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The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure
(but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based
on a stress in H(div) and the velocity in L2. Any standard mixed finite element function space can be utilized
for this mixed formulation, e.g., the Raviart-Thomas discretization which is related to the Crouzeix-Raviart
nonconforming finite element scheme in the lowest-order case. The effective and guaranteed a posteriori
error control for this nonconforming velocity-oriented discretization can be generalized to the error control
of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analy-
sis allows for local inf-sup constants which can be chosen in a global partition to improve the estimation.
Numerical examples provide strong evidence for an effective and guaranteed error control with very small
overestimation factors even for domains with large anisotropy. © 2016 Wiley Periodicals, Inc. Numer Methods
Partial Differential Eq 32: 1411–1432, 2016

Keywords: a posteriori error estimation; adaptive finite element method; Crouzeix-Raviart element;
nonconforming finite element method; pseudostress finite element method; Stokes equations

I. INTRODUCTION

The pseudostress finite element method (PS-FEM) has recently been established in the context of a
least-squares finite element method for the Stokes equations [1–3]. The adaptive mesh-refinement
leads to optimal convergence rates [4] for the lowest-order case. This and the principle availability
for higher polynomial degrees makes this mixed finite element method highly attractive over the
nonconforming P1 finite element method usually attributed to Crouzeix and Raviart.

The error control for finite element methods in the energy norm with residual-based explicit
error estimators typically leads to unknown or large multiplicative reliability constants and is
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1412 BRINGMANN, CARSTENSEN, AND MERDON

usually uncompetitive over refined methodologies like equilibration error estimators that lead to
guaranteed upper bounds, see [5–7] for recent error estimator competitions. The error analysis
of nonconforming finite element schemes concerns the geometric condition that one variable is a
distributional gradient of an H1-function. It thereby involves the design of a particular test function
v near to the discrete solution uh. For the Stokes problem, the side conditions on this Sobolev func-
tion require the match of the true Dirichlet boundary conditions as well as the incompressibility
condition div v = 0 a.e. in the domain �. The relaxation of this later condition has been suggested
in [8] based on some regular split of a gradient into a gradient of a divergence-free H1 function
and an L2-orthogonal remainder. If a lower bound of the inf-sup constant c0 from Subsection II.A
is known, this regular split leads to the guaranteed upper bound of the energy error∥∥∣∣u − uh

∥∥∣∣2

NC
≤ η2 + (

∥∥∣∣v − uh

∥∥∣∣
NC

+ ‖div v‖L2(�)/c0)
2
.

The first quantity η depends only on the right-hand side f, while the second term on the right-hand
side depends on v. Another advantage of the PS-FEM is the appearance of the oscillation of the
right-hand side f in η compared to the L2-norm of the mesh-size times f in the nonconforming
case [9]. The stability constant c0 is an inf-sup constant and difficult to compute, see [10] and
[11] for the corrected results. Moreover, c0 deteriorates for stretched domains with large aspect
ratios [12] and so may crucially worsen the efficiency indices of all error estimators based on
designs of non divergence-free test functions. Several such designs were proposed and compared
in [8, 13, 14] and mainly stem from popular conforming postprocessings of nonconforming finite
element solutions for the Poisson problem [15–17, 7].

The localization technique [9] allows a partition �1, . . . , �J of � with (practical) inf-sup
constants cj of �j and leads to guaranteed upper bounds that only include the local inf-sup
constants, i.e.,

∥∥∣∣u − uh

∥∥∣∣2

NC
≤ η2 +

J∑
j=1

(‖DNC(v − uh)‖L2(�j ) + ‖div v‖L2(�j )/cj )
2.

However, this is only valid if the designed test function v satisfies the additional condition∫
∂�j

v · ν�j
ds = 0 for j = 1, . . . , J .

To mention just two prominent situations, one may think of a decomposition of an L-shaped
domain or a long thin channel into squares. Moreover, the localization technique can produce
guaranteed error bounds even when (lower bounds of) the global inf-sup constants are unknown,
e.g. for the backward facing step example.

Section IV presents several strategies of how to satisfy the additional constraint within the test
function designs from [13] in more detail than in [9]. Section IV.E suggests a universal projection
that works for any test function designs, in particular for combination with solutions from (trun-
cated) global minimization problems. An additional lumping in the projection matrix renders this
technique very inexpensive.

The resulting error estimators are studied for the lowest-order PS-FEM, where uh := u2 is
some piecewise quadratic function whose piecewise gradient equals (up to some pressure contri-
bution) the approximation σPS of the exact pseudostress σ in the pseudostress finite element space
PS(T ) of Section III. The L2-error σ − σPS is quasi-optimal [4, 18] in the sense that

‖σ − σPS‖L2(�) � inf
τPS∈PS(T )

‖σ − τPS‖L2(�) + osc(f , T ).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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ERROR CONTROL FOR STOKES PSEUDOSTRESS FEM 1413

The proposed error estimator designs of the present article lead to the sharpest guaranteed upper
error bounds known for this scheme, even in the case of challenging domains with very small
inf-sup constants.

The remaining parts of this article are organized as follows. Section II recalls the Stokes
equations and describes the nonconforming finite element discretization. Section III presents the
pseudostress approximation and states the main result for the guaranteed upper error bound in The-
orem 3.1 on page 6. Section IV designs different interpolations of the discrete velocity which lead
to guaranteed upper error bounds. It includes the treatment of inhomogeneous Dirichlet boundary
conditions. Finally, Section V presents numerical experiments on some benchmark problems.

The article is written in the 2D case although the arguments for the main result in Theorem 3.1
carry over to the 3D case as well. However, the designs of appropriate test functions are more
involved.

Standard notation on Lebesgue and Sobolev spaces applies throughout this article such as
Hk(�), H(div, �), and L2(�) and the associated spaces for vector- or matrix-valued func-
tions Hk(�; R

2), L2(�; R
2), Hk(�; R

2×2), H(div, �; R
2×2), and L2(�; R

2×2). Let H 1
0 (�) :={

v ∈ H 1(�) : v ≡ 0 on ∂� in the sense of traces
}

be equipped with the energy norm

‖| · ‖| := | · |H1(�) = ‖D · ‖L2(�) .

The 2D rotation operators read, for v ∈ H 1(�; R
2),

Curl v :=
(−∂v1/∂x2 ∂v1/∂x1

−∂v2/∂x2 ∂v2/∂x1

)
and curl v := tr Curl v.

The expression A � B abbreviates the relation A ≤ CB with a generic constant 0 < C which
solely depends on the interior angles �T of the underlying triangulation; A ≈ B abbreviates
A � B � A.

