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Abstract Guaranteed error control via fully discrete a posteriori error estimators is
possible with typical overestimation between 1.25 and 2 in simple computer bench-
marks. The equilibration techniques due to Braess and that due to Luce–Wohlmuth are
efficient tools with an accuracy limited by the hyper-circle threshold. This motivates
postprocessing strategies and the analysis of successive improvements of guaranteed
upper error bounds with a few pcg iterations result in reduced overestimation factors
between 1 and 1.25. Numerical simulations for three classes of applications illustrate
the efficiency for the Poisson model problem with and without jumping coefficients
or a simple obstacle problem.

Mathematics Subject Classification 65N30 · 65R20 · 65N15

1 Introduction

The a posteriori error control of the energy norms of errors in computational PDEs has
attracted high attention over the last decades [1,6,7,9,17,25,28]. The particular aspect
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426 C. Carstensen, C. Merdon

of guaranteed upper bounds with all explicit constants has risen particular interest and
is also relevant for effective simulations even in terms of goal functionals [1,7,21].

This paper addresses the most accurate energy norm error estimators which can
be written as equilibrium error estimators [4,12]. At least since the unified approach
[10,11] it is clear and visible more and more [29] that the essential task in a posteriori
error control is the computation of upper bounds for some residual Res ∈ H−1(�),
the dual of the standard first-order Sobolev space H1

0 (�)with homogeneous boundary
values, of the form

Res(ϕ) =
∫

�

( f ϕ − g · ∇ϕ) dx for all ϕ ∈ H1
0 (�). (1.1)

The given 2D data are the Lebesgue integrable functions f ∈ L2(�) and the numerical
flux g ∈ L2(�; R

2) (piecewise constant in practical examples). The form (1.1) results
from a weak formulation of some equilibration equation

f + div σ = 0 (1.2)

with exact flux σ ∈ H(div,�) and its residual

Res := f + div g = div(g − σ) ∈ H−1(�).

Here and throughout this paper, we use standard notation for Lebesgue and Sobolev
spaces and their norms; V := H1

0 (�) is endowed with the energy norm ||| · ||| :=
‖∇ · ‖L2(�) = |·|H1(�) and the dual norm ||| · |||� in H−1(�). The relevant dual norm

|||Res|||� = |||div(σ − g)|||� � η, (1.3)

is the targeted quantity and the aim is to find some computable upper bound η.
This is the essential step in the guaranteed error control for many problems like
the benchmarks for the two Poisson model problem, two interface problems and
one obstacle problem of this paper. The standard modification of the energy norm
||| · ||| := ‖�1/2∇ · ‖L2(�) is understood for the interface problems with jumping
coefficients. Although all experiments employ conforming first-order finite element
methods, the theory also applies to nonconforming methods [14].

The class of equilibration techniques takes the input data f and g and computes
some q ∈ H(div,�) such that the triangle inequality implies

|||div(σ − g)|||� = ||| f + div g|||� � ||| f + div q|||� + |||div(q − g)|||�.

This leads to the explicit bound η in (1.3) equal to

η := ||| f + div q|||� + |||div(q − g)|||�.

In case that certain piecewise integrals of f + div q vanish, e.g. for the first three
examples of Table 1, one may further deduce some local oscillation term osc( f ) and
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Equilibration estimator postprocessing 427

Table 1 Equilibration a posteriori error estimators

No. Error estimator Equilibration Mesh T̂ References

1 ηB div qB = − fT T , red(T ) [6,8]

2 ηMFEM div qMFEM = − fT red(T ) [6,8]

3 ηLW div qLW = − f � T � [19]

4 ηLS None red(T ) [12]

5 ηRepin None red(T ) [25,26]

an explicit constant C with

||| f + div q|||� � C osc( f ).

For instance, the Braess a posteriori error estimator from Table 1 designs some qB ∈
RT0(T ) and leads to elementwise oscillations osc( f ) = osc( f, T ) := ‖hT ( f −
fT )‖L2(�) and C = 1/π . Here, fT denotes the piecewise integral mean of f and hT
denotes the local mesh-size. This results in the computable guaranteed upper bound

ηB := osc( f, T )/π + ‖qB − g‖L2(�) (1.4)

for the error estimate (1.3). In many benchmark examples, the efficiency of this esti-
mator

eff(ηB) := ηB/|||Res|||�
lies in the range of 1.3–2. Section 2 discusses the hyper-circle identity and the related
threshold of the efficiency indices for all the error estimators of Table 1. To overcome
this hyper-circle threshold further improvements of q say on refined meshes or of
higher polynomial degrees are necessary to minimise the upper bound ‖q − g‖L2(�)

under the side restriction that f + div q maintains the above integral mean properties.
This paper makes the explicit alternative ansatz that, given any q from Table 1 as well
as for any possible future suggestion of this kind, q is substituted by q − Curl v for
some v ∈ H1(�)/R. Since Curl v = (∂v/∂x2,−∂v/∂x1) is divergence-free in n = 2
dimensions, the volume term f + div q remains unchanged, while the total new upper
bound

μnew := osc( f, T )/π + min
v∈H1(�)/R

‖q − g − Curl v‖L2(�) (1.5)

may be much smaller than η from (1.4). The theoretical main results of this paper state
that this improvement is significant and even asymptotic exactness of μnew is possible
in the Poisson model problem.

The estimate (1.5) coincides with a particular form of the estimate [25, (3.5.20)]
with y replaced by q − Curl v. The numerical realisation of (1.5), however, requires
a further discretisation of H1(�) based on the same or even on a refined mesh T̂
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428 C. Carstensen, C. Merdon

from Table 1 and some global minimisation. The striking empirical result of this
paper is that a significant improvement of the overall efficiency can be obtained with
a few pcg iterations and even one iteration (i.e. one line search along the gradient)
in the discretised minimisation leads to amazing results. For the three model classes,
the efficiency is cheaply improved without any change of the subtle design of the
equilibration function q. Moreover, the improvement by successive red-refinement of
T̂ in Theorem 4.1 follows from arguments from the convergence of adaptive mixed
finite element methods.

The remaining parts of the paper are organised as follows. Section 2 explains the
hyper-circle threshold and how it limits the efficiency of the equilibration error estima-
tors of Table 1. This motivates the derivation of an improved error control in Sect. 3.
Section 4 proves a saturation property for the postprocessing based on red-refined
meshes. Section 5 outlines the a posteriori error estimators from Table 1 and the
design of the flux q. Section 6 describes the numerical realisation while Sects. 7, 8,
and 9 give numerical evidence for the improved efficiency of the postprocessed error
estimators in three different model problems. Section 10 draws some conclusions to
round up the paper.

Although the examples are all in n = 2 dimensions for simplicity, the ansatz is
feasible in any dimension as long as the problem is in divergence form and Curl v is
replaced by any divergence-free field. Finally a � b abbreviates a � Cb for some
generic constant C that depends only on the shape regularity of the triangulation, while
a ≈ b means a � b � a.

