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Abstract The a posteriori error analysis of conforming finite element discretisations
of the biharmonic problem for plates is well established, but nonconforming discreti-
sations are more easy to implement in practice. The a posteriori error analysis for the
Morley plate element appears very particular because two edge contributions from
an integration by parts vanish simultaneously. This crucial property is lacking for
popular rectangular nonconforming finite element schemes like the nonconforming
rectangular Morley finite element, the incomplete biquadratic finite element, and the
Adini finite element. This paper introduces a novel methodology and utilises some
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310 C. Carstensen et al.

conforming discrete space on macro elements to prove reliability and efficiency of
an explicit residual-based a posteriori error estimator. An application to the Morley
triangular finite element shows the surprising result that all averaging techniques yield
reliable error bounds. Numerical experiments confirm the reliability and efficiency for
the established a posteriori error control on uniform and graded tensor-product meshes.

Mathematics Subject Classification (2000) 65N10 · 65N15 · 35J25

1 Introduction

Computer simulations of plates with conforming finite element methods (FEMs)
encounter the difficulty of C1 continuity and complicated higher-order finite elements.
The simplest examples are the Argyris finite element with 21 degrees of freedom or the
HCT finite element with 9 or 12 degrees of freedom. One possibility for moderately thin
plates is the change of the smooth material model towards a Reissner-Mindlin plate.
Since this is problematic for thin plates and impossible for general fourth-order prob-
lems, nonconforming plate elements became very popular in computational mechan-
ics. The Morley finite element is perhaps the most prominent nonconforming triangular
finite plate element. Rectangular finite elements are frequently used in practice like the
Bogner-Fox-Schmit finite element, the Adini finite element, the rectangular Morley
finite element, or the incomplete biquadratic finite element. The a priori error analysis
has a long tradition and we refer to [12,22,24,30].

The a posteriori error analysis is rather immediate for conforming plate elements
as sketched in [26]. The milestones [2,3,19,20] for the Morley finite element method
explore some very particular properties of the ansatz functions. This paper aims at a
generalisation of the general unifying a posteriori error analysis [9,10] for second-
order elliptic PDEs to fourth-order problems to cover the aforementioned rectangular
nonconforming plate finite element methods. The natural a posteriori error estimator
for the nonconforming discrete solution uNC for the right-hand side f on a partition
T reads

∑

T ∈T

h4
T ‖ f ‖2

L2(T ) +
∑

E∈E

hE‖[D2
NCuNC]E τE‖2

L2(E)

+
∑

E∈E (Ω)

(
hE‖[D2

NCuNC]EνE‖2
L2(E) + h3

E‖[divNC D2
NCuNC]E · νE‖2

L2(E)

)
. (1.1)

(Details on the notation of the jumps [ · ]E across an edge E with normal νE and tangent
τE of length hE follow in Sect. 2 below.) This paper establishes some abstract decom-
position theorem (see Sect. 3) which substitutes the use of the Helmholtz decomposi-
tion for second-order PDEs and proves the a posteriori control by (1.1). The purpose
of this paper is to analyse nonconforming rectangular finite elements from [30,31],
namely the rectangular Morley element, the incomplete biquadratic element and the
Adini finite element. One difficulty arises from the fact that the discrete spaces cannot
contain proper conforming finite element subspaces. Given the discrete solution uNC,
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A posteriori error estimates for fourth-order problems 311

the following key terms need to be controlled for some test function v ∈ H2
0 (Ω),

∫

E

〈
D2

NCuNC

〉

E
νE ·[∇NC(v− INCv)]E ds,

∫

E

〈
divNC D2

NCuNC

〉

E
· νE [v− INCv]E ds.

(1.2)

Here, INC is some interpolation operator associated to the nonconforming finite
element space; D2

NC and divNC denote the piecewise Hessian and divergence. If the
nonconforming finite element space contained the lowest-order conforming finite ele-
ment space as a subspace, those two terms in (1.2) would vanish. This happens for
the nonconforming triangular Morley FEM because D2

NCuNC is piecewise constant
and

∫
E [∇NCvC]E ds = 0 [2,3,19,20,27]. For the discontinuous Galerkin method, it

follows immediately from the definition of the methods that those terms do not arise
[6,14,17]. For the Ciarlet–Raviart and the Hellan–Herrmann–Johnson method, those
terms of (1.2) do not appear [11,16,21].

The main result of this paper establishes reliability and efficiency for the rectangular
Morley and the incomplete biquadratic FEM while the reliability of the a posteriori
error estimator for the Adini finite element method is left open.

The paper is organised as follows. Section 2 provides the basic notation and the
definition of the error estimator. Section 3 provides an abstract error decomposition
into the equilibrium error and the consistency error. The applications in Sects. 3.2–
3.4 generalise the a posteriori error analysis for nonconforming Crouzeix–Raviart
and Morley finite elements on triangles and prove that all averaging techniques are
reliable. The consistency error will be analysed in Sect. 4 and the equilibrium error
will be analysed in Sect. 5.

Throughout the paper, standard notation on Lebesgue and Sobolev spaces is
employed. The space of R

2-valued H1 functions with vanishing integral mean over
the domainΩ is denoted by H1(Ω; R

2)/R2. The dot denotes the product of two one-
dimensional lists of the same length while the colon denotes the Euclid product of
matrices, e.g., a · b = a�b ∈ R for a, b ∈ R

2 and A : B = ∑2
j,k=1 A jk B jk for 2 × 2

matrices A, B. The symmetric part of a matrix A is denoted by sym A. The notation
a � b abbreviates a ≤ Cb for a positive generic constant C that may depend on the
domain Ω but not on the mesh-size. The notation a ≈ b stands for a � b � a. The
measure |·| is context-sensitive and refers to the number of elements of some finite set
or the length of an edge or the area of some domain and not just the modulus of a real
number or the Euclidean length of a vector.