II. NOTATION AND PRELIMINARIES

A. Stokes Equations

This article concerns the 2D Stokes equations: Given a right-hand side f ∈ L2(�; R
2) and Dirich-

let boundary data uD ∈ H 1(�; R
2) with

∫
∂�

uD · ν ds = 0, seek a pressure p ∈ L2
0(�; R

2) :={
q ∈ L2(�; R

2) :
∫

�
q dx = 0

}
and a velocity field u ∈ H 1(�; R

2) with

−�u + ∇p = f and div u = 0 in � while u = uD on ∂�.

The error analysis involves (lower bounds of) the inf-sup constant

0 < c0 := inf
q∈L2

0(�)\{0}
sup

v∈H1
0 (�;R2)\{0}

∫
�

q div v dx/(‖Dv‖L2(�)‖q‖L2(�))

of the Ladyzhenskaya lemma [19, §6. Theorem 6.3] and depends on �. Lower bounds for this
constant are in general difficult to compute; see [10] and for corrected results [11]. Recall from
[12], that c0 deteriorates for stretched domains with large anisotropy. Section III explains remedies
for these problems based on [9].

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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1414 BRINGMANN, CARSTENSEN, AND MERDON

B. Nonconforming Finite Element Spaces

Given a regular triangulation T of the bounded Lipschitz domain � ⊆ R
2 into closed triangles in

the sense of Ciarlet with the set of edges E and the set of nodes N . Let E(�) resp. N (�) denote
the set of interior edges resp. the set of interior nodes. The set of edges along the boundary ∂�

reads E(∂�) and the set of boundary nodes N (∂�). Define the set mid(E) := {mid(E) : E ∈ E}
of midpoints of all edges and let E(T ) be the set of the three edges and N (T ) the set of the three
vertices of a triangle T ∈ T . Let the set T (z) contain all triangles T ∈ T with vertex z ∈ N (T )

for a node z ∈ N and denote its cardinality with |T (z)|. The diameter diam(T ) of T ∈ T is
denoted by hT and hT denotes their piecewise constant values with hT |T := hT := diam(T ) for
all T ∈ T . With the elementwise polynomials Pk(T ; R

2) of degree at most k, the nonconforming
Crouzeix-Raviart finite element spaces read

CR1(T ; R
2) := {

v ∈ P1(T ; R
2) : ∀E ∈ E , v is continuous at mid(E)

}
,

CR1
0(T ; R

2) := {
v ∈ CR1(T ; R

2) : ∀E ∈ E(∂�), v(mid(E)) = 0
}

.

The Crouzeix-Raviart finite element functions form a subspace of the piecewise Sobolev functions

H 1(T ; R
2) := {

v ∈ L2(�; R
2) : ∀T ∈ T , v|T ∈ H 1(T ; R

2) := H 1(int(T ); R
2)

}
.

The corresponding piecewise differential operators DNC : H 1(T ; R
2) → L2(�; R

2×2) and
divNC : H 1(T ; R

2) → L2(�) read, for v ∈ H 1(T ; R
2),

(DNCv)|T := D(v|T ) and (divNCv)|T := div(v|T ) for all T ∈ T .

The integral mean of a function f ∈ L2(ω) (or any vector f ∈ L2(ω; R
2)) over some set ω is

fω :=
∫

ω

f dx :=
∫

ω

f dx/|ω|.

Given f ∈ L2(�) (as well as vectors f ∈ L2(�; R
2)), let fT := 
f denote the L2-orthogonal

projection of f onto the piecewise constant functions P0(T ) (resp. P0(T ; R
2)) and

osc2(f , T ) :=
∑
T ∈T

osc2(f , T ) = ‖hT (f − fT )‖2
L2(�)

with osc2(f , T ) := ‖hT (f − fT )‖2
L2(T )

.

For given f ∈ L2(�; R
2), let the right-hand side functional be

F(v) :=
∫

�

f · v dx for all v ∈ H 1(T ; R
2). (2.1)

C. Crouzeix-Raviart FEM for the Stokes Equations

The first discrete bilinear form reads

aNC(uCR, vCR) :=
∑
T ∈T

∫
T

DuCR : DvCR dx

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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ERROR CONTROL FOR STOKES PSEUDOSTRESS FEM 1415

for all uCR, vCR ∈ CR1(T ; R
2) ⊆ H 1(T ; R

2) with A : B := ∑
j ,k=1,2 AjkBjk for all 2 × 2 matrices

A, B ∈ R
2×2. Let L2

0(�) := {
q ∈ L2(�) :

∫
�

q dx = 0
}

denote the space of L2 functions with
zero integral mean. Then, the second discrete bilinear form reads

bNC(vCR, q0) :=
∫

�

q0divNCvCR dx

for all vCR ∈ CR1
0(T ; R

2) and q0 ∈ P0(T ) ∩ L2
0(�). This leads to the discrete counterpart

ZNC := {
vCR ∈ CR1

0(T ; R
2) : divNCvCR = 0 a.e. in �

}
of the set of divergence-free functions

Z := {
v ∈ H 1

0 (�; R
2) : div v = 0 a.e. in �

}
.

The nonconforming representation of the Stokes problem reads: Given f ∈ L2(�; R
2) and

uD ∈ L2(�; R
2) with

∫
∂�

uD · ν ds = 0, seek uCR ∈ ZNC with

uCR(mid(E)) =
∫

E

uD ds for all E ∈ E(∂�) and

aNC(uCR, vCR) = F(vCR) for all vCR ∈ ZNC.

In other words, up to boundary conditions, uCR is computed from the Riesz representation
of a linear functional (given as right-hand side plus boundary modifications) in the Hilbert
space (ZNC, aNC). The actual implementation uses unconstrained Crouzeix-Raviart elements
vCR ∈ CR1

0(T ; R
2) as test functions and enforce the constraint divNCuCR = 0 a.e. in � by

piecewise constant Lagrange multipliers in P0(T ) ∩ L2
0(�). Hence, uCR from above and some

pCR ∈ P0(T ) ∩ L2
0(�) are determined by

aNC(uCR, vCR) + bNC(vCR, pCR) = F(vCR) for all vCR ∈ CR1
0(T ; R

2),

bNC(uCR, qCR) = 0 for all qCR ∈ P0(T ) ∩ L2
0(�).

