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Abstract This paper introduces a novel three-field formulation for the Bingham flow
problem and its two-dimensional version named after Mosolov together with low-
order discretizations: a nonconforming for the classical formulation and a mixed finite
element method for the three-field model. The two discretizations are equivalent and
quasi-optimal in the sense that the H1 error of the primal variable is bounded by the
error of the L2 best-approximation of the stress variable. This improves the predicted
convergence rate by a log factor of the maximal mesh-size in comparison to the first-
order conforming finite element method in a model scenario. Despite that numerical
experiments lead to comparable results, the nonconforming scheme is proven to be
quasi-optimal while this is not guaranteed for the conforming one.
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1 Introduction

After a short introduction in the modelling of a Bingham-flow, Sect. 1.2 discusses the
main results of the paper which are quasi-optimal error estimates for a mixed and a
nonconforming discretization.

1.1 Modelling of Bingham flow

The Bingham flow problem refers to the behaviour of a fluid modeled as rigid-viscous
plastic. With the stress denoted by σ : Ω → R

3×3, the fluid satisfies the conventional
equation for momentum balance

div σ + f = 0

with the given body force f . This stationary mathematical model assumes that the
flows are sufficiently slow so that the inertial terms can be neglected. The velocity
u : Ω ⊆ R

3 → R
3, the stress deviator σ D := σ − (1/3)tr(σ )I3×3, the rate of

deformation ε(u) = 1
2 (∇u + (∇u)T ), the potential W ,

W (ε(u)) = μ

2
|ε(u)|2 + g|ε(u)|

with the (pointwise) Frobenius norm | • |, the viscosity μ of the fluid and the yield
limit g > 0 lead to the constitutive relation for the fluid

σ D ∈ ∂W (ε(u)). (1.1)

From (1.1) we have, using also the definition of the subdifferential,

W (ε(v)) − W (ε(u)) − σ D : (ε(v) − ε(u)) ≥ 0

for all vector fields v. When ε(u) �= 0, this gives

σ D = με(u) + g
ε(u)

|ε(u)| . (1.2)

More generally we have

ε(u) =
⎧
⎨

⎩

1

μ

(

1 − g

|σ D|
)

σ D if |σ D| > g,

0 if |σ D| < g.
(1.3)

Thus, when the stress exceeds the threshold defined by the yield limit g, flow takes
place in the same direction as σ D . Below this threshold, the material is rigid. From
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(1.3) it follows that the velocity field satisfies tr ε(u) = div u = 0. Thus, the con-
stitutive relation captures the physically based assumption of incompressibility. This
formulation is characteristic also of that for problems of elastoplasticity.

In compact notation, the Bingham flow problem with homogeneous Dirichlet
boundary conditions seeks u ∈ Z := {w ∈ H1

0 (Ω;R3) | div w = 0} with
E(u) = min

v∈Z E(v) (1.4)

with

E(v) :=
ˆ

Ω

W (ε(v)) dx −
ˆ

Ω

f · v dx

= μ

2

ˆ
Ω

|ε(v)|2 dx + g
ˆ

Ω

|ε(v)| dx −
ˆ

Ω

f · v dx .

The Bingham flow problem has been studied mathematically in [9,12,16–18]; see
also [13–15] for results pertaining to finite element approximations.

Of interest in this work are uni-directional flows such as, for example, the flow in
a pipe. In this case there is a single nontrivial component of velocity u; furthermore,
with the generator of the pipe coinciding with the x3 axis, the domain of interest is then
Ω ⊂ R

2, the cross-section of the pipe, assumed here to be bounded and polygonal.
This is also called Mosolov’s problem in [11] and leads to the potential function

W (F) = μ

2
|F |2 + g|F | for all F ∈ R

2.

The resulting variational problem seeks u ∈ H1
0 (Ω) with

E(u) = min
v∈H1

0 (Ω)

E(v) (1.5)

for the energy

E(v) :=
ˆ

Ω

W (∇v) dx −
ˆ

Ω

f v dx

= μ

2

ˆ
Ω

|∇v|2 dx + g
ˆ

Ω

|∇v| dx −
ˆ

Ω

f v dx . (1.6)

1.2 Conforming versus nonconforming discretization

For the first-order conforming finite element method (FEM), the presence of the non-
differentiable function

j (∇v) := g
ˆ

Ω

|ε(v)| dx = g ‖ε(v)‖L1(Ω)

(

resp. j (∇v) := g
ˆ

Ω

|∇v| dx = g ‖∇v‖L1(Ω)

)
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for the Bingham problem (resp. for the uni-directional flow problem) leads in general
to a reduced convergence rate of h1/2 in the H1 error of u even for smooth solutions
and for the particular prototype example of a circular domain with f ≡ const to a
convergence rate of h

√
log(1/h) [13,14]. Here and throughout the paper, hT denotes

the piecewise constant mesh-size function with hT |T := diam(T ) on T ∈ T andmax-
imal mesh-size h := max hT := ‖hT ‖L∞(Ω) in the underlying regular triangulation
T into triangles or tetrahedra in the FEM.

This paper introduces mixed variational inequality formulations that are new for
the Bingham problem. The formulations are equivalent to (1.4) and (1.5), and there
is a corresponding equivalence between the discrete formulations. Furthermore, the
discrete formulations are equivalent to natural nonconforming discretizations of first
order of (1.4) and (1.5). The striking main result of this paper is to prove a linear
convergence of h for the flux error ‖p − ph‖L2(Ω) for smooth stress-type variable
σ ∈ ∂W (p) for p = ∇u and its approximation ph . Moreover, there is quasi-optimal
convergence up to an explicit data term with optimal convergence rate in the sense of

(
μ/

√
2
)

‖p − ph‖L2(Ω) ≤ min
τh∈Q( f,T )

‖σ − τh‖L2(Ω) + ‖hT f ‖L2(Ω) /
√
2 (1.7)

for the piecewise constant fluxapproximation ph and the lowest-orderRaviart–Thomas
space RT0(T ) and its natural subspace Q( f, T ) of all Raviart–Thomas functions with
prescribed divergence −Π0 f , the piecewise constant approximation of − f . Further-
more, a direct analysis of the nonconforming scheme with approximation pCR of the
flux proves the best-approximation result

‖p − pCR‖ � ‖σ − Π0σ‖L2(Ω) + osc( f, T ) (1.8)

for the best-approximationΠ0σ of σ in the piecewise constant functions. The notation
A � B is equivalent to the statement that there exists a positive generic mesh-size
independent constant C > 0 such that A ≤ CB. Those surprising quasi-optimalities
(1.7) and (1.8) have to contrasted with the analysis in [14, Eqn (6.48) on p 87] and [13,
Eqn 4.14], which leads to a convergence O(h1/2), which, in view of the numerical
experiments in Sect. 6 below, appears suboptimal. The remedy via a Jensen inequality
in this paper has been observed before in [11, p. 143, line 19].

Another difficulty is the higher regularity of the exact solutions with further lim-
itations of the convergence rates. For a circular domain and a constant right-hand
side, the exact solution u ∈ H2(Ω) is known explicitly in closed form [13,14]. An
explicit analysis with the closed form of u, although it certainly serves as a role model,
leads to the convergence rate as h

√
log(1/h) for conforming FEM while the general

best-approximation result (1.7) leads to h whenever σ ∈ H1(Ω;R2) for the noncon-
forming FEM. In view of equivalence of nonconforming and conforming first-order
FEM [6], this omission of an extra log factor is somehow surprising.

First order convergence rates are apparent in all the numerical experiments of this
paper. The nonconforming first-order FEM and its quasi-optimal convergence has
in fact been mentioned before in [11, Sec. 5.2] in a very abstract fashion: the word
nonconforming is not even mentioned in [11]. Moreover, the authors of [11] do not
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recommend the scheme but suggest the numerical treatment of some dual formulation
in order to avoid non-smoothness [11, p. 143, lines 23–28]. This paper provides a reg-
ularization of the nonconforming FEM, which can directly be applied. Moreover, the
novel three-field formulation and its equivalence to the nonconforming FEM (cf. The-
orem 3.1 below) open the door for future applications of nonstandard discretizations
to non-Newtonian flow problems.

