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Abstract The first-order div least squares finite element methods provide inherent
a posteriori error estimator by the elementwise evaluation of the functional. In this
paperwe prove Q-linear convergence of the associated adaptivemesh-refining strategy
for a sufficiently fine initial mesh with some sufficiently large bulk parameter for
piecewise constant right-hand sides in a Poisson model problem. The proof relies on
some modification of known supercloseness results to non-convex polygonal domains
plus the flux representation formula. The analysis is carried out for the lowest-order
case in two-dimensions for the simplicity of the presentation.
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1 Introduction

The mathematical theory of the adaptive finite element method (AFEM) has been
developed significantly over the past decade. In particular, the adaptive mesh-refining
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method has been understood to converge with optimal convergence rates with respect
to the concept of a nonlinear approximations class [4,19,21,28]. Although optimal
convergence rates are often observed in many numerical experiments [1,3,27], even
the plain convergence is not understood for the adaptive least squares finite element
method (ALSFEM).

This paper analyses the convergence of natural adaptive mesh-refining first-order
div least squares finite element methods. The adaptive scheme monitors the local
contributions of the least squares residual and converges for a sufficiently fine initial
mesh with some large bulk parameter for piecewise constant right-hand sides.

The reliable and efficient error control of the first-order div least squares finite ele-
mentmethod (LSFEM) [6] for a Poissonmodel problem (PMP)with the homogeneous
Dirichlet boundary condition is immediately available by the least squares functional

L S( f ;p�, u�) := ‖ f + div p�‖2 + ‖p� − ∇u�‖2

with the L2 norm ‖ · ‖ := ‖ · ‖L2(�) evaluated for the discrete approximations (p�, u�)

in some Raviart–Thomas and Courant finite element subspaces of the Sobolev spaces
H(div;�) × H1

0 (�) with respect to a triangulation T� of the polygonal domain �.
It is expected that the elementwise evaluation of the least squares functional leads

to an effective ALSFEM [1,3,27]. One difficulty in the convergence analysis of those
schemes is the question whether the least squares residual is indeed strictly reduced
provided the mesh is refined [1].

The main contribution of this paper is a first convergence proof for this natural
strategy with the contraction property of the modified least squares functional

̂L S� := L S( f ;p�, u�) + �1‖(• − mid(T�)) div p�‖2 (1.1)

for some appropriate constant 0 < �1 < ∞ and the additional divergence term
with the piecewise affine pre-factor • − mid(T�) ∈ P1(T�; R

2) as a weight equal to
x −mid(T ) at x ∈ T ∈ T� in the triangle T with centre of inertia mid(T ). Saturation
holds in the sense that there exists some 0 < �1 < 1 with

̂L S�+1 ≤ �1 ̂L S� for all � = 0, 1, 2, . . . (1.2)

Let �� denote the L2 orthogonal projection onto the piecewise constants P0(T�) (or
any power like P0(T�; R

2)) to illustrate the difference of L S� and ̂L S� in the sequel.
The lowest-order Raviart–Thomas finite element functions and piecewise orthogonal
splits guarantee that

|| f − �� f ||2 + ||�� f + div p�||2 + λ||(1 − ��)p�||2 + ||��p� − ∇u�||2

equals L S� := L S( f ;p�, u�) for λ := 1 (and ̂L S� for λ := 1 + 4�1). In other
words, L S� and ̂L S� differ solely in the weights of the preceding four contributions.
In this sense, (1.2) may be seen as a saturation for the (slightly modified) least squares
functional.
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Convergence of natural adaptive LSFEMs 1099

The affirmative mathematical analysis is performed under the following three
restrictions (i)–(iii) to ensure (1.2). (i) The initial triangulation T0 is required to be
sufficiently fine; (ii) an ad-hoc version of adaptive mesh-refining does not resolve the
data properly and then (1.2) holds exclusively for a piecewise constant source f ; (iii)
the sequence of shape-regular triangulations is generated with some bulk parameter
0 < �1 < 1 sufficiently close to 1.

Some remarks are in order regarding those restrictions. The fineness condition (i)
on the initial mesh was first used in [21]. The following counter-example illustrates
the severe difficulty (ii). It gives the warning that, in general, overall refinement does
not lead to strict reduction of the least squares functional. Suppose that (T�)�∈N is a
sequence of uniform mesh-refinements (e.g. with bisec5 depicted in Fig. 1) and pick
a natural number, say, k = 100 and a source term f in L2(�) as right-hand side in the
PMP with piecewise integral mean zero with respect to the mesh Tk , written fk ≡ 0,
but with a non-zero integral mean fk+1 �≡ 0 with respect to the mesh Tk+1. Then,
the respective discrete solutions (p�, u�) of the LSFEM vanish for level � = 0, . . . , k
while (pk+1, uk+1) does not. Consequently, the sequence L S� := L S( f ;p�, u�) of
the minimal least squares functionals satisfies

