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Abstract The saturation assumption is widely used in computational science and
engineering, usually without any rigorous theoretical justification and even despite of
counterexamples for some coarse meshes known in the mathematical literature. On
the other hand, there is overwhelming numerical evidence at least in an asymptotic
regime for the validity of the saturation. In the generalized form, the assumption states,
for any 0 < ε ≤ 1, that

|||u − Û |||2 ≤ (1 − ε/C)|||u −U |||2 + εosc2( f,N ) (SA)

for the exact solution u and the first-order conforming finite element solutionU (resp.
Û ) of the Poisson model problem with respect to a regular triangulation T (resp. T̂ )
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2 C. Carstensen et al.

and its uniform refinement T̂ within the class T of admissible triangulations. The
point is that the patch-oriented oscillations osc( f,N ) vanish for constant right-hand
sides f ≡ 1 and may be of higher order for smooth f , while the strong reduction
factor (1− ε/C) < 1 involves some universal constant C which exclusively depends
on the set of admissible triangulations and so on the initial triangulation only. This
paper proves the inequality (SA) for the energy norms of the errors for any admissible
triangulation T in T up to computable pathological situations characterized by failing
the weak saturation test (WS). This computational test (WS) for some triangulation
T states that the solutions U and Û do not coincide for the constant right-hand side
f ≡ 1. The set of possible counterexamples is characterized as T with no interior node
or exactly one interior node which is the vertex of all triangles and T̂ is a particular
uniform bisec3 refinement. In particular, the strong saturation assumption holds for all
triangulations with more than one degree of freedom. The weak saturation test (WS)
is only required for zero or one degree of freedom and gives a definite outcome with
O(1) operations. The only counterexamples known so far are regular n-polygons. The
paper also discusses a generalization to linear elliptic second-order PDEs with small
convection to prove that saturation is somehow generic and fails only in very particular
situations characterised by (WS).

Mathematics Subject Classification 65N15 · 65N30

1 Introduction

1.1 Motivation

It is well known that the criss-cross triangulation T0 of the unit square Ω is a coun-
terexample to the saturation assumption if the refined mesh T̂ is refined everywhere
by the newest vertex bisection (NVB) with refinement edges along the boundary ∂Ω .
The respective discrete solutions U = Û for the Poisson model problem

−div(A∇u) = f in Ω and u = 0 on ∂Ω (1.1)

coincide for the constant right-hand side f ≡ 1 and A = 12×2 for the Laplace oper-
ator. This is often regarded as a pre-asymptotic artifact and contrasted with striking
numerical evidence for the saturation assumption on finer triangulations. This paper
provides a rigorous proof of this conjecture and characterises the very small set of
counterexamples. For mesh-refinement techniques with an interior node property, the
saturation assumption has been reasonably justified in [10], and is used in [1,2,11,15].
This paper justifies the saturation assumption of [11, p.293] where it is warned that
this assumption may fail to hold in general. A proof of the saturation assumption in
the context of eigenvalue problems is included in [6] for sufficiently small mesh-sizes
only.

The saturation assumption is established in [10] for a different situation with an
increase of polynomial degrees from first to second order in the finite element spaces
but on the same mesh. This increase of the finite element space allows for the same

123



Justification of the saturation assumption 3

number of degrees of freedom as themesh-refinements of this paper and hence appears
competitive from a practical point of view. Despite the fact that [10] observe that
red refinement leads to saturation in one example, they conclude that quadratics do
indeed encode finer information than refined linears in [10, Remark 3.2] in view
of the counterexample of the criss-cross triangulation of the unit square for bisec3
refinement. The Main Results I and II of this paper, however, prove this statement in
the negative and point out that piecewise quadratics possibly encode finer information
on the oscillations than refined piecewise linear conforming finite element schemes;
but the two improved solutions enjoy a similar saturation property up to an extremely
limited number of geometries exclusively for the very first mesh with at most one
degree of freedom.

The saturation property has to be considered in comparison to the error estimator
reduction in the convergence analysis of adaptive finite element methods [8,14]. In
explicit residual-based error estimators, the mesh-size enters as a weight and hence
reduces under refinement. This implies a reduction property of such error estimators
and eventually leads to linear convergence of some total error which is a convex
combination of the error estimator and the error. In contrast to this, the saturation
property describes the reduction (SA) of the error terms without involving any error
estimator contribution, but with immediate important applications in the context of
hierarchical error estimators. The proofs are rather independent, e.g., the saturation
property (SA) cannot be proved by simply reducing the mesh-size.

Let T be a shape-regular triangulation of Ω into triangles with the set of nodes N
and the set of edges E . Let P1(T ) denote the piecewise linear polynomials with respect
to T and let the finite element space V (T ) := P1(T )∩H1

0 (Ω) consist of all piecewise
linear functions which are globally continuous and vanish along the boundary ∂Ω .

Throughout this paper, let A ∈ R
2×2 denote a symmetric positive definite constant

diffusion matrix and let |||·||| := ‖A1/2∇·‖L2(Ω) be the induced energy norm in V ≡
H1
0 (Ω). The discrete problem seeks a piecewise linear function uT ∈ V (T ) such that

ˆ
Ω

(A∇uT ) · ∇vT dx =
ˆ

Ω

f vT dx for all vT ∈ V (T ). (1.2)

Given an initial regular triangulation T0 ofΩ into triangles with at least one interior
vertex and the set of all admissible refinements T by successive application of the
refinement rules from Fig. 1 (see Definition 2.3 for more details) the main result
concerns two notions of saturation for a triangulation T and its refinement T̂ where
each edge is bisected and each triangle T ∈ T̂ is obtained by red or bisec3 refinement
as illustrated in Fig. 1; written T̂ ∈ unif(T ).

Fig. 1 Refinement rules red, green, blue-left, blue-right, bisec3 and bisec5. The reference edge, the bottom
edge, is always refined. The new reference edges for the sub-triangles are indicated with a second line
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4 C. Carstensen et al.

1.2 Strong saturation

Strong saturation for T ∈ T and some uniform refinement T̂ ∈ unif(T ) means
that, for any 0 < ε ≤ 1, there exists �(ε) := 1 − ε/C(T0) < 1, with a universal
constantC(T0)which exclusively depends on T0, such that: Given any right-hand side
f ∈ L2(Ω), the exact solution u of (1.1) and the discrete solution U := uT ∈ V (T )

(resp. Û := uT̂ ∈ V (T̂ )) of the discrete problem (1.2) with respect to T (resp. T̂ )
satisfy

|||u − Û |||2 ≤ �(ε)|||u −U |||2 + εosc2( f,N ) (SA)

for the patch-oriented oscillations

osc2( f,N ) :=
∑

z∈N (Ω)

diam(Ωz)
2‖ f − ffl

Ωz
f dx‖2

L2(Ωz)
(1.3)

with the integral mean
ffl
Ωz

f dx of f over the extended nodal patch Ωz ; more details
on the oscillations follow in Sect. 3.

1.3 Weak saturation

Weak saturation for T and T̂ ∈ unif(T ) means that for the constant right-hand side
f ≡ 1, the discrete solutions U ∈ V (T ) and Û ∈ V (T̂ ) are different,

U �= Û , and so |||u − Û ||| < |||u −U |||. (WS)

The strong saturation property (SA) is a frequent assumption that amesh-refinement
procedure will eventually lead to q-linear convergence of the approximate finite ele-
ment solution to the exact solution.

1.4 Main results

Main Result I For some global constant C(T0) which exclusively depends on T0 and
given any 0 < ε ≤ 1, for any T ∈ T and T̂ ∈ unif(T ), (WS) implies (SA) with
�(ε) = 1 − ε/C(T0).