1.3 Outline of the paper

The remaining parts of this paper are organized as follows. Since the crucial points
in the analysis for the 3D Bingham problem and for the uni-directional flow are the
same, Sects. 2, 3 and 4 focus on Mosolov’s problem, while Sect. 5 extends the results
to the 3D problem. In more detail, Sect. 2 introduces the new three-field formulation
for the Mosolov problem and shows its equivalence to (1.5). This implies existence of
solutions of the mixed formulation. Section 3 introduces the discretizations of (1.5)
and of the mixed formulation and shows their equivalence. This implies existence
of discrete solutions. Section 4 is concerned with a priori analyses for the FEMs for
the Mosolov problem and the derivation of a best-approximation result. Section 5
is devoted to the three dimensional Bingham problem. It introduces the three-field
formulation and the variational inequality and their discretizations and proves the best
approximation results for it. Section 6 concludes the paper with numerical experiments
for Mosolov’s problem.

1.4 General notation

Standard notation on Lebesgue and Sobolev spaces applies throughout the paper and
(•, •)L2(Ω) denotes the L2 scalar product and ‖•‖L2(Ω) the L2-norm. The notation •
abbreviates the identity mapping. The formula A � B abbreviates that there exists
a positive generic mesh-size independent constant C > 0 such that A ≤ CB. The
formula A ≈ B abbreviates A � B � A.

2 Three-field formulation

This section introduces the three-field formulation in Sect. 2.1 and proves its equiva-
lence with (1.5) in Sect. 2.2. The existence of solutions to (1.5) is stated in Sect. 2.3.

2.1 Mathematical model

Define X := L2(Ω) × L2(Ω;R2) ≡ L2(Ω;R × R
2), and define the bilinear forms

a : L2(Ω;R2)× L2(Ω;R2) → R and b : X × H(div,Ω) → R for ϕ = (u, p), ψ =
(v, q) ∈ X and τ ∈ H(div,Ω) by

a(p, q) := μ(p, q)L2(Ω),

b(ψ, τ) := −(v, div τ)L2(Ω) − (q, τ )L2(Ω).
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We define also the functionals

j (q) := g
ˆ

Ω

|q| dx for all q ∈ L2(Ω;R2),

F(v) = ( f, v)L2(Ω) for all v ∈ L2(Ω).

The three-field formulation for the Bingham flow seeks ϕ = (u, p) ∈ X and
σ ∈ H(div,Ω) with

F(v − u) ≤ a(p, q − p) + j (q) − j (p) + b(ψ − ϕ, σ ), (3FF)

b(ϕ, τ ) = 0

for all ψ = (v, q) ∈ X and all τ ∈ H(div,Ω).

Remark 1 (Non-uniqueness of σ ) The solutions to (3FF) for f ≡ 0 read (0, 0, σ ) for
σ ∈ H(div,Ω) with

div σ = 0 and (q, σ )L2(Ω) ≤ j (q) for all q ∈ L2(Ω;R2). (2.1)

Any α ∈ H1
0 (Ω) satisfies Curl α := (−∂α/∂y, ∂α/∂x) ∈ H(div,Ω) with

div Curl α = 0. Therefore σ := g Curl α/‖Curl α‖L∞(Ω)) ∈ H(div,Ω) is a solu-
tion to (2.1) for any α ∈ H1

0 (Ω) with Curl α ∈ L∞(Ω). In particular, the stress
σ ∈ H(div,Ω) is not unique.

2.2 Equivalence to the Bingham flow problem (1.5)

The quadratic growth, the strong convexity and the continuity of the energy E of (1.6)
implies the unique existence of a minimizer of E in H1

0 (Ω) (see for example [14,
Chapter 1, Lemma 4.1]). The minimization problem (1.5) of E is equivalent to the
variational inequality

F(v − u) ≤ a(∇u,∇(v − u)) + j (∇v) − j (∇u) (VI)

for all v ∈ H1
0 (Ω). The unique existence of a solution u to (VI) follows from its

equivalence to the minimization of E in H1
0 (Ω).

Theorem 2.1 [Equivalence of (3FF) with (VI)] Let u ∈ H1
0 (Ω) be the solution of

(VI) and τ ∈ H(div,Ω) with τ ∈ ∂W (∇u) and f + div τ = 0. Then (u,∇u, τ ) ∈
X × H(div,Ω) is a solution of (3FF).

Conversely, if (u, p, σ ) ∈ X × H(div,Ω) is a solution of (3FF), then u ∈ H1
0 (Ω)

solves (VI) and p = ∇u and σ ∈ ∂W (∇u) with f + div σ = 0.

Proof Let u ∈ H1
0 (Ω) be the solution to (VI) and τ ∈ H(div,Ω) satisfy τ ∈ ∂W (∇u)

and f + div τ = 0. Since τ ∈ ∂W (∇u) = μ∇u + ∂ j (∇u), the definition of the
subderivative implies, for any q ∈ L2(Ω), that

(q − ∇u, τ − μ∇u)L2(Ω) ≤ j (q) − j (∇u).
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Set p := ∇u. Since f + div τ = 0, any v ∈ L2(Ω) satisfies

F(v − u) ≤ j (q) − j (p) − (q − p, τ − μp)L2(Ω) − (v − u, div τ)L2(Ω).

This is the first formula of (3FF) while the second formula follows from p = ∇u.
Suppose that (u, p, σ ) ∈ X × H(div,Ω) denotes a solution to (3FF). The second

formula of (3FF) implies that u ∈ H1
0 (Ω) with ∇u = p. Given ψ := (v,∇v) for any

v ∈ H1
0 (Ω), any τ ∈ H(div,Ω) satisfies b(ψ, τ) = 0 and, hence,

a(∇u,∇(v − u)) + j (∇v) − j (∇u) = a(p,∇v − p) + j (∇v) − j (p)

≥ F(v − u).

Therefore u solves (VI). For q = p in the first formula of (3FF), it follows that
f + div σ = 0 and, for v = u,

(q − p, σ − μp)L2(Ω) ≤ j (q) − j (p).

That is, σ − μp ∈ ∂ j (p), whence σ ∈ ∂W (∇u). ��

2.3 Existence of solutions

The following theorem guarantees the existence of τ ∈ H(div,Ω) with τ ∈ ∂W (∇u)

and f + div τ = 0 for the solution u ∈ H1
0 (Ω) of (VI).

Theorem 2.2 (Euler–Lagrange equations for the Mosolov problem) The solution u ∈
H1
0 (Ω) of (VI) satisfies the Euler–Lagrange equations in the sense that there exists

σ ∈ H(div,Ω) with σ ∈ ∂W (∇u) and

(
σ,∇v

)

L2(Ω)
= F(v) for all v ∈ H1

0 (Ω).

Proof See for example [14, Chapter II, Theorem 6.3] and [17, Theorem 1.1]. ��
Theorem 2.3 (Existence of solutions) There exists (at least) one solution of problem
(3FF).

Proof This is a direct consequence of Theorem 2.1 and 2.2. ��
Remark 2 (Uniqueness of (u, p) ∈ X ) SinceW is strictly convex, the solution umin ∈
H1
0 (Ω) to (1.5) is unique. This and Theorem 2.1 imply that the solution (u, p) =

(umin,∇umin) to (3FF) is unique.

Remark 3 Molosov and Miasnikov [16–18] have obtained results on the existence of
nuclei, that is, subsets of the domain that behave as rigid bodies, moving with constant
velocity, and show that the nuclei are simply connected. Furthermore, the authors
obtain results on the existence of stagnant zones, that is, nuclei or subsets of the domain
that behave rigidly, and which in addition have part of their boundary coinciding with
∂Ω . Since u = 0 on the boundary these stagnant zones have zero velocity.
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3 Discrete problems

This section introduces notation on triangulations and basic finite element spaces
in Sect. 3.1 and defines the P1 nonconforming, a regularized P1 nonconforming,
and a mixed FEM in Sects. 3.2 and 3.4. Section 3.5 proves equivalence of the P1
nonconforming discretizationwith that of the three-field formulation. This is exploited
in Sect. 3.6 to prove the existence of discrete solutions.