III. PSEUDOSTRESS APPROXIMATION AND ERROR ANALYSIS

A simple postprocessing of the Crouzeix-Raviart nonconforming solution ûCR ∈ ZNC and
p̂CR ∈ P0(T ) ∩ L2

0(�) with respect to the piecewise constant right-hand side fT (instead of
f in (2.1)) leads to the pseudostress representation

σPS := DNCûCR − fT

2
⊗ (• − mid(T )) − p̂CRI2×2 and

uPS := 
ûCR + 1

4

(dev(fT ⊗ (• − mid(T )))(• − mid(T ))),

where mid(T ) denotes the piecewise constant vector-valued function with mid(T )|T := mid(T )

and dev(A) := A − tr(A) I2×2/2 denotes the deviatoric part of some matrix-valued function A.
Then, the piecewise quadratic function

u2 := ûCR − fT

4
(| • −mid(T )|2 − ‖ • −mid(T )‖2

L2(�)
) ∈ P2(T ; R

2)

satisfies DNCu2 = σPS + p̂CRI2×2.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



J_ID: z8x Customer A_ID: 2015-1714.R1 Cadmus Art: NUM22056 KGL ID:
JW-NUMT160007 — 2016/7/25 — page 1416 — #6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1416 BRINGMANN, CARSTENSEN, AND MERDON

The pair (σPS, uPS) solves the Raviart-Thomas mixed FEM [4, 3] with respect to f and
approximates the exact pseudostress

σ = Du − pI2×2 ∈ H(div, �; R
2×2)/R :=

{
τ ∈ H(div, �; R

2×2) :
∫

�

trτ dx = 0

}

with f + div σ = 0 and the exact solution u ∈ H 1(�; R
2) in the discrete spaces

PS(T ) := {
τ ∈ P1(T ; R

2×2) ∩ H(div, �; R
2×2)/R : ∀j = 1, 2, (τj1, τj2) ∈ RT0(T )

}
and P0(T ; R

2) such that fT + div σPS = 0 a.e. in �. In fact, the following discrete formulation
has the unique solution (σPS, uPS) ∈ PS(T ) × P0(T ; R

2),∫
�

dev σPS : τPS dx +
∫

�

div τPS · uPS dx =
∫

∂�

uD · τPSν ds for all τPS ∈ PS(T ), (3.1)

∫
�

div σPS · vPS dx = −
∫

�

f · vPS dx for all vPS ∈ P0(T ; R
2). (3.2)

The following theorem recalls the known results for the Crouzeix-Raviart finite element method
from [13, 8] for the pseudostress-related approximation u2 with the set of admissible test functions
A := {v ∈ H 1(�; R

2) : v = uD on ∂�}. Moreover, a refined guaranteed upper bound that fol-
lows an idea from [9] is introduced. This idea is based on a partition of � into J many subdomains
�1, . . . , �J with ∪J

j=1�j = �, outer unit normal vectors ν�j
and local inf-sup constants

0 < cj := inf
q∈L2

0(�j )\{0}
sup

v∈H1
0 (�j ;R2)\{0}

∫
�j

q div v dx/(‖D v‖L2(�j )‖q‖L2(�j )) for j = 1, . . . , J .

The set of test functions that are suitable for the refined error control satisfy an additional contraint
and are defined by

Ã :=
{

v ∈ A :
∫

∂�j

v · ν�j
ds = 0 for j = 1, . . . , J

}
. (3.3)

Moreover, the constant j1,1 ≥ 3.8317 below denotes the first positive root of the first Bessel
function.

Theorem 3.1.

(a) Any v ∈ A satisfies

∥∥∣∣u − u2

∥∥∣∣2

NC
≤ osc(f , T )2/j 2

1,1 + (
∥∥∣∣v − u2

∥∥∣∣
NC

+ ‖div v‖L2(�)/c0)
2
.

(b) Any v ∈ Ã from (3.3) satisfies

∥∥∣∣u − u2

∥∥∣∣2

NC
≤ osc(f , T )2/j 2

1,1 +
J∑

j=1

(‖DNC(v − u2)‖L2(�j ) + ‖div v‖L2(�j )/cj )
2.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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ERROR CONTROL FOR STOKES PSEUDOSTRESS FEM 1417

Proof of Theorem 3.1(a). The point of departure is the orthogonal split from [8, Subsec-
tion 3.2],

DNC(u − u2) = Dz + y (3.4)

into some z ∈ Z with∫
�

Dz : Dv dx =
∫

�

DNC(u − u2) : Dv dx for all v ∈ Z

and the remainder

y ∈ Y :=
{
y ∈ L2(�; R

2×2) :
∫

�

y : Dv dx = 0 for all v ∈ Z

}
.

Since Y is the orthogonal complement of D(Z) in L2(�; R
2×2), it follows∥∥∣∣u − u2

∥∥∣∣2

NC
= ‖|z‖|2 + ‖y‖2

L2(�)
. (3.5)

Since z ∈ Z, I2×2 : Dz = div z = 0 a.e. This, the aforementioned orthogonality, and an integration
by parts show

‖|z‖|2 =
∫

�

DNC(u − u2) : Dz dx =
∫

�

Du : Dz dx −
∫

�

DNCu2 : Dz dx

=
∫

�

f · z dx −
∫

�

σPS : Dz dx =
∫

�

f · z dx +
∫

�

z · div σPS dx =
∫

�

(f − fT ) · z dx.

Piecewise Poincaré inequalities (with Poincaré constant hT /j1,1 from [20, Corollary 3.4]) then
imply∫

�

(f − fT ) · z dx =
∫

�

(f − fT ) · (z − zT ) dx ≤
∑
T ∈T

‖f − fT ‖L2(T )‖z − zT ‖L2(T )

≤
∑
T ∈T

hT /j1,1 ‖f − fT ‖L2(T )‖Dz‖L2(T ) ≤ osc(f , T )/j1,1 ‖|z‖|.

Hence, ∥∥∣∣z∥∥∣∣ ≤ osc(f , T )/j1,1. (3.6)

For each y ∈ Y , there exists some q ∈ L2
0(�) [8, Subsection 3.2, Lemma 2] with∫

�

y : D w dx =
∫

�

q div w dx for all w ∈ H 1
0 (�; R

2) and c0‖q‖L2(�) ≤ ‖y‖L2(�).

Hence, any v ∈ A with u − v = 0 on ∂� satisfies

‖y‖2
L2(�)

=
∫

�

DNC(u − u2) : y dx =
∫

�

DNC(v − u2) : y dx +
∫

�

D(u − v) : y dx

=
∫

�

DNC(v − u2) : y dx +
∫

�

q div (u − v) dx

≤ (‖DNC(v − u2)‖L2(�) + ‖div v‖L2(�)/c0)‖y‖L2(�).