2 Preliminaries

2.1 Data and basic notation

Let Ω be some bounded Lipschitz domain in R
2 with polygonal boundary and outer

unit normal ν = (ν1, ν2) and let T be some shape-regular triangulation of Ω into
rectangles such that ∪T = Ω. Let E denote the set of edges and let N denote
the set of vertices of T , while E (Ω) denotes the interior edges and E (∂Ω) denotes
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312 C. Carstensen et al.

the edges on the boundary ∂Ω ofΩ . Analogously, let N (Ω) (resp. N (∂Ω)) denote
the vertices in the interior ofΩ (resp. on the boundary ofΩ). The edges of a rectangle
T ∈ T are denoted by E (T ) and the set of vertices of T is denoted by N (T ). The
outward-pointing unit normal of T is denoted by νT . The midpoint of an edge E is
denoted by mid(E)while mid(T ) denotes the barycentre of T . The piecewise constant
function hT = diam(T ) has the value hT := diam(T ) for T ∈ T , while hE = |E |
is the length of an edge E . Given any z ∈ N ,E (z) denotes the set of edges sharing the
vertex z, and T (z) is the union of the triangles which contain z as a node. Given any
E ∈ E parallel to the x-axis, the fixed normal vector is νE := (0, 1) and the tangential
vector is τE := (−1, 0). For an edge E which is parallel to the y-axis, set νE := (1, 0)
and τE := (0, 1). Given any E ∈ E (Ω) with E = T+ ∩ T− for two neighbouring
rectangles (by convention T+ has the outer unit normal νT+ = νE ), denote the edge-
patch of E by ωE := int(T+ ∪ T−). Given any (possibly vector-valued) function ν,
define the jump and the average of ν of across E by

[v]E := v|T+ − v|T− and 〈v〉E := (v|T+ + v|T−)/2 along E .

For a boundary edge E ∈ E (∂Ω) ∩ E (T+), the partner v|T− is set zero. Given a
function f ∈ L2(Ω), the oscillations read

osc2( f,T ) :=
∑

T ∈T

h4
T ‖ f − fT ‖2

L2(T ) with fT := |T |−1
∫

T

f dx .

For a differentiable vector field β = (β1, β2), the operators Curl and curl read

Curlβ :=
(−∂β1/∂x2 ∂β1/∂x1

−∂β2/∂x2 ∂β2/∂x1

)
and curlβ := ∂β2

∂x1
− ∂β1

∂x2
.

For any matrix σ ∈ R
2×2, the divergence reads

divσ :=
(
∂σ11/∂x1 + ∂σ12/∂x2
∂σ21/∂x1 + ∂σ22/∂x2

)
.

The piecewise action of the differential operators ∇, ∂, D2, div,Δ2, curl, reads
∇NC, ∂NC, D2

NC, divNC,Δ
2

NC, curlNC.
For T ∈ T , the spaces of polynomial functions of total or partial degree k ∈ N are

denoted by

Pk(T ) := {v ∈ L2(T ) | v is a polynomial of total degree ≤ k},
Qk(T ) := {v ∈ L2(T ) | v is a polynomial of partial degree ≤ k}.
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A posteriori error estimates for fourth-order problems 313

The discrete function spaces read

Pk(T ) := {v ∈ L2(Ω) | ∀T ∈ T , v|T ∈ Pk(T )},
Pk(T ; R

2×2
sym ) := {v ∈ L2(Ω; R

2×2
sym ) | ∀ j, 
 = 1, 2, v j
 ∈ Pk(T )},

Qk(T ) := {v ∈ L2(Ω) | ∀T ∈ T , v|T ∈ Qk(T )},
H2(T ) := {v ∈ L2(Ω) | ∀T ∈ T , v|T ∈ H2(T )}.

It is convenient to introduce the local coordinates −1 ≤ ξ, η ≤ 1 for a rectangle
T ∈ T with width 2 hx (T ) in x-direction and 2 hy(T ) in y-direction. The midpoint
mid(T ) = (

mid(T, 1),mid(T, 2)
)

defines the coordinate transform

ξ |T (x, y) := x − mid(T, 1)

hx (T )
and η|T := y − mid(T, 2)

hy(T )
.

2.2 Kirchhoff plate bending problem

Define the scalar product

a(v,w) :=
∫

Ω

D2v : D2w dx for any v,w ∈ V := H2
0 (Ω)

with the energy norm |||·||| := a(·, ·)1/2 on V and the nonconforming bilinear form

aNC(v,w) :=
∑

T ∈T

∫

T

D2
NCv : D2

NCw dx for any v,w ∈ H2(T )

with the seminorm |||·|||NC := aNC(·, ·)1/2. In its weak formulation, the Kirchhoff plate
bending problem reads: Given any f ∈ L2(Ω) seek u ∈ V such that

a(u, v) =
∫

Ω

f v dx for all v ∈ V . (2.1)

For some nonconforming finite element space VNC ⊂ H2(T ) the discrete problem
reads: Seek uNC ∈ VNC such that

aNC(uNC, vNC) =
∫

Ω

f vNC dx for all vNC ∈ VNC. (2.2)

All examples in this paper concern discrete spaces such that (VNC, aNC) is a Hilbert
space. In particular, there exists a unique weak solution u of (2.1) respectively a unique
discrete solution uNC of (2.2).
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314 C. Carstensen et al.

2.3 Error estimator

The explicit residual-based a posteriori error estimator has two contributions μ and λ
which read, for T ∈ T ,

μ2(T ) := h4
T ‖ f ‖2

L2(T )

+
∑

E∈E (T )∩E (Ω)

(
hE‖[D2

NCuNC]EνE‖2
L2(E) + h3

E‖[divNC D2
NCuNC]E · νE‖2

L2(E)

)
,

λ2(T ) :=
∑

E∈E (T )

hE‖[D2
NCuNC]E τE‖2

L2(E).