3.1 Triangulations and finite element spaces

A shape-regular triangulation T of a polygonal bounded Lipschitz domain Ω ⊆ R
n

with n = 2 or n = 3 is a set of simplices (triangles if n = 2 and tetrahedra of n = 3)
such that Ω = ⋃

T and any two distinct simplices are either disjoint or share exactly
one common face, edge or vertex. Let E denote the set of edges for n = 2 and the set
of faces for n = 3 of T and N the set of vertices. Let

Pk(T ;Rm) := {vk : T → R
m | ∀ j = 1, . . . ,m, the component

vk( j) of vk is a polynomial of total degree ≤ k},
Pk(T ;Rm) := {vk : Ω → R

m | ∀T ∈ T , vk |T ∈ Pk(T ;Rm)}

denote the set of piecewise polynomials; The piecewise constant function mid (T ) ∈
P0(T ) is defined by mid (T )|T = mid (T ) for a simplex T ∈ T with
barycenter mid (T ). For an edge or face E ∈ E , mid (E) denotes the mid-
point of E . The L2-projection onto T -piecewise constant functions or vectors
Π0 : L2(Ω;Rm) → P0(T ;Rm) is defined by (Π0 f )|T = ffl

T f dx := ´
T f dx/|T |

for allT ∈ T with area |T | forn = 2 andvolume |T | forn = 3 and all f ∈ L2(Ω;Rm).
Let hT ∈ P0(T ) denote the piecewise constant mesh-size with hT |T := diam(T ) for
all T ∈ T . The oscillations of f are defined by osc( f, T ) := ‖hT ( f − Π0 f )‖L2(Ω).
The jump along an interior edge or face E with adjacent simplices T+ and T−, i.e.,
E = T+ ∩ T−, is defined by [v]E := v|T+ − v|T− . The jump along boundary edges or
faces E ∈ E(�D) reads [v]E := v|T+ for that simplex T+ ∈ T with E ⊂ T+ due to
the homogeneous Dirichlet boundary conditions.

For piecewise affine functions vh ∈ P1(T ) the T -piecewise gradient ∇NCvh with
(∇NCvh)|T = ∇(vh |T ) for all T ∈ T and, accordingly, divNC(τh) for τh ∈ P1(T ;R2),
exists and ∇NCvh ∈ P0(T ;R2) and divNC(vh) ∈ P0(T ).

3.2 P1 nonconforming discretization

The P1 nonconforming finite element space [8], sometimes named after Crouzeix and
Raviart, reads

CR1
0(T ) := {vCR ∈ P1(T ) | vCR is continuous at midpoints of interior

edges and vanishes at midpoints of boundary edges}

and motivate the discrete energy
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ENC(vCR) :=
ˆ

Ω

W (∇NCvCR) dx − F(vCR).

The nonconforming discretization of (VI) seeks uCR ∈ CR1
0(T ) with

F(vCR − uCR) ≤ a(∇NCuCR,∇NC(vCR − uCR))

+ j (∇NCvCR) − j (∇NCuCR) for all vCR ∈ CR1
0(T ). (CRVI)

This is equivalent to the minimization of ENC in CR1
0(T ).

Remark 4 The discretization in [11, Eqn (25)] of (1.5) suggests the spaceMh = {ph ∈
P0(T ;R2) | ∀ψh ∈ P1(T ) ∩ H1(Ω), (ph,∇ψh)L2(Ω) = 0}. The equivalence to the
nonconforming problem (CRVI) can be shown by a discrete Helmholtz decomposition
[1]

P0(T ;R2) = ∇(P1(T ) ∩ C(Ω)) ⊕ CurlNC(CR1
0(T ))

with Mh = CurlNC(CR1
0(T )) for a simply connected domain Ω .

3.3 Regularized problem

The regularization is one possibility to approximate the discrete solution. Given any
ε > 0, define Wε ∈ C1(R2) by

Wε(F) := (μ/2)|F |2 + g
(√

|F |2 + ε2 − ε
)

.

The regularized problem seeks uε,CR ∈ CR1
0(T ) with

Eε,NC(uε,CR) = min
vCR∈CR1

0(T )

Eε,NC(vCR) (3.1)

for the modified energy

Eε,NC(vCR) :=
ˆ

Ω

Wε(∇NCvCR) dx − F(vCR).

3.4 Discrete three-field formulation

The lowest-order Raviart–Thomas finite element space reads

RT0(T ) := {qh ∈ H( div ,Ω) | ∀T ∈ T ∃αT ∈ R
2

∃βT ∈ R∀x ∈ T, qh |T (x) = αT + βT x}.

The discrete three-field formulation seeks ϕh = (uh, ph) ∈ P0(T ) × P0(T ;R2) ≡
P0(T ;R × R

2) and σh ∈ RT0(T ) with
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F(vh − uh) ≤ a(ph, qh − ph) + j (qh) − j (ph) + b(ψh − ϕh, σh), (d3FF)

b(ϕh, τh) = 0

for all ψh = (vh, qh) ∈ P0(T ;R × R
2) and all τh ∈ RT0(T ).

3.5 Equivalence of (d3FF) to (CRVI)

The following lemma provides a first link between the three-field formulation and the
P1 nonconforming finite element space.

Lemma 1 (ker(b|P0(T ;R×R2)×RT0(T ))) The kernel of b, restricted to P0(T ;R×R
2)×

RT0(T ), is given by

ker(b|P0(T ;R×R2)×RT0(T ))

:= {ϕ = (vh, qh) ∈ P0(T ;R × R
2) | b(ϕ, τh) = 0 for all τh ∈ RT0(T )}

= {(Π0vCR,∇NCvCR) | vCR ∈ CR1
0(T )}.

Proof Let (vh, qh) ∈ P0(T ;R × R
2) with

(vh, div τh)L2(Ω) + (qh, τh)L2(Ω) = 0 for all τh ∈ RT0(T )

and define vCR := vh + qh · (• − mid (T )). Let E ∈ E and let, for an interior edge,
T± ∈ T with E = T+ ∩ T− and, for a boundary edge, T+ ∈ T with E ⊂ T+ and
let φE ∈ RT0(T ) denote the Raviart–Thomas basis function defined by φE |T± :=
±|E |(•− P±,E )/(2|T±|) for P±,E ∈ N ∩T± opposite to E and φE |Ω\T± ≡ 0. In fact,
φE ∈ RT0(T ). An elementary calculation reveals φE · νE |E = 1 for the unit normal
νE = νT+|E pointing from T+ to T−. This implies

|E |[vCR]E (mid (E)) =
ˆ
E
[vCR]E φE · νE ds.

A piecewise integration by parts and the definition of vCR imply

ˆ
E
[vCR]E φE · νE ds = (vCR, div φE )L2(Ω) + (φE ,∇NCvCR)L2(Ω)

= (vh, div φE )L2(Ω) + (φE , qh)L2(Ω) = 0.

Hence, vCR ∈ CR1
0(T ) and vh = Π0vCR and qh = ∇NCvCR.

Conversely, a piecewise integration by parts implies

{(Π0vCR,∇NCvCR) | vCR ∈ CR1
0(T )} ⊆ ker(b|P0(T ;R×R2)×RT0(T )).

��
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Theorem 3.1 [Equivalence of (d3FF) and (CRVI)]Let uCR ∈ CR1
0(T ) be the solution

of (CRVI) for the piecewise constant right-hand side Π0 f ∈ L2(Ω) and define
uh := Π0uCR and ph := ∇NCuCR. Let σCR ∈ P0(T ;R2) with σCR ∈ ∂W (∇NCuCR)

and

(σCR,∇NCvCR)L2(Ω) = (Π0 f, vCR)L2(Ω) for all vCR ∈ CR1
0(T ) (3.2)

and define

σh := σCR − Π0 f (• − mid (T ))/2.

