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Abstract. The pseudostress-velocity formulation of the stationary Stokes problem allows some
quasi-optimal Raviart-Thomas mixed finite element formulation for any polynomial degree. The
adaptive algorithm employs standard residual-based explicit a posteriori error estimation from Car-
stensen, Kim, Park [SIAM J. Numer. Anal. 2011] for the lowest-order Raviart-Thomas finite element
functions in a simply connected Lipschitz domain. This paper proves optimal convergence rates in
terms of the number of unknowns of the adaptive mesh-refining algorithm based on the concept of
approximation classes. The proofs use some novel equivalence to first-order nonconforming Crouzeix-
Raviart discretisation plus a particular Helmholtz decomposition of deviatoric tensors.
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1. Introduction. The pseudostress-velocity formulation of the stationary Stokes
equations

−∆u+∇p = f and div u = 0 in Ω (1.1)

with Dirichlet boundary conditions along the polygonal boundary ∂Ω has attracted
recent investigation. The early paper [27] introduces the pseudostress method for
symmetric stress tensors in H(div,Ω;R2×2) while the version in this paper is more
recently introduced in [10] and [8, 9, 11, 14, 21, 22, 23].

The explicit residual-based a posteriori error estimates from [14] are utilised to
drive a novel adaptive mesh-refining algorithm as a sequence of successive loops with

Solve,Estimate,Mark,Refine.

In the context of elliptic PDEs, it has recently become clear how to prove optimal
convergence rates [20, 31, 18]. The analysis for the lowest-order adaptive pseudostress
method (Apsfem) follows ideas of the analysis of nonconforming and mixed adaptive
algorithms [2, 12, 13, 17, 19, 29] and enables the key properties quasi-orthogonality
and discrete reliability. In the context of the Stokes equations, recent progress is doc-
umented in [1, 25, 26] for the nonconforming Crouzeix-Raviart finite element method.
However, the recent work [1] is disputable (the estimate in line 23 on page 983 in the
last step of the proof of Lemma 5.2 is wrong for refinements over many levels) and the
series of work based on [25] utilises an inappropriate Strang-Fix like procedual error
and eventually proves equivalence to an approximation class [26].

The proof of the quasi-orthogonality in this paper employs a representation for-
mula in which the solution of the pseudostress method is obtained from some postpro-
cessing of the Crouzeix-Raviart nonconforming finite element method [15, 28]. The
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discrete reliability proof employs the discrete Helmholtz decomposition of piecewise
constant deviatoric matrices introduced in [16].

The adaptive algorithm Apsfem is introduced in Section 3 and is shown to be
quasi-optimally convergent with respect to the approximation class

As :=
{

(σ, f, g) ∈H(div,Ω;R2×2)/R× L2(Ω;R2)

×
(
H1(Ω;R2) ∩H1(E(∂Ω);R2)

) ∣∣ |(σ, f, g)|As
<∞

}
with

|(σ, f, g)|As
:= sup

N∈N
Ns inf
T ∈T(N)

(
‖σ − σT ‖2L2(Ω) + osc2(f, T ) + osc2

(∂g
∂s
, E(∂Ω)

))1/2

.

In the infimum, T runs through all admissible triangulations T(N) that are refined
from T0 by NVB (cf. Figure 3.1) with a number |T | of triangles bounded as |T | −
|T0| ≤ N and the solution σT of (2.2) with respect to T . (Further details and
notation, in particular on g, are given in Section 2-3.) Given the exact stress σ :=
Du−p I2×2 and some bulk parameter θ sufficiently small, Apsfem generates sequences
of triangulations (T`)` and discrete solutions (u`, σ`)` of optimal convergence rate in
the sense that

(|T`| − |T0|)s
(
‖σ − σ`‖2L2(Ω) + osc2(f, T`) + osc2(∂g/∂s, E`(∂Ω))

)1/2

≤ C |(σ, f, g)|As
.

(1.2)

This estimate states optimality for C = 1 (then T` is optimal amongst all possible
triangulations) while the main result shows that C is bounded in terms of the initial
triangulation T0 and so T` performs optimal in (1.2) up to a positive generic constant
C which does not depend on the mesh-size (denoted by C ≈ 1 in the sequel), and
is called a quasi-optimal triangulation. Therefore, the convergence rates are optimal
while the convergence is said to be quasi-optimal in terms of the approximation class
As.

The remaining parts of this paper are organised as follows. Section 2 introduces the
basic notation as well as the pseudostress method and some equivalence to a noncon-
forming Crouzeix-Raviart discretisation for one triangulation T . It also recalls the a
posteriori error estimates of [14] for the pseudostress method. Section 3 introduces
the adaptive pseudostress method Apsfem, specifies more details on the approxima-
tion class As and some equivalent characterisation A′s, and states the aforementioned
optimality result. Section 4 shows convergence of Apsfem and contraction of a con-
vex combination of estimator, error, and data oscillations. Section 5 establishes the
discrete reliability and concludes the optimality proof. Computational experiments
conclude the paper in Section 6.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces and their
norms is employed with (·, ·)Ω the L2 inner product, H(div,Ω) := {v ∈ L2(Ω) | div v ∈
L2(Ω)} while 〈·, ·〉 := 〈·, ·〉H1/2(∂Ω)×H−1/2(∂Ω) denotes the duality pairing of H1/2(∂Ω)

with H−1/2(∂Ω) on the boundary ∂Ω.

The formula A . B represents an inequality A ≤ CB for some mesh-independent,
positive generic constant C; A ≈ B abbreviates A . B . A. By convention, all
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generic constants C ≈ 1 do not depend on the mesh-size but may depend on the fixed
coarse triangulation T0 and its interior angles.

The measure |·| is context-sensitive and refers to the number of elements of some finite
set (e.g. the number |T | of triangles in a triangulation T ) or the length |E| of an edge
E or the area |T | of some domain T and not just the modulus of a real number or the
Euclidean length of a vector.

2. Preliminaries. Let Ω be a simply connected bounded Lipschitz domain with
polygonal boundary ∂Ω and outer unit normal ν and let T be some shape-regular
triangulation of Ω into closed triangles T ∈ T . The set E contains all edges of T ,
E(Ω) all interior edges and E(∂Ω) all edges on the boundary; E(T ) is the set of edges
of a triangle T . For interior edges, [·]E := ·|T+

− ·|T− denotes the jump across the
edge E = T+ ∩ T− shared by the two elements T± ∈ T , and ωE := int(T+ ∪ T−)
denotes the edge-patch. For E ∈ E(∂Ω), the jump includes the boundary conditions,
namely [dev σPSτE ]E := dev σPS|T+τE−(∂g/∂s) for the one element T+ with E ⊂ T+,
and ωE := int(T+). In addition, for any edge E ∈ E , mid(E) names its midpoint
and νE = νT+

is the unit normal vector exterior to T+ along E and τE is the unit
tangential vector along E|T+

. For any triangle T ∈ T , mid(T ) denotes the centre
of inertia, the piecewise constant function mid(T ) ∈ P0(T ;R2) is defined through
mid(T )|T = mid(T ).