The main result of this paper in Sects. 4–5 below establishes reliability and effi-
ciency of the explicit residual-based error estimator

μ2 := μ2(T ) :=
∑

T ∈T

μ2(T ) and λ2 := λ2(T ) :=
∑

T ∈T

λ2(T )

in the sense that

|||u − uNC|||2NC � μ2 + λ2 � |||u − uNC|||2NC + osc2( f,T ).

2.4 Finite element discretisation with rectangles

This paper is devoted to the analysis of three finite element discretisations on rectangles
(Fig. 1). A priori error estimates can be found in [12,22,24,30].

The rectangular Morley finite element. Given the shape function space

QRM(T ) = P2(T )+ span{x3, y3},

the rectangular Morley finite element space [30] is defined by

Fig. 1 The degrees of freedom for the rectangular Morley and incomplete biquadratic FEM (left) and for
the Adini FEM (right)
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A posteriori error estimates for fourth-order problems 315

VRM = {vRM ∈ QRM(T ) | vRM is continuous at N (Ω) and vanishes at N (∂Ω),

∇NCvRM · νE is continuous at the midpoint of any

E in E (Ω) and vanishes for E ∈ E (∂Ω)} .

The incomplete biquadratic finite element. The incomplete biquadratic nonconform-
ing finite element was proposed in [31] and analysed in [24]. The shape function space
reads

QIB(T ) = P2(T )+ span{x2 y, y2x}.

The incomplete biquadratic finite element space is defined by

VIB =
{
vIB ∈ QIB(T )

∣∣∣ vIB is continuous at N (Ω) and vanishes at N (∂Ω),

∇NCvIB · νE is continuous at the midpoint of any

E in E (Ω) and vanishes for E ∈ E (∂Ω)
}
.

The Adini finite element. The shape function space reads

QAD(T ) = P3(T )+ span{x3 y, y3x}.

The Adini finite element space [12,22] is defined by

VAD =
{
vAD ∈ QAD(T )

∣∣∣ vAD and ∇NCvAD are continuous at N (Ω)

and vanish at N (∂Ω)
}
.

3 Error decomposition

This section is devoted to some abstract error decomposition theorem which replaces
the Helmholtz decomposition in the standard a posteriori error analysis. Section 3.1
gives an abstract formulation and Sects. 3.2–3.3 discuss two standard applications
with novel proofs for possibly multiply connected domains.

3.1 Abstract error decomposition in Hilbert spaces

Let V and VNC denote two linear subspaces of some vector space H so that the sum
V +VNC is a well defined vector space. Suppose that the sum V +VNC is endowed with
some scalar product 〈·, ·〉 and induced norm ‖·‖. Suppose that (V, ‖·‖) is complete
with dual space V � so that, for any vNC ∈ V + VNC, there uniquely exists the best
approximation PvNC ∈ V in the sense that

dist(vNC, V ) := min
w∈V

‖vNC − w‖ = ‖vNC − PvNC‖.
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316 C. Carstensen et al.

Theorem 1 (abstract error decomposition) Any u ∈ V and uNC ∈ VNC with Res :=
〈u − uNC, ·〉 ∈ V � and its dual norm

‖Res‖V � := sup
v∈V \{0}

Res(v)/‖v‖,

satisfy

‖u − uNC‖2 = ‖Res‖2
V � + dist2(uNC, V ).

Proof The best-approximation PvNC ∈ V satisfies 〈uNC − PuNC, v〉 = 0 for all
v in V . For v := u − PuNC, the Pythagoras theorem and the Riesz isomorphism
imply

‖u − uNC‖2 = ‖u − PuNC‖2 + dist2(uNC, V ) = ‖Res‖2
V � + dist2(uNC, V ).

��

3.2 Crouzeix–Raviart NCFEM for Poisson model problem

The Crouzeix–Raviart nonconforming finite element space (Fig. 2)

CR1
0(T ) := {

vCR ∈ P1(T )
∣∣ vCR is continuous at mid(E (Ω))

and vanishes at mid(E (∂Ω))
}

is endowed with the discrete scalar product

aNC(v,w) :=
∫

Ω

∇NCv · ∇NCw dx for any v,w ∈ H1
0 (Ω)+ CR1

0(T ).

The discrete problem seeks uNC ∈ CR1
0(T ) such that

aNC(uNC, vNC) =
∫

Ω

f vNC dx for all vNC ∈ CR1
0(T ).

Fig. 2 The Crouzeix–Raviart
(left) and the Morley (right)
nonconforming finite element
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A posteriori error estimates for fourth-order problems 317

The nonconforming interpolation operator INC : H1
0 (Ω) → CR1

0(T ) is defined via

∫

E

INCv ds =
∫

E

v ds for all E ∈ E

and so

∇NC INCv = |T |−1
∫

T

∇v dx for any T ∈ T .

Since ∇NCuNC is piecewise constant, this implies

aNC(uNC, v) = aNC(uNC, INCv) =
∫

Ω

f INCv dx .

Hence,

Res(v) =
∫

Ω

f (v − INCv) dx ≤ ‖hT f ‖L2(Ω)‖h−1
T (v − INCv)‖L2(Ω)

≤ Capx‖hT f ‖L2(Ω)|||v|||.

This direct argument seems to be new and leads to some explicit stability constant
Capx from [8].

It is emphasised that this novel proof applies to multiply connected domains while
in this case the alternative usage of the Helmholtz decomposition is not immediate.

3.3 Triangular Morley finite element

For a regular triangulation T into triangles, the Morley finite element space [23] reads

M(T ) :=
{
vM ∈ P2(T )

∣∣∣ vM is continuous at N (Ω), and vanishes at N (∂Ω),

∀E ∈ E (Ω),
∫

E

[
∂vM
∂νE

]

E
ds = 0,∀E ∈ E (∂Ω),

∫
E
∂vM
∂νE

ds = 0
}
.