Then (uh, ph, σh) ∈ (P0(T ) × P0(T ;R2)) × RT0(T ) is a solution to (d3FF).
Conversely, if (uh, ph, σh) ∈ (P0(T ) × P0(T ;R2)) × RT0(T ) is a solution to

(d3FF), then uCR := uh + ph · (• − mid (T )) ∈ CR1
0(T ) is a solution to (CRVI) for

the piecewise constant right-hand side Π0 f .

Proof Let E ∈ E be an interior edge andT± ∈ T with E = T+∩T−. LetψE ∈ CR1
0(T )

denote the Crouzeix–Raviart basis function defined byψE (mid (F)) = δEF (with the
Kronecker delta δEF ). Since (•− mid (T )) ·νF is constant along F ∈ E for all T ∈ T ,
a piecewise integration by parts implies

|E | [σh · νE ]E =
ˆ
E

ψE [σh · νE ]E ds

=
ˆ
T+∪T−

σh · ∇NCψE dx +
ˆ
T+∪T−

ψE divNC σh dx .

Since − divNC σh = Π0 f and Π0σh = σCR, (3.2) implies

ˆ
T+∪T−

σh · ∇NCψE dx +
ˆ
T+∪T−

ψE divNC σh dx

= (
ψE ,Π0 f

)

L2(Ω)
− (

ψE ,Π0 f
)

L2(Ω)
= 0.

This implies σh ∈ H(div,Ω) and, hence, σh ∈ RT0(T ).
The definition of the subderivative implies forσCR ∈ ∂W (∇NCuCR) = μ∇NCuCR+

∂ j (∇NCuCR) and all qh ∈ P0(T ;R2)

(σCR − μ∇NCuCR, qh − ∇NCuCR)L2(Ω) ≤ j (qh) − j (∇NCuCR).

Since Π0σh = σCR, the definition of ph implies

0 ≤ a(ph, qh − ph) + j (qh) − j (ph) − (qh − ph, σh)L2(Ω).

Since − div σh = Π0 f , this implies

(Π0 f, vh − uh)L2(Ω) ≤ a(ph, qh − ph) + j (qh) − j (ph)

− (vh − uh, div σh)L2(Ω) − (qh − ph, σh)L2(Ω).
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This is the first formula of (d3FF). Since div τh ∈ P0(T ) for all τh ∈ RT0(T ) the
definitions of uh and ph imply

(uh, div τh)L2(Ω) = (uCR, div τh)L2(Ω) = −(τh,∇NCuCR)L2(Ω) = −(ph, τh)L2(Ω).

Hence, (uh, ph, σh) ∈ (P0(T ) × P0(T ;R2)) × RT0(T ) solves (d3FF).
Given a solution (uh, ph, σh) ∈ (P0(T ) × P0(T ;R2)) × RT0(T ) to (d3FF) and

uCR := uh + ph · (• − mid (T )), Lemma 1 and the second formula of (d3FF) show
the existence of wCR ∈ CR1

0(T ) with uh = Π0wCR and ph = ∇NCwCR. This implies
uCR = wCR ∈ CR1

0(T ).
Let vCR ∈ CR1

0(T ) and define vh := Π0vCR and qh := ∇NCvCR. Then any
τh ∈ RT0(T ) satisfies

(vh − uh, div τh)L2(Ω) = −(qh − ph, τh)L2(Ω).

With those definitions, the first formula of (d3FF) becomes

(Π0 f, vCR − uCR)L2(Ω)

≤ a(∇NCuCR,∇NC(vCR − uCR)) + j (∇NCvCR) − j (∇NCuCR).

This proves (CRVI). ��

3.6 Existence of discrete solutions

The following theorem guarantees the existence of τCR ∈ P0(T ;R2) with τCR ∈
∂W (∇NCuCR) and

(τCR,∇NCvCR)L2(Ω) = ( f, vCR)L2(Ω) for all vCR ∈ CR1
0(T ). (3.3)

Theorem 3.2 (Discrete Euler–Lagrange equations) The solution uCR ∈ CR1
0(T ) of

(CRVI) with the right-hand side f satisfies the Euler-Lagrange equations in the sense
that there exists τCR ∈ P0(T ;R2) ∩ ∂W (∇NCuCR) with

(τCR,∇NCvCR)L2(Ω) = ( f, vCR)L2(Ω) for all vCR ∈ CR1
0(T ).

Proof The proof follows that in [14,17], as cited for Theorem 2.2. ��
Theorem 3.3 (Existence of discrete solutions) There exists (at least) one solution of
(d3FF).

Proof This is a direct consequence of Theorems 3.1 and 3.2 and the equivalence of
(CRVI) with the minimization of the convex functional ENC over CR1

0(T ). Note that
the choice of a piecewise constant ansatz space for uh implies that, if (uh, qh, σh) ∈
(P0(T ) × P0(T ;R2)) ×RT0(T ) is a solution of (d3FF) for the right-hand side Π0 f ,
it also solves (d3FF) with right-hand side f . ��
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Remark 5 (Uniqueness of (uh, ph) ∈ P0(T ) × P0(T ;R2) ) Since W is convex, the
solution uCR ∈ CR1

0(T ) of (CRVI) is unique. Together with Theorem 3.1, this proves
uniqueness of (uh, ph) = (Π0uCR,∇NCuCR).

4 A priori analysis for (d3FF)

Section 4.1 states the main results of this paper. The proofs follow in Sects. 4.2, 4.3
and 4.4. Section 4.5 comments on the results and Sect. 4.6 deduces the convergence
rate for the circular example with constant right-hand side and compares it with the
predicted convergence rates for the conforming FEM.

4.1 Main results

Theorem 4.1 proves the a priori error estimate of (1.7) for the three-field formulation,
while Theorem 4.2 carries out the direct medius analysis for the P1 nonconforming
FEM, that leads to (1.8). Theorem4.3 states an a priori error estimate for the regularized
discretization of Sect. 3.3. Recall

Q( f, T ) := {τRT ∈ RT0(T ) | − div τRT = Π0 f }.

Theorem 4.1 Any solution (u, p, σ ) ∈ X × H(div,Ω) to (3FF) and any discrete
solution (uh, ph, σh) ∈ (P0(T ) × P0(T ;R2)) × RT0(T ) to (d3FF) satisfy

‖ div (σ − σh)‖L2(Ω) = ‖ f − Π0 f ‖L2(Ω) , (4.1)

μ ‖p − Π0 p‖2L2(Ω)
/2 + | j (p) − j (Π0 p)| ≤ ‖σ − Π0σ‖2L2(Ω)

/(2μ), (4.2)

μ ‖p − ph‖2L2(Ω)
/2 + | j (p) − j (Π0 p)|

≤ ( min
τh∈Q( f,T )

‖σ − τh‖2L2(Ω)
+ ‖hT f ‖2L2(Ω)

/2)/μ, (4.3)

‖u − uh‖L2(Ω) � ‖u − Π0u‖L2(Ω) + ‖p − ph‖L2(Ω) . (4.4)

Corollary 1 The solution u ∈ H1
0 (Ω) to (1.5) and the solution uCR ∈ CR1

0(T ) to
(CRVI) satisfy

μ2 ‖∇NC(u − uCR)‖2L2(Ω)
≤ 4 min

τh∈Q( f,T )
‖σ − τh‖2L2(Ω)

+ 2 ‖hT f ‖2L2(Ω)
+ 2 osc2( f, T ).

Proof Let ũCR ∈ CR1
0(T ) be the solution to (CRVI) with respect to the right-hand

side Π0 f . The sum of the variational inequalities (CRVI) applied to ũCR and uCR
leads to
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μ ‖∇NC(uCR − ũCR)‖2L2(Ω)
≤ ( f − Π0 f, uCR − ũCR)L2(Ω)

= ( f − Π0 f, uCR − ũCR − Π0(uCR − ũCR))L2(Ω)

≤ osc( f, T ) ‖∇NC(uCR − ũCR)‖L2(Ω) .

The combination of this with Theorems 3.1 and 4.1 concludes the proof. ��
The following theorem proves a best-approximation result with the best-

approximation error of σ in the piecewise constant functions and implies (1.8).