Let DNC and divNC denote the piecewise action of the gradient and the divergence
with respect to the triangulation T . For a vector field β = (β1, β2) the operators Curl
and curl read

Curlβ :=

(
−∂β1/∂x2 ∂β1/∂x1

−∂β2/∂x2 ∂β2/∂x1

)
and curlβ :=

∂β2

∂x1
− ∂β1

∂x2
.

For matrices σ ∈ R2×2 the divergence and curl are defined row-wise

div σ :=

(
∂σ11/∂x1 + ∂σ12/∂x2

∂σ21/∂x1 + ∂σ22/∂x2

)
and curlσ :=

(
∂σ12/∂x1 − ∂σ11/∂x2

∂σ22/∂x1 − ∂σ21/∂x2

)
.

The 2 × 2 unit matrix is denoted by I2×2 and the Euclid product of matrices is
denoted by colon, e.g., A : B =

∑2
j,k=1AjkBjk for A, B ∈ R2×2; tr(A) := A : I2×2

is the trace and dev(A) := A − 1/2 tr(A)I2×2 is the deviatoric part of A ∈ R2×2.
The dot denotes the product of two one-dimensional lists of the same length while ⊗
denotes the rank-one matrix product, e.g., a · b = a>b ∈ R and a ⊗ b = ab> ∈ R2×2

for a, b ∈ R2. The interior of a set ω ⊂ R2 is denoted by int(ω).

Throughout the paper, the discrete spaces read

P0(T ) :=
{
v ∈ L2(Ω)| v|T is constant for all T ∈ T

}
,

P1(T ) :=
{
v ∈ L2(Ω)| v|T is affine for all T ∈ T

}
.

Analogous notation applies to vectors and matrices. For f ∈ L2(Ω;R2), ΠT f ∈ P0(T )
denotes the L2 best approximation in P0(T ;R2). The lowest-order Raviart-Thomas
space is defined as

RT0(T ) := {v ∈ P1(T ;R2) | ∃ a, b, c ∈ R, v = (a, b) + c(x1, x2)},
RT0(T ) := {q ∈ H(div,Ω) | ∀T ∈ T , q|T ∈ RT0(T )}.



4 C. Carstensen, D. Gallistl, and M. Schedensack

Define

H(div,Ω;R2×2)/R :=
{
τ ∈ L2(Ω;R2×2)

∣∣∣ ∀j = 1, 2, (τj1, τj2) ∈ H(div,Ω)

and
∫

Ω

tr(τ) dx = 0
}
,

PS(T ) :=
{
τ ∈ P1(T ;R2×2) ∩H(div,Ω;R2×2)/R

∣∣∣ ∀j = 1, 2, (τj1, τj2) ∈ RT0(T )
}
.

The weak form of problem (1.1) is formally equivalent and reads: Given f ∈ L2(Ω;R2)
and g ∈ H1(Ω;R2)∩H1(E(∂Ω);R2) with

∫
∂Ω
g · ν ds = 0 seek σ ∈ H(div,Ω;R2×2)/R

and u ∈ L2(Ω;R2) such that

(dev σ, τ)Ω + (div τ, u)Ω = 〈g, τ ν〉 (τ ∈ H(div,Ω;R2×2)/R),
(div σ, v)Ω = − (f, v)Ω (v ∈ L2(Ω;R2)).

(2.1)

The discrete formulation of (2.1) seeks σPS ∈ PS(T ) and uPS ∈ P0(T`;R2) such that

(dev σPS, τPS)Ω + (div τPS, uPS)Ω = 〈g, τPS ν〉 (τPS ∈ PS(T )),
(div σPS, vPS)Ω = − (f, vPS)Ω (vPS ∈ P0(T ;R2)).

(2.2)

For the inf-sup condition and the quasi-optimal convergence of the discrete pseu-
dostress problem see [8, 14]. The subsequent notation on nonconforming finite element
schemes plays a dominant role in the analysis of this paper,

CR1(T ) :=

{
v ∈ P1(T )

∣∣∣∣ v is continuous in mid(E)
for all E ∈ E

}
,

CR1
0(T ) :=

{
v ∈ CR1(T )| v(mid(E)) = 0 for all E ∈ E(∂Ω)

}
,

ZCR(T ) :=
{
v ∈ CR1

0(T ;R2) | divNC v = 0 a.e. in Ω
}
,

QCR(T ) :=

{
qCR ∈ P0(T )

∣∣∣ ∫
Ω

qCRdx = 0

}
.

The Crouzeix-Raviart nonconforming finite element formulation of (1.1) [4, 6, 7,
24] employs some discretisation gCR ∈ CR1(T ;R2) such that

∫
E
gCR ds =

∫
E
g ds for

all E ∈ E(∂Ω). Given fT = ΠT f seek ũCR ∈ gCR + CR1
0(T ;R2) and p̃CR ∈ QCR(T )

such that

(DNCũCR, DNCvCR)Ω − (p̃CR,divNC vCR)Ω = (fT , vCR)Ω (vCR ∈ CR1
0(T ;R2)),

(qCR,divNC ũCR)Ω = 0 (qCR ∈ QCR(T )).

(2.3)

The following result of [15] utilises the notation • − mid(T ) to abbreviate the
function x−mid(T ) for x ∈ T ∈ T with midpoint mid(T ).

Theorem 2.1 (pseudostress representation formula). Let (ũCR, p̃CR) ∈ (gCR +
CR1

0(T ;R2))×QCR(T ) be the solution of (2.3) for the right-hand side fT := ΠT f for
f ∈ L2(Ω;R2). Then σPS ∈ PS(T ) and uPS ∈ P0(T ;R2), defined by

σPS := DNCũCR −
fT
2
⊗ (• −mid(T ))− p̃CR I2×2 and (2.4)

uPS := ΠT ũCR +
1

4
ΠT (dev(fT ⊗ (• −mid(T ))) (• −mid(T ))) , (2.5)

solve (2.2).
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Proof. The proof is given here for completeness and to stress the consequences of
the inhomogeneous boundary conditions. The first claim

σPS(j) := (σPS(j, 1), σPS(j, 2)) ∈ H(div,Ω) for j = 1, 2

is equivalent to [σPS(j) νE ]E = 0 for all E ∈ E(Ω). Given an interior edge E, define the
edge-oriented nonconforming Crouzeix-Raviart basis function ψE ∈ CR1

0(T ) through
ψE |E = 1 and ψE(mid(F )) = 0 for all E 6= F ∈ E . For e1 = (1, 0)>, e2 = (0, 1)>, a
piecewise integration by parts shows, for j = 1, 2, that

|E|[σPS(j) νE ]E =

∫
E

[σPS νE ]E · ejψE ds

=

∫
ωE

σPS : DNC(ψE ej) dx+

∫
ωE

(ψEej) · divNC σPS dx.