It appears interesting that the proof combines hard analysis (i.e., direct estimation
with explicit constants) and soft analysis (i.e. functional analysis with compactness
principles and unknown constants). The hard analysis concerns first the situationwhere
the triangulation has some edge with a positive distance from the boundary ∂Ω . This
leads to a constantC(T0)which depends only on a lower bound of the minimum angle
min�T0 in T0 (and hence in T). The remaining situations are determined by a finite
number of configurations like T0 and possibly a few others. For each of those pairs
T and T̂ , a compactness and equivalence of norm argument provides the assertion.
The constants in the soft analysis depend very much on T and T̂ and of course on T0.
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Justification of the saturation assumption 5

The maximum of all those constants in the finite number of possible geometries in the
second scenario concludes the proof.

Weak saturation is almost always true and fails only for one very particular situation
with dim V (T ) = 1 and one particular bisec3 refinement pattern.

Main Result II Weak saturation can only fail for T and T̂ ∈ unif(T ) if T has exactly
one interior node z and T̂ is obtained by bisec3 for each triangle T ∈ T (z) = T such
that the refinement edge of T is opposite to the vertex z on the boundary ∂Ω .

Notice that the exceptional case is with dim V (T ) = 1 and bisec3 refinement where
all refinement edges are opposite to the free node. This case can be easily checked
without difficulty for the geometry at hand. The known exceptional cases are regular
polygons from [3] which include the criss-cross unit square. It is left as an open
question whether there exist other counterexamples for A = 12×2.

1.5 Outline

The remaining parts of this paper are organised as follows. Section 2 studies a metric
on the set of edges in a regular triangulation and thereby quantifies a uniform bound for
the distance of some interior edge to a compactly interior edge. Section 3 establishes
the strong saturation for all triangulations that contain one edge with positive distance
to the boundary. Section 4 proves that weak saturation implies strong saturation. A
characterisation of triangulations that allow for weak saturation follows in Sect. 5.
Section 6 discusses the extension to general elliptic linear second-order PDEs with
small convection. It is surprising that the weak saturation test applies to the main part
(1.1)–(1.2) only where the coefficients of the lower-order terms have no influence.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces and their
norms is employed. The L2 projection onto piecewise polynomials of degree k ∈ N0
is denoted by�k . The energy norm is denoted by |||·||| := ‖A1/2∇·‖L2(Ω). The formula
a � b represents an inequality a ≤ Cb for some mesh-independent, positive generic
constant C ; a ≈ b abbreviates a � b � a. The measure |·| is context-sensitive and
refers to the number of elements of some finite set (e.g. the number |T | of triangles
in a triangulation T ) or the length |E | of an edge E or the area |T | of some domain T
and not just the modulus of a real number or the Euclidean length of a vector.

2 Edge-connectivity

This section studies a metric on the set of interior edges for admissible triangulations
to prove that the length of some polygonal path as in Fig. 2 that links an arbitrary
interior edge F to some edge F ′ which lies compactly in the domain through a finite
chain of interior edges allows for some global bound of the number of edges in this
chain. The technical challenge of this section consists in the large class of admissible
triangulations for rather general refinements as depicted in Fig. 1. Details are stated as
Theorem 2.1 below, right after all the necessary notation is set up. It turns out that the
aforementioned global bound and the shape-regularity determine the constant C(T0)
indicated in the introduction as the main result of this section.
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6 C. Carstensen et al.

F
F

Fig. 2 An edge F and a compactly interior edge F ′ (thick) and a possible connecting path (dashed)

Definition 2.1 (Nodes and edges) Given a regular triangulation T , denote the set of
edges by E and the set of nodes byN . LetN (Ω) and E(Ω) denote the sets of interior
nodes and interior edges. For an interior edge E = ∂T+ ∩ T− ∈ E(Ω) shared by two
triangles T+ and T−, the edge-patch is defined asωE := int(T+∪T−). Given a triangle
T ∈ T , denote its set of edges by E(T ) and its set of nodes by N (T ). For any edge
E = conv{z1, z2} ∈ E , the set of endpoints reads N (E) = {z1, z2}. Define the set of
compactly interior edges as

Ec(Ω) := {E ∈ E(Ω) | E ∩ ∂Ω = ∅}

and notice that E and ∂Ω are compact sets and so E ∩ ∂Ω = ∅ means that E ⊂⊂ Ω

lies compactly in Ω with dist(E, ∂Ω) > 0. The set of interior edges whose two
endpoints belong to the boundary ∂Ω reads

Eb(Ω) := {E ∈ E(Ω) | N (E) ⊂ N (∂Ω)}.

The set Ea(Ω) of interior edges that belong to at least one triangle with an interior
node is

Ea(Ω) := {E ∈ E(Ω) | ∃T ∈ T with N (T ) ∩ N (Ω) �= ∅ and E ∈ E(T )}.

Denote by E0 (resp. E0(Ω)) the set of edges (resp. interior edges) of the coarse
initial triangulation T0. For an interior edge E = ∂T+ ∩ T− ∈ E0(Ω) shared by two
triangles T+, T− ∈ T0, the edge-patch reads ω

(0)
E := int(T+ ∪ T−).

Definition 2.2 (Metric δ) Assume that E(Ω) �= ∅ and define a metric δ on the set
E(Ω) of interior edges, for F, F ′ ∈ E(Ω) by

δ(F, F ′) := min

{
J ∈ N0

∣∣∣∣
∃ F1, . . . , FJ+1 ∈ E(Ω) with F1 = F, FJ+1 = F ′
and ∀ j = 1, . . . , J, Fj ∩ Fj+1 �= ∅

}
.

Furthermore, let

δ(F, Ec(Ω)) := min{δ(F, F ′) | F ′ ∈ Ec(Ω)}.
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Justification of the saturation assumption 7

PJ+1 PJ+2

PJ

Fig. 3 Coarse triangle K ∈ T0 and refinement without any compactly interior edge Ec(int(K )) = ∅ and
|Eb(int(K ))| = 6. Further refinements of this kind towards PJ+2 prove that |E(int(K ))| can be arbitrarily
large while Ec(int(K )) = ∅

Example 2.1 (Distances can be large) The example triangulation of Fig. 2 shows
δ(F, Ec(Ω)) = 7. Further refinements towards the lower left corner of this rectangular
domain indicate that the number of triangles in T may not be bounded by a universal
constant which depends only on T0. At the same time, the edge-path which connects
interior edges F and F ′ can be extremely large (add more and more of the criss-cross
squares in the middle for a modified T0). Despite the warnings of this example, the
number maxF∈Ea(Ω) δ(F, Ec(Ω)) ≤ C1(T0) is bounded in terms of T0 for a broad
class of admissible triangulations defined below in Definition 2.3.

Example 2.2 (No uniform bound for edges in Eb(Ω)) Figure 3 displays one critical
triangle of a family of triangulations for whichmaxF∈E(Ω) δ(F, Ec(Ω)) is unbounded.
Indeed, if the edge shared by nodes PJ+1 and PJ+2 and the edge shared by nodes PJ+2
and PJ in Fig. 3 belong to the boundary ∂Ω , then arbitrarily many edges Eb(Ω) may
be added through refinement without changing the underlying finite element space.

Definition 2.3 (Admissible triangulations) Let T0 be a regular triangulation. For each
T ∈ T0, one chooses one of its edges E(T ) as a reference edge from the set of edges
E0. The set T := T(T0) of admissible triangulations contains all regular triangulations
T that are refined from T0 with the refinement rules of Fig. 1, where the new reference
edges for the sub-triangles are indicated by a second line.