Numerical Methods for Partial Differential Equations DOI 10.1002/num



J_ID: z8x Customer A_ID: 2015-1714.R1 Cadmus Art: NUM22056 KGL ID:
JW-NUMT160007 — 2016/7/25 — page 1418 — #8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1418 BRINGMANN, CARSTENSEN, AND MERDON

Therefore,

‖y‖L2(�) ≤ ‖DNC(v − u2)‖L2(�) + ‖div v‖L2(�)/c0. (3.7)

The combination of (3.5)–(3.7) concludes the proof.

Proof of Theorem 3.1(b). The proof follows ideas from [9] for the local versions

Zj := {
z ∈ H 1

0 (�j ; R
2) : div z = 0 a.e. in �j

}
and

Yj :=
{

y ∈ L2(�j ; R
2×2) :

∫
�j

y : Dz dx = 0 for all z ∈ Zj

}

of Z and Y from the proof of (a) with � replaced by �j .
Given v ∈ Ã and any j = 1, . . . , J , the condition

∫
∂�j

v · νjds = 0 guarantees that the Stokes

equations with volume force fT has a unique solution wj ∈ Zj with the boundary data wj = v

along ∂�j , i.e., ∫
�j

Dwj : Dζj dx =
∫

�j

fT · ζj dx for all ζj ∈ Zj . (3.8)

Furthermore, there exist zj ∈ Zj and yj ∈ Yj with

DNC(wj − u2) = Dzj + yj on �j .

Since Y j is the orthogonal complement of D(Zj ) in L2(�j ; R
2×2), it follows

‖DNC(wj − u2)‖2
L2(�j )

= ‖Dzj‖2
L2(�j )

+ ‖yj‖2
L2(�j )

. (3.9)

The combination of the aforementioned orthogonality with (3.8), div zj = 0 a.e. in �j ,
dev σPS = dev DNCu2 and fT + div σPS = 0 yields

‖Dzj‖2
L2(�j )

=
∫

�j

DNC(wj − u2) : Dzj dx =
∫

�j

Dwj : Dzj dx −
∫

�j

DNCu2 : Dzj dx

=
∫

�j

fT · zj dx −
∫

�j

σPS : Dzj dx =
∫

�j

(fT + div σPS) · zj dx = 0. (3.10)

For each yj ∈ Yj , there exists some qj ∈ L2
0(�j ) [8, Subsection 3.2, Lemma 2] with∫

�j

yj : Dϕj dx =
∫

�j

qj div ϕj dx for all ϕj ∈ H 1
0 (�j ; R

2) and

cj‖qj‖L2(�j )
≤ ‖yj‖L2(�j )

.

The combination of this result for the test function ϕj ≡ wj − v ∈ H 1
0 (�j ; R

2) with the
aforementioned orthogonality and a Cauchy inequality result in

‖yj‖2
L2(�j )

=
∫

�j

yj : DNC(wj − u2) dx =
∫

�j

yj : DNC(v − u2) dx +
∫

�j

yj : DNC(wj − v) dx

≤ (‖DNC(v − u2)‖L2(�j ) + ‖div ϕj‖L2(�j )
/cj )‖yj‖L2(�j )

.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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ERROR CONTROL FOR STOKES PSEUDOSTRESS FEM 1419

This, (3.9), (3.10), and div wj = 0 a.e. in �j imply, for j = 1, . . . , J ,

‖DNC(wj − u2)‖L2(�j )
= ‖yj‖L2(�j )

≤ ‖DNC(v − u2)‖L2(�j ) + ‖div v‖L2(�j )/cj . (3.11)

The functions wj , zj ∈ H 1
0 (�j ; R

2) can be extended by zero to w̃j , z̃j ∈ H 1
0 (�; R

2) (i.e.
w̃j := wj and z̃j := zj in �j and w̃j , z̃j := 0 in � \ �j ) and yj ∈ L2(�j ; R

2×2) can be extended
by zero to ỹj ∈ L2(�; R

2×2) (i.e. ỹj := yj in �j and ỹj := 0 in � \ �j ). Then the sums
z̃ := z̃1 + · · · + z̃J and w̃ := w̃1 + · · · + w̃J belong to Z.

Since div w̃ = 0 a.e. in �, part (a) proves for w̃ ∈ A that

∥∥∣∣u − u2

∥∥∣∣2

NC
≤ osc(f , T )2/j 2

1,1 + ∥∥∣∣w̃ − u2

∥∥∣∣2

NC
.

The estimate (3.11) implies

∥∥∣∣w̃ − u2

∥∥∣∣2

NC
=

J∑
j=1

‖DNC(wj − u2)‖2
L2(�j )

≤
J∑

j=1

(‖DNC(v − u2)‖L2(�j ) + ‖div v‖L2(�j )/cj )
2.

This concludes the proof of (b).

IV. PROPER INTERPOLATION DESIGNS

This section designs functions v ∈ A with the additional prerequisites

∫
∂�j

v · ν�j
ds = 0 for j = 1, . . . , J (4.1)

for Theorem 3.1 (b) by modifications of the designs compared in [13]. All designs satisfy a discrete
Dirichlet boundary condition of the set of admissable functions defined by

A(T ) := {
v ∈ C(�; R

2) : v(z) = uD(z) for all z ∈ N (∂�)
}

and

Ã(T ) := {v ∈ A(T ) : v satisfies (4.1)} .

These functions violate the exact Dirichlet boundary condition, see Subsection IV.D for a
remedy. Furthermore, E() := {E ∈ E : E ⊆ } defines the set of edges along the skeleton
 := ∪J

j=1∂�j .

A. Piecewise Quadratic Interpolation

A nodal averaging of u2 as in [13] leads to the piecewise quadratic and continuous function
vAP2 ∈ P2(T ; R

2)∩Ã(T ), defined via piecewise quadratic interpolation of the values at the nodes
z ∈ N

vAP2(z) :=
{

uD(z) for z ∈ N (∂�),∑
T ∈T (z) u2|T (z)/|T (z)| for z ∈ N (�),

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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1420 BRINGMANN, CARSTENSEN, AND MERDON

and in the midpoints of the edges E ∈ E with the two adjacent triangles T (mid(E)) of E ∈ E(�)

and the two endpoints N (E)

vAP2(mid(E)) :=
{∑

T ∈T (mid(E)) u2|T (mid(E))/|T (mid(E))| for E ∈ E(�) \ E(),

3ûCR(mid(E))/2 − ∑
z∈N (E) vAP2(z)/4 for E ∈ E().