The definitions (2.4)–(2.5) show that this equals(
DNCũCR −

fT
2
⊗ (• −mid(T ))− p̃CR I2×2, DNC(ψE ej)

)
Ω

− (fT , ψEej)Ω .

The discrete nonconforming problem (2.3) and the fact
∫
T

(x − mid(T ))dx = 0 for
any triangle T eventually prove that this vanishes. Hence |E|[σPS(j) νE ]E = 0 and so
σPS ∈ H(div,Ω;R2×2).

Since divNC ũCR = 0, since
∫
T

(• − mid(T )) dx = 0 for all T ∈ T , and since∫
Ω
p̃CR dx = 0, the definitions prove σPS ∈ PS(T ).
In order to show that (σPS, uPS) solves (2.2), (2.4)-(2.5) imply

(dev σPS,dev τPS)Ω

= (DNCũCR, τPS)Ω −
(

dev

(
fT
2
⊗ (• −mid(T ))

)
, τPS

)
Ω

= − (ũCR,div τPS)Ω + 〈ũCR, τPS ν〉 −
(

dev

(
fT
2
⊗ (• −mid(T ))

)
, τPS −ΠT τPS

)
Ω

= − (ΠT ũCR,div τPS)Ω + 〈g, τPS ν〉
− (dev (fT ⊗ (• −mid(T ))) , (div τPS ⊗ (• −mid(T ))))Ω /4

= − (ΠT ũCR + ΠT (dev(fT ⊗ (• −mid(T ))) (• −mid(T )))/4,div τPS)Ω + 〈g, τPS ν〉 .

This is the first equality in (2.2). Since the piecewise divergence equals the distri-
butional divergence for any H(div,Ω) function, div σPS = −fT proves the second
equality in (2.2).

Throughout the paper, the oscillations of the data f ∈ L2(Ω;R2) with respect to
some subset ω ⊂ Ω read,

osc (f, ω) := |ω|1/2‖f − fω‖L2(ω) with fω := |ω|−1

∫
ω

fdx

and, for any F ⊂ T ,

osc2(f,F) :=
∑
T∈F

osc2(f, T ).
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For the data g ∈ H1(Ω;R2) with
∫
∂Ω
g · ν ds = 0 such that the piecewise derivative

∂g/∂s of g along any E ∈ E(∂Ω) exists in L2(E), the oscillations of ∂g/∂s with respect
to some edge E ∈ E(∂Ω) read

osc2(∂g/∂s,E) := min
γE∈P1(E;R2)

|E|‖∂g/∂s− γE‖2L2(E).

The total oscillations read

osc2(∂g/∂s, E(∂Ω)) :=
∑

E∈E(∂Ω)

osc2(∂g/∂s,E).

The residual-based error estimator from [14] reads, for T ∈ T ,

η2(T ) := osc2(f, T ) + |T | ‖curl(dev σPS)‖2L2(T ) + |T |1/2
∑

E∈E(T )

‖[dev σPS]EτE‖2L2(E)

(with slightly different but equivalent weights) and

η2 := η2(T ) :=
∑
T∈T

η2(T ).

It is already shown in [14] that η is reliable and efficient up to data oscillations.
This work considers the following refined efficiency result for a modified definition of
the oscillations osc(∂g/∂s, E(∂Ω)). For g ∈ H1(Ω;R2) such that g|E ∈ H1(E;R2)
for all E ∈ E(∂Ω) (written g ∈ H1(E(∂Ω);R2)) let γE ∈ P1(E;R2) be the L2 best
approximation of (∂g/∂s)|E and osc(∂g/∂s,E) := |E|1/2‖(∂g/∂s) − γE‖L2(E) and
osc2(∂g/∂s, E(∂Ω)) =

∑
E∈E(∂Ω) osc2(∂g/∂s,E).

The velocity variable and its approximation play merely the role of a Lagrange
multiplier and appear to be of minor relevance. The a posteriori error analysis is
indeed free of the velocity.

Theorem 2.2 (efficiency and reliability of η). The reliability and efficiency of η
hold in the sense that

(1/Crel)‖dev(σ − σPS)‖2L2(Ω) ≤ η
2

≤ Ceff

(
‖dev(σ − σPS)‖2L2(Ω) + osc2(f, T ) + osc2(∂g/∂s, E(∂Ω))

)
.

Proof. The assertion is essentially contained in [14] with different oscillations of
the boundary data. To complete the proof of the presented version, it suffices to verify

‖|E|1/2[dev(σPS)τE ]E‖L2(E) . ‖dev(σ − σPS)‖L2(ωE) + osc(∂g/∂s,E)

for E ∈ E(∂Ω). Let bE be the quadratic edge bubble function of a boundary edge
E ∈ E(∂Ω) defined as the product of the two affine nodal basis functions associated
to the two nodes of E. With the triangle inequality and an equivalence of norms
argument, the jump terms on the boundary are estimated as

|E| ‖[dev(σPS)]EτE‖2L2(E) = |E| ‖(∂g/∂s)− dev(σPS)τE‖2L2(E)

. |E| ‖b1/2E ((∂g/∂s)− dev(σPS)τE)‖2L2(E) + osc2(∂g/∂s,E)

= |E| ‖b1/2E dev(σ − σPS)τE‖2L2(E) + osc2(∂g/∂s,E).



Optimal Adaptive Pseudostress Method for Stokes 7

An integration by parts on T = ωE , the Cauchy inequality, and the stability properties
‖bE‖L∞(T ) ≈ 1 ≈ |E|‖∇bE‖L∞(T ) yield

|E| ‖b1/2E dev(σ − σPS)τE‖2L2(E) = |E|
∫
∂T

(dev(σ − σPS)τE) · (bE dev(σ − σPS))τ ds

. ‖dev(σ − σPS)‖2L2(T ) + |E|2‖curl(dev(σ − σPS))‖2L2(T )

. ‖dev(σ − σPS)‖2L2(T ) + |T | ‖curl(dev(σPS))‖2L2(T ).