Theorem 2.1 There exists some constant C1(T0) < ∞ such that any admissible
triangulation T ∈ T with the set Ec(Ω) �= ∅ of compactly interior edges satisfies

max
F∈Ea(Ω)

δ(F, Ec(Ω)) ≤ C1(T0).

The proof of Theorem2.1 combines topological arguments (connecting edge-paths)
with local geometrical facts (refinement rules for one initial triangle). The latter are
summarized in the following lemma.

Lemma 2.1 Let K ∈ T0 be a triangle of the initial triangulation T0 and let T ∈ T

denote an admissible triangulation with nodes N and edges E .
(i) If N (int(K )) �= ∅, then E(K ) ∩ E = ∅. In other words, none of the edges of K

belongs to E .
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8 C. Carstensen et al.

(a) (b) (c) (d)

Fig. 4 All possible coarsest refinements of K with one interior node (up to the reflection of d across the
diagonal line)

(ii) Ec(int(K )) = ∅ if and only if |N (int(K ))| ≤ 1.
(iii) If Ec(int(K )) �= ∅ and P ∈ N (int(K )), then Ec(int(K )) ∩ E(P) �= ∅.
(iv) If N (int(K )) �= ∅ and E = (F1 ∪ F2) ∈ E(K ) ⊆ E0 is bisected into F1, F2 ∈

E\E0, then there exists some y ∈ N (int(K )) such that

conv{y,mid(E)} ∈ E(int(K )).

Proof A careful discussion of the refinement rules reveals that any triangulation of
K with at least one interior node is some refinement of one of the triangulations of
Fig. 4. This proves (i).

Due to Definition 2.3 any further refinements of triangulations from Fig. 4 with
exactly one interior node has to bisect a triangle of T (N (int(K ))). Direct investigation
of these possible bisections in the triangulations of Fig. 4 prove (ii).

Suppose that all edges that contain the interior node P ∈ int(K ) are not compactly
interior edges in K . Then, their respective endpoints belong to the boundary ∂K of
the triangle K . All possibilities for this situation are displayed in Fig. 4 and imply that
N (int(K )) contains exactly the vertex P . Then, Ec(int(K )) = ∅. The contraposition
implies (iii).

Direct investigations first verify (iv) for the triangulations of Fig. 4 and second for
their refinements. ��

Proof of Theorem 2.1 Suppose that Ec(Ω) �= ∅. Any F ∈ Ea(Ω) ∩ Eb(Ω) is con-
nected to some edge in Ea(Ω)\Eb(Ω) by an edge-path of length smaller or equal to
1. Therefore, without loss of generality, suppose that F ∈ Ea(Ω)\(Eb(Ω) ∪ Ec(Ω)).
Hence, F = conv{P, Q} for P ∈ N (Ω) and Q ∈ N (∂Ω).

In the first step of the proof suppose that P ∈ N (int(K )) for some K ∈ T0.
Suppose that Ec(int(K )) �= ∅ and, thus, by Lemma 2.1(iii), P is connected to some
interior node N (Ω). This together with Lemma 2.1(iii) implies that P belongs to
some edge in Ec(Ω), δ(F, Ec(Ω)) = 1 ≤ 3 + 2|E0(Ω)|. Otherwise, Ec(int(K )) = ∅
and all neighbouring nodes of P in T belong to the boundary ∂Ω of the domain Ω .
Lemma 2.1(ii) implies that P is the only interior node of K , thus K is a refinement
of the triangulations in Fig. 4. Since all neighbouring nodes of P in T belong to the
boundary, Ω = int(K ). This contradicts Ec(Ω) �= ∅.

In the second step of the proof suppose that P does not belong to exactly one
K ∈ T0. Hence, P belongs to a common edge E1 ∈ E0(Ω) of two coarse triangles.
Since there exists F ′ ∈ Ec(Ω), the edge-wise connectivity of Ω implies the existence
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Justification of the saturation assumption 9

of a finite set E1, . . . , EJ ∈ E0(Ω), 1 ≤ J ≤ |E0(Ω)|, of interior edges in the coarse
triangulation T0 such that E1 is as above with P lays on E1 and E1, . . . , EJ ∈ E0(Ω)

is a polygon with N (E j ) ∩ N (E j+1) �= ∅ for j = 1, . . . J and the topological

closure of ω
(0)
EJ

contains F ′. Without loss of generality let J be a minimal choice such

that F ′ does not belong to the topological closure of ω
(0)
E1

∪ · · · ∪ ω
(0)
EJ−1

(understood
as the empty set if J = 1). Moreover, suppose that E j = conv{Pj , Pj+1} for all
j = 1, . . . , J for piecewise distinct nodes P1, . . . , PJ+1 ∈ N0. In this situation,
one designs some edge-path from F = conv{P, Q} to Ec(Ω) as follows. The edge
E1 = conv{P1, P2} ∈ E0(Ω)\E(Ω) is refined and, hence, there exist pairwise distinct
F (1)
1 , . . . , F (k1)

1 ∈ E(Ω)with k1 ∈ N and F ( j)
1 ∩ F ( j−1)

1 �= ∅ for all j = 2, . . . , k1 and

conv{P, P2} = F (1)
1 ∪ · · · ∪ F (k1)

1 . Suppose P ∈ N (F (1)
1 ) and P2 ∈ N (F (k1)

1 ) such

that (F, F (1)
1 , . . . , F (k1)

1 ) is an edge-path in T from Q to P2. For any j = 2, . . . , J ,
let

E j = F (1)
j ∪ · · · ∪ F

(k j )
j = conv{Pj , Pj+1}

for distinct F (1)
j , . . . , F

(k j )
j in E(Ω) such that (F (1)

j , . . . , F
(k j )
j ) defines an edge-path

from Pj to Pj+1 along E j in the fine triangulation T . This composes to an edge-path
from Q to PJ+1 in T .

Suppose that F ′ ⊆ EJ . In case J = 1, P is connected to F ′ and therefore
δ(F, Ec(Ω)) = 1 ≤ 3 + 2|E0(Ω)|. Otherwise J ≥ 2 and k1 ∈ {0, 1}. Since J is
minimal, k2, . . . , kJ−1 ∈ {1, 2} and Fmin(kJ ,2)

J ∈ Ec(Ω) implies that the edge-path

(
F, F (k1)

1 , F (1)
2 , F (k2)

2 , F (1)
3 , . . . , F (kJ−1)

J−1 , F (1)
J , Fmin(kJ ,2)

J

)

connects F to Ec(Ω) in T . This and J ≤ |E0(Ω)| prove

δ(F, Ec(Ω)) =
J−1∑

	=1

k	 + min(kJ , 2) − 1 ≤ 2J − 1 ≤ 3 + 2|E0(Ω)|.

In the remaining case F ′ is contained in ω
(0)
EJ

but F ′
� EJ . Since J is minimal,

k1 ∈ {0, 1} and k2, . . . , kJ−1 ∈ {1, 2} and so the edge-path (F, F (1)
1 , . . . , F (kJ−1)

J−1 )

connects Q with PJ = N (EJ−1) ∩ N (EJ ) and has length smaller than or equal
to 2J . Recall that F ′ ∈ Ec(Ω) belongs to some K = conv{PJ , PJ+1, PJ+2} ∈ T0
with edge EJ = conv{PJ , PJ+1} and opposite vertex PJ+2 ∈ N0. The conclusion
of the proof consists in the design of some edge-path F (1)

J , . . . , F (kJ )
J in T which

connects PJ and F (kJ )
J ∈ Ec(Ω) with kJ ≤ 4. Indeed, this implies that the edge-path

(F, F (1)
1 , . . . , F (kJ )

J ) connects F and Ec(Ω) and proves

δ(F, Ec(Ω)) ≤ 2J + kJ − 1 ≤ 3 + 2J ≤ 3 + 2|E0(Ω)|.
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10 C. Carstensen et al.