Let (ϕz : z ∈ N ∪ mid(E)) denote the piecewise quadratic and globally continuous basis
functions of P2(T ) ∩ C(�). The definition of vAP2 implies∫

∂�j

vAP2 · ν ds =
∑

E∈E(∂�j )

∫
E

vAP2 · ν ds

=
∑

E∈E(∂�j )

(
vAP2(mid(E))

∫
E

ϕmid(E) ds +
∑

z∈N (E)

vAP2(z)

∫
E

ϕz ds

)
· ν�j

|E

=
∑

E∈E(∂�j )

|E|/6

(
4vAP2(mid(E)) +

∑
z∈N (E)

vAP2(z)

)
· ν�j

‖E

=
∑

E∈E(∂�j )

|E|ûCR(mid(E)) · ν�j
|E =

∫
∂�j

ûCR · ν�j
ds =

∫
�j

div NCûCR dx = 0.

Hence, v ≡ vAP2 satisfies condition (4.1).

B. Minimal Piecewise Quadratic Interpolation

A global minimization of the guaranteed upper bound from Theorem 3.1 (b) leads to

vMP2 := argmin
v∈P2(T ;R2)∩Ã(T )

J∑
j=1

(‖DNC(v − u2)‖L2(�j ) + ‖div v‖L2(�j )/cj )
2

= argmin
v∈P2(T ;R2)∩Ã(T )

J∑
j=1

min
0<μj <∞

((1 + μj)‖DNC(v − u2)‖2
L2(�j )

+ (1 + 1/μj )‖div v‖2
L2(�j )

/c2
j )

and is realized by the following algorithm.

Algorithm 4.1 (global minimization).
Input û2 ∈ P2(T ; R

2), c1, . . . , cj , �1, . . . , �J and the number of iterations K ∈ N.
Initialize μj := 1 for j = 1, . . . , J .
for k = 1, . . . , K do

Compute vMP2(k) :=

argmin
v∈P2(T ;R2)∩Ã(T )

J∑
j=1

((1 + μj)‖DNC(v − u2)‖2
L2(�j )

+ (1 + 1/μj )‖div v‖2
L2(�j )

/c2
j ),

μj := ‖div vMP2(k)‖L2(�j )
/(cj‖DNC(vMP2(k) − u2)‖L2(�j )

) for j = 1, . . . , J . od

Output vMP2(K) ∈ P2(T ; R
2) ∩ Ã(T ).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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ERROR CONTROL FOR STOKES PSEUDOSTRESS FEM 1421

The condition (4.1) (involved in Ã(T )) may be enforced by Lagrange multipliers λ ∈ R
J .

The computation of vMP2(k) requires a solution of a linear system in each step. In order to reduce
the computational costs, we use three iterations of a preconditioned conjugate gradient method
for inexact solve and denote the solution with vMP2CG3(K). The preconditioner is the diagonal of
the system matrix named after Jacobi. Note that this solution might not satisfy condition (4.1)
exactly. For a remedy, the reader is referred to Subsection IV.E.

Undisplayed numerical experiments show that the values after K = 3 iterations do not
significantly change anymore.

C. Piecewise Linear Interpolation on Red-Refinement

This subsection designs piecewise linear vred ∈ P1(red(T ); R
2) ∩ Ã(T ) with respect to the uni-

form red-refinement red(T ) of triangulation T [7, 13]. The nodes of red(T ) consists of the nodes
N and the edge midpoints mid(E) of T . Define vred ∈ P1(red(T ); R

2) ∩ Ã(T ) via piecewise
linear interpolation of the values, for the node z ∈ N ,

vred(z) :=
{

uD(z) for z ∈ N (∂�),

vz for z ∈ N (�)
(4.2)

with some particular choice of vz ∈ R
2, and in the midpoints of the edges E ∈ E ,

vred(mid(E)) :=
{

ûCR(mid(E)) for E ∈ E(�) \ E(),

2ûCR(mid(E)) − ∑
z∈N (E) vred(z)/2 for E ∈ E().

(4.3)

Define (ϕred
z : z ∈ N ∪ mid(E)) as the nodal basis functions in P1(red(T )) ∩ C(�). The

definition of vred implies

∫
∂�j

vred · ν ds =
∑

E∈E(∂�j )

∫
E

vred · ν ds

=
∑

E∈E(∂�j )

(
vred(mid(E))

∫
E

ϕred
mid(E) ds +

∑
z∈N (E)

vred(z)

∫
E

ϕred
z ds

)
· ν�j

|E

=
∑

E∈E(∂�j )

|E|/4

(
2vred(mid(E)) +

∑
z∈N (E)

vred(z)

)
· ν�j

|E

=
∑

E∈E(∂�j )

|E|ûCR(mid(E)) · ν�j
|E =

∫
∂�j

ûCR · ν�j
ds =

∫
�j

div ûCR dx = 0.

Hence, v ≡ vred satisfies condition (4.1).
Interpolation vred is fixed on all central subtriangles as T 4 in Fig. 1(b) and it remains to determine

the values vz at the free nodes z ∈ N (�), e.g. by nodal averaging

vz :=
∑

T ∈T (z)

ûCR|T (z)/|T (z)| for all z ∈ N (�). (4.4)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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1422 BRINGMANN, CARSTENSEN, AND MERDON

FIG. 1. Notation for red-refinements.

Algorithm 4.2 below suggests the one-dimensional minimization problem around each node
patch ωred

z with respect to the red-refined triangulation as in Fig. 1(a) under the side condition of
the fixed values at the edge midpoints Qj of the adjacent edges.

Algorithm 4.2 (patchwise minimization).
Input ûCR ∈ CR1(T ; R

2), c1, . . . , cJ , �1, . . . , �J and the number of iterations K ∈ N.
Initialize vPMred := ∑

E∈E ûCR(mid(E))ϕred
mid(E) and μj := 1 for j = 1, . . . , J .

for k = 1, . . . , K do
v0 := ∑

E∈E vPMred(mid(E))ϕred
mid(E),

∀z ∈ N (�) compute

vz := argmin
w∈R2

J∑
j=1

((1 + μj)‖DNC(v0 + wϕred
z − u2)‖2

L2(ωred
z ∩�j )

+(1 + 1/μj )/c
2
j ‖div(v0 + wϕred

z )‖2

L2(ωred
z ∩�j )

),

vPMred := v0 + ∑
z∈N (�) vzϕ

red
z ,

∀j = 1, . . . , J compute μj := ‖div vPMred‖L2(�j )/(cj‖DNC(vPMred − u2)‖L2(�j )). od

Output vPMred ∈ P1(red(T ); R
2) ∩ Ã(T ).

Undisplayed numerical experiments show that the values after K = 3 iterations do not
significantly change anymore.