Let uM be the solution of the discrete problem (2.2) with the triangular Morley finite
element method. Let IM denote the canonical interpolation operator for the Morley
finite element method, which is defined, for any v ∈ V = H2

0 (Ω), by

IMv(z) = v(z) for any z ∈ N ,∫

E

∇NC IMv ds =
∫

E

∇v ds for any E ∈ E.
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The mean-value property of the interpolation operator IM for the piecewise Hessian
and the stability of the interpolation operator [12] prove for any v ∈ V with |||v||| = 1

aNC(u − uM, v) =
∫

Ω

D2u : D2v dx −
∫

Ω

D2
NCuM : D2

NC IMv dx

=
∫

Ω

f (v − IMv) dx � ‖h2
T f ‖L2(Ω)

and so

‖Res‖V � � ‖h2
T f ‖L2(Ω).

The proof applies to multiply connected domains and so generalises [2,19].

3.4 Averaging estimator for Morley FEM

A restriction to simply connected domains allows for reliability of any averaging
estimators in the context of [1].

Theorem 2 Let Ω be simply connected and let uM be the solution of the dis-
crete problem (2.2) with the triangular Morley finite element method. Then any
σ ∈ Pk(T ; R

2×2
sym ) satisfies

|||u − uM|||NC � ‖h2
T f ‖L2(Ω) + ‖σ − D2

NCuM‖L2(Ω) +
(
∑

E∈E

hE‖[σ ]EτE‖2
L2(E)

)1/2

.

Proof Given σ ∈ Pk(T ; R
2×2
sym )with a Helmholtz decomposition of [2, Lemma 1] for

a simply connected domain, there exist ψ ∈ H2
0 (Ω) and φ ∈ H1(Ω; R

2)/R2 such
that

σ = D2ψ + symCurlφ

with the stability property ‖Curlφ‖L2(Ω) � ‖symCurlφ‖L2(Ω). Then, in generalisation
of [7, Theorem 2.2],

min
v∈V

‖σ − D2v‖L2(Ω) � sup
ϕ∈H1(Ω;R2)/R2

‖∇ϕ‖L2(Ω)=1

∫

Ω

σ : Curlϕ dx .

Let ϕC ∈ P1(T )∩C(Ω̄) denote the Clément quasi-interpolant [13] of ϕ ∈ H1(Ω)

with ‖∇ϕ‖L2(Ω) = 1. Since νE · CurlϕC = ∂ϕC/∂s is continuous along any edge
E ∈ E ,
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∫

Ω

D2
NCuM : CurlϕC dx =

∑

E∈E

∫

E

[∇NCuM]E · CurlϕCνE ds = 0.

Therefore,

∫

Ω

σ : Curlϕ dx =
∫

Ω

σ : Curl(ϕ − ϕC ) dx +
∫

Ω

(σ − D2
NCuM) : CurlϕC dx .(3.1)

An integration by parts, followed by inverse and trace estimates and the approxi-
mation and stability property of the quasi-interpolation operator prove

∫

Ω

σ : Curl(ϕ − ϕC ) dx

= −
∫

Ω

curlNC(σ − D2
NCuM) · (ϕ − ϕC ) dx +

∑

E∈E

∫

E

[σ ]EτE · (ϕ − ϕC ) ds

�
∑

T ∈T

h−1
T ‖σ − D2

NCuM‖L2(Ω) hT ‖Dϕ‖L2(ωT )

+
∑

E∈E

‖[σ ]EτE‖L2(Ω)h
1/2
E ‖DϕC‖L2(ωE )

� ‖σ − D2
NCuM‖L2(Ω) +

(
∑

E∈E

hE‖[σ ]EτE‖2
L2(E)

)1/2

.

This and a triangle inequality conclude the proof: Indeed,

min
v∈V

‖D2
NCuM − D2v‖L2(Ω) ≤ ‖σ − D2

NCuM‖L2(Ω) + min
v∈V

‖σ − D2v‖L2(Ω)

� ‖σ − D2
NCuM‖L2(Ω) +

⎛

⎝
∑

E∈E

hE‖[σ ]EτE‖2
L2(E)

⎞

⎠
1/2

.

��
The particular choice σ = D2

NCuM verifies the reliability of the estimator from [19].
For the two-dimensional case, inverse and Poincaré inequalities prove the equivalence
of this estimator to the estimator from [2]. To obtain the reliability of any averaging of
the piecewise Hessian, define the space � := Pk(T ; R

2×2
sym ) ∩ C(Ω; R

2×2
sym ). It holds

dist(uM, V ) � min
σ∈�

⎛

⎜⎝‖σ − D2
NCuM‖L2(Ω) +

⎛

⎝
∑

E∈E (∂Ω)

hE‖[σ ]EτE‖2
L2(E)

⎞

⎠
1/2
⎞

⎟⎠ .
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4 Analysis of the consistency error

This section establishes a general a posteriori control of the consistency error for finite
element functions uNC which are continuous at N (Ω) and satisfy the weak continuity
condition

∀E ∈ E ∃x ∈ E

[
∂uNC

∂νE
(x)

]

E
= 0. (4.1)

In particular, this includes the rectangular Morley FEM, the incomplete biquadratic
FEM, and the Adini FEM.

Theorem 3 Let uNC ∈ Q3(T ) be continuous at N and vanish at N (∂Ω). Let uNC
satisfy the weak continuity condition (4.1) and recall the definition of λ(T ) from
Sect. 2.3. Then

dist(uNC, V ) ≈ λ(T ).

Proof of reliability: the analysis of the consistency error employs the Bogner-Fox-
Schmit Q3 finite element space [12]

VBFS = {
vC ∈ C1(Ω) ∩ Q3(T )

∣∣ vC|∂Ω = ∂vC/∂ν|∂Ω = 0
}
.

The finite element functions are determined by their values, first-order derivatives,
and the mixed second-order derivative at the vertices (see Fig. 3).