The efficiency of |T |1/2‖curl(dev(σPS))‖L2(T ) from [14] concludes the proof.

3. Adaptive Algorithm and Main Result. This section is devoted to the
adaptive pseudostress finite element method and its optimality in terms of approxi-
mation classes.

3.1. Apsfem. This subsection presents an optimal adaptive algorithm Apsfem
with an error estimator based on triangles.

Input: Initial coarse triangulation T0 with refinement edges RE(T0), 0 < θ < θ0 ≤ 1.
Loop: For ` = 0, 1, 2, . . .

Solve problem (2.2) with respect to the regular triangulation T` into trian-
gles with discrete velocity u` ∈ P0(T`;R2), discrete stress σ` ∈ PS(T`).
Estimate η2

` :=
∑
T∈T` η

2
` (T ) with

η2
` (T ) := osc2(f, T ) + |T |‖curl(dev σ`)‖2L2(T ) (3.1)

+ |T |1/2
∑

E∈E(T )

‖[dev(σ`)τE ]E‖2L2(E). (3.2)

Mark a minimal subsetM` ⊂ T` of triangles with

θη2
` ≤ η2

` (M`) :=
∑
T∈M`

η2
` (T ). (3.3)

Refine M` in T` with Newest-Vertex-Bisection (NVB) of Figure 3.1 and
generate a regular triangulation T`+1.

Output: Sequence of triangulations (T`)` and discrete solutions (u`, σ`)`.

Remark 3.1. The refinement edge RE : T0 → E, with RE(T ) ∈ E(T ) for any
T ∈ T0, is fixed for the initial triangulation T0. The configuration of the refinement
edges in triangles which are refined is depicted in Figure 3.1. The result of Refine
T`+1 is the smallest shape-regular refinement of T` without hanging nodes using NVB,
where at least the refinement edges of the triangles in M` are refined, cf. [3, 5, 31].
Up to rotations, all admissible refinements of a triangle T ∈ T` are depicted in Figure
3.1 and depend on the set of its edges E`(T ) that have to be refined.

Remark 3.2. Given an initial triangulation T0, a triangulation T` is called an
admissible triangulation if there exist regular triangulations T0, T1, . . . , T` such that,
for j = 1, . . . , `, each Tj is generated from Tj−1 only using the refinements from Figure
3.1.

Remark 3.3. There is no need of the inner node property. In fact, bisec5 can be
used but does not need to be used.

Remark 3.4. Throughout the rest of this paper (T`)` denotes a sequence of regular
triangulations of Ω and E` denotes the set of edges of T`. To link the notation from
Section 2 to that of Section 3 the L2 projection onto the piecewise constant functions
with respect to the triangulation T` is denoted by Π` := ΠT` , and f` := fT` := Π`f .
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Fig. 3.1. Possible refinements of a triangle T in one level using NVB. The thick lines indicate
the refinement edges of the new triangles.

The piecewise derivative with respect to T` is denoted by D`. For any K ∈ T` define
T`+m(K) := {T ∈ T`+m |T ⊂ K} and for any F ⊂ T`

η2
` (F) :=

∑
T∈F

η2
` (T ).

3.2. Approximation Class. The definition of quasi-optimal convergence is
based on the concept of approximation classes. For s > 0, let

A′s :=
{

(σ, f, g) ∈H(div,Ω;R2×2)/R× L2(Ω;R2)

×
(
H1(Ω;R2) ∩H1(E(∂Ω);R2)

) ∣∣ |(σ, f, g)|A′s <∞
}

with |(σ, f, g)|A′s :=

sup
N∈N

Ns inf
T ∈T(N)

(
‖dev(σ − σT )‖2L2(Ω) + osc2(f, T ) + osc2

(∂g
∂s
, E(∂Ω)

))1/2

.

In the infimum, T runs through all admissible triangulations T(N) that are refined
from T0 by newest vertex bisection (NVB) (cf. Figure 3.1) of [3, 32] and that satisfy
|T | − |T0| ≤ N .

3.3. Quasi-Optimality. The main theorem of this paper states optimal con-
vergence rates of the algorithm Apsfem and will be proven in Section 5. Let Ceff ,
Cdrel, and Cqo denote the constants from Theorem 2.2, Theorem 5.1, and Theorem
4.2 below and let (T`)` be the sequence of triangulations generated by Apsfem with
discrete velocities (u`)` and stresses (σ`)` from (2.2).

Theorem 3.5 (quasi-optimal convergence). For any bulk parameter 0 < θ <
θ0 := 1/(2Ceff(Cdrel + Cqo + 2)) and (σ, f, g) ∈ A′s, Apsfem generates sequences of
triangulations (T`)` and discrete solutions (u`, σ`)` of optimal rate of convergence in
the sense that

(|T`| − |T0|)s
(
‖dev(σ − σ`)‖2L2(Ω) + osc2(f, T`) + osc2(∂g/∂s, E`(∂Ω))

)1/2

. |(σ, f, g)|A′s .

Some remarks on the error terms and the approximation classes are in order before
the proof follows in Section 4–5.

3.4. Equivalence of Approximation Classes. The tr-dev-div lemma [7, Pro-
position 3.1 in Section IV.3] states for any function, like σ−σ`, in H(div,Ω;R2×2)/R
that

‖tr(σ − σ`)‖L2(Ω) . ‖dev(σ − σ`)‖L2(Ω) + ‖div(σ − σ`)‖H−1(Ω).
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(The proof of this stronger version is an obvious modification of the proof of [7].)
Since div(σ − σ`) = f` − f is perpendicular to P0(T ;R2), some piecewise Poincaré
inequality leads to

‖div(σ − σ`)‖H−1(Ω) ≤ osc(f, T ).

This and the orthogonal split of matrices into isochoric and deviatoric parts prove
that

‖σ − σ`‖L2(Ω) ≤ ‖dev(σ − σ`)‖L2(Ω) + osc(f, T`).

Since the converse is obvious, ‖dev(σ − σ`)‖L2(Ω) ≤ ‖σ − σ`‖L2(Ω), it follows that

‖σ − σ`‖2L2(Ω) + osc2(f, T`) + osc2(g, E(∂Ω))

≈ ‖dev(σ − σ`)‖2L2(Ω) + osc2(f, T`) + osc2(g, E(∂Ω)).

In other words, the approximation classA′s from Subsection 3.2 and the approximation
class As from the introduction are identical

As = A′s (with equivalent norms).

Therefore, Theorem 3.5 implies the quasi-optimality result (1.2) of the introduction
(and is even equivalent).

4. Contraction Property. This section is devoted to the proof of the contrac-
tion property of some convex combination of estimator, error, and data oscillations.
The first step is the error estimator reduction property which follows as in [18].