We distinguish between the optimal version vPMred from Algorithm 4.2, and vMAred with the
suboptimal choice vz from (4.4).

D. Inhomogeneous Dirichlet Boundary Conditions

In case of inhomogeneous Dirichlet boundary conditions all designs in Subsections IV.A–IV.C
result in some vxyz which does not necessarily belong to A. To overcome this shortcoming, a
virtual boundary reconstruction wD ∈ H 1(�) with wD = uD − vxyz along ∂� as in [21, 7, 13]

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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allows v := vxyz + wD ∈ A and the estimates

‖DNC(v − u2)‖L2(�j ) + ‖div v‖L2(�j )/cj ≤ ‖DNC(vxyz − u2)‖L2(�j )
+ ‖div vxyz‖L2(�j )

/cj

+ ‖DwD‖L2(�j ) + ‖div wD‖L2(�j )/cj .

The divergence and energy norm of wD can be estimated by [21, Theorem 4.2]

‖div wD‖L2(�j ) ≤ √
2 ‖DwD‖L2(�j ) ≤ √

2 Cγ ‖h3/2
E ∂2

E(uD − vxyz)/∂s2‖L2(∂�j ∩∂�).

The construction of wD ensures
∫

E
wD ds = 0 for all E ∈ E(∂�j). Hence, v ≡ vxyz +wD ∈ Ã(T )

for any vxyz ∈ Ã(T ).
For right isosceles triangles, numerical calculations in [7] suggest the constant Cγ = 0.4980. If

vxyz|E equals uD|E at N (E) and mid(E) for all E ∈ E(∂�), wD can be designed on the red-refined
triangulation with halved edge lengths and accordingly reduced constant Cγ = 0.4980/23/2 =
0.1761.

E. Projection

This subsection designs a projection operator that projects a given function v ∈ P2(T ; R
2)∩A(T )

onto a function ṽ ∈ P2(T ; R
2) ∩ Ã(T ). Consider the constrained minimization problem

min
w∈P2(T ;R2)∩Ã(T )

J∑
j=1

(
(1 + μj)‖D(v − w)‖2

L2(�j )
+ (1 + 1/μj )‖div(v − w)‖2

L2(�j )
/c2

j

)
,

where 0 < μj < ∞ is chosen as follows

μj :=
{

‖div v‖L2(�j )/(cj‖DNC(v − u2)‖L2(�j )) if v ∈ {
vMP2(K), vMP2CG3(K)

}
,

1 otherwise.

For a given enumeration N ∪ mid(E) = {z1, . . . , zM} of the M := |N | + |E | nodes of the
triangulation, define the index set of all nodes on the boundary

M := {m ∈ {1, . . . , M} : zm ∈ ∂�} .

Let (ϕz : z ∈ N ∪ mid(E)) denote the piecewise quadratic and globally continuous basis
functions of P2(T )∩C(�) enumerated according to the nodes of the triangulation, i.e. ϕm := ϕzm

for m = 1, . . . , M . Let x, y ∈ R
2M denote the coefficients of the basis representation of w

respectively v,

w =
M∑

m=1

xm(ϕm, 0)� + xM+m(0, ϕm)� and v =
M∑

m=1

ym(ϕm, 0)� + yM+m(0, ϕm)�.

Then, the minimization problem reads

min
x∈R2M

(y − x)�A(y − x) s.t. (xm, xM+m)� = uD(zm) for m ∈ M and Bx = 0,

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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1424 BRINGMANN, CARSTENSEN, AND MERDON

where A ∈ R
2M×2M is defined via

A�m :=
J∑

j=1

(
(1 + μj)

∫
�j

Dϕ� : Dϕm dx + (1 + 1/μj )

∫
�j

div ϕ� div ϕm dx/c2
j

)

for �, m = 1, . . . , 2M and condition (4.1) is expressed by the rectangular matrix B ∈ R
J×2M with

the entries

Bjm =
∫

∂�j

ϕm · ν ds for j = 1, . . . , J and m = 1, . . . , 2M .

Introduce J Lagrangian multipliers λ1, . . . , λJ to ensure the side condition (4.1). Minimizing
the Lagrange functional

L(y; x, λ) := (y − x)�A(y − x) + λ�Bx

leads to the saddle point problem [
2A B�

B 0

] [
x

λ

]
=

[
2Ay

0

]
.

In order to reduce the computational costs, replace the matrix A by its diagonal � := diag(A).
Finally, define the desired projection

ṽ :=
M∑

m=1

xm(ϕm, 0)� + xM+m(0, ϕm)� ∈ P2(T ; R
2) ∩ Ã(T ).

Remark 4.1. Reference [9] already includes the suggestion of local designs in less detail and
proposes to refine such a local bound by solving global problems in the subdomains. This article
suggests the usage of the boundary values of the explicit design to decompose the problem.

The novel projection technique is a convenient and more universal alternative that projects any
test function v ∈ A(T ) onto some ṽ ∈ Ã(T ) at low costs, e.g. v ∈ A(T ) might stem from an
inexactly solved unconstrained minimization problem as in 4.2 (and so avoids the solve of more
expensive saddle point problems) or any nodal interpolation of ûCR. Another scenario is an inex-
actly solved Crouzeix-Raviart finite element method where ûCR is not piecewise divergence-free
anymore. In this case the explicit designs presented herein do not satisfy v ∈ Ã(T ). Moreover,
this projection technique can be generalized to the 3D case, where it is fundamentally more
involved to ensure condition (4.1) by simply defining values of the test function as presented in
the Subsections IV.A and IV.C.

V. NUMERICAL EXPERIMENTS

This section presents some benchmark examples with convergence history plots for the energy
error and history plots of efficiency indices for error estimators as a function of numbers of degrees
of freedom (ndof). The labels of the graphs refer to the subscripts of the estimator term ηxyz as
follows, ’AP2’ indicates the piecewise quadratic interpolation vAP2 and ’MP2’ the minimal piece-
wise quadratic interpolation vMP2, where the following number in brackets indicates the number

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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ERROR CONTROL FOR STOKES PSEUDOSTRESS FEM 1425

of iterations K in Algorithm 4.1. ’MAred’ and ’PMred’ indicate the two different piecewise linear
interpolations vMAred and vPMred on the red-refined triangulation. The annotation ’(mod)’ indicates
the modified interpolations according to the side condition (4.1) and ’(proj)’ indicates the usage
of the projection from Subsection IV.E. Both allow for the upper bound from Theorem 3.1 (b).