L Sk+1 < L Sk = L Sk−1 = · · · = L S0 = || f ||2. (1.3)

It is clear that the sequence of the least squares functionals is monotone decreasing,
but the convergence may not be strict. An example of this type can be constructed
for standard Galerkin methods as well. But those methods are accompanied by a
residual-based error estimate ‖h� f ‖ with a mesh-size h� in front of the right-hand
side f ∈ L2(�), which is reduced. The difference is that, here, some refinement on
the level � < k = 100 does neither reduce the error nor the aforementioned equivalent
error measures.

The condition (iii) on the bulk parameter 0 < �1 < 1 sufficiently close to 1 con-
tradicts the discrete reliability in the sense of Stevenson [28] which is key to the proof
of optimal convergence rates: All known optimality results follow [28] and require
the bulk parameter to be sufficiently small! As a consequence, the authors propose
an alternative error analysis with explicit residual-based error estimates in [15] which

green ≡ bisec blue (left) blue (right)

red bisec3 bisec5

Fig. 1 Possible refinements of a triangle
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then allows the arguments of [12,28] to guarantee optimal convergence rates under
the extra assumption of exact solve. Nevertheless, the natural adaptive mesh-refining
algorithm of the present paper is employed in practice without further understanding.
A similar situation is encountered in the context of saturation of conforming finite
element methods and hierarchical error estimators in [22].

The remaining parts of this paper are organised as follows. Section 2 introduces
the PMP and its least squares discretisation with Raviart–Thomas-type flux approx-
imations. The analysis is exploited for polygonal domains in two space dimensions
while the generalisation to three dimensions is incremental. The proof of the saturation
property (1.2) relies on some generalisation of the supercloseness results of [8] to the
non-smooth case of non-convex polygonal domains in Sect. 3. The reduction factor
in saturation depends on the maximal mesh-size to some power 0 < s < π/ω from
reduced elliptic regularity of the PMP of Sect. 2 in the non-convex polygonal domain
� with maximal interior angle ω.

Section 4 presents some natural ALSFEM with marking based on the elementwise
contributions of the least squares functional and proves the saturation property (1.2)
for large bulk parameter � and fine initial meshes T0. Section 5 presents numerical
experiments for the investigation of the choice of the bulk parameter �.

Standard notation onLebesgue and Sobolev spaces and norms is employed through-
out this paper: || · || denotes the L2 norm and ||| · ||| denotes the H1 seminorm over
the entire domain �, while ||| · |||NC := ||∇NC · || is some piecewise version thereof.
Finally, a � b denotes a ≤ c b with some generic constant c which may depend on
the domain and the initial coarse mesh T0 but which is independent of the level � or
the mesh-size H� = max{hT : T ∈ T�} which is the maximal piecewise mesh-size
h� ∈ L∞(�) defined by h�|T := hT = |T |1/2 for the area |T | of a triangle T ∈ T�.
Similarly, a ≈ b abbreviates a � b � a.

The measure |·| is context-sensitive and refers to the number of elements of some
finite set (e.g. the number |T | of triangles in a triangulation T ) or the length |E | of an
edge E or the area |T | of some domain T and not just the modulus of a real number
or the Euclidean length of a vector.

It is expected that the results can be generalized to higher-order FEM in 3D as well
despite the severe difficulties that nonconforming FEMs are not available in 3D for
all polynomial degrees.

2 Poisson model problem (PMP) and its least squares discretisation

Given f ∈ L2(�) on a simply-connected bounded polygonal Lipschitz domain � ⊂
R
2, the PMP seeks some function u ∈ C0(�) ∩ H2

loc(�) with

− �u = f in � and u = 0 on ∂�. (2.1)

The least squares methods consider the equivalent first-order system

− div p = f and p − ∇u = 0 in �. (2.2)
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Convergence of natural adaptive LSFEMs 1101

The weak form involves the L2 inner product (·, ·)L2(�) and its L2 norm ‖ · ‖ over �.
Standard notation is employed for the Sobolev space H1(�) with seminorm ||| · |||
and V := H1

0 (�). The Hilbert space

H(div;�) = {q ∈ L2(�; R
2) : div q ∈ L2(�)}

consists of all L2 vector functions q = (q1, q2)withweak divergence div q := ∂x1q1+
∂x2q2 in L2(�) and associated norm ‖·‖H(div) [7,10,11,23]. The least squares method
solves system (2.2) byminimising the residual functional, for (q, v) ∈ H(div;�)×V ,

L S( f ;q, v) := ‖ f + div q‖2 + ‖q − ∇v‖2. (2.3)