Theorem 4.1 (estimator reduction property). There exist constants 0 < ρ1 < 1
and Λ > 0 such that for an admissible refinement T`+1 of T` generated by Apsfem
with bulk parameter 0 < θ ≤ 1 and discrete solutions σ` ∈ PS(T`) and σ`+1 ∈ PS(T`+1)
it holds

η2
`+1 ≤ ρ1 η

2
` + Λ ‖dev(σ`+1 − σ`)‖2L2(Ω). (4.1)

Proof. The main arguments of the proof will be an inverse estimate [6, p. 112]

‖curl dev(σ`+1 − σ`)‖L2(T ) . |T |−1/2 ‖dev(σ`+1 − σ`)‖L2(T )

and a trace inequality [6, p. 282] (for an edge E of a triangle T )

‖[dev(σ`+1 − σ`)]E τE‖L2(E) . |T |−1/4 ‖dev(σ`+1 − σ`)‖L2(T )

+ |T |1/4 ‖D dev(σ`+1 − σ`)‖L2(T )

. |T |−1/4 ‖dev(σ`+1 − σ`)‖L2(T ).
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The triangle inequality shows, for T ∈ T`+1 ∩ T` and 0 < δ <∞, that

η2
`+1(T ) = |T | ‖f − f`+1‖L2(T )

+ |T | ‖curl dev σ`+1‖2L2(T ) + |T |1/2
∑

E∈E`+1(T )

‖[dev σ`+1]E τE‖2L2(E)

≤ |T | ‖f − f`‖L2(T ) + (1 + δ) |T | ‖curl dev σ`‖2L2(T )

+ (1 + δ) |T |1/2
∑

E∈E`(T )

‖[dev σ`]E τE‖2L2(E)

+ (1 + 1/δ) |T | ‖curl dev(σ`+1 − σ`)‖2L2(T )

+ (1 + 1/δ) |T |1/2
∑

E∈E`(T )

‖[dev(σ`+1 − σ`)]E τE‖2L2(E).

The aforementioned inverse and trace inequalities lead to some generic constant C ≈ 1
with

η2
`+1(T ) ≤ (1 + δ) η2

` (T ) + C(1 + (1/δ))‖dev(σ`+1 − σ`)‖2L2(T ).

For K ∈ T` \ T`+1 and with |T | ≤ (1/2) |K| for T ⊂ K the above arguments show

η2
`+1(T`+1(K)) ≤ (1 + δ)

∑
T⊂K

(
1

2
|K| ‖f − fT ‖L2(T ) +

1

2
|K| ‖curl dev σ`‖2L2(T )

+
1√
2
|K|1/2

∑
E∈E`+1(T )

‖[dev σ`]E τE‖2L2(E)

)

+ (1 +
1

δ
)
∑
T⊂K

(
|T | ‖curl dev(σ`+1 − σ`)‖2L2(T )

+ |T |1/2
∑

E∈E`+1(T )

‖[dev(σ`+1 − σ`)]E τE‖2L2(E)

)
.

Since [dev σ`]E = 0 for E ∈ E`+1(int(K)), K ∈ T`,

η2
`+1(T`+1(K)) ≤ (1 + δ)

1√
2
η2
` (K) + C(1 + 1/δ)‖dev(σ`+1 − σ`)‖2L2(K).

The sum over all T ∈ T`+1 yields

η2
`+1 = η2

`+1(T`+1 ∩ T`) + η2
`+1(T`+1 \ T`)

≤ (1 + δ)

(
η2
` (T`+1 ∩ T`) +

1√
2
η2
` (T` \ T`+1)

)
+ (1 + 1/δ)C ‖dev(σ`+1 − σ`)‖2L2(Ω).

The bulk criterion θ η2
` ≤ η2

` (T` \ T`+1) leads to

η2
` (T`+1 ∩ T`) +

1√
2
η2
` (T` \ T`+1) = η2

` − (1− 1√
2

) η2
` (T` \ T`+1)

≤ (1− θ (1− 1√
2

)) η2
` .
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For δ sufficiently small, ρ1 := (1 + δ) (1 − θ (1 − 1/
√

2)) and Λ = (1 + 1/δ)C satisfy
(4.1).

Theorem 4.2 (quasi-orthogonality). There exists a positive constant Cqo ≈ 1
which solely depends on T0 such that, for any refinement T`+m of T`, the exact solution
σ and the discrete solutions σ`+m and σ` (with respect to T`+m and T`) satisfy

| (dev(σ − σ`+m),dev(σ`+m − σ`))Ω|
≤ C1/2

qo ‖dev(σ − σ`+m)‖L2(Ω) osc(f, T` \ T`+m).
(4.2)

Proof. Let σ∗`+m be the solution of the intermediate problem on T`+m where the
right-hand side f in (2.2) is replaced by the piecewise constant projection f` := Π`f .
Since σ∗`+m − σ` ∈ PS(T`+m) and

div(σ∗`+m − σ`) = 0 a.e. in Ω,

the problems (2.1)–(2.2) yield(
dev(σ − σ`+m),dev(σ∗`+m − σ`)

)
Ω

= 0.

This orthogonality implies

(dev(σ − σ`+m),dev(σ`+m − σ`))Ω =
(
dev(σ − σ`+m),dev(σ`+m − σ∗`+m)

)
Ω

≤ ‖dev(σ − σ`+m)‖L2(Ω) ‖dev(σ`+m − σ∗`+m)‖L2(Ω).

Let (ũCR,`+m, p̃CR,`+m) and (ũ∗CR,`+m, p̃
∗
CR,`+m) be the Crouzeix-Raviart solutions of

problem (2.3) with right-hand sides f`+m and f`. By Theorem 2.1, σ`+m and σ∗`+m
can be represented as

σ`+m = D`+mũCR,`+m + 1/2 f`+m ⊗ (• −mid(T`+m))− p̃CR,`+m I2×2,

σ∗`+m = D`+mũ
∗
CR,`+m + 1/2 f` ⊗ (• −mid(T`+m))− p̃∗CR,`+m I2×2.