Theorem 4.2 (Direct analysis of P1 nonconforming FEM) The solution u ∈ H1
0 (Ω)

and the approximation uCR ∈ CR1
0(T ) satisfy

‖∇NC(u − uCR)‖L2(Ω) � ‖σ − Π0σ‖L2(Ω) + osc( f, T ).

The following theorem proves an error estimate for the discrete solution of the
regularized problem. This regularization is used in Sect. 6 for the practical treatment
of the discrete problem.

Theorem 4.3 The discrete solution uε,CR ∈ CR1
0(T ) to (3.1) satisfies

μ
∥
∥∇NC(u − uε,CR)

∥
∥2
L2(Ω)

/4 ≤ εg|Ω| + 2 min
τh∈Q( f,T )

‖σ − τh‖2L2(Ω)
/μ

+ ‖hT f ‖2L2(Ω)
/μ + osc2( f, T )/μ. (4.5)

4.2 Proof of Theorem 4.1

This subsection proves the a priori error estimates of Theorem 4.1.

Proof of (4.1) The choice q = p and qh = ph implies

− div σ = f almost everywhere and − div σh = Π0 f.

��
Proof of (4.2) The choice v = u and q = Π0 p in the first formula of (3FF) leads to

(σ,Π0 p − p)L2(Ω) ≤ μ(p,Π0 p − p)L2(Ω) + j (Π0 p) − j (p).

This yields

j (p) − j (Π0 p) + μ ‖p − Π0 p‖2L2(Ω)
≤ (σ − μΠ0 p, p − Π0 p)L2(Ω).

Since
´
T (p − Π0 p) dx = 0 for all T ∈ T ,

(σ − μΠ0 p, p − Π0 p)L2(Ω) = (σ − Π0σ, p − Π0 p)L2(Ω)

≤ ‖σ − Π0σ‖2L2(Ω)
/(2μ) + μ ‖p − Π0 p‖2L2(Ω)

/2.
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Jensen’s inequality [10] proves j (Π0 p) ≤ j (p). The combination with the previous
two displayed inequalities concludes the proof. ��
Proof of (4.3) The choice v = u in problem (3FF) reads

(σ − μ p, q − p)L2(Ω) ≤ j (q) − j (p).

It follows for q = ph that

(σ − μ p, ph − p)L2(Ω) ≤ j (ph) − j (p).

The discrete problem (d3FF) implies for vh = uh and qh = Π0 p that

(σh − μ ph,Π0 p − ph)L2(Ω) ≤ j (Π0 p) − j (ph).

The sum of the above inequalities and (σh,Π0 p − ph)L2(Ω) = (Π0σh, p − ph)L2(Ω)

yield

μ ‖p − ph‖2L2(Ω)
+ j (p) − j (Π0 p) ≤ (σ − σh, p − ph)L2(Ω)

+ (σh − Π0σh, p − ph)L2(Ω). (4.6)

The second formula of (3FF) implies for any τh ∈ RT0(T ) that

(τh, p − ph)L2(Ω) = −b(ϕ − ϕh, τh) − (u − uh, div τh)L2(Ω)

= −(u − uh, div τh)L2(Ω).

Hence, any τh ∈ RT0(T ) with − div τh = Π0 f , written τh ∈ Q( f, T ), satisfies

(σ − σh, p − ph)L2(Ω) = (σ − τh, p − ph)L2(Ω)

≤ ‖σ − τh‖2L2(Ω)
/μ + μ ‖p − ph‖2L2(Ω)

/4.

The second term in (4.6) reads

( div σh (• − mid (T ))/2, p − ph)L2(Ω)

= ((−Π0 f ) (• − mid (T ))/2, p − ph)L2(Ω)

≤ ‖hT f ‖2L2(Ω)
/(2μ) + μ ‖p − ph‖2L2(Ω)

/4.

This results in

μ ‖p − ph‖2L2(Ω)
/2 + j (p) − j (Π0 p)

≤ ( min
τh∈Q( f,T )

‖σ − τh‖2L2(Ω)
+ ‖hT f ‖2L2(Ω)

/2)/μ.

Jensen’s inequality [10] leads to j (Π0 p) ≤ j (p). This concludes the proof. ��
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Proof of (4.4) Define eh := Π0u − uh ∈ P0(T ) and consider

‖u − uh‖2L2(Ω)
= ‖u − Π0u‖2L2(Ω)

+ ‖eh‖2L2(Ω)
.

The well-known inf–sup condition of the divergence in RT0(T ) × P0(T ) leads to the
existence of τRT ∈ RT0(T ) with

div τRT = eh and ‖τRT ‖H(div,Ω) � ‖eh‖L2(Ω)

The problem (3FF) leads to

‖eh‖2L2(Ω)
= (u − uh, div τRT )L2(Ω)

= −(p − ph, τRT )L2(Ω)

� ‖p − ph‖L2(Ω) ‖eh‖L2(Ω) .

This concludes the proof. ��

4.3 Proof of Theorem 4.2

Let σ ∈ H( div ,Ω) from Theorem 2.2. Then σ(x) ∈ ∂W (∇u(x)) = μ∇u(x) +
∂ j (∇u(x)) implies, for all q ∈ L2(Ω), that

(σ − μ∇u, q − ∇u)L2(Ω) ≤ j (q) − j (∇u).

Let σCR ∈ P0(T ;R2) from Theorem 3.2. Then σCR ∈ ∂W (∇NCuCR) = μ∇NCuCR +
∂ j (∇NCuCR) implies for qh ∈ P0(T ;R2)

(σCR − μ∇NCuCR, qh − ∇NCuCR)L2(Ω) ≤ j (qh) − j (∇NCuCR).

Let q = ∇NCuCR and qh = Π0∇u in the previous inequalities. The sum of the two
inequalities yields

μ ‖∇NC(u − uCR)‖2 ≤ (σ − σCR,∇NC(u − uCR))L2(Ω)

+ (σCR − μ∇NCuCR,∇u − Π0∇u)L2(Ω)

+ j (Π0∇u) − j (∇u). (4.7)

Since σCR and ∇NCuCR are piecewise constant, the second term vanishes. Jensen’s
inequality [10] leads to j (Π0∇u) − j (∇u) ≤ 0. Let N (Ω) = N ∩ Ω denote the set
of the interior nodes and T (z) := {T ∈ T | z ∈ T } the set of triangles that share the
node z. Let J3 : CR1

0(T ) → (P3(T ) ∩ H1
0 (Ω)) be defined as in [5, Subsection 2.4],

[3,7] with the conservation property

 
T

∇ J3vCR dx =
 
T

∇NCvCR dx for all T ∈ T (4.8)
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and the approximation and stability property

∥
∥
∥h−1

T (vCR − J3vCR)

∥
∥
∥
L2(Ω)

≈ ‖∇NC(vCR − J3vCR)‖L2(Ω)

≈ min
ϕ∈H1

0 (Ω)

‖∇NC(vCR − ϕ)‖L2(Ω)

≤ ‖∇NC(vCR − u)‖L2(Ω)

for all vCR ∈ CR1
0(T ). Let INC : H1

0 (Ω) → CR1
0(T ) denote the nonconforming

interpolation operator defined by

INCv(mid (E)) =
 
E

v ds

for all interior edges E ∈ E(Ω) with the approximation property [4]

‖h−1
T (v − INCv)‖L2(Ω) � ‖∇NC(v − INCv)‖L2(Ω)

= min
wCR∈CR1

0(T )

‖∇NC(v − wCR)‖L2(Ω).

A calculation reveals the integral mean property ∇NC INCv = Π0∇v for all T ∈ T
and v ∈ H1

0 (Ω). This and the conservation property (4.8) leads to

(σ − σCR,∇NC(u − uCR))L2(Ω) = (σ,∇(u − J3uCR))L2(Ω)

+ (σ − Π0σ,∇NC(J3uCR − uCR))L2(Ω)

− (σCR,∇NC(INCu − uCR))L2(Ω).