2 Hyper-circle threshold

Consider a regular triangulation T of the simply connected and bounded Lipschitz
domain� ⊂ R

2 into triangles with edgesE , nodesN and free nodesM. The midpoints
of all edges are denoted by mid(E) := {mid(E)

∣∣ E ∈ E} and the boundary edges along
∂� are denoted by E(∂�) := {E ∈ E

∣∣ E ⊆ ∂�} while E(�) := E \E(∂�) denotes
the set of interior edges. The diameter diam(T ) of a triangle T is denoted by hT ,
E(T ) consists of all three edges of the triangle T ∈ T and N (T ) consists of all of
its vertices. The open set ωz := {ϕz > 0} for some node function ϕz is the interior
of its support on the subtriangulation T (z) := {T ∈ T

∣∣ z ∈ N (T )}. Similarly, all
edges that share z ∈ N give rise to E(z) := {E ∈ E

∣∣ z ∈ E}. The red-refinement
red(T ) of T is a regular triangulation that refines each triangle T ∈ T into four
congruent sub-triangles by straight lines through the midpoints of the three edges.
With the set Pk(T ) of elementwise polynomials of total degree � k, the lowest-order
Raviart–Thomas finite element space is given by

RT0(T ) := {q ∈ H(div,�)
∣∣ ∀ T ∈ T ∃ aT , bT , cT ∈ P0(T )∀ x ∈ T,

q(x) = aT x + (bT , cT )}.

The standard reference [6] for the FEM advertises the hyper-circle principle or
Prager–Synge estimate from [22] for a posteriori error control and gives details for an
easy postprocessing to compute qB in the lowest-order Raviart–Thomas mixed finite
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Equilibration estimator postprocessing 429

element space RT0(T ) (cf. Sect. 5 below for details on the design of qB). Lemma 9.1 of
[6] compares this with the lowest-order Raviart–Thomas mixed FEM and its solution
qMFEM in RT0(T ) ⊆ H(div,�) in a Poisson model problem scenario f + �u = 0
with exact flux σ := ∇u and residual (1.1) with data f ∈ P0(T ) and g := ∇uh ∈
P0(T ; R

2) for the conforming first-order approximation uh ∈ P1(T ) ∩ C(�). It
follows

‖qMFEM − g‖L2(�) ≤ ‖qB − g‖L2(�) = ηB.

The hyper-circle principle leads for piecewise constant f (and otherwise up to oscil-
lation terms for f which are neglected in Sect. 2 for the ease of this discussion) to the
identity

‖qMFEM − g‖2
L2(�)

= ‖σ − g‖2
L2(�)

+ ‖σ − qMFEM‖2
L2(�)

. (2.1)

This identity is obtained by an integration by parts to show
∫
�

∇(u−uh)(σ−q) dx = 0
for any q ∈ H(div,�) with div q + f = 0. One immediate consequence of the
aforementioned identities reads

‖σ − g‖2
L2(�)

+ ‖σ − qMFEM‖2
L2(�)

� ‖qB − g‖2
L2(�)

≡ η2
B.

Hence the efficieny index

eff(ηB) := ηB/‖σ − g‖L2(�)

of the Braess a posteriori error estimator ηB is bounded from below,

√
1 + κ2 :=

(
1 + ‖σ − qMFEM‖2

L2(�)
/‖σ − g‖2

L2(�)

)1/2

� ‖qB − g‖L2(�)/‖σ − g‖L2(�) = eff(ηB).

A compactness argument in [15] proves for piecewise constant right-hand sides that

|||σ − g||| � C(T )‖qMFEM − g‖L2(�).

The constant C(T ) depends on the triangulation but not on the data nor on the exact
or discrete solution. Hence,

κ := ‖σ − qMFEM‖L2(�)/‖σ − g‖L2(�) ≥ 1/C(T ).

In other words, there is no reason to believe that the efficiency index is close to
1. Comparing numerical experiments in [12] and below in this paper reveal for the
equilibration error estimates of Table 1, that eff(ηB) lies in the range of 1.3–1.7. This
fundamental lower bound

√
1 + κ2 is therefore called the hyper-circle threshold and

limits the efficiency.
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430 C. Carstensen, C. Merdon

It is the purpose of this paper to improve the efficiency dramatically below that
hyper-circle threshold of

√
1 + κ2 and even allow asymptotic exactness of guaranteed

upper bounds. To overcome this threshold for even higher accuracy, extra calculations
are required such as higher accuracy of q from higher polynomial degrees or refined
meshes. The alternative key observation is that all known equilibration a posteriori
error estimators use the simple but coarse estimate

|||div(q − g)|||� = sup
ϕ∈H1

0 (�)

|||ϕ|||=1

∫

�

(q − g) · ∇ϕ dx � ‖q − g‖L2(�)

based on the Cauchy inequality. Instead, a Helmholtz decomposition leads to the
identity

|||div(q − g)|||� = min
v∈H1(�)/R

‖q − g − Curl v‖L2(�).

Here, v is some test function in H1(�) and, more importantly, any choice of v leads
to some guaranteed upper bound,

|||div(q − g)|||� � ‖q − g − Curl v‖L2(�).

The optimal v in the improved previous estimate allows a posteriori error control
beyond the hyper-circle threshold.

Theorem 2.1 Under the assumptions of this section for the Poisson model problem
with piecewise constant right-hand side f ≡ fT ∈ P0(T ), it holds, for all q ∈
Q( fT ) := {q ∈ H(div,�)

∣∣ fT + div q = 0},

|||Res|||� = ‖σ − g‖L2(�) = μ := min
v∈H1(�)/R

‖q − g − Curl v‖L2(�).

Proof This follows with ||| f + div q|||� = 0 in Theorem 3.1; cf. Remark 3.3. ��
The global minimisation for the computation of μ leads to an elliptic PDE and

appears as costly as the computation of μ. In order to approximate μ, any choice of
v ∈ H1(�) yields an upper bound and so an improved guaranteed a posteriori error
control.

The following Theorem 2.2 underlines the significance of the MFEM equilibration:
Without mesh-refinement there is no improvement beyond

ηMFEM := ‖qMFEM − g‖L2(�).

Theorem 2.2 Under the assumptions of this section for the Poisson model problem
with piecewise constant right-hand side f ∈ P0(T ) and VH := P1(T ) ∩ C(�), it
holds

min
vH ∈VH /R

‖qB − g − Curl vH ‖L2(�) = ‖qMFEM − g‖L2(�).
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Proof This follows from the fact that qMFEM minimises the distance to g amongst any
qRT ∈ Q( f, T ) := {q ∈ RT0(T )

∣∣ fT + div q = 0} [6]. Since qB ∈ Q( f, T ) and
Curl vH ∈ P0(T ; R

2), the difference qB − Curl vH belongs to Q( f, T ). ��
Numerical experiments in Sect. 7 below confirm that the improvement of the effi-

ciency ofηB compared toηMFEM is not significant. This is an indication for the amazing
accuracy of the Braess postprocessing which defines qB.

Theorem 2.3 below implies that more significant improvements follow from fur-
ther mesh-refinements. In case of a red-refined triangulation Th := red(T ), the post-
processed a posteriori error estimator for Vh = P1(Th) ∩ C(�) reads

ηBr := min
vh∈Vh/R

‖qB − g − Curl vh‖L2(�).

The data oscillations on edge patches ωE := ⋃{T ∈ T
∣∣ E ∈ E(T )} for an edge

E ∈ E read

osc( f, ωE ) := diam(ωE )‖ f − fωE ‖L2(ωE )
, (2.2)

OSC2(T , f ) :=
∑

E∈E(�)
osc2( f, ωE )+

∑
E∈E(∂�)

|E |2 ‖ f ‖2
L2(ωE )

. (2.3)

Small data oscillations lead to a significant improvement of the postprocessed a pos-
teriori error estimator and so may overcome the hyper-circle threshold.