Therefore, the triangle inequality reveals

‖dev(σ`+m − σ∗`+m)‖L2(Ω) ≤ ‖D`+m(ũCR,`+m − ũ∗CR,`+m)‖L2(Ω)

+ 1/2 ‖dev((f`+m − f`)⊗ (• −mid(T`+m)))‖L2(Ω).
(4.3)

Since ũCR,`+m ∈ gCR + CR1
0(T`+m;R2) and ũ∗CR,`+m ∈ gCR + CR1

0(T`+m;R2) are the
Crouzeix-Raviart solutions and

∫
K

(f`+m − f`) dx = 0 for all K ∈ T`, one obtains

‖D`+m(ũCR,`+m − ũ∗CR,`+m)‖2L2(Ω) =
(
f`+m − f`, ũCR,`+m − ũ∗CR,`+m

)
Ω

. osc(f`+m − f`, T` \ T`+m) ‖D`+m(ũCR,`+m − ũ∗CR,`+m)‖L2(Ω).
(4.4)

Since | • −mid(T`+m)| . |T |1/2 and
∫
K

(f`+m − f`) dx = 0 for all K ∈ T`, it holds

‖dev((f`+m − f`)⊗ (• −mid(T`+m)))‖L2(Ω)

≤ ‖f`+m − f`‖L2(Ω) ‖• −mid(T`+m)‖L2(Ω)

. osc(f`+m − f`, T` \ T`+m).

(4.5)

The combination of (4.3)–(4.5) shows

‖dev(σ`+m−σ∗`+m)‖L2(Ω) . osc(f`+m−f`, T` \T`+m) ≤ osc(f, T` \T`+m). (4.6)
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Theorem 4.3 (contraction property). There exist positive constants β, γ and
0 < ρ2 < 1 such that, for any ` ∈ N0, the solution σ` and error estimator η` with
respect to the triangulation T` of Apsfem,

ξ2
` := η2

` + β ‖dev(σ − σ`)‖2L2(Ω) + γ osc2(f, T`)

satisfies

ξ2
`+1 ≤ ρ2ξ

2
` . (4.7)

Proof. The estimator reduction property (4.1) and the quasi-orthogonality (4.2) yield

η2
`+1 ≤ ρ1η

2
` + Λ

(
‖dev(σ − σ`)‖2L2(Ω) − ‖dev(σ − σ`+1)‖2L2(Ω)

+ 2C1/2
qo ‖dev(σ − σ`+1)‖L2(Ω) osc(f, T`\T`+1)

)
.

For any 0 < λ < 1 it holds

2C1/2
qo ‖dev(σ − σ`+1)‖L2(Ω) osc(f, T`\T`+1)

≤ λ‖dev(σ − σ`+1)‖2L2(Ω) +
4Cqo

λ
osc2(f, T`\T`+1).

The combination of the previous estimates for β := Λ(1− λ) leads to

β‖dev(σ − σ`+1)‖2L2(Ω) + η2
`+1

≤ ρ1η
2
` +

β

1− λ
‖dev(σ − σ`)‖2L2(Ω) +

4ΛCqo

λ
osc2(f, T`\T`+1).

Bisection implies 2 osc2(f, T`+1) ≤ osc2(f, T`) and, hence,

osc2(f, T`\T`+1) ≤ 2 osc2(f, T`)− 2 osc2(f, T`+1).

This implies for γ := 8ΛCqo/λ and ε = 2λ with Crel from Theorem 2.2 that

η2
`+1 + β‖dev(σ − σ`+1)‖2L2(Ω) + γ osc2(f, T`+1)

≤ ρ1η
2
` +

β

1− λ
‖dev(σ − σ`)‖2L2(Ω) + γ osc2(f, T`)

≤ ρ1η
2
` +

β

1− λ

(
(1− ε)‖dev(σ − σ`)‖2L2(Ω) + εCrelη

2
`

)
+ (γ − ε) osc2(f, T`) + εη2

`

≤ max

{
ρ1 + ε(1 +

Crelβ

1− λ
),

1− ε
1− λ

, 1− ε

γ

}
(
η2
` + β‖dev(σ − σ`)‖2L2(Ω) + γ osc2(f, T`)

)
.

For sufficiently small λ this leads to

ρ2 := max

{
ρ1 + ε(1 +

Crelβ

1− λ
),

1− ε
1− λ

, 1− ε

γ

}
< 1.
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5. Proof of Optimality. The key argument in the proof of Theorem 3.5 is the
discrete reliability.

Theorem 5.1 (discrete reliability). There exists a constant Cdrel ≈ 1 which
solely depends on T0 such that any refinement T`+m of T` with respective solutions
σ`+m and σ` satisfies

‖dev(σ`+m − σ`)‖2L2(Ω) ≤ Cdrelη
2
` (T`\T`+m).

One key argument in the proof of Theorem 5.1 is some novel Helmholtz decomposition
of piecewise constant deviatoric matrices which is proven in [16]. Let R2×2

dev := {A ∈
R2×2 |A = devA} denote the trace-free 2× 2 matrices and

X(T ) :=

{
vC ∈ C(Ω;R2) ∩ P1(T ;R2)

∣∣∣ ∫
Ω

vCdx = 0 and
∫

Ω

curl vCdx = 0

}
.

Theorem 5.2 (discrete Helmholtz decomposition [16, Theorem 3.2]). The direct
decomposition

P0(T ;R2×2
dev ) = DNC ZCR(T )⊕ dev CurlX(T )

is orthogonal in L2(Ω;R2×2
dev ).

Proof of Theorem 5.1. Let σ∗`+m denote the intermediate solution on the mesh
T`+m with right-hand side f` as in the proof of Theorem 4.2 and recall (4.6), namely

‖dev(σ`+m − σ∗`+m)‖2L2(Ω) . osc2(f, T`\T`+m).

By the triangle inequality,

‖dev(σ`+m − σ`)‖L2(Ω) ≤ ‖dev(σ`+m − σ∗`+m)‖L2(Ω) + ‖dev(σ∗`+m − σ`)‖L2(Ω),

it remains the analysis of the term ‖dev(σ∗`+m − σ`)‖L2(Ω). Since the difference
σ∗`+m − σ` is divergence-free and hence piecewise constant, Theorem 5.2 guarantees
the existence of z`+m ∈ ZCR(T`+m) and β`+m ∈ X(T`+m) such that

dev(σ∗`+m − σ`) = D`+mz`+m + dev Curlβ`+m.

The orthogonality of the decomposition (followed by a piecewise integration by parts)
reveals

‖D`+mz`+m‖2L2(Ω) =
(
dev(σ∗`+m − σ`), D`+mz`+m

)
Ω

= −
(
divNC(σ∗`+m − σ`), z`+m

)
Ω

= 0.

This implies

dev(σ∗`+m − σ`) = dev Curlβ`+m. (5.1)

Any β` ∈ P1(T`;R2) ∩ C(Ω̄;R2) satisfies Curlβ` ∈ RT0(T`;R2×2). Note that the
discrete equation (2.2) is satisfied for all test functions in RT0(T`+m;R2×2). The
discrete equation (2.2) for the level ` + m and ` with respective solutions σ∗`+m and
σ` results in (

Curlβ`,dev(σ∗`+m − σ`)
)

Ω
= 0.
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The same argument on the level `+m for the test function Curl(β`+m − β`) leads to(
dev σ∗`+m,Curl(β`+m − β`)

)
Ω

= 〈g,Curl(β`+m − β`)ν〉 .