A. Adaptive Algorithm

The benchmark examples employ the following adaptive algorithm which includes an equivalent
modification of the a posteriori error estimator ηopt from [3] and thus, the generated sequence of
discrete solutions and meshes is not biased by one of the investigated estimators. Recall from [4],
that this algorithm leads to quasi-optimal convergence in the notion of approximation classes.
Undocumented experiments reveal optimal convergence rates of the adaptive algorithms using
the error estimators from Section IV as well.

Algorithm 5.1 (APSFEM).
Input Initial regular triangulation T0 with refinement edges of the polygonal domain � into
triangles and bulk parameter 0 < θ ≤ 1.

for any level � = 0, 1, 2, . . . do
Solve (3.1)–(3.2) with respect to regular triangulation T� with solution (σ�, u�).
Compute η2

� := ∑
T ∈T�

η2
�(T ) with

η2
�(T ) := osc2(f , T ) + |T |‖curl(devσ�)‖2

L2(T )
+ |T |1/2

∑
E∈E(T )

‖[dev(σ�)τE]E‖2
L2(E)

Mark a subset M� of T� of (almost) minimal cardinality |M�| with

θη2
� ≤ η2

�(M�) :=
∑

T ∈M�

η2
�(T ).

Refine. Compute the smallest regular refinement T�+1 of T�

with M ⊆ T� \ T�+1 by newest vertex bisection. od
Output Sequence of discrete solutions (σ�, u�)�∈N0

and meshes (T�)�∈N0
.

B. Classical Example on L-Shaped Domain

The first benchmark problem employs f (x, y) ≡ 0 with the exact solution in polar coordinates

u(r , ϑ) = rα((1 + α) sin(ϑ)w(ϑ) + cos(ϑ)w′(ϑ), −(1 + α) cos(ϑ)w(ϑ) + sin(ϑ)w′(ϑ))
�,

p(r , ϑ) = −rα−1((1 + α)2w′(ϑ) + w′′′(ϑ))/(1 − α)

on the L-shaped domain � = (−1, 1)2 \ ([0, 1] × [−1, 0]), where

w(ϑ) = 1/(α + 1) sin((α + 1)ϑ) cos(αω) − cos((α + 1)ϑ)

+ 1/(α − 1) sin((α − 1)ϑ) cos(αω) + cos((α − 1)ϑ)

for α = 856399/1572864 and ω = 3π/2 from [22]. The inhomogeneous Dirichlet boundary
data are prescribed by the exact solution uD(x, y) := u(x, y) on ∂�. The L-shaped domain � is
partitioned into the three unit squares �1 = (−1, 0)2, �2 = (−1, 0) × (0, 1) and �3 = (0, 1)2.
Due to theoretical lower bounds by [10, 11], use 0.1601 ≤ c0 and 0.3826 ≤ cj for j = 1, 2, 3.
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1426 BRINGMANN, CARSTENSEN, AND MERDON

FIG. 2. Convergence history of the energy error for uniform and adaptive mesh refinement for the problem
from Subsection V.B.

FIG. 3. History of efficiency indices ηxyz/
∥∥∣∣u − uh

∥∥∣∣ of various a posteriori error estimators labeled xyz in
the figure as functions of the number of unknowns on uniform meshes for the problem from Subsection V.B.

Figure 2 shows the convergence history of the exact energy error for uniform and adaptive
mesh refinement by Algorithm 5.1 with θ = 0.5. As known for this example, the convergence
rate for the uniform mesh refinement is not optimal, i.e. 0.25 with respect to the number of degrees
of freedom (or 0.5 with respect to the mesh width as h ≡ ndof−1/2).

Figure 3 shows the efficiency indices for all error estimators for uniform mesh refinement.
The main observation is that the efficiency indices for the ’(mod)’ and ’(proj)’ error estimators,
that allow for the refined upper bounds with the local inf-sup constant from Theorem 3.1 (b), are
considerably improved compared to the error estimators that operate with unmodified designs. In
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FIG. 4. History of efficiency indices ηxyz/
∥∥∣∣u − uh

∥∥∣∣ of various a posteriori error estimators labeled xyz
in the figure as functions of the number of unknowns for adaptive mesh refinement for the problem from
Subsection V.B.

other words, the gain from the change from global to local inf-sup constants is larger than the loss
of freedom from the additional constraints in the designs. As an example the efficiency index for
ηAP2 drops from about 4.5 to almost 3.0 for ηAP2(mod) and the efficiency index for ηMAred drops from
4.4 to about 3.5 for ηMAred (mod). Also the global designs with a truncated minimization benefit from
the modifications and the projection. For example, the efficiency index of ηMP2CG3(3) of about 2.7
is improved to 1.8 by its modified form ηMP2CG3(3)(proj). The estimator with the least improvement
is ηMP2(3) which is due to the fact that its inf-sup constant dependable part of the error estimator is
very small at least on fine meshes. The variant ηMP2(3)(proj) is slighlty less efficient than the variant
ηMP2(3)(mod). Hence, it seems advisable to add the additional constraint as a side constraint in the
minimization problem. However, in case of ηAP2, the ’(proj)’ variant is slightly more efficient than
the ’(mod)’ variant. The efficiency indices for adaptive mesh refinement depicted in Fig. 4 allow
similar conclusions with even more remarkable improvements for the local designs.

C. Colliding flow example on stretched domain

Given a ratio � ∈ N, let � := (−1, 2� − 1) × (−1, 1) denote a stretched domain. The subdivision
�1, . . . , �� of � consists of the � squares with edge length 2 as displayed in Fig. 5 and lower
bounds of the local inf-sup constants 0.3826 ≤ cj for j = 1, . . . , � from [10, 11]. A computation
of a lower bound for the inf-sup constant on star-shaped domains � according to [11, Corollary
7 and Proposition 9 i)] yields the lower bounds of c0 as displayed in Table I.

The second benchmark problem employs f (x, y) := (240(�−1(x +1)−1)y2, 240�−3(�−1(x +
1) − 1)2y)� with the exact solution which is derived by transformation of the solution from the
colliding flow example to the stretched domain �, i.e.,

u(x, y) := (20(�−1(x + 1) − 1)y4 − 4(�−1(x + 1) − 1)
5
, 20�−1(�−1(x + 1) − 1)

4
y − 4�−1y5)�,

p(x, y) := −20�−1(�−1(x + 1) − 1)
4 − 2�−1y4.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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1428 BRINGMANN, CARSTENSEN, AND MERDON

FIG. 5. Subdivision of the domain � in the stretched colliding flow example from Subsection V.C.

TABLE I. Efficiency indices for a collection of estimators for the problem from Subsection V.C with dif-
ferent domains for � = 1, 2, 4, 8, 16 The tables show the results of a computation on the 6 times uniformly
red-refined initial triangulation.