Three cases have to be considered to design such an edge-path F (1)
J , . . . , F (kJ )

J with
kJ ≤ 4.

(a) In the first case assume that F ′ ∈ Ec(int(K )). Hence, N (int(K )) �= ∅ and
Lemma 2.1(i) implies that all edges of K are at least bisected. Since F ′

� EJ ,
EJ is at most bisected once. Thus, Lemma 2.1(iv) leads to an edge-path of length
kJ = 2 with F (2)

J = conv{y,mid(EJ )} ∈ Ec(Ω), for some y ∈ N (int(K )).
(b) In the second case assume F ′ ⊆ ∂K\EJ . If F ′ ⊆ conv{PJ , PJ+2}, one finds

an edge-path from PJ to Ec(Ω) of length kJ ≤ 2. It remains the case that F ′ ⊆
conv{PJ+1, PJ+2}. Since EJ is at most bisected once, an edge-path of length
kJ ≤ 4 connects PJ with Ec(Ω).

(c) In the remaining case suppose F ′ ∈ Ec(Ω)\Ec(int(K )) and so there is an edge
E ∈ E(K ) of K with F ′ ∩ E �= ∅. Moreover, F ′ has at least one vertex on the
boundary ∂K of K and, hence, E is an interior edge E ∈ E(Ω). If E = EJ or E =
conv{PJ , PJ+2}, this leads to a path of length kJ ≤ 2. If E = conv{PJ+1, PJ+2},
the fact that EJ is at most bisected once, leads to an edge-path of length kJ ≤ 4.

��

3 Discrete efficiency

This section introduces the discrete efficiency of the explicit edge-residual based a
posteriori error estimator η in the context of (1.1)–(1.2). For any interior edge E ∈
E(Ω), there exist two adjacent triangles T+, T− ∈ T such that E = ∂T+ ∩ ∂T− and
ωE := int(T+ ∪ T−). Let νE denote the fixed normal vector of E that points from T+
to T−. Given any (possibly vector-valued) function v, define the jump of v across E
by [v]E := v|T+ − v|T− with the traces v|T+ and v|T− on E with length |E |.

Define η := η(E(Ω)) := √
η2(E(Ω)) by

η2(E) := |E |‖[A∇U ]E · νE‖2
L2(E)

for any E ∈ E(Ω) and

η2(F) := ∑
E∈F

η2(E) for any subset F ⊆ E(Ω).

A refined analysis of the results from [7,12] shows that the error estimator η is
reliable and efficient up to oscillations. The definition of the oscillations relies on the
following extended nodal patches of [5].

Definition 3.1 (Extended nodal patch) Let (ϕz | z ∈ N ) denote the nodal basis of
P1(T ) ∩ H1(Ω) with ϕz(z) = 1 and ϕz(y) = 0 for all y ∈ N \{z}. Assume that
there is a map ζ : N → N (Ω) which assigns to each vertex z ∈ N an interior vertex
ζ(z) ∈ N (Ω) where ζ(z) = z for all z ∈ N (Ω). Define the functions

ψz :=
∑

y∈N
y=ζ(z)

ϕz for any z ∈ N (Ω).
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Justification of the saturation assumption 11

The functions (ψz | z ∈ N (Ω)) define a partition of unity. For each interior vertex
z ∈ N (Ω), the extended nodal patch reads

Ωz := {x ∈ Ω | 0 < ψz(x)}.

Throughout this paper we assume that Ωz is connected for any z ∈ N (Ω).

For the extended nodal patch Ωz and the integral mean
ffl
Ωz

f dx of the right-hand

side f ∈ L2(Ω) of (1.1), the oscillations read

osc2( f,Ωz) := |Ωz |‖ f − ffl
Ωz

f dx‖2
L2(Ωz)

and

osc2( f,N ) :=
∑

z∈N (Ω)

osc2( f,Ωz) with osc( f,N ) :=
√
osc2( f,N ).

Theorem 3.1 There exists some constant Crel ≈ 1 which depends on the initial tri-
angulation T0 and the coefficient matrix A such that any right-hand side f ∈ L2(Ω)

and any T ∈ T with exact solution u ∈ V to (1.1) and discrete solution U ∈ V (T ) to
(1.2) satisfy

|||u −U |||2 ≤ Crel(η
2 + osc2( f,N )).

Proof Let e := u−U . It is proven in [5, Thm. 2.1] that there exists a quasi-interpolation
Ie ∈ V (T ) (which is essentially that of [4]) with

|||e − Ie||| � |||e||| and
ˆ

Ω

f (e − Ie) dx � |||e|||osc( f,N ).

This, the discrete problem and the integration by parts together with the techniques of
[15] lead to

|||e|||2 =
ˆ

Ω

f (e − Ie) dx −
∑

E∈E(Ω)

ˆ
E
(e − Ie)[A∇U ]E · νE ds

�
(
osc( f,N ) + η

) |||e|||.

This concludes the proof. ��
The further analysis of the discrete efficiency employs the following lemma on the

oscillations.

Lemma 3.1 (Oscillations) Suppose T is a regular triangulation of the bounded Lip-
schitz domain Ω ′ into J triangles with Creg := maxT∈T |Ω ′|/|T |. Assume that any
triangle T ∈ T contains at least one interior vertex N (T ) ∩ N (Ω ′) �= ∅. Then any
function f ∈ L2(Ω ′) satisfies
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12 C. Carstensen et al.

|Ω ′|‖ f − ffl
Ω ′ f dx‖2L2(Ω ′) ≤ 8 + J 3C2

reg

4

∑

E∈E(Ω ′)
|ωE |‖ f − ffl

ωE
f dx‖2L2(ωE )

≤ 8 + J 3C2
reg

4

∑

z∈N (Ω ′)
|Ω ′

z |‖ f − ffl
Ω ′

z
f dx‖2L2(Ω ′

z)
.

Proof First consider the special case of a piecewise constant function f ∈ P0(T ). Let
T = {T1, . . . , TJ } and denote f j := f |Tj λ j := |Tj |/|Ω ′|. Then

f̄ := ffl
Ω ′ f dx =

J∑

j=1

λ j f j and
J∑

j=1

λ j = 1.

It follows that

‖ f − f̄ ‖2L2(Ω ′) =
J∑

j=1

( f j − f̄ )2|Tj |

and

f j − f̄ = (1 − λ j ) f j −
J∑

k=1
k �= j

λk fk =
J∑

k=1
k �= j

λk( f j − fk).