The combination of the previous identities reads

‖dev(σ∗`+m − σ`)‖2L2(Ω) = 〈g,Curl(β`+m − β`)ν〉 − (dev σ`,Curl(β`+m − β`))Ω .

Define β` as the Scott-Zhang quasi interpolant [30] of β`+m such that β`+m = β` on all
E ∈ E`+m∩E`. The piecewise integration by parts and the stability and approximation
property of the Scott-Zhang quasi interpolation operator imply that

‖dev(σ∗`+m − σ`)‖2L2(Ω) = −〈g,D(β`+m − β`)τ〉 − (dev σ`,Curl(β`+m − β`))Ω

= −
∑

E∈E`\E`+m

∫
E

[dev σ`]E τE · (β`+m − β`) ds+ (curl dev σ`, β`+m − β`)Ω

. η`(T`\T`+m)‖Dβ`+m‖L2(Ω).

(5.2)

The second Korn inequality [6, p. 316] plus some algebra leads to

‖Dβ`+m‖L2(Ω) . ‖dev Curlβ`+m‖L2(Ω).

The combination with (5.1)–(5.2) concludes the proof.

The remaining part of this section adopts the strategy from [18, 31] to the present
situation of Section 3 with the output of the sequence of pseudostress approximations
(σ`)` and triangulations (T`)`.

In the first step of the proof, set

ξ` := η2
` + β ‖dev(σ − σ`)‖2L2(Ω) + γ osc2(f, T`)

as in Theorem 4.3. Without loss of generality, the pathological case ξ0 = 0 can be
excluded. Choose 0 < τ ≤ |(σ, f, g)|2A′s /ξ

2
0 , and set ε2(`) := τξ2

` . Choose minimal
N(`) ∈ N with the property

|(σ, f, g)|A′s ≤ ε(`)N(`)s. (5.3)

Claim A. Then it holds

N(`) ≤ 2 |(σ, f, g)|1/sA′s ε(`)
−1/s for ` ∈ N0.

Proof of Claim A. For N(`) = 1, (5.3) implies by the contraction property (4.7)

|(σ, f, g)|2A′s ≤ ε(`)
2 = τξ2

` ≤ τξ2
0 .

This implies equality |(σ, f, g)|2A′s = ε(`)2. For N(`) ≥ 2 the minimality of N(`) in
(5.3) yields

ε(`)
(
N(`)− 1

)s
< |(σ, f, g)|A′s .

Therefore,

N(`) ≤ 2
(
N(`)− 1

)
≤ 2 |(σ, f, g)|1/sA′s ε(`)

−1/s.
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The definition of |(σ, f, g)|A′s as a supremum over N shows for N = N(`) that
there exists some optimal triangulation T̃` ∈ T(N) (which is possibly not related to
T`) of cardinality |T̃`| ≤ |T0|+N(`) with approximate stress σ̃` ∈ PS(T̃`) and

‖dev(σ − σ̃`)‖2L2(Ω) + osc2(f, T̃`) + osc2(∂g/∂s, Ẽ`(∂Ω))

≤ N(`)−2s |(σ, f, g)|2A′s ≤ ε(`)
2.

(5.4)

The overlay T̂` := T` ⊗ T̃` is defined as the smallest common refinement of T` and T̃`.
It is known [18, 32] that

|T̂`| − |T`| ≤ |T̃`| − |T0| ≤ N(`).

The number of triangles in T` \ T̂` can be estimated as

|T` \ T̂`| ≤
∑

K∈T`\T̂`

(
|T̂`(K)| − 1

)
= |T̂` \ T`| − |T` \ T̂`| = |T̂`| − |T`|.

Thus

|T` \ T̂`| ≤ N(`) ≤ 2 |(σ, f, g)|1/sA′s ε(`)
−1/s. (5.5)

Claim B. In the second step the following estimate will be established. There
exists C1 ≈ 1 such that the stress approximation σ̂` ∈ PS(T̂`) with respect to T̂`
satisfies

‖dev(σ − σ̂`)‖2L2(Ω) + osc2(f, T̂`) + osc2(∂g/∂s, Ê`(∂Ω)) ≤ C1ε
2(`). (5.6)

Proof of Claim B. The quasi orthogonality shows

‖dev(σ − σ̂`)‖2L2(Ω) = ‖dev(σ − σ̃`)‖2L2(Ω) − ‖dev(σ̃` − σ̂`)‖2L2(Ω)

+ 2

∫
Ω

dev(σ − σ̂`) : dev(σ̃` − σ̂`)dx

≤ ‖dev(σ − σ̃`)‖2L2(Ω) − ‖dev(σ̃` − σ̂`)‖2L2(Ω)

+ 2Cqo osc2(f, T̃` \ T̂`) +
1

2
‖dev(σ − σ̂`)‖2L2(Ω).

Hence

1

2
‖dev(σ − σ̂`)‖2L2(Ω)+‖dev(σ̃` − σ̂`)‖2L2(Ω)

≤ ‖dev(σ − σ̃`)‖2L2(Ω) + 2Cqo osc2(f, T̃` \ T̂`).

The equation (5.4) and the choice C1 := max{2, 4Cqo + 1} conclude the proof.
Claim C. It holds

η` . η`(T` \ T̂`). (5.7)

Proof of Claim C. Theorem 2.2 shows

η2
`

Ceff
≤ ‖dev(σ − σ`)‖2L2(Ω) + osc2(f, T`) + osc2(∂g/∂s, E`(∂Ω)). (5.8)
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The quasi orthogonality leads to

‖dev(σ − σ`)‖2L2(Ω) = ‖dev(σ − σ̂`)‖2L2(Ω) + ‖dev(σ̂` − σ`)‖2L2(Ω)

+ 2

∫
Ω

dev(σ − σ̂`) : dev(σ̂` − σ`)dx

≤ 2‖dev(σ − σ̂`)‖2L2(Ω) + ‖dev(σ̂` − σ`)‖2L2(Ω)

+ Cqo osc2(f, T` \ T̂`).

This and discrete reliability from Theorem 5.1 with constant Cdrel lead to

‖dev(σ − σ`)‖2L2(Ω) ≤ 2‖dev(σ − σ̂`)‖2L2(Ω) + (Cdrel + Cqo)η2
` (T` \ T̂`). (5.9)

The oscillations can be controlled by

osc2(f, T`) ≤ η2
` (T` \ T̂`) + osc2(f, T` ∩ T̂`) ≤ η2

` (T` \ T̂`) + osc2(f, T̂`).