The averaging operator [4] A : VNC → VBFS is defined, for all z ∈ N (Ω) by

(A vNC)(z) = 1

|T (z)|
∑

T ∈T (z)

(vNC|T )(z),

(∇A vNC)(z) = 1

|T (z)|
∑

T ∈T (z)

(∇vNC|T )(z),
(
∂2A vNC

∂x∂y

)
(z) = 1

|T (z)|
∑

T ∈T (z)

(
∂2vNC|T
∂x∂y

)
(z).

Fig. 3 The C1 − Q2 macro element and the BFS Q3 finite element
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A posteriori error estimates for fourth-order problems 321

The distance can be estimated by the discrete conforming approximation,

dist2(uNC, V ) ≤ ‖D2
NC(uNC − A uNC)‖2

L2(Ω)
.

Let ϕz, ψz, χz denote the nodal basis function of VBFS at some node z ∈ N which
satisfy

∂ϕz/∂x = 1, ∂ψz/∂y = 1, ∂2χz/∂x∂y = 1 at z ∈ N

and vanish for the remaining degrees of freedom. Since the function uNC is continuous
at the vertices, the difference of the nodal values drops out. Hence,

‖D2
NC(uNC − A uNC)‖2

L2(Ω)

=
∑

T ∈T

∥∥∥∥∥∥

∑

z∈N (T )

∂(uNC|T − A uNC)/∂x D2ϕz + ∂(uNC|T − A uNC)/∂y D2ψz

+ ∂2(uNC|T − A uNC)/∂x∂y D2χz

∥∥∥∥∥∥

2

L2(T )

.

Some transformation to the reference domain (−1, 1)2 leads to the scaling

‖D2ϕz‖L2(T ) � 1, ‖D2ψz‖L2(T ) � 1, ‖D2χz‖L2(T ) � hT

(here one requires shape regularity). This proves

dist2(uNC, V )

�
∑

T ∈T

∑

z∈N (T )

(
|∇(uNC|T − A uNC)(z)|2 + h2

T | ∂2

∂x∂y
(uNC|T − A uNC)(z)|2

)
.

For any node z ∈ N (T ) ∩ N (Ω) which does not belong to ∂Ω , the triangle
inequality reveals

|∇(uNC|T − A uNC)(z)| ≤
∑

K∈T (z)

1/4 |∇(uNC|T − uNC|K )(z)|

�
∑

E∈E (z)

[∇NCuNC(z)]E .

A similar argument for the second term and for nodes z ∈ N (∂Ω) on the boundary
proves

dist2(uNC, V ) �
∑

z∈N

∑
E∈E (z)

(
[∇NCuNC(z)]2

E + h2
E

[
∂2

NC
∂x∂y uNC(z)

]2

E

)
.
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It follows from an equivalence of norms argument in P3(E) along an edge E ∈ E
and Poincaré–Friedrichs inequalities due to the weak continuity condition (4.1) that

|[∇NCuNC]E (z)| � h−1/2
E ‖[∇NCuNC]E‖L2(E) � h1/2

E ‖[D2
NCuNC]EτE‖L2(E),

|
[
∂2

NC

∂x∂y
uNC

]

E

(z)| � h−1/2
E ‖

[
∂2

NC

∂x∂y
uNC

]

E

‖L2(E) � h−1/2
E ‖[D2

NCuNC]EτE‖L2(E).

(4.2)

The combination of the previous estimates completes the proof. ��
Proof of efficiency: the proof is based on the discrete function technology due to
Verfürth [26]. For all E ∈ E let bE ∈ H1

0 (ωE ) be the bubble functions with the
properties

‖bE‖L∞(Ω) ≈ 1 and
∫

E

bE ds = |E |.

For any E ∈ E define ψE := bE
[
D2

NCuNC
]

E τE on E and extend it to H1
0 (ωE )

as in [26]. Some equivalence of norms plus an integration by parts followed by an
inverse estimate argument reveal

‖
[

D2
NCuNC

]
τE‖2

L2(E) ≈
∫

E

[
D2

NCuNC

]
τE · ψE ds

=
∫

ωE

D2
NC(uNC − u) : CurlψE dx

≤ ‖D2
NC(u − uNC)‖L2(ωE )

‖CurlψE‖L2(Ω)

� h−1
E ‖D2

NC(u − uNC)‖2
L2(ωE )

.

��
5 Equilibrium

This section will establish the reliability of the a posteriori error estimator for the
rectangular Morley FEM and the incomplete biquadratic FEM. The proof of efficiency
is based on the discrete test functions, similar to Sect. 4. The details in the efficiency
proof for the equilibrium error are the same as for conforming finite element methods
and can be found in [26, Sect. 3.7].

5.1 Reliability for the rectangular Morley FEM

Theorem 4 The rectangular Morley finite element solution uRM of (2.2) satisfies

‖Res‖2
V � � ‖h2

T f ‖2
L2(Ω)

+
∑

E∈E (Ω)

h3
E‖[divNC D2

NCuRM] · νE‖2
L2(E) � μ2.
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Proof Let IRM : V → VRM denote the interpolation operator defined, for a function
v ∈ V , by

(IRMv)(z) = v(z) at any vertex z ∈ N ,∫

E

∇NC IRMv · νE ds =
∫

E

∇v · νE ds for any edge E ∈ E .

The well-established interpolation theory [5,25,30] proves the subsequent approx-
imation and stability property of IRM, for any T ∈ T ,

h−2
T ‖v − IRMv‖L2(T ) + h−1

T ‖∇NC(v − IRMv)‖L2(T )

+‖D2
NC(v − IRMv)‖L2(T ) � ‖D2v‖L2(T ). (5.1)

The discrete problem (2.2) implies, for any v ∈ V with |||v||| = 1, that

Res(v) =
∫

Ω

f (v − IRMv) dx − aNC(uRM, v − IRMv).