Theorem 2.3 Under the assumptions of this section for the Poisson model problem
with piecewise constant right-hand side f ∈ P0(T ), there exist constants 0 <  < 1
and 0 < � < ∞ which depend on the interior angles of T and neither on the
mesh-sizes nor on the number of triangles with

η2
Br − ‖σ − g‖2

L2(�)
� 

(
η2

MFEM − ‖σ − g‖2
L2(�)

)
+�OSC2(T , f ).

Proof This follows from Theorem 4.1 below for rT = g, � ≡ 1, feq = f and
qeq = qB. ��

So far, this section discussed the Braess equilibration technique. The remaining a
posteriori error estimators of Table 1 also suffer from the hyper-circle threshold. The
Luce–Wohlmuth a posteriori error estimator, for instance, leads to an estimate which
is bigger than the mixed error estimator ηMFEM� with respect to the dual mesh T �.
(Recall that f is piecewise constant in Sect. 2 so that the right-hand side of the MFEM
and f � in the Luce–Wohlmuth error estimation of Sect. 5.3 coincide.) The significant
improvements of Theorem 2.3 immediately apply to T � and red(T �) as well.

Furthermore, the reduction properties can be iterated. For instance, the minimisation
in vh ∈ P1(redk(T )) ∩ C(�) leads for k = 1, 2, . . . to

η2
Br . . . r︸ ︷︷ ︸

k

− ‖σ − g‖2
L2(�)

� 

⎛
⎝η2

B r . . . r︸ ︷︷ ︸
k−1

− ‖σ − g‖2
L2(�)

⎞
⎠ +�OSC(redk−1(T ))2

� k
(
η2

MFEM − ‖σ − g‖2
L2(�)

)
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+
k−1∑
j=0

 j�OSC(redk− j−1(T ))2.

This section concludes with a discussion of the associated efficiency indices

eff(ηBr) := ηBr/‖σ − g‖L2(�) resp. eff(ηMFEM) := ηMFEM/‖σ − g‖L2(�).

Their distances to 1 are reduced by

eff(ηBr)
2 − 1

eff(ηMFEM)2 − 1
�
(η2

MFEM − ‖σ − g‖2
L2(�)

)+�OSC2(T , f )

η2
MFEM − ‖σ − g‖2

L2(�)

.

Under the assumption of small oscillations in the sense of


(
η2

MFEM − ‖σ − g‖2
L2(�)

)
+�OSC2(T , f ) � ϑ

(
η2

MFEM − ‖σ − g‖2
L2(�)

)

for some 0 < ϑ < 1, this implies

eff(ηBr)
2 − 1

eff(ηB)2 − 1
� eff(ηBr)

2 − 1

eff(ηMFEM)2 − 1
� ϑ < 1.

In other words, the efficiency indices are significantly reduced.
The striking numerical evidence of Sects. 7–9 in this paper suggests that only a few

iterations of some iterative solver improve the efficiency substantially. Tables 2 and 4
in Sect. 7 display typical values for ϑ that are clearly far below 1.

3 Refined error control

This section is devoted to a rigorous analysis and the asymptotic exactness of the
suggested error estimator (1.5) based on the data f ∈ L2(�), g ∈ L2(�; R

2), and
q ∈ H(div,�). For all ϕ ∈ V := H1

0 (�) and v ∈ H1(�), an integration by parts
leads to

Res(ϕ) =
∫

�

( f + div q)ϕ dx +
∫

�

(q − g − Curl v) · ∇ϕ dx .

Consider some q ∈ H(div,�) with the assumption that ||| f + div q|||� is small in the
sense that the dual norm of the residual |||Res|||� is much larger,

δ := ||| f + div q|||�/|||Res|||� � 1. (3.1)

The affirmative examples ηLW, ηB and ηMFEM from Table 1 allow for

||| f + div q|||� � ‖hT ( f + div q)‖L2(�)/π � osc( f, T ) := ‖hT ( f − fT )‖L2(�)
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(from a piecewise Poincaré inequality with Payne-Weinberger constant [23]). Here,
hT ∈ P0(T ) denotes the local mesh size and fT ∈ P0(T ) denotes the piecewise
integral mean of f (i.e. hT |T = hT and fT |T := ∫

T f dx/ |T | for every T ∈ T ). Then
||| f + div q|||� is of quadratic order in terms of the mesh-size hT for piecewise smooth
right-hand sides f . Compared to linear convergence in the mesh size hT for first-order
approximations and residuals, δ is small and tends to zero as ‖hT ‖L∞(�) → 0.

Given the Helmholtz decomposition [16] (for simply connected domains �)

q − g = ∇a + Curl b

with some unique a ∈ H1
0 (�) and remainder b ∈ H1(�)/R, the optimal postprocess-

ing of

η := ||| f + div q|||� + ‖q − g‖L2(�) = ||| f + div q|||� + (|||a|||2 + |||b|||2)1/2

with v = b results in

μ := ||| f + div q|||� + |||a||| � η.

Assumption (3.1) and the following theorem imply asymptotic exactness in the
sense that

μ/(1 + 2δ) � |||Res|||� � μ.

Hence, the new error estimator μ overcomes the hyper-circle threshold.

Theorem 3.1 Under the aforementioned notation it holds

|||Res|||� � η �
(
(|||Res|||� + ||| f + div q|||�)2 + |||b|||2

)1/2 + ||| f + div q|||�,
|||Res|||� � μ � |||Res|||� + 2||| f + div q|||�.

For |||a||| > 0 and κ := |||b|||/|||a|||, it holds

0 � η − μ = |||a|||
(√

1 + κ2 − 1
)

� (||| f + div q|||� + |||Res|||�)
(√

1 + κ2 − 1
)
.

Proof The Helmholtz decomposition shows, for all ϕ ∈ H1
0 (�),

Res(ϕ) =
∫

�

( f + div q)ϕ dx +
∫

�

(q − g − Curl b) · ∇ϕ dx � (||| f + div q|||� + |||a|||)|||ϕ|||.

Hence,

|||Res|||� � μ = ||| f + div q|||� + |||a|||.
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Moreover,

μ � η = ||| f + div q|||� + (|||a|||2 + |||b|||2)1/2.

The improvement factor of the second term is

|||a|||/
√

|||a|||2 + |||b|||2 = 1/
√

1 + κ2.

Moreover,

|||a|||2 =
∫

�

∇a · ∇a dx =
∫

�

(q − g) · ∇a dx = Res(a)−
∫

�

( f + div q)a dx

� (|||Res|||� + ||| f + div q|||�)|||a|||.

This concludes the proof. ��
Remark 3.2 For the optimal q = σ − Curl β for σ from (1.2) and some remainder
with β ∈ H1(�)/R from the Helmholtz decomposition

σ − g = ∇α + Curl β,

it follows that |||b||| = 0 = ||| f + div q|||�, and hence |||Res|||� = η = μ. In other words,
an optimal q cannot be improved by the proposed postprocessing. Theorem 2.2 is an
example for this observation.

