. 3.8 shows optimal
convergence rates for the first-order methods while suboptimal
convergence rates for the higher-order schemes. This is caused by
the linear approximation of the boundary at the circular inclusion
which is not sufficiently accurate for the higher-order methods.
Therefore, for problems with curved boundary, parametric elements
have to be used in order to get optimal convergence rates. Note that
the implementation of parametric elements for the MFEM is some-
what more involved than the presented simplified implementation.
The experiments illustrate that P1 and P2 show locking while for P3

and P4 the constraint of the boundary approximation dominates the
error. For the first-order stable methods, the AW15 finite element
exhibits the best results. The overall smallest error shows the
AW24 MFEM.
-order AW30 MFEM for the L-shaped example with Poisson ratio m = 0.499.



Fig. 3.13. Graded meshes for d = 0.6, 0.7, 0.8, 0.9 (top left to bottom right) for global mesh-size 1/4.
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3.4. L-shaped benchmark

The last example considers the model problem (1.1) where X is
a rotated L-shaped domain as depicted in Fig. 3.9. The exact singu-
lar solution in radial components is given by

urðr;/Þ ¼
ra

2l
ð�ðaþ 1Þ cosððaþ 1Þ/Þ þ ðC2 � a� 1ÞC1 cosðða� 1Þ/ÞÞ;

u/ðr;/Þ ¼
ra

2l ððaþ 1Þ sinððaþ 1Þ/Þ þ ðC2 þ a� 1ÞC1 sinðða� 1Þ/ÞÞ;

in the polar coordinate system (r,/) with �p < / 6 p. The con-
stants read C1 :¼ �cos((a + 1)x)/cos((a �1)x) and C2 :¼ 2(k + 2l)/
Fig. 3.14. Survey of the energy errors jjjr � rhjjj for the L-shape
(k + l), where a � 0.544483736782 is the positive solution of
asin(2x) + sin(2xa) = 0 for x = 3p/4 and with Lamé parameter
k, l. Here, the volume force is zero, f � 0, and the Dirichlet
boundary conditions are computed according to the exact solu-
tion. As in the previous examples, the elastic modulus is set to
E = 105 and the Poisson ratio to m = 0.499. Fig. 3.10 shows the dis-
placement solution magnified by a factor of 5 � 103 and the mod-
ulus of the deviatoric part jdev(r)j as grey scales for the S15
element. In this example, the re-entrant corner leads to singular
solutions which results in slower convergence for uniform
meshes as shown in Figs. 3.11 and 3.12 for the AW15 and
AW30 MFEM. Therefore, local mesh refinement is needed for
d example with Poisson ratio m = 0.499 on graded meshes.
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optimal convergence rates. It is known that b-graded meshes can
lead to better convergence rates but suffer from small angles.
Therefore, the algorithm GRADMESH of [13] in combination with
the red–green–blue refinement strategy [10] is used to create
meshes which are more refined towards the re-entrant corner
while preserving the mesh quality. Figs. 3.11 and 3.12 show the
results of some experiments to determine the best grading
parameter 0 < d < 1 for the first-order AW15 and the third-order
AW30 MFEM. For the first-order methods, a grading parameter
d = 0.7 is already sufficient while for the higher-order schemes
only a larger value of d = 0.9 leads to optimal convergence rates.
It is observed that higher grading parameters lead to larger en-
ergy errors while lower values lead to suboptimal convergence
rates. Since the right choice of the grading parameter is not
known a priori, other local mesh refinement strategies such as
adaptive finite element methods have to be investigated. Note
that the large grading parameter d = 0.9 for the high-order meth-
ods leads to strong refinement towards the origin, c.f. Fig. 3.13.
The numerical experiments of Fig. 3.14 show that the locking ef-
fect reduces the convergence rates for Pk, k = 1, 2, 3, and that P4 is
locking-free. Among the first-order methods, the AW15 finite ele-
ment shows the best results with significantly smaller errors than
for PEERS. It is remarkable that the AW30 and the AW24 MFEM
exhibits some superconvergence rates of OðN�2Þ. This is in agree-
ment of the conjecture in [13]. Hence, the errors of the AW30
and the AW24 MFEM are similar as for the one order higher P4

FEM.

4. Conclusions

(i) The numerical experiments verify the theoretical conver-
gence rates and robustness for m ? 1/2 for the symmetric
mixed finite element methods AW30, AW24, AW21, AW15,
S15 and S27 as well as for PEERS and the KS-nonconforming
and the P4-conforming FEM.

(ii) We presented a short and simple way for implementing the
rather complicated mixed schemes AW21, AW15, S15 and
S27.

(iii) The numerical examples confirm that P4 is robust, while Pk,
k = 1, 2, 3, shows locking.

(iv) Among the first-order methods P1, PEERS, KS, AW21, AW15
and S15, the AW15 MFEM shows the best results overall.

(v) Among the second-order methods P2, AW24 and S27, the
AW24 MFEM shows the best results overall. Note that for
the first two examples the S27 MFEM shows similar results
but larger errors for the last two.

(vi) Among the third-order methods P3 and AW30, the locking-
free AW30 MFEM shows the better results.

(vii) The comparison of conforming FEM and the MFEM under
consideration shows that only the robust version P4 is com-
petitive and performs best. However, the comparison of the
fourth-order scheme with some third-order method clearly
shows superiority of the higher-order scheme provided the
exact solution is sufficiently smooth.

(viii) The experiments for the L-shaped domain illustrate that uni-
form refinement results in suboptimal convergence rates
while graded meshes recover optimal rates. The experi-
ments show that some too small grading parameters lead
to suboptimal convergence rates while higher values result
in errors of several orders of magnitude in accuracy. Since
the optimal grading parameter is, in general, not known a
priori, adaptive refinement strategies have to be
investigated.
(ix) The experiments for the L-shaped domain leads to the con-
jecture that for f � 0 the AW30 and AW24 exhibit some
superconvergence phenomenon of order OðN�2Þ. This is in
agreement with the conjecture of [13]. These results of the
AW30 and AW24 MFEM can compete with those of the
one order higher P4 displacements solution. Surprisingly,
the S15 and S27 MFEM do not show such properties.
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