Since (5.1), the first term can be controlled as
∫

Ω

f (v − IRMv) dx � ‖h2
T f ‖L2(Ω).

Two integrations by parts on the rectangle T ∈ T and the fact that Δ2
NCuRM = 0

lead to
∫

T

D2
NCuRM : D2

NC(v − IRMv) dx

=
∫

∂T

(D2
NCuRMνT ) · ∇NC(v − IRMv) ds

−
∫

∂T

(v − IRMv)(divNC D2
NCuRM) · νT ds.

The definition of the interpolation operator IRM implies

∫

E

∇NC(v − IRMv) ds = 0.

Since D2
NCuRMνT is constant along each edge, it follows

∫

∂T

(D2
NCuRMνT ) · ∇NC(v − IRMv) ds = 0.
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This allows for the following calculations

aNC(uRM, v − IRMv) = −
∑

E∈E (Ω)

∫

E

[
divNC D2

NCuRM

]

E
· νE 〈v − IRMv〉E ds

−
∑

E∈E (Ω)

∫

E

〈
divNC D2

NCuRM

〉

E
· νE [v − IRMv]E ds

−
∑

E∈E (∂Ω)

∫

E

divNC D2
NCuRM · ν (v − IRMv) ds.

Let IQ1 be the canonical bilinear interpolation operator [5, p.85]. Since IRMv is
continuous at any node z ∈ N , the elementwise bilinear interpolation leads to a
globally continuous function IQ1 IRMv. The continuity and some summation by parts
yield

∑

E∈E (Ω)

∫

E

〈
divNC D2

NCuRM

〉

E
· νE [v − IRMv]E ds

+
∑

E∈E (∂Ω)

∫

E

divNC D2
NCuRM · ν (v − IRMv) ds

=
∑

E∈E (Ω)

∫

E

〈
divNC D2

NCuRM

〉

E
· νE

[
IQ1 IRMv − IRMv

]
E ds

+
∑

E∈E (∂Ω)

∫

E

divNC D2
NCuRM · ν (IQ1 IRMv − IRMv) ds

= −
∑

E∈E (Ω)

∫

E

[
divNC D2

NCuRM

]

E
· νE

〈
IQ1 IRMv − IRMv

〉
E ds

+
∑

T ∈T

∫

∂T

divNC D2
NCuRM · νT (IQ1 IRMv − IRMv) ds.

The interpolation operator IQ1 acts on the shape functions of VRM in terms of the
natural coordinates −1 ≤ ξ, η ≤ 1 as follows

IQ1ξ
2 = IQ1η

2 = 1, IQ1ξ
3 = ξ, IQ1η

3 = η.

Therefore, for any T ∈ T , there exist constants aT , bT , cT , dT such that the dif-
ference IQ1 IRMv − IRMv reads

IQ1 IRMv − IRMv = aT (ξ
2 − 1)+ bT (η

2 − 1)+ cT (ξ
3 − ξ)+ dT (η

3 − η).
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Let E1, E3 be the edges parallel to the y-axis. Since divNC D2
NCuRM is constant on

T and since (ξ3 − ξ)|E1 = 0 = (ξ3 − ξ)|E3 , it follows

∫

E1

(IQ1 IRMv − IRMv)divNC D2
NCuRM · νT ds

= −
∫

E3

(IQ1 IRMv − IRMv)divNC D2
NCuRM · νT ds.

This and analogous arguments for the edges parallel to the x-axis, lead to

∑

T ∈T

∫

∂T

divNC D2
NCuRM · νT (IQ1 IRMv − IRMv) ds = 0.

The combination of the previous identities results in

aNC(uRM, v − IRMv) =
∑

E∈E (Ω)

∫

E

[
divNC D2

NCuRM

]

E
· νE

〈
IQ1 IRMv − v

〉
ds.

The Cauchy and trace inequalities and the approximation and stability properties
of the operators IQ1 and IRM prove

aNC(uRM, v − IRMv) �
√ ∑

E∈E (Ω)

h3
E‖[divNC D2

NCuRM]E · νE‖2
L2(E)

.

5.2 Reliability for the incomplete biquadratic FEM

Theorem 5 Given a mesh T generated by red-refinement of a shape regular partition
F ofΩ into rectangles, the incomplete biquadratic finite element solution uIB satisfies

‖Res‖V � � μ.

The main ingredient in the proof of reliability is the conforming C1 − Q2 macro
element space from [18]. To this end, let F be a shape regular partition of Ω into
rectangles and divide each rectangle in F by the red-refinement into four congruent
sub-rectangles (Fig. 4) to form the mesh T = red(F ). The macro C1-Q2 finite
element space is defined by

VQ2 = H2
0 (Ω) ∩ Q2(T ).

Lemma 1 It holds

‖Res‖V � � μ+ ‖Res‖V �
Q2
.
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Fig. 4 Three levels of nestedly refined grids, and a macro-element grid

Proof Let JQ2 : H2
0 (Ω) → VQ2 be the quasi-interpolation operator from [18] with

the properties JQ2vC = vC for any vC ∈ VQ2 , and, for any v ∈ H2
0 (Ω) with |||v||| = 1,

h−2
T ‖v − JQ2v‖L2(T ) + h−1

T ‖∇(v − JQ2v)‖L2(T )

+‖D2
NC(v − JQ2v)‖L2(T ) � ‖D2

NCv‖L2(ωT )
.

The proof of the lemma is based on the split

Res(v)=aNC(uNC, v − JQ2v)−
∫

Ω

f (v− JQ2v) dx+aNC(uNC, JQ2v)−
∫

Ω

f JQ2v dx .

Two integrations by parts (followed by the Cauchy and trace inequalities) and the
approximation and stability properties of the operator JQ2 reveal

aNC(uNC, v − JQ2v)−
∫

Ω

f (v − JQ2v) dx

=
∑

E∈E (Ω)

(∫

E

[
D2

NCuIB

]

E
νE ·∇(v− JQ2v) ds−

∫

E

[
divNC D2

NCuIB

]

E
· νE (v− JQ2v) ds

)

−
∫

Ω

f (v − JQ2v) dx � μ.