Remark 3.3 Theorem 3.1 implies Theorem 2.1. Indeed q = qMFEM and div(σ −
qMFEM) ≡ 0 shows −σ + qMFEM = Curl b. Hence (2.1) is the Helmholtz decompo-
sition of this section with a = u − uh .

Remark 3.4 The modification of the residual has been discussed on a rather abstract
level in [24] and for general H(div,�) functions in [25]. Algorithmic details as the
improvements via successive refinements are not reported therein.

Remark 3.5 (on multiply connected domains). The Helmholtz decomposition for
some multiply connected domain involves singular functions θ1, . . . , θJ ∈ H1(�)

with �θ j = 0, θ j |� j = 1 and θ j |�k = 0 for j = 1, . . . , J and k = 0, . . . , J for
∂� = �0 ∪ · · · ∪ �J . For any q − g ∈ L2(�; R

2) there exist a ∈ H1
0 (�) and

b ∈ H1(�)/R as well as α1, . . . , αJ ∈ R such that

q − g = ∇a +
J∑

j=1

α j∇θ j + Curl b.

Since this decomposition is L2(�)-orthogonal, the suggested postprocessing may
involve θ1, . . . , θJ as well and reads

μ := ||| f + div q|||� + |||a|||.
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Equilibration estimator postprocessing 435

The practical realisation via discrete harmonic approximations of θ1, . . . , θJ , however,
involves further discretisation errors to be evaluated in order to compute a valid upper
error bound.

The remaining part of this section is devoted to inhomogeneous Dirichlet data u D

as they arise in the numerical examples of Sects. 7–9. Suppose for the remainder of
this section that along the boundary edges E(∂�) := {E ∈ E

∣∣ E ⊂ ∂�} the discrete
solution uh satisfies uh = Iu D := ∑

z∈N u D(z)ϕz .

Theorem 3.6 Assume that u D ∈ H1(�) ∩ C(�) satisfies u D ∈ H2(E) for all E ∈
E(∂�) and let ∂2

Eu D/∂s2 denote the edgewise second partial derivative of u D along
∂�. Then there exists wD ∈ H1(�) with

wD|∂� = u D|∂� − Iu D|∂�,
supp(wD) ⊂

⋃
{T ∈ T

∣∣ T ∩ ∂� �= ∅},
‖wD‖L∞(�) = ‖u D − Iu D‖L∞(∂�),

|||wD||| � Cγ ‖h3/2
E ∂2

Eu D/∂s2‖L2(∂�).

Furthermore it holds

|||e|||2 � |||Res|||2� + |||wD|||2.

Proof For the proof of the existence see [3,14]. For the proof of the last equation,
assume the optimal w ∈ H1(�) with wD|∂� = u D|∂� − Iu D|∂� and div ∇wD ≡ 0.
Then, it holds the orthogonality from [3],

|||e|||2 = |||e − w|||2 + |||w|||2 � |||Res|||2� + |||w|||2 � |||Res|||2� + |||wD|||2.

��
Remark 3.7 More involved calculations show in [14] that Cγ � 0.7043 for triangula-
tions with right isosceles triangles. However, for the numerical examples in this paper,
we use Cγ = 1.

4 Improvement via red-refinements

This section analyses the reduction property of the postprocessed a posteriori error
estimator under successive red-refinements and thereby contributes to the convergence
analysis of adaptive mixed finite element methods.

Recall definition (2.2) of the edge-related oscillations of some feq ∈ P0(T )

OSC2(T , feq) :=
∑

E∈E(�)
osc2( feq, ωE )+

∑
E∈E(∂�)

|E |2 ‖ feq‖2
L2(ωE )

.
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Theorem 4.1 (Main result). Given a triangulation T ≡ TH , its red-refinement Th :=
red(T ) and the data � ∈ P0(T ), feq ∈ P0(T ), qeq ∈ RT0(T ) with div qeq + feq = 0
and rT ≡ κ∇uC ∈ P0(T ; R

2), let a ∈ H1
0 (�) and b ∈ H1(�)/R be defined in the

Helmholtz decomposition qeq − rT = �∇a + Curl b. Then there exist some constants
0 <  < 1 and 0 < � < ∞, such that

min
vh∈V (red(T ))

‖�−1/2(rT − qeq − Curl vh)‖2
L2(�)

− ‖�1/2∇a‖2
L2(�)

≤ 

(
min

vH ∈V (T )
‖�−1/2(rT − qeq − Curl vH )‖2

L2(�)
− ‖�1/2∇a‖2

L2(�)

)

+�OSC(T , feq)
2.

Remark 4.2 Note that the proof of Theorem 3.1 shows that ‖�1/2∇a‖L2(�) equals
|||Res|||� up to ||| feq + div qeq|||� = 0.

Two interpolation operators J and I will be required for the proof at the end of this
section. Let T be a regular triangulation of the polygonal Lipschitz domain � into
triangles with its set of edges E and its red-refinement red(T ). Given any v ∈ H1(�)

let Jv ∈ P1(T ) ∩ C(�) be some quasi-interpolant [6] with

‖h−1
T (v − Jv)‖L2(�) + ‖h−1/2

E (v − Jv)‖L2(
⋃E) + |||Jv||| � |||v|||. (4.1)

Moreover, for any w ∈ H1(�), set

Iw :=
∑
E∈E

(∫
E
w ds

)
2ϕE (4.2)

with the integral mean
∫

Ew ds := ∫
E w ds/ |E | of w along the edge E and ϕE the

nodal basis function of the Courant FEM with respect to the red-refined triangulation
red(T ) and the midpoint mid(E) of an edge E ∈ E, ϕE (mid(E)) = 1 and ϕE (y) = 0
for all other nodes y of red(T ).
Lemma 4.3 Given any v ∈ H1(�) with Jv from (4.1) and w := v − Jv let Iw be
defined in (4.2). Then, it holds

‖h−1
T Iw‖L2(�) + ‖h−1/2

E Iw‖L2(
⋃E) + |||Iw||| � |||v|||.

Proof From (4.2), ‖ϕE‖L2(T ) = |T |1/2 /√8, and a Cauchy inequality along the edges
E(T ) of T ∈ T , it follows that

‖Iw‖L2(T ) �
∑

E∈E(T )
2‖ϕE‖L2(T )

∣∣∣∣
∫

E
w ds

∣∣∣∣ �
∑

E∈E(T )
|T |1/2 |E |−1/2 ‖w‖L2(E)/

√
2.

Hence,

‖h−1
T Iw‖2

L2(�)
�

∑
E∈E

|E |−1 ‖v − Jv‖2
L2(E).
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Therefore, (4.1) implies

‖h−1
T Iw‖L2(�) � |||v|||.

An inverse inequality for the piecewise affine Iw shows

|||Iw||| � ‖h−1
T Iw‖L2(�) � |||v|||.

A trace inequality [9] concludes the proof,

‖h−1/2
E Iw‖L2(

⋃E) � ‖h−1
T Iw‖L2(�) + |||Iw||| � |||v|||.

��
Lemma 4.4 Given qeq ∈ RT0(T ) with div qeq + feq = 0, � ∈ P0(T ), rT ∈
P0(T ; R

2), and v ∈ H1(�), set vh := I (v − Jv). Then, it holds

∣∣∣∣∣∣
∫

�

�−1(qeq − rT ) · Curl(v − Jv − vh) dx

∣∣∣∣∣∣ � OSC(T , feq)‖�−1/2∇v‖L2(�).