Hence,

‖ f − f̄ ‖2L2(Ω ′) = |Ω ′|
J∑

j=1

λ j

⎛

⎜⎜⎝
J∑

k=1
k �= j

λk( f j − fk)

⎞

⎟⎟⎠

2

The Cauchy inequality in R
J−1 implies for any j ∈ {1, . . . , J } that

⎛

⎜⎜⎝
J∑

k=1
k �= j

λk( f j − fk)

⎞

⎟⎟⎠

2

≤

⎛

⎜⎜⎝
J∑

k=1
k �= j

λk

⎞

⎟⎟⎠

⎛

⎜⎜⎝
J∑

k=1
k �= j

λk( f j − fk)
2

⎞

⎟⎟⎠

≤ (1 − λ j )

J∑

k=1
k �= j

( f j − fk)
2.
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Justification of the saturation assumption 13

The combination of the previous two displayed inequalities results in

‖ f − f̄ ‖2L2(Ω ′) ≤ |Ω ′|
J∑

j=1

J∑

k=1
k �= j

λ j (1 − λ j )( f j − fk)
2

≤ |Ω ′|
J∑

j=1

J∑

k=1
k �= j

( f j − fk)
2
/
4. (3.1)

On the other hand, for any E ∈ E(Ω ′) with ωE = T+ ∪T−, f+ := f |T+ , f− := f |T− ,
and fE := ffl

ωE
f dx it holds that

‖ f − fE‖2L2(ωE )
= (| f+ − fE |2|T+| + | f− − fE |2|T−|).

Elementary algebraic manipulations with |T+| + |T−| = |ωE | prove

f+ − fE = |T−|
|ωE | ( f+ − f−) and f− − fE = |T+|

|ωE | ( f− − f+).

Hence,

|ωE |‖ f − fE‖2L2(ωE )
= |ωE |−1| f+ − f−|2(|T+||T−|2 + |T+|2|T−|)

= |T+||T−|| f+ − f−|2. (3.2)

Given any j, k ∈ {1, . . . , J } with j �= k, there exists some 2 ≤ 	 ≤ J with pairwise
distinct triangles Tj =: T(1), T(2), . . . , T(	−1), T(	) := Tk and edges E(1), . . . , E(	−1)
with T(m+1) ∪ T(m) = ωE(m)

for allm = 1, . . . , 	−1. Then the Cauchy inequality and
(3.2) imply

| fk − f j |2 =
∣∣∣∣∣

	−1∑

m=1

( f |T(m−1) − f |T(m)
)

∣∣∣∣∣

2

≤ |Ω ′|−2

(
	−1∑

m=1

λ−1
(m)λ

−1
(m+1)

)(
	−1∑

m=1

|T(m+1)||T(m)|( f |T(m−1) − f |T(m)
)2

)

≤ |Ω ′|−2(J − 1)C2
reg

(
	−1∑

m=1

|ωE(m)
|‖ f − ffl

ωE(m)
f dx‖2ωE(m)

)
.

This and (3.1) prove the assertion with constant (J − 1)2 JC2
reg/4.

In the case of a general function f ∈ L2(Ω ′), let f̄ := ffl
Ω ′ f dx and f̄0 :=ffl

Ω ′�0 f dx , �0 f ∈ P0(T ). Orthogonality leads to

‖ f − f̄ ‖2L2(Ω ′) = ‖ f − �0 f ‖2L2(Ω ′) + ‖�0 f − f̄0‖2L2(Ω ′) + ‖ f̄ − f̄0‖2L2(Ω ′).
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14 C. Carstensen et al.

Fig. 5 Sub-triangulations for a triangle T ⊆ ωz in the proof of Theorem 3.2 with values of
ffl
T �zdx ≤ 0

For the last term on the right hand side, Hölder’s inequality shows

‖ f̄ − f̄0‖2L2(Ω ′) ≤ ‖ f − �0 f ‖2L2(Ω ′).

This together with

|Ω ′|‖ f − �0 f ‖2L2(Ω ′) ≤
∑

E∈E(Ω ′)
|ωE |‖ f − ffl

ωE
f dx‖2L2(ωE )

and the above estimate for piecewise constant functions proves the assertion with
constant (8+(J−1)2 JC2

reg)/4. The proof of the second stated inequality is immediate.
��

A key ingredient for the proof of the strong saturation is some fine-grid function
�z .

Definition 3.2 Let ϕz ∈ V (T ) denote the nodal basis function associated with the
node z ∈ N (Ω). Define the set of edges that contain z by E(z) := {E ∈ E(Ω) |
z ∈ E}. Let ψE := ϕmid(E) be the linear shape function of the refined triangulation
T̂ ∈ unif(T ) associated with the midpoint of the edge E ∈ E(Ω), and introduce

�z := ϕz −
∑

E∈E(z)

ψE ∈ H1
0 (ωz) ⊆ V (T̂ ).

Theorem 3.2 For any compactly interior edge E = conv{a, b} ∈ Ec(Ω) with the
vertices a, b ∈ N (Ω), at least one vertex z ∈ N (E) = {a, b} satisfies

 
ωz

�z dx ≈ 1 ≈ |||�z||| and
 
F

�z ds = 0 for all F ∈ E(Ω).

Proof The proof employs the technique of [6, Theorem 3.1]. The second assertion,
namely

ffl
F �z ds = 0 for all F ∈ E(Ω), follows directly from the definition of �z for

any z ∈ N (E). For the proof of the first assertion, all possible configurations together
with the values of

ffl
T �zdx for some T ∈ T (z) := {K ∈ T | z ∈ K } are depicted in

Fig. 5. All values of
´
T �z dx are nonpositive and so

ffl
ωz

�z dx ≈ 1 or
ffl
ωz

�z dx = 0.

The exceptional situation
ffl
ωz

�z dx = 0 implies the refinement pattern with bisec3
and refinement edges opposite of z in all triangles T ∈ T (z). This pattern is possible
for at most one vertex a or b. In other words

ffl
ωa

�adx = 0 implies
ffl
ωb

�bdx �= 0.
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Justification of the saturation assumption 15

This proves the assertion for at least one z ∈ {a, b}. The scaling |||�z||| ≈ 1 follows
from the shape-regularity and an inverse estimate. ��

Some hard analysis in the remaining parts of this section proves (SA) for a large
class of triangulations TH .

Definition 3.3 TH := {T ∈ T | Ec(Ω) �= ∅}
Theorem 3.3 (Discrete efficiency) There exists some constant Cdeff ≈ 1 which
depends on the initial triangulation T0 and on the coefficient matrix A such that
any T ∈ TH and T̂ ∈ unif(T ) and any right-hand side f ∈ L2(Ω) with discrete
solutions U ∈ V (T ) and Û ∈ V (T ) to the Poisson model problem f + divA∇u = 0
in Ω satisfy

η2 ≤ Cdeff
(|||Û −U |||2 + osc2( f,N )

)
. (3.3)

Proof Note that, for any E ∈ E(Ω)\Ea(Ω), the error estimator contribution vanishes,
η2(E) = 0.

In the first step of the proof let E = E1 ∈ Ea(Ω). Theorem 2.1 implies that there
exists a compactly interior edge E ′ ∈ Ec(Ω) and a connected path of interior edges
E1, . . . , EJ with J ≤ C1(T0) ≈ 1 such that E ⊆ ωE1 and E ′ ⊆ ωEJ . Denote the
endpoints of those edges by P1, . . . , PJ+1 such that E j = conv{Pj , Pj+1} for all
j = 1, . . . J and note that the union of nodal patches

ΩE :=
J+1⋃

j=1

ωPj

is a connected open set.
The second step consists in the proof of

η(E) � ‖A1/2∇(Û −U )‖L2(ΩE ) + diam(ΩE )‖ f − fΩE ‖L2(ΩE ). (3.4)

Since [A∇U ]E · νE is constant along the edge E of length |E | with some sign ± as
indicated below, it follows that

±η(E) = |E |[A∇U ]E · νE .

The edge-basis function ψE from Definition 3.2 satisfies |E | = 2
´
E ψE ds. Hence,

±η(E)/2 =
ˆ
E

ψE [A∇U ]E · νE ds.