The stability of JQ2 implies

∣∣∣∣∣∣
aNC(uNC, JQ2v)−

∫

Ω

f JQ2v dx

∣∣∣∣∣∣
� ‖Res‖V �

Q2
|||JQ2v||| � ‖Res‖V �

Q2
.

The combination of the aforementioned estimates concludes the proof. ��
Proof of Theorem 5 Let uIB ∈ VIB denote the solution of (2.2) for the incomplete
biquadratic finite element method and let IIB denote the canonical interpolation oper-
ator [24] defined, for vC ∈ VQ2 , by

(IIBvC)(z) = vC(z) for any vertex z ∈ N

(∇NC IIBvC · νE )(mid(E)) = (∇vC · νE )(mid(E)) for any edge E ∈ E . (5.2)
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The approximation and stability properties from [24] read

h−2
T ‖vC − IIBvC‖L2(T ) + h−1

T ‖∇NC(vC − IIBvC)‖L2(T )

+‖D2
NC(vC − IIBvC)‖L2(T ) � ‖D2vC‖L2(T ). (5.3)

The discrete problem (2.2) implies, for any vC ∈ VQ2 with |||vC||| = 1, that

Res(vC) = aNC(uIB, vC − IIBvC)−
∫

Ω

f (vC − IIBvC) dx .

The second term is bounded with (5.3) by

∫

Ω

f (vC − IIBvC) dx � ‖h2
T f ‖L2(Ω).

Hence, it suffices to prove the estimate

aNC(uIB, vC − IIBvC) � μ.

Since IIB is exact for all shape functions of VQ2 except ξ2η2 (written in natural
coordinates), there exists, for any T ∈ T , some constant cT such that

vC − IIBvC|T = cT (ξ
2η2 − 1) in T ∈ T . (5.4)

An integration by parts reveals

∫

T

D2uIB : D2(vC − IIBvC) dx

=
∫

∂T

D2uIBνT · ∇(vC − IIBvC) ds −
∫

T

divD2uIB · ∇(vC − IIBvC) dx .

Since divNC D2
NCuIB is constant on T , and since ∇NC(vC − IIBvC) by (5.4) is an

odd function, the volume term vanishes.
Let E1, E3 denote the edges of T parallel to the y-axis with νT |E3 = (1, 0) =

−νT |E1 . Then

±
∫

E j

∇NC(vC − IIBvC) · D2uIBνT ds

=
∫

E j

∂2uIB

∂x2

∂(vC − IIBvC)

∂x
ds +

∫

E j

∂2uIB

∂x∂y

∂(vC − IIBvC)

∂y
ds.
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Since the mixed derivative ∂2uIB/∂x∂y ∈ P1(T ) is affine on T and ∂(vC− IIBvC)/∂y
is even in ξ and odd in η, a moment’s reflection reveals that the second integral is the
same for j = 1, 3 and, hence, there is no contribution from those terms.

By (5.4), ∂(vC − IIBvC)/∂x is an even function along E j . Since ∂2uIB/∂x2 is affine
in y, it holds for the L2 projection �E j onto P0(E j ) along E j that

∫

E j

∂(vC − IIBvC)

∂x

∂2uIB

∂x2 ds =
∫

E j

∂(vC − IIBvC)

∂x
�E j

∂2uIB

∂x2 ds.

Altogether,

∑

j=1,3

∫

E j

∇NC(vC − IIBvC) · D2uIBνT ds

=
∫

E3

∂(vC − IIBvC)

∂x
�E3

∂2uIB

∂x2 ds −
∫

E1

∂(vC − IIBvC)

∂x
�E1

∂2uIB

∂x2 ds.

Recall that ν = (ν1, ν2) denotes the outer unit normal of Ω . The sum over the set
Ey of edges parallel to the y-axis yields

∑

T ∈T

∑

E∈Ey∩E (T )

∫

E

D2uIBνT · ∇NC(vC − IIBvC) ds

=
∑

E∈Ey∩E (Ω)

∫

E

[
�E

∂2uIB

∂x2

]

E

〈
∂(vC − IIBvC)

∂x

〉

E
ds

+
∑

E∈Ey∩E (Ω)

∫

E

〈
�E

∂2uIB

∂x2

〉

E

[
∂(vC − IIBvC)

∂x

]

E
ds

+
∑

E∈Ey∩E (∂Ω)

∫

E

∂(vC − IIBvC)

∂x
�E

∂2uIB

∂x2 ν1 ds. (5.5)

The Cauchy and trace inequalities and the approximation and stability properties
of the operator IIB prove for the first term

∑

E∈Ey∩E (Ω)

∫

E

[
�E

∂2uIB

∂x2

]

E

〈
∂(vC − IIBvC)

∂x

〉

E
ds � μ.

Since the jump [∂vC/∂x]E vanishes, (5.4) implies that [∂ IIBvC/∂x]E is an
even quadratic function along E that vanishes at mid(E). Since the derivative
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∂3 IIBvC/∂x∂y2 is constant, the Taylor expansion reveals, for any E ∈ Ey , that

∫

E

[
∂(vC − IIBvC)

∂x

]

E
ds = 1

2

∫

E

[
∂3 IIBvC

∂x∂y2

]

E
(y − mid(E))2 ds = |E |3

24

[
∂3 IIBvC

∂x∂y2

]

E
.