Proof It is important to notice that 2
∫

EϕE ds = 1 and so

∫

E

(w − Iw) ds = 0 for all E ∈ E . (4.3)

Since w := v − Jv − vh satisfies
∫

E w ds = 0 for all E ∈ E , a piecewise integration
by parts leads to

∫

�

�−1(qeq − rT ) · Curlw dx =
∑
T ∈T

∫

∂T

w�−1|T (qeq − rT ) · τT ds

=
∑
E∈E

∫

E

w[�−1qeq]E · τE ds.

Here, τE denotes the tangent along E ∈ E . Any 2D Raviart–Thomas finite element
function allows for some representation [20]

qeq(x)|T = 1/2 (x − mid(T ))div qeq|T + �∇NCũCR for x ∈ T ∈ T

with the piecewise gradient ∇NC of some Crouzeix–Raviart function uCR ∈ CR(T ).
Hence [�−1qeq]E · τE equals 1/2 [div qeq]E (x − mid(T )) · τE plus some constant for
x ∈ E ∈ E from ∂ ũCR/∂s. The integral of the latter multiplied by w vanishes

∫

E

w[�−1qeq]E · τE ds = 1/2
∫

E

([�−1div qeq]E · τE )w(x)((x − mid(E)) · τE ) dsx .
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The modulus of the previous term is bounded from above by

1/2
∣∣∣[�−1div qeq]E · τE

∣∣∣ ‖(• − mid(E)) · τE‖L2(E)‖w‖L2(E)

= |E |3/2 /(4√
3)

∣∣∣[�−1div qeq]E · τE

∣∣∣ ‖w‖L2(E)

�
{

osc(�−1div qeq, ωE )‖ |E |−1/2 w‖L2(E) if E ∈ E(�),
|E | ‖�−1div qeq‖L2(ωE )

‖ |E |−1/2 w‖L2(E) if E ∈ E(∂�).

This plus a Cauchy inequality in R
|E | followed by Lemma 4.3 to bound the sum of all

‖ |E |−1/2 w‖2
L2(E)

leads to

∣∣∣∣∣∣
∫

�

�−1(qeq − rT ) · Curlw dx

∣∣∣∣∣∣ � OSC(T , feq)|||v − Jv|||.

In the sequence all constants hidden in the notation � may depend on �. The proof
concludes by (4.1) and |||v − Jv||| � ‖�−1/2∇v‖L2(�). ��
Proof of Theorem 4.1 The application to the postprocessing concerns the term

i© := ‖�−1/2(qeq − rT − Curl vH )‖L2(�)

on the triangulation TH with an optimal vH ∈ (P1(T )∩ C(�))/R. On the red-refined
triangulation Th ≡ red(T ), the optimal postprocessing leads to

ii© := ‖�−1/2(qeq − rT − Curl (vH − vh))‖L2(�)

for some minimiser vh ∈ (P1(Th) ∩ C(�))/R. The Helmholtz decomposition

qeq − rT − Curl vH = �∇a + Curl b

for unique a ∈ H1
0 (�) and b ∈ H1(�)/R allows for the representations

i© = ‖�1/2∇a‖2
L2(�)

+ ‖�−1/2Curl b‖2
L2(�)

,

ii© = ‖�1/2∇a‖2
L2(�)

+ ‖�−1/2Curl (b − vh)‖2
L2(�)

.

The optimality of vH implies, for all wH ∈ (P1(TH ) ∩ C(�))/R, that

∫

�

�−1Curl b · CurlwH dx = ∫
�

�−1(qeq − rT − Curl vH ) · CurlwH dx = 0

(4.4)
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and that of vh implies, for all wh ∈ (P1(Th) ∩ C(�))/R, that

∫

�

�−1Curl(b − vh) · Curlwh dx = 0. (4.5)

Since Jb ∈ VH , (4.4) leads to

‖�−1/2Curl b‖2
L2(�)

=
∫

�

�−1Curl b · Curl b dx =
∫

�

�−1Curl b · Curl (b − Jb) dx .

With bh := I (b − Jb) this term equals

∫

�

�−1(qeq − rT − Curl vH ) · Curl bh dx

+
∫

�

�−1(qeq − rT − Curl vH ) · Curl (b − Jb − bh) dx .

Lemma 4.4 shows

‖�−1/2Curl b‖2
L2(�)

�
∫

�

�−1(qeq − rT − Curl vH ) · Curl bh dx

+ c1‖�−1/2Curl b‖L2(�)OSC(T , feq).

Equation (4.5) for wh = bh implies

∫

�

�−1(qeq − rT − Curl vH ) · Curl bh dx

=
∫

�

�−1Curl b · Curl bh dx

=
∫

�

�−1Curl vh · Curl bh dx

� ‖�−1/2Curl vh‖L2(�)‖�−1/2Curl bh‖L2(�).

Lemma 4.3 shows
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‖�−1/2Curl bh‖L2(�) � c2‖�−1/2Curl b‖L2(�).

Alltogether, it follows

‖�−1/2Curl b‖L2(�) � c1OSC(T , feq)+ c2‖�−1/2vh‖L2(�). (4.6)

The orthogonality �−1/2Curl(b − vh) ⊥ �−1/2Curl(P1(Th) ∩ C(�))/R from (4.5)
leads to

‖�−1/2Curl b‖2
L2(�)

= ‖�−1/2Curl (b − vh)‖2
L2(�)

+ ‖�−1/2Curl vh‖2
L2(�)

.

The last term is bounded by (4.6) and hence

‖�−1/2Curl (b − vh)‖2
L2(�)

+ 1/(2c2
2) ‖�−1/2Curl b‖2

L2(�)
− c2

1/c
2
2 OSC(T , feq)

2

� ‖�−1/2Curl b‖2
L2(�)

.

With  := 1 − 1/(2c2
2) and � := c2

1/c
2
2 this reads

‖�−1/2Curl (b − vh)‖2
L2(�)

� ‖�−1/2Curl b‖2
L2(�)

+�OSC(T , feq)
2.

��
Remark 4.5 With q = qB, � ≡ 1, rT = g and feq = f ∈ P0(T ) it holds
‖∇a‖L2(�) = ‖σ − g‖L2(�) and therefore

η2
Br = ‖qB − g − Curl vh‖2

L2(�)
= ‖σ − g‖2

L2(�)
+ ‖Curl (b − vh)‖2

L2(�)

and

η2
MFEM = ‖σ − g‖2

L2(�)
+ ‖Curl (b − vH )‖2

L2(�)
.

Theorem 4.1 then implies Theorem 2.3, i.e.,

η2
Br − ‖σ − g‖2

L2(�)
� 

(
η2

MFEM − ‖σ − g‖2
L2(�)

)
+�OSC(T , feq)

2.

5 A posteriori error estimators

This section recalls some details of known a posteriori error estimators for the design
of admissable averagings q and so presents the setting behind Table 1.
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5.1 Braess equilibration error estimator

For some piecewise or broken Raviart–Thomas element g ∈ RT−1(T ) := {q ∈
L2(�; R

2)
∣∣ ∀ T ∈ T , q|T ∈ RT0(T )} with

∫

ωz

f ϕz dx =
∫

ωz

g · ∇ϕz dx for all z ∈ M,

Braess [6] designs patchwise broken Raviart–Thomas functions rz ∈ RT−1(T (z))
with

div rz |T = −
∫

T

f ϕz dx/ |T | for T ∈ T (z),

[rz · νE ]E = −[g · νE ]E/2 on E ∈ E(z) ∩ E(∂�),
rz · ν = 0 along ∂ωz \E(∂�).