Since osc(∂g/∂s,E) ≤ |E|1/2‖(∂g/∂s)− dev σ`‖L2(E), it follows

osc2(∂g/∂s, E`(∂Ω)) ≤ η`(T` \ T̂`) + osc2(∂g/∂s, Ê`(∂Ω)).

The combination of (5.6) and (5.8)–(5.9) leads to

η2
`

Ceff
≤ (Cdrel + Cqo + 2)η2

` (T` \ T̂`) + 2C1ε(`)
2

≤ (Cdrel + Cqo + 2)η2
` (T` \ T̂`) + 2τC1Ceqη

2
`

with equivalence constant Ceq from η2
` ≤ ξ2

` ≤ Ceqη
2
` . The choice of 0 < τ <

1/(4CeffC1Ceq) leads to

η2
` ≤ 2Ceff(Cdrel + Cqo + 2) η2

` (T` \ T̂`).

Claim D. Let C2 ≈ 1 be such that η2
` ≤ C2η

2
` (T` \ T̂`) for all ` ∈ N0. Then

0 < θ ≤ θ0 := 1/C2 implies

(|T`| − |T0|)s
(
‖dev(σ − σ`)‖2L2(Ω) + osc2(f, T`) + osc2(∂g/∂s, E`(∂Ω))

)1/2

. |(σ, f, g)|A′s .

Proof of Claim D. Mark selectsM` ⊂ T` with minimal cardinality |M`| such that
θη2
` ≤ η2

` (M`). Since

θη2
` ≤ θ0η

2
` = η2

`/C2 ≤ η2
` (T` \ T̂`),

T` \ T̂` also satisfies the bulk criterion and the minimality ofM` proves

|M`| ≤ |T` \ T̂`| ≤ 2 |(σ, f, g)|1/sA′s ε(`)
−1/s = 2 |(σ, f, g)|1/sA′s τ

−1/(2s)ξ
−1/s
`

with τ ≈ 1 and for all ` ∈ N0. The Theorem [3, Theorem 2.4] (see also [32, Theorem
6.1]) leads to a constant CBDV ≈ 1 with

|T`| − |T0| ≤ CBDV

`−1∑
k=0

|Mk| ≤ 2CBDV |(σ, f, g)|1/sA′s τ
−1/(2s)

`−1∑
k=0

ξ
−1/s
k .
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The contraction property (Theorem 4.3) reads ξ2
k+1 ≤ ρ2ξ

2
k for all k ∈ N0. Mathe-

matical induction proves

ξ2
` ≤ ρ`−k2 ξ2

k for 0 ≤ k ≤ `.

Since 0 < ρ2 < 1 it follows
`−1∑
k=0

ξ
−1/s
k ≤ ξ−1/s

`

`−1∑
k=0

ρ
(`−k)/(2s)
2 ≤ ξ−1/s

`

ρ
1/(2s)
2

1− ρ1/(2s)
2

.

Altogether,

|T`| − |T0| ≤ 2CBDV |(σ, f, g)|1/sA′s τ
1/(2s)ξ

−1/s
`

ρ
1/(2s)
2

1− ρ1/(2s)
2

.

6. Numerical Experiments. Four benchmark examples provide numerical ev-
idence for optimality even for large parameters θ.

6.1. Colliding flow. On the square domain Ω = (−1, 1) × (−1, 1) the exact
velocity is given by u(x, y) = (20xy4 − 4x5, 20x4y − 4y5) with pressure p(x, y) =
120x2y2 − 20x4 − 20y4 − 32/6. For this smooth example, both uniform and adaptive
mesh-refinement yield optimal convergence rates (see Figure 6.1).

101 102 103 104 105
100

101

102

1

0.5

ndof

‖σ−σPS‖ uniform

η uniform

‖σ−σPS‖ (θ=0.5)

η (θ=0.5)

‖σ−σPS‖ (θ=0.1)

η (θ=0.1)

Fig. 6.1. Convergence history for the colliding flow example.

6.2. L-shaped domain. On the L-shaped domain Ω = (−1, 1) × (−1, 1) \
([0, 1]× [−1, 0]), the exact solution reads

u(r, ϑ) =

(
rα((1 + α) sin(ϑ)w(ϑ) + cos(ϑ)wϑ(ϑ))
rα(−(1 + α) cos(ϑ)w(ϑ) + sin(ϑ)wϑ(ϑ))

)
in polar coordinates with α = 0.54448373 and

w(ϑ) =(sin((1 + α)ϑ) cos(αω))/(1 + α)− cos((1 + α)ϑ)

− (sin((1− α)ϑ) cos(αω))/(1− α) + cos((1− α)ϑ),

and f = 0. Figure 6.2 shows the sub-optimal convergence rate for uniform mesh-
refinement and optimal convergence for adaptive mesh-refinement.
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η uniform

‖σ−σPS‖ (θ=0.5)

η (θ = 0.5)

‖σ−σPS‖ (θ=0.1)

η (θ=0.1)

Fig. 6.2. Convergence history for the L-shaped domain.

6.3. Slit domain. On the slit domain Ω = (−1, 1)2 \ ([0, 1) × {0}), the exact
velocity reads in polar coordinates

u(r, ϑ) =
3
√
r

2

(
cos(ϑ/2)− cos(3ϑ/2), 3 sin(ϑ/2)− sin(3ϑ/2)

)
with pressure p(r, ϑ) = −6r−1/2 cos(ϑ/2). The suboptimal convergence rate from uni-
form mesh-refinement is improved towards the optimal one by the adaptive algorithm
(see Figure 6.3).

101 102 103 104 105
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1
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η uniform

‖σ−σPS‖ (θ=0.5)

η (θ=0.5)

‖σ−σPS‖ (θ=0.1)

η (θ=0.1)

Fig. 6.3. Convergence history for the slit domain.

6.4. Backward-facing step. This benchmark example considers the domain
Ω = ((−2, 8)× (−1, 1)) \ ([−2, 0]× [−1, 0]) from Figure 6.4. Let f = 0 and g(x, y) =
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(0, 0) for −2 < x < 8, g(x, y) = (−y(y − 1)/10, 0) for x = −2, g(x, y) = (−(y +
1)(y − 1)/80, 0) for x = 8. Figure 6.5 shows the convergence history with optimal
convergence rates.

Fig. 6.4. Adaptive mesh for the backward-facing step (θ = 0.1).
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Fig. 6.5. Convergence history for the backward-facing step.
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