The combination with the second and third term of (5.5), some summation by parts
and the fact that ∂3 IIBvC/∂x∂y2 is constant on each rectangle T and�E1∂

2uIB/∂x2 =
�E3∂

2uIB/∂x2 for any T ∈ T lead to

∑

E∈Ey∩E (Ω)

∫

E

〈
�E

∂2uIB

∂x2

〉

E

[
∂(vC − IIBvC)

∂x

]

E
ds

+
∑

E∈Ey∩E (∂Ω)

∫

E

�E
∂2uIB

∂x2 ν1
∂(vC − IIBvC)

∂x
ds

=
∑

E∈Ey∩E (Ω)

〈
�E

∂2uIB

∂x2

〉

E

|E |3
24

[
∂3 IIBvC

∂x∂y2

]

E

+
∑

E∈Ey∩E (∂Ω)

�E
∂2uIB

∂x2 ν1
|E |3
24

∂3 IIBvC

∂x∂y2

= −
∑

E∈Ey∩E (Ω)

[
�E

∂2uIB

∂x2

]

E

|E |3
24

〈
∂3 IIBvC

∂x∂y2

〉

E
.

The Cauchy and trace inequalities followed by an inverse estimate prove that this
can be bounded by

∑

E∈Ey∩E (Ω)

|E |2‖
[
∂2uIB

∂x2

]

E
‖L2(E) ‖

〈
∂3 IIBvC

∂x∂y2

〉
‖L2(E)

�
∑

T ∈T

∑

E∈E (T )∩E (Ω)∩Ey

|E |1/2 ‖
[
∂2uIB

∂x2

]

E
‖L2(E) ‖D2

NC IIBvC‖L2(T )

�

√√√√
∑

E∈E (Ω)

|E | ‖
[
∂2uIB

∂x2

]
‖2

L2(E)
‖D2

NC IIBvC‖L2(Ω).

The stability of the interpolation operator IIB shows that this is bounded by μ.
Analogous considerations for the edges parallel to the x-axis eventually prove

aNC(uIB, vC − IIBvC) � μ.

��
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6 Numerical experiments

6.1 Numerical realisation

Three numerical examples investigate the reliability and efficiency of the three methods
on isotropic meshes and on anisotropic tensor product meshes. Given β ≥ 1 and an
integer N ≥ 1, the graded partition is determined by the points ( j/N )β for j =
0, . . . , N , in the unit interval. A tensor product leads to a graded mesh on the square
(0, 1)2 with grading towards (0, 0). The combination of such graded square domains
leads to a graded mesh of the L-shaped domain with grading towards the re-entering
corner (see Fig. 5).

6.2 Analytic solution

Let u = −(x4 − 2x2 + 1)(y4 − 2y2 + 1) be the solution with respect to the right-
hand side f := Δ2u on the unit square. Figure 6 shows the convergence history of
the estimator from (1.1) and the exact error or in the energy norm. One observes
the same convergence rates of the error and the a posteriori error estimator, which
indicates reliability and efficiency in agreement with Theorems 4 and 5. This numerical
experiment suggests the conjecture that the a posteriori error estimator for the Adini
FEM is reliable. In particular one can observe the quadratic convergence of the Adini
FEM in terms of the mesh-size for smooth solutions and equal rectangles, cf. [22].

6.3 L-shaped domain

Let Ω = (−1, 1)2 \ ([0, 1] × [−1, 0]) be the L-shaped domain with constant load
f ≡ 1. Figure 7 displays the convergence history of the estimator for uniform
and graded tensor product meshes with different grading parameters β = 1, 3/2, 2.
The convergence rates are improved to 1/2. However, the grading β > 1 leads to
anisotropic domains, while the constants in our error analysis depend on the aspect
ratio.

Fig. 5 Graded tensor-product meshes on the L-shaped domain

123



A posteriori error estimates for fourth-order problems 331

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

ndof

er
ro

r,
 e

st
im

at
or

1
1

0.5
1

estimator RM
error RM
estimator IB
error IB
estimator Adini
error Adini

Fig. 6 Convergence history in Sect. 6.2
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Fig. 7 Convergence history of the estimator for the L-shaped domain for uniform and graded meshes
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6.4 L-shaped domain with known exact solution

Consider the L-shaped domain of Sect. 6.3 with ω := 3π/2 and α := 0.5444837 as
a noncharacteristic root of sin2(αω) = α2 sin2(ω). The exact singular solution from
[15, p. 107], [16] reads in polar coordinates

u(r, θ) = (r2 cos2 θ − 1)2 (r2 sin2 θ − 1)2 r1+α g(θ)

for

g(θ) =
(

1

α − 1
sin((α − 1)ω)− 1

α + 1
sin((α + 1)ω)

) (
cos((α − 1)θ)− cos((α + 1)θ)

)

−
(

1

α − 1
sin((α − 1)θ)− 1

α + 1
sin((α + 1)θ)

) (
cos((α − 1)ω)− cos((α + 1)ω)

)
.

Figures 8, 9 show the convergence history of the estimator and the exact error for
uniform and graded tensor-product meshes. While the convergence rate for uniform
mesh refinement in Fig. 8 is sub-optimal, the solutions on the graded meshes converge
with the optimal convergence rate (Fig. 9).
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Fig. 8 Convergence history of the error and estimator for Grisvard’s example of Sect. 6.4
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Fig. 9 Convergence history of the error and estimator for Grisvard’s example for grading parameterβ = 1.5

6.5 Conclusions

(i) All three methods develop some very small pre-asymptotic range in the sense
that the graphs of error and estimator are parallel right from the beginning.

(ii) It is conjectured that the error estimator is also reliable for the Adini finite element.
The authors were not able to prove that because of the difficulties mentioned in
the introduction even with the methods of Sects. 5.1 and 5.2.

(iii) Although there is no theoretical justification, the explicit residual-based error
estimator yields a reliable and efficient error bound in the examples for the Adini
FEM, which supports the conjecture that the residual-based error estimator is
reliable.

(iv) Anisotropic mesh refinement on graded tensor product meshes compensates the
corner singularity in the sense that the convergence rate is optimal. The over-
all reliability-efficiency behaviour is comparable to the isotropic case. All three
methods show surprising robustness with respect to the aspect ratio.
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