Theorems 2.2 and 3.2 imply

(σ,∇(u − J3uCR))L2(Ω) − (σCR,∇NC(INCu − uCR))L2(Ω)

= ( f, u − INCu)L2(Ω) + ( f, uCR − J3uCR)L2(Ω).

The combination of the previous inequalities with the approximation properties of INC
and J3 yield

(σ − σCR,∇NC(u − uCR))L2(Ω)

� (‖hT f ‖L2(Ω) + ‖σ − Π0σ‖L2(Ω)) ‖∇NC(u − uCR)‖L2(Ω) .

The efficiency of ‖hT f ‖L2(Ω), namely

‖hT f ‖L2(Ω) � ‖σ − Π0σ‖L2(Ω) + osc( f, T ),
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follows from
ˆ
T
f �T dx =

ˆ
T

σ · ∇�T dx =
ˆ
T
(σ − Π0σ) · ∇�T dx

for the volume bubble function �T = λaλbλc with barycentric coordinates λa , λb, and
λc for the triangle T = conv{a, b, c} ∈ T as in the bubble function technique of [19,
Chapter I]. The combination with (4.7) yields the assertion.

4.4 Proof of Theorem 4.3

Lemma 2 Any A, B ∈ R
2 satisfy

μ/2|A − B|2 ≤ Wε(B) − Wε(A) − DWε(A) · (B − A).

Proof An elementary calculation reveals

Wε(B) − Wε(A) − DWε(A) (B − A)

= (μ/2)|A − B|2 + g

(√
|B|2 + ε2−

√
|A|2 + ε2−A · (B − A)/

√
|A|2 + ε2

)

.

The formula 2ab ≤ a2 + b2 together with the Cauchy inequality prove

(A · B + ε2)2 ≤ |A|2|B|2 + ε2(|A|2 + |B|2) + ε4 = (|A|2 + ε2)(|B|2 + ε2).

This yields

√
|B|2 + ε2 −

√
|A|2 + ε2 − A · (B − A)/

√
|A|2 + ε2

=
√

|B|2 + ε2 − (A · B + ε2)/
√

|A|2 + ε2 ≥ 0

This yields the assertion. ��
Proof of Theorem 4.3 Since

√
a2 + b2 ≤ a+b for a, b > 0, the functional jε defined

by

jε(F) := g
ˆ

Ω

(√
|F |2 + ε2 − ε

)
dx for all F ∈ L2(Ω;R2),

satisfies, for all vNC ∈ H1
0 (Ω) + CR1

0(T ), that

jε(∇NCvNC) ≤ j (∇NCvNC) ≤ jε(∇NCvNC) + gε|Ω|.

This implies

Eε,NC(vNC) ≤ ENC(vNC) ≤ Eε,NC(vNC) + gε|Ω|. (4.9)
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Lemma 2 leads to

(μ/2)
∥
∥∇NC(uCR − uε,CR)

∥
∥2
L2(Ω)

≤ Eε,NC(uCR) − Eε,NC(uε,CR)

− (DWε(∇NCuε,CR),∇NC(uCR − uε,CR))L2(Ω) + F(uCR − uε,CR).

The Euler–Lagrange Equations for the smooth Wε and the previous inequalities lead
to

(μ/2)
∥
∥∇NC(uCR − uε,CR)

∥
∥2
L2(Ω)

≤ Eε,NC(uCR) − Eε,NC(uε,CR)

≤ ENC(uCR) − ENC(uε,CR) + gε|Ω|.

Since uCR minimizes ENC in CR1
0(T ), this implies

(μ/2)
∥
∥∇NC(uCR − uε,CR)

∥
∥2
L2(Ω)

≤ gε|Ω|.

A triangle inequality and Corollary 1 conclude the proof. ��

4.5 Comments

The a priori bounds (4.3)–(4.5) have the form of best-approximation estimates in
terms of the stress as announced in (1.7) and (1.8) of the Sect. 1. Further information
about the order of convergence relies on the stress regularity. It has been shown [12,
Theorem 3.3.3] that ∇u ∈ C0(Ω,R2), specialized to the present problem of pipe
flow. Moreover, if ∂Ω is smooth and f ∈ L2(Ω) it holds u ∈ H2(Ω) [2,14]. But
the situation is different for the stress. First, σ is indeterminate in the subset Ω0 :=
{x ∈ Ω | ∇u(x) = 0}, which is simply connected [16]. Furthermore, σ is not unique.
Therefore, the best that one can deduce in terms of the regularity of σ would be that,
from (1.2), it is continuous in the region Ω\Ω0. For those situations in which it is
possible to construct a continuous extension of σ in Ω0 that satisfies the momentum
equation div σ + f = 0, the optimal order of rate of convergence may be recovered.
This is demonstrated in the example of Sect. 4.6.

4.6 Example with known solution

Let Ω := B(R, 0) = {x ∈ R
2 | |x | ≤ R} and f ≡ C . Then the exact solution of (1.5)

reads [13]

u(x) = 0 if g ≥ CR/2,

u(x) =
{
C(R2 − r2)/(4μ) − g(R − r)/μ if 2g/C ≤ r ≤ R,

C(R − 2g/C)2/(4μ) if 0 ≤ r ≤ 2g/C
if g < CR/2.

One solution σ ∈ H(div,Ω) of σ ∈ ∂W (∇u) with− div σ = f reads σ0 := −Cx/2.
Let h := max hT := ‖hT ‖L∞(Ω) denote the maximal mesh-size of an underlying
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triangulation. Since σ0 ∈ RT0(T ), Theorem 4.1 implies

div(σ0 − σh) = 0,

‖p − ph‖2L2(Ω)
/2 + | j (p) − j (Π0 p)| ≤ ‖hT f ‖2L2(Ω)

/2 � h2,

‖u − uh‖L2(Ω) � ‖u − Π0u‖L2(Ω) + ‖p − ph‖L2(Ω) � h.

This proves

‖p − ph‖L2(Ω) + ‖u − uh‖L2(Ω) + ‖∇NC(u − uCR)‖L2(Ω) � h.

For comparison, for the conforming P1 finite element method, [13] proves

‖p − pC‖L2(Ω) � h
√
log(1/h)

for the gradient pC ∈ P0(T ;R2) of the discrete solution of the conforming P1 finite
element method (as described in Sect. 6.1).

5 Generalisation to 3D

This section describes the variational inequality for the 3D Bingham problem with its
discretization in Sect. 5.1, the three-field formulationwith its discretization in Sect. 5.2
and proves in Sect. 5.3 a priori error bounds.

5.1 Variational inequality

Let S = {A ∈ R
3×3 | A = A�} be the space of symmetric matrices and symA =

(A + A�)/2 and define for q ∈ L2(Ω;R3×3)

j (q) = g
ˆ

Ω

|sym(q)| dx .

The variational inequality for the Bingham flow problem in 3D seeks u ∈ Z := {w ∈
H1
0 (Ω;R3) | div w = 0} with

ˆ
Ω

f · (v − u) dx ≤ μ

ˆ
Ω

ε(u) : ε(v − u) dx

+ j (∇v) − j (∇u) for all v ∈ Z . (5.1)

A direct discretization of the variational inequality with P1 nonconforming finite
elements is not possible, since

´
Ω

εNC(•) : εNC(•) dx is not positive definite on the P1
nonconforming finite element space. For homogeneousDirichlet boundary conditions,
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a straightforward calculation reveals that

2
ˆ

Ω

ε(u) : ε(v) dx =
ˆ

Ω

(∇u : ∇v + div u div v) dx .

Since div u = 0, this leads to the alternative formulation of (5.1): Seek u ∈ Z with

ˆ
Ω

f · (v − u) dx ≤ (μ/2)
ˆ

Ω

∇u : ∇(v − u) dx

+ j (∇v) − j (∇u) for all v ∈ Z .