Theorem 3.2 implies the existence of some node z ∈ N (E ′) such that
´
E �zds = 0

and
ffl
ωz

�z dx �= 0. With α := ´
ωE

ψE dx
/ ´

ωz
�z dx ≈ 1 (from shape-regularity)

this implies
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16 C. Carstensen et al.

±η(E)/2 =
ˆ
E

(ψE + α�z) [A∇U ]E · νE ds.

Note that the function vT̂ := ψE + α�z ∈ V (T̂ ) satisfies
´
F vT̂ ds = 0 on all other

edges F ∈ E\{E}. Therefore, the piecewise Gauss divergence theorem leads to

±η(E)/2 =
ˆ

ΩE

∇vT̂ · A∇Udx

(In fact all the edge contributions and all other volume contributions vanish.) Consider
the split

±η(E)/2 =
ˆ

ΩE

∇vT̂ · A∇(U − Û )dx +
ˆ

ΩE

∇vT̂ · A∇Ûdx . (3.5)

Recall |||�z||| ≈ 1 from Theorem 3.2 and compute |||ψE ||| ≈ 1 to see that |α| ≈ 1
proves |||vT̂ ||| � 1. This and the Cauchy–Schwarz inequality imply

ˆ
ΩE

∇vT̂ · A∇(U − Û )dx � ‖A1/2∇(U − Û )‖L2(ΩE ) (3.6)

for the first term on the right-hand side of (3.5). Since vT̂ is supported on ΩE , the
second term in (3.5) reads

ˆ
ΩE

∇vT̂ · A∇Ûdx =
ˆ

Ω

∇vT̂ · A∇Ûdx =
ˆ

Ω

f vT̂ dx .

The choice of α shows
ffl
ΩE

vT̂ dx = 0. Hence fΩE = ffl
ΩE

f dx satisfies

ˆ
ΩE

∇vT̂ · A∇Ûdx =
ˆ

ΩE

( f − fΩE )vT̂ dx .

The Friedrichs inequality and the aforementioned bounds show

‖vT̂ ‖L2(ΩE ) � diam(ΩE )‖A1/2∇vT̂ ‖L2(ΩE ) � diam(ΩE ).

The previous two displayed formulas and the Cauchy–Schwarz inequality imply

ˆ
ΩE

∇vT̂ · A∇Ûdx � diam(ΩE )‖ f − fΩE ‖L2(ΩE ). (3.7)

The combination of (3.5)–(3.7) conclude the proof of (3.4).
Step three is the conclusion of the proof of Theorem 3.3. Since J � 1 is uniformly

bounded, Lemma 3.1 (applied to ΩE ) and (3.4) result in

η2(E) � ‖A1/2∇(U − Û )‖2L2(ΩE )
+

∑

z∈N (ΩE )

osc2( f,Ωz). (3.8)
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Justification of the saturation assumption 17

The design of ΩE as the union of a finite number ≤ C(T0) of nodal patches and the
shape-regularity of T ∈ T imply the finite overlap

max
x∈Ω

∣∣{E ∈ E(Ω) | x ∈ ΩE }∣∣ � 1

independent of T ∈ TH , which concludes the assertion (3.3). ��
Theorem 3.4 (Saturation property) There exists some constant CH ∈ (1,∞) which
only depends on the interior angles of T0 and the coefficient matrix A such that for all
T ∈ TH and for all f ∈ L2(Ω) with exact solution u ∈ V and discrete solutions U,
Û with respect to T and T̂ ∈ unif(T ), any 0 < ε ≤ 1 satisfies

|||u − Û |||2 ≤ (1 − ε/CH (T0))|||u −U |||2 + εosc2( f,N ). (3.9)

Proof Theorem 3.3 and the reliability of η imply that

|||u −U |||2 ≤ Crel(η
2 + osc2( f,N )) ≤ Crel(Cdeff + 1)(|||Û −U |||2 + osc2( f,N )).

This and the Galerkin-orthogonality

|||Û −U |||2 = |||u −U |||2 − |||u − Û |||2

guarantee that CH (T0) := Crel(Cdeff + 1) satisfies

|||u −U |||2/CH (T0) ≤ |||u −U |||2 − |||u − Û |||2 + osc2( f,N ).

This proves the assertion for ε = 1. Multiply this inequality with 0 < ε ≤ 1 and add
to the inequality |||u − Û |||2 ≤ |||u −U |||2 (from Galerkin orthogonality) times (1− ε)

to obtain

|||u − Û |||2 ≤ (1 − ε/CH (T0))|||u −U |||2 + εosc2( f,N ).

��
Remark 3.1 (Adaptive mesh-refinement) Theorem 3.4 can be applied to adaptivemesh
refinement aswell, c.f. [6] for theLaplace eigenvalue problem.The adaptive refinement
is based on the bulk criterion [9] on nodal patches. For chosen bulk parameter 0 <

θ ≤ 1, let M ⊂ N (Ω) be the minimal subset, such that

θη2 ≤
∑

z∈M
η2(E(z)).

Once a node is selected for refinement, all edges E(z) are refined by the red-green-
blue refinement algorithm resulting in a locally refined T̂ . Hence, once a triangle is
refined at least one interior edge is bisected and therefore T̂ ∈ T. Note that all nodes
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18 C. Carstensen et al.

in the set of marked nodes M ⊆ N (Ω) satisfy Theorem 3.2. Hence, the arguments
of Theorem 3.3 apply to all edges E(z) for z ∈ M and so yield the discrete efficiency

η2 ≤ θ−1
∑

z∈M
η2(E(z)) ≤ Cdeff

(
|||Û −U |||2 + osc2( f,N )

)
.

This proves the saturation property (3.9) for adaptively refined meshes.

4 Weak saturation implies strong saturation

The proof that weak saturation implies strong saturation (Main Result I) involves
arguments from hard and soft analysis for the sets of triangulations

TH = {T ∈ T | Ec(Ω) �= ∅} and TS := T\TH .

In view of Theorem 3.4, the assertion has to be verified only for TS . Note that the set
TS defines a finite set of finite element spaces

|{V (T ) | T ∈ TS}| < ∞

while TS may be infinite (cf. Example 2.2).

Theorem 4.1 Suppose that T ∈ TS and T̂ ∈ unif(T ) satisfy (WS). Then there exists
some constant CS(V (T )) such that, for all f ∈ L2(Ω), the exact solution u and the
discrete solutions U and Û satisfy

|||u − Û |||2 ≤ (1 − ε/CS(V (T )))|||u −U |||2 + εosc2( f,N ).

The proof is based on a compactness argument.

Lemma 4.1 Given T ∈ TS with (WS) there exists some 0 < CS(V (T )) < ∞ such
that any f1 ∈ P1(bisec5(T )) and exact (resp. discrete) solutions u (resp. U and Û
with respect to T and T̂ ∈ unif(T )) satisfy

|||u −U |||2 ≤ CS(V (T ))
(|||Û −U |||2 + osc2( f1,N )

)
.

Proof For any T ∈ TS , Theorem 3.1 implies

|||u −U |||2 ≤ Crel

⎛

⎝
∑

E∈E(Ω)

η2(E) + osc2( f,N )

⎞

⎠ .

Let T̂ ∈ unif(T ) and define the following semi-norms

ϑ1( f1) :=
√ ∑

E∈E(Ω)

η2(E) and ϑ2( f1) :=
√

|||Û −U |||2 + osc2( f1,N )
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Justification of the saturation assumption 19

for all f1 in the space P1(bisec5(T )) and exact (resp. discrete) solutions u (resp.U and
Û ). If ϑ2( f1) = 0, then osc( f1,N ) = 0 implies that f1 equals a global constant. This
and the weak saturation imply f1 ≡ 0. Hence, equivalence of semi-norms ϑ1 � ϑ2

and the reliability lead to a constant C1(V (T ), V (T̂ )) such that

|||u −U |||2 ≤ C1(V (T ), V (T̂ ))(|||Û −U |||2 + osc2( f1,N )).