The solution rz of these problems is unique up to multiplicatives of Curl ϕz and may be
chosen such that ‖rz‖L2(ωz)

is minimal. Eventually, the quantity qB := g+∑
z∈N rz ∈

RT0(T ) satisfies

div qB = − fT

and so allows the dual norm estimate ||| f + div qB|||� � osc( f, T )/π. The error esti-
mator reads

ηB := ‖qB − g‖L2(�) + osc( f, T )/π.

Assume g = ∇uh equals the gradient of the solution uh of the P1 finite element method
for the Poisson problem. Then, the best Raviart–Thomas function q ∈ RT0(T ) with
div q + fT = 0 equals the gradient of the mixed finite element solution qMFEM. This
motivates the error estimator

ηMFEM := ‖qMFEM − g‖L2(�) + osc( f,T )/π := min
q∈RT0(T )
div q=− fT

‖q − g‖L2(�) + osc( f,T )/π.

5.2 Least square error estimators

An integration by parts yields, for any q ∈ H(div,�) and elementwise integral mean
fT ∈ P0(T ) of f , that

∫

�

(σ − g) · ∇v dx =
∫

�

( f − fT )v dx +
∫

�

( fT + div q)v dx +
∫

�

(g − q) · ∇v dx .
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After [12,25,26], this results in the error estimator

ηLS := min
q∈RT0(T )

(CF‖ fT + div q‖L2(�) + ‖q − g‖L2(�))+ osc( f, T )/π

with Friedrichs’ constant CF := supv∈V \{0} ‖v‖L2(�)/|||v||| � width(�)/π . The Repin
variant (without the oscillation split) reads

ηRepin := min
q∈RT0(T )

(CF‖ f + div q‖L2(�) + ‖q − g‖L2(�)).

In practise ηRepin and ηLS are approximated by a series of least-square problems [27].
For the numerical experiments documented in this paper, Algorithm 5.1 approximates
ηLS with three iterations.

Algorithm 5.1 INPUT g ∈ P0(T ; R
2), CF > 0 and f ∈ L2(�). Set λ = 1.

For j = 1, 2, 3 do

qLS = argmin
q∈RT0(T )

(
(1 + λ)C2

F‖ fT + divq‖2
L2(�)

+ (1 + 1/λ)‖q − g‖2
L2(�)

)
,

λ = ‖qLS − g‖L2(�)/(CF‖ fT + divqLS‖L2(�)). od

OUTPUT ηLS := CF‖ fT + divq‖L2(�) + ‖qLS − g‖L2(�) + osc( f, T )/π

5.3 Luce–Wohlmuth equilibration error estimator

The design of qLW from [19] assumes some piecewise or broken Raviart–Thomas
element g ∈ RT−1(T ) with

∫

ωz

f ϕz dx =
∫

ωz

g · ∇ϕz dx for all z ∈ M

and employs the dual triangulation T � which connects each mid(T ) with adjacent
nodes and edge midpoints and so divides every T ∈ T into six triangles of area |T | /6
(Fig. 1).

Consider some node z ∈ N (T ) and its nodal basis function ϕ�z with the fine
patch ω�z := {ϕ�z > 0} of the dual triangulation T � and its neighbouring triangles
T �(z) := {T � ∈ T �

∣∣ z ∈ N �(T �)}. Since g ∈ P0(T ; R
2) is continuous along

∂ω�z ∩ T for any T ∈ T , q · ν = g · ν ∈ P0(E�(∂ω�z )) is well-defined on the boundary
edges E�(∂ω�z ) of ω�z . The further design employs an interpolation f � ∈ P0(T �) of f
defined by

f �|T �± := 3
∫

T

f ϕz dx/ |T | for the two T �± ∈ T � with N �(T �±) ∩ N (T ) = {z}
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Fig. 1 Exemplary triangulation
T (thick lines) and dual mesh
T � (thin lines) and one node
patch ω�z for the L-shaped
domain

With the set

Q(T �(z)) := {τh ∈ RT0(T �(z))
∣∣ f � + div τh = 0 in ω�z and τh · ν = g · ν along ∂ω�z \ ∂�},

one computes the minimiser

qLW|ω�z := argmin
τh∈Q(T �(z))

‖g − τh‖L2(ω�z )
.

The choice of f � differs from the original one of [19] for an improved bound for
||| f + div qLW|||� with explicitly known constants, namely

||| f + div qLW|||� � ‖hT ( f + div qLW)‖L2(�)/π.

In our preferred modification, the Luce–Wohlmuth error estimator reads

ηLW := ‖qLW − g‖L2(�) + ‖hT ( f + div qLW)‖L2(�)/π.

6 Numerical realisation

This section concerns the calculation of some postprocessing γ and the adaptive mesh
design in the numerical experiments.

6.1 Realisation of the postprocessing

The postprocessing is based on a minimisation within continuous and piecewise affine
functions v ∈ P1(T̂ ) ∩ C(�), namely

‖∇u − q − Curl v‖L2(�) := min
v∈P1(T̂ )∩C(�)

‖∇u − q − Curl v‖L2(�).
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Given an equilibrated quantity q ∈ RT0(T̂ ) on some triangulation T̂ of � (e.g.
T̂ ∈ {T , T �, red(T ), red(T �)}), the minimisation of the right-hand side over v ∈
P1(T̂ ) ∩ C(�) results in some linear system of equations Ax = b. Given some basis
{ϕz1, . . . , ϕzN } of P1(T̂ )∩ C(�), the stiffness matrix and right-hand side vector read

A jk :=
∫

�

Curl ϕz j · Curl ϕzk dx and b j :=
∫

�

(g − q) · Curl ϕz j dx .

The Matlab routine pcgwith Jacobi (or diagonal) preconditioner D = diag(A11, . . . ,

AN N ) and initial value x = 0 solves this system iteratively in k iterations. The first
iterate reads

x1 := bT D−1/2b

bT D−1/2 AD−1/2b
D−1/2b.

Since, Curl(P1(T ) ∩ C(�)) ⊂ RT0(T ) and ‖g − qMFEM‖L2(�) is already the
best-approximation in RT0(T ), there is no improvement by the postprocessing with
T̂ = T in case of the MFEM error estimator, unless one refines the mesh or increases
the polynomial degrees. But the postprocessing with T̂ = T may reduce the gap
between ηMFEM and the Braess equilibration error estimator ηB. We suggest to use
T̂ = T � for the Luce–Wohlmuth error estimator and a red-refinement T̂ = red(T )
for all other error estimators, see also Table 1. Postprocessed error estimators based on
ηxyz with T̂ = red(T ) and k iterations are labelled as ηxyzr(k). The Luce–Wohlmuth
error estimator with postprocessing T̂ = T � and k iterations is labelled as ηLW(k).
The Braess error estimator with postprocessing on T̂ = T and k iterations is labelled
as ηB(k).