Define the energy

E3D(v) :=
ˆ

Ω

W3D(∇v) dx − F(v) for all v ∈ H1
0 (Ω;R3)

withW3D(A) := (μ/4)|A|2 + g|symA|. The unique existence of a solution u follows
from the equivalence of (5.1) with the minimization of E3D over Z as in the two-
dimensional case. The discretization with P1 nonconforming finite elements seeks
uCR ∈ Z CR (T ) := {wCR ∈ CR1

0(T ;R3) | div NCwCR = 0} with
ˆ

Ω

f · (vCR − uCR) dx ≤ (μ/2)
ˆ

Ω

∇NCuCR : ∇NC(vCR − uCR) dx

+ j (∇NCvCR) − j (∇NCuCR) (5.2)

for all vCR ∈ Z CR (T ). The unique existence of a discrete solution to (5.2) follows
with the equivalence to the minimization of

ENC,3D(vCR) :=
ˆ

Ω

W3D(∇NCvCR) dx − F(vCR) over Z CR (T ).

The following theorem is the point of departure for the a priori error analysis from
Sect. 5.3.

Theorem 5.1 (Euler–Lagrange equations for 3D Bingham flow) The solution u ∈
H1
0 (Ω;R3) to (5.1) satisfies the Euler–Lagrange equations in the sense that there

exist σ ∈ H( div ,Ω;R3×3) and ξ ∈ L2
0(Ω) with

σ − ξ I3×3 ∈ ∂W3D(∇u) and f + div σ = 0 a.e. in Ω.

The discrete solution uCR ∈ CR1
0(T ;R3) satisfies the discrete Euler–Lagrange equa-

tions in the sense that there exist σCR ∈ P0(T ;R3×3) and ξ0 ∈ P0(T ) ∩ L2
0(Ω)

with

σCR − ξ0 I3×3 ∈ ∂W3D(∇NCuCR) a.e. in Ω
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and

(σCR ,∇NCvCR)L2(Ω) = F(vCR) for all vCR ∈ CR1
0(T ;R3). (5.3)

Proof The proof is analogous to that of [14, Theorem 6.3] and is outlined below. The
regularization

jδ(q) = g
ˆ

Ω

√

δ2 + |sym(q)|2 dx for all q ∈ L2(Ω;R3×3)

of j motivates the minimization of

Eδ,3D(v) := (μ/4)
ˆ

Ω

|∇v|2 dx + jδ(∇v) − F(v)

over Z with unique minimizer uδ . The arguments of [14, p. 83, l.10–21] lead to

uδ → u strongly in H1
0 (Ω;R3) as δ → 0.

Since jδ is differentiable on Z , the solution uδ is characterised by the Euler–
Lagrange equations

(μ/2)
ˆ

Ω

∇uδ · ∇v dx + g
ˆ

Ω

(ε(uδ) : ε(v)/
√

δ2 + |ε(uδ)|2) dx = F(v)

for all v ∈ Z . Define pδ := ε(uδ)/
√

δ2 + |ε(uδ)|2. Then

pδ ∈ � := {q ∈ L2(Ω;S) | |q(x)| ≤ 1 a.e. and tr(q) = 0}

and the arguments of [14, p. 84] prove the existence of a weak limit p ∈ � with
pδ ⇀ p weakly in L2(Ω;R3×3) as δ → 0,

((μ/2)∇u + gp,∇v)L2(Ω) = F(v) for all v ∈ Z ,

and (μ/2)∇u + gp ∈ ∂W3D(∇u). In order to involve ξ ∈ L2(Ω) and generalize the
equilibrium to all test functions v ∈ H1

0 (Ω;R3), let α ∈ H1
0 (Ω;R3) and ξ ∈ L2

0(Ω)

be the solutions to the Stokes equations

(∇α,∇v)L2(Ω) − (ξ, div v)L2(Ω) = F(v) − ((μ/2)∇u + gp,∇v)L2(Ω),

( div α, ζ )L2(Ω) = 0

for all v ∈ H1
0 (Ω;R3) and all ζ ∈ L2

0(Ω). The choice v = α ∈ Z proves α = 0.
Hence, σ := (μ/2)∇u + gp − ξ I3×3 ∈ H( div ,Ω;R3×3) fulfils

(σ,∇v)L2(Ω) = F(v) for all v ∈ H1
0 (Ω;R3).
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The discrete Euler–Lagrange equations (5.3) follow with the same arguments.
Indeed, since the discrete spaces are finite dimensional, the convergences are even
strong. The existence of ξh ∈ P0(T ) ∩ L2

0(Ω) follows from the existence of solutions
of the discrete Stokes equations [8]. ��

5.2 Three-field formulation

As in two dimensions, define for ψ = (v, q) ∈ L2(Ω;R3) × L2(Ω;R3×3) and
τ ∈ H( div ,Ω;R3×3) the bilinear form

b(ψ, τ) = −(v, div τ)L2(Ω) − (q, τ )L2(Ω).

The three-field formulation seeks p = ∇u with values in R
3×3
dev := {A ∈ R

3×3 |
tr(A) = 0} and in this way incorporates incompressibility. The three-field formulation
in 3D seeks ϕ = (u, p) ∈ L2(Ω;R3) × L2(Ω;R3×3

dev ) and σ ∈ H( div ,Ω;R3×3)

with

F(v − u) ≤ μ(p, q − p)L2(Ω) + j (q) − j (p) + b(ψ − ϕ, σ ),

b(ϕ, τ ) = 0 (5.4)

for all ψ = (v, q) ∈ L2(Ω;R3) × L2(Ω;R3×3
dev ) and τ ∈ H( div ,Ω;R3×3). Let

RT0(T ;R3×3) denote the space of row-wise Raviart–Thomas functions. The discrete
three-field formulation in 3D seeks ϕh = (uh, ph) ∈ P0(T ;R3) × P0(T ;R3×3

dev ) and
σh ∈ RT0(T ;R3×3) with

F(vh − uh) ≤ μ(ph, qh − p)L2(Ω) + j (qh) − j (ph) + b(ψh − ϕh, σh),

b(ϕh, τh) = 0 (5.5)

for all ψh = (vh, qh) ∈ P0(T ;R3) × P0(T ;R3×3
dev ) and τh ∈ RT0(T ;R3×3).

The equivalence of the P1 nonconformingdiscretization of the variational inequality
and the discretization of the three-field formulation follows with the arguments of
Theorem 3.1 and the observation that tr(∇NCuCR(x)) = tr(ph(x)) = 0 implies that
div NCuCR = 0.

5.3 A priori analysis

This section generalizes Theorems 4.1 and 4.2 of Sect. 4 to 3D.

Theorem 5.2 (Direct analysis of P1 nonconforming FEM in 3D) The solution u ∈ Z
of (5.1) and the discrete solution uCR ∈ Z CR (T ) of (5.2) satisfy

‖∇NC(u − uCR)‖L2(Ω) � ‖σ − Π0σ‖L2(Ω) + osc( f, T ).
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Proof The crucial points in the proof are analogous to those of Theorem 4.2. The
outline given here shows how ξ (the Lagrange multiplier for the incompressibility
condition from Theorem 5.1) comes into play.

Let σ ∈ H( div ,Ω;R3×3) and ξ ∈ L2
0(Ω) from Theorem 5.1. The sum rule for

subderivatives implies ∂W3D(∇u) = μ∇u + ∂ j (∇u). Then σ − ξ I3×3 ∈ ∂W3D(∇u)

implies for all q ∈ L2(Ω;R3×3)

(σ − ξ I3×3 − μ∇u, q − ∇u)L2(Ω) ≤ j (q) − j (∇u).

For σCR ∈ P0(T ;R3×3) and ξh ∈ P0(T ) ∩ L2
0(Ω) from Theorem 5.1, the same

arguments prove for all qh ∈ P0(T ;R3×3)

(σCR − ξh I3×3 − μ∇NCuCR, qh − ∇NCuCR)L2(Ω) ≤ j (qh) − j (∇NCuCR).

The choice q = ∇NCuCR and qh = Π0∇u in the two above displayed inequalities and
the sum of those prove

μ ‖∇NC(u − uCR)‖2 ≤ j (Π0∇u) − j (∇u) + μ(∇NCuCR,Π0∇u − ∇u)L2(Ω)

+ (σ − σCR ,∇NC(u − uCR)L2(Ω) + (σCR ,∇u − Π0∇u)L2(Ω)

+ (ξ − ξCR , div NC(u − uCR))L2(Ω) + (ξCR , div u − Π0 div u)L2(Ω).