� ndof AP2 AP2(mod) MAred MAred(mod) PMred PMred (mod)

1 32,513 2.1455 2.1781 2.7207 2.7610 2.2257 2.2324
2 65,153 3.0522 2.3069 4.3233 3.1558 2.6221 2.1078
4 130,433 4.8789 2.3780 7.5121 3.3666 2.9824 1.9815
8 260,993 8.5031 2.3906 13.6768 3.4124 3.7073 1.9542
16 522,113 15.7631 2.3901 25.9517 3.4199 5.3061 1.9556

� MP2(3) MP2(3)(mod) MP2CG3(3) MP2CG3(3)(proj) c0

1 1.0377 1.0377 1.2131 1.2131 3.8268 · 10−1

2 1.0439 1.0280 1.3304 1.2382 2.2975 · 10−1

4 1.0520 1.0174 1.5122 1.2489 1.2218 · 10−1

8 1.0612 1.0100 1.8327 1.2481 6.2137 · 10−2

16 1.0747 1.0057 2.4606 1.2458 3.1204 · 10−2

Figure 6 shows the exact error graphs of the 6 computations with varying parameter � = 1,
2, 4, 8, 16. The error gets worse for larger domains, but its convergence rates stays optimal.

Table I displays the efficiency indices for the computations on a six times red-refined initial tri-
angulation of � with � = 1, 2, 4, 8, 16. In all cases, the error estimators ηMP2, ηMP2(mod), ηMP2(proj),
and ηMP2CG3(proj) yield the best results with indices between 1 and 2. When the anisotropy of the
domain grows, the global versions of the simple estimators ηAP2, ηMAred, ηPMred get worse. For
� = 16, they reveal extremely poor efficiency indices between 15 and 26 (except for ηPMred).
However, their local versions exhibit almost no change for increasing �. Their efficiency indices
range from 1.8 to 3.7. This is due to the deterioration of the inf-sup-constant c0 for anisotropic
domains, which behaves asymptotically like O(�−1) [12, Theorem 3].

Table II demonstrates the influence of the modification due to [9] and the projection from
Subsection IV.E on the energy error term

∥∥∣∣u2 − vxyz

∥∥∣∣
NC

. Both techniques generate almost no
increase of the energy error, but can reduce the factor which is related to the inf-sup-constant
c0 significantly, e.g. for anisotropic domains as seen in Table I. This is another evidence for the
improvement opportunities of the localization techniques.

D. Backward facing step example

The third benchmark problem employs f (x, y) ≡ 0 on the domain � = ((−2, 8) × (−1, 1)) \
([−2, 0] × [−1, 0]) with Dirichlet boundary data

uD(x, y) =

⎧⎪⎨
⎪⎩

(−y(y − 1)/10, 0) if x = −2,

(−(y + 1)(y − 1)/80, 0) if x = 8,

0 otherwise

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 6. Convergence history of the exact energy error for uniform and adaptive mesh refinements for the
problem from Subsection V.C.

TABLE II. Energy error
∥∥∣∣u2 − vxyz

∥∥∣∣
NC for a collection of estimators in comparison to the exact error∥∥∣∣u2 − u

∥∥∣∣
NC for the problem from Subsection V.C with different domains for � = 1, 2, 4, 8, 16. The tables

show the results of a computation on the six times uniformly red-refined initial triangulation.

� 1 2 4 8 16

ndof 32,513 65,153 130,433 260,993 522,113
AP2 1.98499 1.82007 2.46296 3.46022 4.88960
AP2(mod) 1.98499 1.82016 2.46237 3.45863 4.88676
AP2(proj) 1.98499 1.82007 2.46248 3.45903 4.88751
Exact error 1.95700 1.62876 2.09288 2.90087 4.08394

with a unique, but unknown, weak solution. Therefore the discrete solution on the twice red-refined
triangulation is used as a reference solution in the computation of the displayed approximations to
the unknown errors. For the refined estimates, the domain � is split into six squares as depicted in
Fig. 7 with lower bounds of the local inf-sup constants 0.3826 ≤ cj for j = 1, . . . , 6 from [10, 11].
The lower bound of the inf-sup constant 0.049814 ≤ c0 in this computation is derived from the
formula in [11, Corollary 7]. Up to the authors’ knowledge, the assumption in this corollary is
not satisfied for �. In fact, the true inf-sup constant c0 might be smaller.

As seen in the previous examples, the adaptive mesh-refinement results in an optimal
convergence rate of 0.5 (cf. Fig. 8).

Figures 9 and 10 present the efficiency indices for the error estimators from Section IV. The
versions with global inf-sup constant exhibit extremely bad efficiency indices in the range of 8
to 22 for ηAP2 and ηMAred. Significantly better, but still worse are the efficiency indices for ηPMred

of about 8 to 10 for adaptive mesh refinement. These error estimators are most affected by the
very small global inf-sup constant of the specific domain �. However, the global version of ηMP2

still yields good efficiency indices close to 1 because the computed test function vMP2 is almost
divergence free. Its computationally much cheaper modification ηMP2CG3 is slightly worse with an
index of about 3 for adaptive mesh refinement.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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1430 BRINGMANN, CARSTENSEN, AND MERDON

FIG. 7. Subdivision of the domain � in the backward facing step example from Subsection V.D.

FIG. 8. Convergence history of the energy error with respect to a reference solution on a twice red-refined
triangulation for uniform and adaptive mesh refinements for the problem from Subsection V.D.

FIG. 9. History of efficiency indices ηxyz/
∥∥∣∣u − uh

∥∥∣∣ of various a posteriori error estimators labeled xyz in
the figure as functions of the number of unknowns on uniform meshes for the problem from Subsection V.D.
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FIG. 10. History of efficiency indices ηxyz/
∥∥∣∣u − uh

∥∥∣∣ of various a posteriori error estimators labeled xyz
in the figure as functions of the number of unknowns for adaptive mesh refinement for the problem from
Subsection V.D.

This benchmark problem once again highlights the exceptional superiority of the proposed
designs based on the division of � into subdomains and the computation with local inf-sup con-
stants by Theorem 3.1 (b) as suggested by [9]. From the very beginning the estimators with local
modification or projection exhibit efficiency indices below 5 in the uniform case and below 4 in
the adaptive case. Even the index of the moderate estimator ηMP2CG3 can be drastically reduced by
a factor of at least 2 by using the projected version. It is also remarkable that the computationally
cheap but localized upper bounds ηAP2(mod), ηAP2(proj), ηMAred(mod), and ηPMred(mod) compare favorably
well with the global estimator ηMP2CG3.
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