It is correct that there is more than one realisation of T̂ ∈ unif(T ), but each of these
leads to some constant C1(V (T )), V (T̂ )). This proves the lemma with CS(V (T )) =
maxT̂ ∈unif(T )

C1(V (T ), V (T̂ )). ��
Proof of Theorem 4.1 Given T ∈ TS and f ∈ L2(Ω), let f1 ∈ P1(bisec5(T )) denote
its L2 projection onto piecewise affine (but possibly discontinuous) functions with
respect to bisec5(T ). Denote the solution to problem (1.1) with right-hand side f1
as u( f1) and note that U and Û also solve (1.2) with right-hand side f1. With v :=
u − u( f1), the triangle inequality reads

|||u −U ||| ≤ |||v||| + |||u( f1) −U |||.

Define the first-order oscillations of f by

osc1( f, T ) =
√∑

T∈T
|T | ‖ f − �1 f ‖2L2(T )

.

A piecewise Poincaré inequality shows for the constant CP that

|||v|||2 =
ˆ

Ω

( f − �1 f )(v − �1v) dx ≤ CPosc1( f, T )|||v|||.

Since osc1( f, T ) + osc( f1,N ) � osc( f,N ), Lemma 4.1 proves leads to some con-
stant CS(V (T )) with

|||u −U |||2 ≤ CS(V (T ))(|||Û −U |||2 + osc2( f,N )).

This and the Galerkin orthogonality |||Û −U |||2 = |||u − U |||2 − |||u − Û |||2 prove, for
any 0 < ε ≤ 1, that

|||u − Û |||2 ≤ CS(V (T )) − ε

CS(V (T ))
|||u −U |||2 + εosc2( f,N ).

��
Proof of Main Result I Although the set TS may be infinite as indicated in Exam-
ple 2.2, the set {V (T ) | T ∈ TS} is finite, whence

max
T ∈TS

CS(V (T )) < ∞
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20 C. Carstensen et al.

and Theorem 4.1 implies for any 0 < ε ≤ 1 that

|||u − Û |||2 ≤
(
1 − ε

/ (
max
T ∈TS

CS(V (T ))

))
|||u −U |||2 + εosc2( f,N ).

Thus, Theorem 3.4 proves, for any T ∈ T and

C2(T0) := max

{
CH (T0), max

T ∈TS

CS(V (T ))

}

the strong saturation (SA) with ρ(ε) := 1 − ε/C2(T0). ��
Remark 4.1 The constant CH (T0) depends only on the smallest angle γ in T, while
the constant CS(V (T )) for T ∈ TS depends on V (T ) and so implicitly on T0. Since
the entries in the global stiffness matrix depend on the geometric data in a continuous
way, small perturbations in the positions of the vertices of T will preserve the weak
saturation property.

5 A characterisation of domains with the weak saturation property

This section is devoted to the proof of the Main Result II based on the subsequent two
lemmas.

Lemma 5.1 Let T be a regular triangulation of a bounded polygonal Lipschitz
domain Ω with exactly one interior vertex z. Then the solution U to (1.2) with f ≡ 1
satisfies U (z) > 0.

Proof Let ϕz denote the local basis function associated with z. Since there is only
one degree of freedom, the solution to (1.2) readsU = U (z)ϕz . The one-dimensional
discrete linear system of equations reads

U (z)
ˆ

Ω

(A∇ϕz) · ∇ϕz dx =
ˆ

Ω

f ϕz dx .

Since f > 0 is constant and A is positive definite, U (z) is positive. ��
Lemma 5.2 Suppose that Ec(Ω) = ∅ and there exists an interior edge E ∈ Eb(Ω)

(with both end points on the boundary ∂Ω). Then either red or bisec3 uniform refine-
ment leads to weak saturation (WS).

Proof Consider an edge E ∈ Eb(Ω) with end points z1, z2 ∈ N on the boundary
∂Ω that is refined. Since E is an interior edge, there are two adjacent triangles T+ =
conv{z+, z1, z2} and T− = conv{z−, z1, z2}.

In the case that z+, z− ∈ N (∂Ω), it holds U |ωE ≡ 0. Lemma 5.1 shows that
U �= Û .

In the case that some z ∈ {z+, z−} ∩ N (Ω) is an interior vertex, then all edges
E = conv{y, z} with one vertex z have the second end-point y ∈ N (∂Ω) on the
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Justification of the saturation assumption 21

boundary, because Ec(Ω) = ∅. Therefore the local problem on ωz with only one
degree of freedomdecouples from the global systemandLemma5.1 impliesU (z) > 0.
ThereforeU |ωE ≥ 0. SinceU is zero at the endpoints z1, z2,U vanishes along E and
since U is non-negative in Ω it follows [∇U ]E · νE ≤ 0 along E . Note that the
jump [∇U ]E is a multiple of the normal νE . The matrix A is positive definite and
thus [A∇U ]E · νE ≤ 0. Let ϕE denote the hat-function of the refined triangulation
associated with the midpoint of E . Suppose for contradiction that U ≡ Û . Then

0 <

ˆ
Ω

f ϕE dx =
ˆ

ωE

(A∇U ) · ∇ϕE dx = |E |([A∇U ]E · νE )/2.

This implies f �≡ 1 which is a contradiction. ��
Proof of Main Result II Theorem 3.3 proves the strong saturation (SA) for any T ∈
TH , that is if there exists a compactly interior edge Ec(Ω) �= ∅. In case that any
interior edge has one endpoint on the boundary ∂Ω and there exists one interior edge
E ∈ E(Ω)with both endpoints on the boundaryN (E) ⊆ N (∂Ω), Lemma 5.2 proves
weak saturation (WS). The remaining configuration is that each interior edge has
exactly one endpoint on the boundary, which implies that the domain Ω equals the
nodal patch ωz of the only interior node z. If at least one T ∈ T is not refined using
bisec3 or if not all refinement edges in T are opposite to z, the discrete test function
�z from Definition 3.2 satisfies

 
ωz

�z dx ≈ 1 and
 
F

�z ds = 0 for all F ∈ E(Ω).

Hence, the discrete efficiency technique of Theorem 3.3 leads to strong saturation. The
only remaining case is that all triangles T ∈ T are refined by bisec3 with refinement
edges opposite to z. ��

The Main Result II reduces possible counterexamples of (WS) to configurations
with 1 degree of freedom and bisec3 refinement with all refinement edges opposite to
the one interior node.The following result illustrates that under certain angle conditions
even in this situation (WS) is valid.

Fig. 6 Angles in an edge patch
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Theorem 5.1 Suppose that there exists exactly one interior vertex which is contained
by all interior edges and that there exists an interior edge E ∈ E(Ω) with one interior
end point z ∈ N (Ω) and one end point Pj ∈ N (∂Ω) on the boundary ∂Ω such that
the angles depicted in Fig. 6 satisfy cot β + cot β ′ ≤ 0. Then (WS) holds.

Proof Suppose that U ≡ Û . Then the local basis function ϕE that is 1 at mid(E) and
0 at all other nodes of the refined triangulation satisfies

0 <

ˆ
Ω

f ϕE dx =
ˆ

ωE

(A∇U ) · ∇ϕE dx = |E |([A∇U ]E · νE )/2. (5.1)

Note that all nodes of ωE ∩ N except z are boundary nodes. Hence,

|E |([A∇U ]E · νE )/2 = U (z)|E |([A∇ϕz]E · νE )/2.