As in the proof of Theorem 4.2, Jensen’s inequality [10] yields j (Π0∇u)− j (∇u) ≤ 0
and, since ∇NCuCR, σCR , and ξCR are piecewise constant, the third, fifth and seventh
term on the right-hand side vanish. The fourth term is estimated by means of a con-
forming companion operator analogously to the proof of Theorem 5.1. Since u ∈ Z
and uCR ∈ Z CR (T ), the remaining term vanishes, namely

(ξ − ξCR , div NC(u − uCR))L2(Ω) = 0.

��
Theorem 5.3 Any solution (u, p, σ ) ∈ L2(Ω;R3)×L2(Ω;R3×3)×H(div,Ω;R3×3)

of (5.4) and any discrete solution (uh, ph, σh) ∈ (P0(T ;R3) × P0(T ;R3×3)) ×
RT0(T ;R3×3) of (5.5) satisfies

‖ div (σ − σh)‖L2(Ω) = ‖ f − Π0 f ‖L2(Ω) , (5.6)

μ ‖p − Π0 p‖2L2(Ω)
/2 + | j (p) − j (Π0 p)| ≤ ‖σ − Π0σ‖2L2(Ω)

/(2μ), (5.7)

μ ‖p − ph‖2L2(Ω)
/2 + | j (p) − j (Π0 p)|

≤ ( min
τh∈Q( f,T )

‖σ − τh‖2L2(Ω)
+ ‖hT f ‖2L2(Ω)

/2)/μ, (5.8)

‖u − uh‖L2(Ω) � ‖u − Π0u‖L2(Ω) + ‖p − ph‖L2(Ω) . (5.9)

Proof The proof of the theorem is analogous to that of Theorem 4.1 and therefore
omitted. ��
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6 Numerical experiments

This section is devoted to numerical experiments for the Bingham flow problemwhich
compare the lowest-order nonconforming and conforming FEM. After a brief intro-
duction into the implementation in Sect. 6.1, the computational benchmarks follow in
Sects. 6.2, 6.3 and 6.4. Section 6.5 draws conclusions of the experiments.

6.1 Numerical realisation

The solution of (1.5) is approximated by the regularized problem (3.1) for Crouzeix–
Raviart functions and by a conforming approximation uC ∈ P1(T ) ∩ H1

0 with

Eε,NC(uC) = min
vC∈P1(T )∩H1

0 (Ω)

Eε,NC(vC). (6.1)

The numerical experiments from Sects. 6.2, 6.3 and 6.4 compare the nonconforming
FEM of Sect. 3.2 with the lowest-order conforming FEM and investigate the depen-
dence of the error on the regularization parameter ε.

The representation of a P1 nonconforming function vCR ∈ CR1
0(T ) with respect

to the edge-oriented basis functions ψ1, . . . , ψM with the number M := |E(Ω)| of
interior edges in T and the basis functions defined by ψE (mid (F)) = δEF ) reads
vCR = ∑M

j=1 x jψ j for a coefficient vector x = (x1, . . . , xM ). The minimization
of x �→ Eε,NC(vCR) is realised with the Matlab routine fminunc (which uses a
trust-region algorithm) with input of Eε,NC, DEε,NC, and D2Eε,NC at x and maxi-
mal 2000 iterations and with a termination tolerance of 10−15. A conforming P1(T )

approximation of the minimum serves as the initial guess for the refined triangulation.
For three domains, the discrete problems are solved on a sequence of triangulations

(T�)�=1,2,... based on successive uniform red-refinements from Fig. 1a. The right-hand
side is f ≡ 1, the viscosity μ = 1, and the plasticity yield g = 0.2.

Two strategies (a) and (b) are implemented to steer the regularization parameter.

(a) The value of ε j = 10− j with j = 0, 1, . . . , 5 is fixed for the sequence of triangu-
lations. The errors for every domain are plotted against the degrees of freedom; the

0 1

0

1

−1 0 1
−1

0

1

(a) (b) (c)

Fig. 1 A red-refinement of a triangle and initial meshes of the domains from Sects. 6.3 and 6.4
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results for j = 0, . . . , 5 correspond to the colours red, green, blue, cyan, magenta,
yellow.

(b) The value ε ≈ ‖hT ‖2L∞(Ω) is coupled on the mesh-size of the triangulations. The

initial values are chosen as ε = 10− j for j = 0, 1, 2, 3. Given T� with regulariza-
tion parameter ε�, the regularization parameter for T�+1 reads ε�+1 = ε�/4. Since
the refinement is essentially a red-refinement, 4

∥
∥hT�+1

∥
∥2
L∞(Ω)

≈ ∥
∥hT�

∥
∥2
L∞(Ω)

.
The errors for every domain are plotted against the degrees of freedom; the values
of j = 0, . . . , 3 correspond to the colours red, green, blue, cyan.

6.2 Circular domain

The first experiment concerns the circular domain B(1, 0) from Sect. 4.6 with R = 1.
The first three triangulations are depicted in Fig. 2. Given a triangulation T�, the red-
refinement T̃�+1 := red(T�) of T� is computed. Afterwards, the boundary nodes of
T̃�+1 are shifted to ∂B(1, 0). This defines the triangulation T�+1.

The errors ‖∇NC(u − uh)‖ on the sequence of triangulations are plotted in Fig. 3
against the numbers of degrees of freedom. In the case (b) the errors for different ε are
all nearly the same. In the case (a) the differences of the errors for a large number of
degrees of freedomare larger than the differences of

√
gε|Ω|/μ for different ε. It seems

that the discretization error dominates the total error in case (b) and the behaviour of
the errors in case (a) leads to the conjecture that the bound of the regularization error
from Theorem 4.3 is suboptimal.

6.3 Square domain

The underlying domain in this experiment is the unit square Ω = (0, 1)2. The initial
mesh T1 is plotted in Fig. 3. Given T� the triangulation T�+1 is defined by T�+1 =
red(T�). Since the exact solution is not known for this domain, the displayed values
for the error on a triangulation T� with regularization parameter ε� are computed by
a conforming reference solution on T�+2 = red(red(T�)) with finer regularization
parameter εref = ε�/64.

The errors ‖∇NC(u − uh)‖ for case (a) and case (b) are plotted in Fig. 4 against
the numbers of degrees of freedom. The errors show the same behaviour as for the
circular domain.

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

Fig. 2 The first three triangulations of the circular domain from Sect. 6.2
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Fig. 3 The errors for the conforming (times symbol) and the nonconforming (black square) approximation
on the circular domain from Sect. 6.2

6.4 L-shaped domain

The underlying domain of this experiment is the L-shaped domain Ω = (−1, 1)2

\([0, 1] × [−1, 0]). The error ‖∇NC(u − uh)‖ is computed by a reference solution as
in Sect. 6.3. The non-convex domain causes a reduced convergence rate of 1/3 as can
be seen in the convergence history plot of Fig. 5. As in the previous examples, it seems
that the regularization error converges to zero faster than anticipated by Theorem 4.3.
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Fig. 4 The errors for the conforming (times symbol ) and the nonconforming (black square) approximation
on the unit square from Sect. 6.3

6.5 Conclusions

– The numerical experiments reveal optimal convergence rates for the nonconform-
ing FEM for convex domains. As expected, the re-entrant corner of the L-shaped
domain causes a stress singularity which leads to a reduced convergence rate.

– It seems that there is no inferiority of the conforming FEM in the numerical exam-
ples, although the mathematical analysis only predicts a suboptimal convergence
rate. The convergence rates are comparable in all experiments.
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Fig. 5 The errors for the conforming (times symbol) and the nonconforming (black square) approximation
on the L-shaped domain from Sect. 6.4

– Throughout the computations, the regularization error appears to be smaller than
predicted by Theorem 4.3.

– The numerical experiments suggest the choice of ε ≈ ‖hT ‖2L∞(Ω). The relatively
large initial value of ε = 1 seems to be comparable to small initial values.
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