Remark 6.1 In the 3D case, the minimisation problem in Sect. 6.1 involves the Curl :=
∇ × ψ of functions ψ in H1(�; R

3). This causes modifications in the realisation of
the postprocessing, either by the choice of a proper basis of P1(�; R

3)∩ C(�) or by
H(curl,�)-conforming finite elements.

6.2 AFEM algorithm

Automatic mesh refinement generates a sequence of meshes T0, T1, T2 . . . by succes-
sive mesh refining according to a bulk criterion with parameter 0 < � � 1.

Algorithm 6.2 INPUT coarse mesh T0 For any level � = 0, 1, 2, . . . do
COMPUTE discrete solution u� on T� with ndof := |N�(�)| degrees of freedom,
global upper bounds ηLW, ηB, ηMFEM, ηLS and the postprocessed quantities ηxyzr(k)
from Sect. 6 for k ∈ {1, 3, 5,∞}, and refinement indicators

η�(T )
2 = |T | ‖ f ‖2

L2(T ) + |T |1/2
∑

E∈E(T )
‖[∇u�]E · νE‖2

L2(E) for all T ∈ T�.
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Fig. 2 History of efficiency indices ηxyz/|||e||| of various a posteriori error estimators ηxyz labelled xyz as
functions of ndof on uniform meshes in Example 7.1

MARK minimal set (for adaptive mesh-refinement) M� ⊆ T� of elements such that

1/2
∑

T ∈T�
η�(T )

2 �
∑

T ∈M�

η�(T )
2.

(For uniform mesh-refinement set M� = T�.)
REFINE T� by red-refinement of elements in M� and red-green-blue-refinement of
further elements to avoid hanging nodes and compute T�+1. od
OUTPUT efficiency indices eff := ηxyz/|||e||| for error e = u − u� of exact solution u
and

ρxyz,r(k) :=
(
η2

xyzr(k) − |||e|||2
)
/
(
η2

xyz − |||e|||2
)
. (6.1)

The quantity ρxyz,k measures the improvement of the relative error of ηxyz by ηxyzr(k)
after k iterations.

7 Numerical examples for Poisson problems

The first two numerical example concern the Poisson problem and the residual for the
solution uh of the P1 finite element method

Res(v) :=
∫

�

f v dx −
∫

�

∇uh · ∇v dx .

123



446 C. Carstensen, C. Merdon

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4
B(0)
B(∞)
Br(1)
Br(5)
Br( ∞)
Brr(3)
MFEM
MFEMr(1)
MFEMr(5)
MFEMr( ∞)
LS
LSr(1)
LSr(5)
LSr( ∞)
LW
LW(1)
LW(5)
LW(∞)

Fig. 3 History of efficiency indices ηxyz/|||e||| of various a posteriori error estimators ηxyz labelled xyz as
functions of ndof on adaptive meshes in Example 7.1

7.1 L-shaped domain example

The first benchmark problem employs f ≡ � ≡ 1 and homogeneous Dirichlet data
u D ≡ 0. The exact energy error can be calculated by

|||e|||2 = |||u|||2 − |||uh |||2 and |||u|||2 = 0.214075802680976

(computed with higher-order FEMs). The problem involves a typical corner singularity
and shows an experimental convergence rate of 1/3 for uniform mesh refinement.

Figures 2 and 3 display the efficiency indices of the a posteriori error estimators
ηB, ηLW and ηMFEM from Sect. 5 and their postprocessed quantities from Sect. 6.

One main observation is that, even after a single iteration k = 1, the postprocessing
significantly improves efficiency indices. The efficiency indices of all error estimators
are reduced by 10 to 15 %. The gap between ηB(0) and ηMFEM(0) allows a significant
improvement by the postprocessing ηB(∞) based on T . The potential of efficiency
improvement appears even larger in case of uniform mesh refinement. The postprocess-
ing of the Luce–Wohlmuth equilibration error estimator and the MFEM or LS error
estimator leads to very good efficiency indices around 1.15. Table 2 lists the improve-
ment numbers from (6.1) typically by 0.5 or below. In agreement with the results
of Sect. 4, the further red-refinement in the postprocessing results in a significant
improvement of the accuracy. Table 2 also displays the quotient B,r(1)/B,r(∞). It
increases on coarse meshes, but stabilises with an increasing number of degrees of
freedom. Hence, we assume a pre-asymptotic phenomenon and the postprocessing by
one iteration should maintain its effectivity also for more complex problems. Table 3
for adaptive mesh-refinement hardens this assumption.
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Fig. 4 History of efficiency indices ηxyz/|||e||| of various a posteriori error estimators ηxyz labelled xyz as
functions of ndof on uniform meshes in Example 7.2
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Fig. 5 History of efficiency indices ηxyz/|||e||| of various a posteriori error estimators ηxyz labelled xyz in
the figure as functions of ndof n adaptive meshes in Example 7.2

7.2 Square domain with big oscillations

Our second benchmark problem employs homogeneous boundary data u D ≡ 0, � ≡
1, and an oscillating source term f that matches the exact solution

u(x, y) = x(x − 1)y(y − 1) exp(−100(x − 1/2)2 − 100(y − 117/1,000)2)

on the square domain � = (0, 1)2.
Figures 4 and 5 show efficiency indices for uniform and adaptive mesh refinement.

The results are similar to the results from the first example. Since the oscillations
dominate the global upper bound on coarse meshes, the efficiency improvement by the
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postprocessing is not that significant in the beginning. On finer meshes, the improve-
ment is as significant as in the first example, also for k = 1. In this example there is
almost no visible gap between ηMFEM, ηLS, ηB and the postprocessing of ηB based on
T . The postprocessing based on red(T ) is almost as good as the postprocessing of ηLW
based on T �. The efficiency indices are reduced by about 20 %. The postprocessing
ηBrr(3) of ηB based on two red-refinements red2(T ) and k = 3 iterations leads to higher
efficiency. The improvements numbers from Tables 4 and 5 support this observation.

8 Numerical examples for discontinuous coefficients

This section concerns the Poisson model interface problem.

8.1 Setting

Given a right-hand side f ∈ L2(�), Dirichlet data u D ∈ H1(�) and piecewise
constant diffusion coefficients

0 < � � �(x) � � < ∞ for a.e. x ∈ �

in the domain �, seek u ∈ H1(�) such that

−div (�∇u) = f in � and u = u D on ∂�.

With g := �∇uh this leads to the usual residual (1.1) with weighted energy norm
|||v||| := ‖�1/2∇v‖L2(�) and dual norm

|||Res|||� := sup
ϕ∈H1

0 (�)

Res(ϕ)/|||ϕ|||.

The weight � in the energy norm results in the weight 1/� in the a posteriori error
estimators ‖�−1/2(qxyz − g − Curl v)‖L2(�).

8.2 Square domain

The first benchmark involves f ≡ 0 and u D which match the exact quadratic function
u(x, y) = (x2 − y2)/� on the square domain� = (−1, 1)2. The diffusion parameter
� assumes the values 1, 100, 10,000 on subdomains as depicted in Fig. 8.