The value of ∇ϕz · νE with respect to the angles of the two triangles as depicted in
Fig. 6 reads

|E |([∇ϕz]E · νE ) = cot β + cot β ′.

Since the jump [∇ϕz]E is a multiple of the normal νE and the matrix A is positive
definite, the case cot β + cot β ′ ≤ 0 leads to a contradiction of (5.1) to f ≡ 1. ��
Remark 5.1 Theorem 5.2 shows error reduction for triangulations with non-convex
corners. Note that the criss-cross counter-example for error reduction does not fulfill
the condition of Theorem 5.1 for error reduction.

Remark 5.2 In particular, Main Results I and II imply that the following saturation
test can be employed to decide whether the strong saturation property is valid.
Compute discrete solutions U and Û with respect to T and T̂ ∈ unif(T ) and f ≡ 1
if U = Û then no saturation else (SA) for all f ∈ L2(Ω) end if

This test is very simple because it is only performed for f ≡ 1 and has to be only
performed for configurations with one degree of freedom.

6 Linear second-order elliptic problems

This section extends the results of the foregoing sections to elliptic linear second-
order equations with constant coefficients, namely with a symmetric positive definite
A ∈ R

2×2, b ∈ R
2, and γ ∈ R. Given f ∈ L2(Ω), the general second-order linear

PDE assumes the form

Lu := −div(A∇u) + b · ∇u + γ u = f.

Its weak formulation seeks u ∈ V := H1
0 (Ω) such that, for all v ∈ V ,

B(u, v) :=
ˆ

Ω

((A∇u) · ∇v + vb · ∇u + γ uv) dx =
ˆ

Ω

f v dx . (6.1)
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Assume that the constant coefficients b and γ are such that the bilinear form B is
V -elliptic, i.e., there exists some constant cell ≈ 1 such that, for all v ∈ V ,

cell(‖v‖2L2(Ω)
+ ‖∇v‖2L2(Ω)

) ≤ B(v, v) =: ‖v‖2B. (6.2)

(For constant coefficient b,
´
Ω

vb ·∇v dx = ´
Ω
b ·∇|v|2/2 dx = 0. Hence, it suffices

to consider γ > −CF (Ω) for the Friedrichs constant CF (Ω) ≤ diam(Ω)/π .) Under
the above ellipticity condition, ‖·‖B := B(·, ·)1/2 defines the energy norm. The finite
element method computes a unique uT ∈ V (T ) such that, for all vT ∈ V (T ),

B(uT , vT ) =
ˆ

Ω

f vT dx . (6.3)

The following generalization of the Main Result I states that ellipticity plus small
skew-symmetry implies saturation. The saturation test fromRemark 5.2 and the notion
of weak saturation still concern the reduced problem −div(A∇u) = f , whereas
strong saturation for problem (6.1) states that for any 0 < ε ≤ 1 there exists �(ε) :=
1 − ε/C(T0) < 1 such that

‖u − Û‖2B ≤ �(ε)‖u −U‖2B + εosc( f − b · ∇U − γU,N ) (SA′)

holds with a universal constant C(T0) which exclusively depends on T0 and the coef-
ficients A, b, γ .

Theorem 6.1 (Weak saturation implies strong saturation) Assume B is elliptic with
(6.2) and the convection parameter b satisfies |b| < Cell. Then there exists a global
constant C(T0) which depends only on T0 such that for any T ∈ T and T̂ ∈ unif(T ),
(WS) implies (SA’) with �(ε) = 1 − ε/C(T0).

The proof will be given throughout the remaining parts of this section.

Lemma 6.1 For any T ∈ T with T̂ ∈ unif(T ), the exact and discrete solutions
u,U, Û to (6.1) and (6.3) with right-hand side f ∈ L2(Ω) satisfy

‖u −U‖B � η + osc( f − b · ∇U − γU,N ). (6.4)

If, in addition T ∈ TH , it holds that

‖u −U‖B � ‖Û −U‖B + osc( f − b · ∇U − γU,N ).

Proof Note that U solves (1.2) with right-hand side f − b · ∇U − γU instead of f .
The reliability of the error estimator from Theorem 3.1 translates directly into

‖u −U‖2B � η2 + osc2( f − b · ∇U − γU,N )
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for the oscillations osc(·,N ) of Sect. 3. For any T ∈ TH , the discrete efficiency
techniques from Theorem 3.3 imply

η � ‖Û −U‖B + osc( f − b · ∇Û − γ Û ,N ).

The triangle inequality reveals

osc( f − b · ∇Û − γ Û ,N ) ≤ osc( f − b · ∇U − γU,N )

+ osc(b · ∇(U − Û ) − γ (U − Û ),N ).

The combination with the reliability (6.4) leads to the second stated estimate. ��
For the finite set {V (T ) | T ∈ TS}, the following analogue of Lemma 4.1 follows

from a compactness argument.

Lemma 6.2 For any T ∈ TS with weak saturation (WS), there exists some constant
CS(V (T )) such that any f1 ∈ P1(bisec5(T ))with exact and discrete solutions u,U, Û
to (6.1) and (6.3) with right-hand side f1 satisfies

‖u −U‖B ≤ CS(V (T ))
(
‖Û −U‖B + osc( f1 − b · ∇Û − γ Û ,N )

)
.

Proof For all f1 in the space P1(bisec5(T )), define the semi-norms

ϑ1( f1) :=
√ ∑

E∈E(Ω)

η2(E) and

ϑ2( f1) :=
√

‖Û −U‖2B + osc2( f1 − b · ∇U − γU,N ).

Ifϑ2( f1) = 0, then Û ≡ U and osc( f1−b·∇U−γU,N ) = 0 imply that f1−b·∇U−
γU ∈ P0(Ω) is constant. Hence, U = Û solves (1.2) with constant right-hand side
and the weak saturation implies U = Û ≡ 0 and f1 ∈ P0(Ω) vanishes. Equivalence
of semi-norms in the finite-dimensional space P1(bisec5(T )) and the reliability (6.4)
lead to a constant CS(V (T )) such that ϑ1 ≤ CS(V (T ))ϑ2. This is the assertion. ��
Proof of Theorem 6.1 Equation (6.4) and Lemma 6.2 plus the arguments from the
proof of Main Result I imply that there exists a constant C ≈ 1 such that any T and
T̂ ∈ unif(T ) with (WS) satisfy

‖u −U‖B � ‖Û −U‖B + osc( f − b · ∇U − γU,N ).

Since the bilinear form B is not symmetric, it holds

‖Û −U‖2B = ‖u −U‖2B − ‖u − Û‖2B + 2
ˆ

Ω

(Û −U )b · ∇(u − Û ) dx .
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The Cauchy and Young inequalities imply

2
ˆ

Ω

(Û −U )b · ∇(u − Û ) dx ≤ C−1
ell |b|

(
‖u − Û‖2B + ‖Û −U‖2B

)
. (6.5)

Provided |b| < Cell, these terms can be absorbed. This results in

‖Û −U‖2B � ‖u −U‖2B − ‖u − Û‖2B. (6.6)

The techniques from the proof of Theorem 3.4 conclude the proof of Theorem 6.1. ��
Remark 6.1 For a general parameter b and γ ∈ R such thatL is injective, the estimate
(6.6) follows for sufficiently small mesh-size. The proof is a combination of (6.5) and
the higher-order convergence of the error in the L2 norm, which is also employed in
[13]. This leads to saturation in an asymptotic regime.
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