Qualitatively there are no new results compared to the standard Poisson model
problem examples. Figures 6 and 7 show a strong improvement by the postprocessings.
While the difference of the efficiency indices of ηLW and its postprocessed quantities
is about 0.25 for uniform and adaptive mesh refinement, there is a surprisingly huge
reduction for ηB, ηMFEM and ηLS from 1.5 to 1.15 in case of adaptive mesh refinement!
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Fig. 6 History of efficiency indices ηxyz/|||e||| of various a posteriori error estimators ηxyz labelled xyz as
functions of ndof on uniform meshes in Sect. 8.2
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Fig. 7 History of efficiency indices ηxyz/|||e||| of various a posteriori error estimators ηxyz labelled xyz as
functions of ndof on adaptive meshes in Sect. 8.2

8.3 Octagon domain

The second benchmark problem from [18] employs f ≡ 0 and u D matching the exact
solution u(x, y) = ((ax2 − y2)(ay2 − x2))/� with a = tan((3π)/8)2 on the octagon
domain

� = conv{(cos((2 j + 1)π/8), sin((2 j + 1)π/8)), j = 0, 1, . . . , 7}.

The diffusion coefficients � take alternately the values 1 and 1,000 as depicted in
Fig. 8.
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Fig. 8 Distribution of � = 1
(white) and � = 1,000
(lightgray) in octagon domain of
Sect. 8.3 (left) and distribution
of � = 1 (white), � = 100
(lightgray) and � = 10,000
(darkgray) in square domain of
Sect. 8.2
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Fig. 9 History of efficiency indices ηxyz/|||e||| of various a posteriori error estimators ηxyz labelled xyz as
functions of ndof on uniform meshes in Sect. 8.3
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Fig. 10 History of efficiency indices ηxyz/|||e||| of various a posteriori error estimators ηxyz labelled xyz
as functions of ndof on adaptive meshes in Sect. 8.3
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In contrast to the last experiment, the efficiency of the Luce–Wohlmuth equilibration
error estimate does not improve much by the postprocessing in case of uniform refine-
ment as seen in Fig. 9. The reason is that ηLW(0) yields already very good efficiency of
about 1.2, the postprocessing ηLW(1) arrives at 1.15 together with the postprocessed
quantities of the other error estimators based on red(T ). In case of adaptive mesh
refinement, Fig. 10 shows a larger scattering similar to former examples. There is
even some little gap between ηB and ηMFEM.

9 Numerical example for obstacle problems

This section is devoted to conforming obstacle problems with an affine obstacle.

9.1 Setting and global upper bound

The unique exact weak solution u ∈ K of the obstacle problem inside the closed and
convex set of admissable functions,

K := {v ∈ H1(�)
∣∣ v = 0 on�D and χ � v a.e. in�} �= ∅

satisfies the variational inequality

∫

�

∇u · ∇(u − v) dx �
∫

�

f (u − v) dx for all v ∈ K .

After [5] and for the particular choice of�h [13], the discrete solution of the obstacle
problem uh in

K (T ) := {vh ∈ P1(T ) ∩ C(�)
∣∣ vh = 0 on�D and Iχ � vh in�}

solves the discrete version of the Poisson problem for w ∈ V with

∫

�

∇w · ∇v dx =
∫

�

( f −�h)v dx for all v ∈ V . (9.1)

The energy norm difference |||w − uh ||| = |||Res|||� between uh and the exact solution
w of the Poisson problem (9.1) can be estimated by any a posteriori error estimator. In
the conforming case χ � Iχ , [13] leads, for any a posteriori estimator η for |||w−uh |||,
to the reliable global upper bound (GUB) in the strict sense of

|||e||| � GUB(η) := (η + |||�h − J�h |||�)/2

+
√√√√

∫

�

(χ − uh)J�h dx + (η + |||�h − J�h |||�)2.

123



456 C. Carstensen, C. Merdon

10
2

10
3

10
4

10
5

10
6

10
7

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
B(0)
B(∞)
Br(1)
Br(5)
Br( ∞)
Brr(3)
MFEM
MFEMr(1)
MFEMr(5)
MFEMr( ∞)
LS
LSr(1)
LSr(5)
LSr( ∞)
LW
LW(1)
LW(5)
LW(∞)

Fig. 11 History of efficiency indices GUB(ηxyz)/|||e||| of various a posteriori error estimators GUB(ηxyz)

labelled xyz as functions of ndof on uniform meshes in Sect. 9.2

The patchwise oscillations

osc(�h,N ) :=
⎛
⎝∑

z∈N
diam(ωz)

2 min
fz∈R

‖�h − fz‖2
L2(ωz)

⎞
⎠

1/2

are a computable bound for

|||�h − J�h |||� := sup
v∈V \{0}

∫

�

(�h − J�h)v dx/|||v||| � osc(�h,N ).

The competition in [13] compares five classes of error estimators.

9.2 Numerical example on L-shaped domain with oscillations and constant obstacle

The benchmark example from [2] mimics a typical corner singularity on the L-shaped
domain � = (−2, 2)2\([0, 2] × [−2, 0]) with constant obstacle χ = Iχ ≡ 0 and
homogeneous Dirichlet data u D ≡ 0 along ∂�. With the right-hand side

f (r, ϕ) := −r2/3 sin(2ϕ/3)

(
7g′(r)

3r
+ g′′(r)

)
− H(r − 5/4),

g(r) := max
{

0,min
{

1,−6s5 + 15s4 − 10s3 + 1
}}

for s := 2(r − 1/4)

and the Heaviside function H , the exact solution reads u(r, ϕ) := r2/3g(r) sin(2ϕ/3).
Figures 11 and 12 compare the efficiency indices for the original equilibration error

estimators and for their postprocessed modifications. Also in this nonlinear application,
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Fig. 12 History of efficiency indices GUB(ηxyz)/|||e||| of various a posteriori error estimators GUB(ηxyz)

labelled xyz as functions of ndof on adaptive meshes in Sect. 9.2

there is a significant improvement from efficiency indices about 1.5 to efficiency
indices about 1.3 due to the postprocessing.

10 Conclusions

10.1 Braess versus Luce–Wohlmuth

One interpretation of the numerical examples below and our overall experience is
that the Braess error control is already very accurate and it is the quality of that
simple Braess equilibration which causes the minimal improvements in the numerical
experiments for T̂ = T . The choice T̂ = red(T ) leads to remarkable improvements
throughout all benchmarks. The slight superiority of the Luce–Wohlmuth technique
appears the consequence of the dual mesh T̂ = T � which is refined and hence leads
to more space for improvements.

10.2 Computational costs

The striking empirical observation is that already a few iterations dramatically improve
the efficiency indices. The more detailed examples in Sect. 7 convey that even a single
iteration leads to substantial improvement also for very large numbers of degrees of
freedom. The improvement numbers xyz,r(k) from (6.1) are mostly below 0.5, so the
relative error is halved.

If the number of red-refinements is increased, we also suggest to increase the number
of cg iterations. In our experiments, ηBrr(3) employs two red-refinements and three cg
iterations. This combination results in efficiency indices very close to 1 in the examples
for the linear problems.
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10.3 Postprocessing in presence of overhead terms

In the presence of overhead terms in form of oscillations on coarse meshes in Sect. 7.2
or in form of the quantities related to the Lagrange multiplier in the obstacle prob-
lem of Sect. 9, the improvement by the postprocessing is less significant. While the
oscillations possibly may be reduced by some more elaborate choice of q, the afore-
mentioned other overhead terms are somehow intrinsic and cannot be improved by
the postprocessing. In the latter case the effectivity of the postprocessing is limited by
the contribution of those overhead terms relative to the global upper bound.
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