The associated Euler–Lagrange equations lead to the equivalent weak problem: Seek
(p, u) ∈ H(div;�) × V such that, for all (q, v) ∈ H(div;�) × V ,

∫

�

( f + div p) div q dx +
∫

�

(p − ∇u) · (q − ∇v) dx = 0. (2.4)

The well-established equivalence of the norm in H(div;�)× V with the least squares
functional

L S(0;q, v) ≈ ‖q‖2H(div) + |||v|||2 for all (q, v) ∈ H(div;�) × V (2.5)

leads to the unique existence of a minimiser of L S( f ; ·) and weak solution (p, u) ∈
H(div;�) × V [6]. Moreover, the conforming discretisation leads to a quasi-optimal
convergence.

The prototype example for a discretisation is the lowest-order Raviart–Thomas
function space RT0(T ) based on a regular triangulation T of � in closed triangles
in the sense of Ciarlet [10,20], i.e., ∪T = � and any two distinct triangles in T are
either disjoint or share exactly one vertex or one common edge. Given any regular
triangulation T , let

V (T ) := P1(T ) ∩ V,

RT0(T ) := {q ∈ P1(T ; R
2) ∩ H(div;�) : ∀T ∈ T , ∃aT , bT , cT ∈ R,

∀x ∈ T, q(x) = (aT , bT )� + cT x}.

There exists a unique minimiser (pL S, uL S) of L S( f ; ·) in RT0(T )×V (T ) and this is
characterised as the weak solution of the discrete analog (2.6) of (2.4). In other words,
the LSFEM solution (pL S, uL S) ∈ RT0(T ) × V (T ) ⊂ H(div;�) × V satisfies, for
all (qRT , vC ) ∈ RT0(T ) × V (T ) ⊂ H(div;�) × V , that

∫

�

( f + div pL S) div qRT dx +
∫

�

(pL S − ∇uL S) · (qRT − ∇vC ) dx = 0. (2.6)
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1102 C. Carstensen et al.

The Céa lemma leads to the best approximation property

‖p − pL S‖H(div) + |||u − uL S ||| � min
qRT ∈RT0(T )

‖p − qRT ‖H(div) + min
vC ∈V (T )

|||u − vC |||.

Provided the exact solution u belongs to H2(�) (e.g. for a convex domain�), standard
approximation results lead to linear convergence in the maximal mesh-size. However,
in case of reduced elliptic regularity (e.g. for a non-convex domain �), appropriate
mesh-refining strategies are required to avoid suboptimal convergence rates for less
regular problems.

This section concludes with some representation result which is frequently
employed throughout this paper. Denote by �0 the L2 orthogonal projection onto
the piecewise constants P0(T ; R

m) for m = 1, 2 with respect to the present trian-
gulation T . Let C R1

0(T ) denote the functions in P1(T ) which are continuous at the
midpoints of all interior edges E(�) and vanish at the midpoints of all boundary edges
E(∂�). Let ∇NC denote the piecewise action of the gradient.

Proposition 2.1 Any Raviart–Thomas function qRT ∈ RT0(T ) reads

qRT = �0qRT + (• − mid(T ))
div qRT

2
a.e. in � (2.7)

(where • − mid(T ) abbreviates x − mid(T ) at any x ∈ T ∈ T with centre of inertia
mid(T )) and satisfies, for unique vC R ∈ C R1

0(T ) and wC ∈ V (T )/R, that

�0qRT = ∇NCvC R + CurlwC . (2.8)

Therein, vC R ∈ C R1
0(T ) is the Crouzeix–Raviart solution of the PMP with right-hand

side − div qRT ∈ L2(�), i.e., vC R solves the nonconforming finite element problem,
hereafter referred to as NCFEM,

∫

�

∇NCvC R · ∇NCwC R dx = −
∫

�

wC R div qRT dx for all wC R ∈ C R1
0(T ).

(2.9)
Moreover, for any discrete solution qRT of a mixed finite element problem or any
LSFEM solution qRT := pL S of (2.6), wC ≡ 0 holds in (2.8). In other words, those
particular Raviart–Thomas fluxes are L2 orthogonal onto Curl(V (T )).

Proof The identities (2.7)–(2.9) are proven in [24] but essentially known since [2]. The
formula (2.7) follows from the very definition of the Raviart–Thomas functions. The
formula (2.8) is a discrete Helmholtz decomposition for simply-connected domains
of any piecewise constant vector field.

The proof of the L2 orthogonality follows from the observation that any function
in Curl(V (T )) is a divergence-free Raviart–Thomas function; the converse holds as
well for the simply-connected domain. This plus the discrete equation with such a test
function leads to the asserted L2 orthogonality. ��
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Convergence of natural adaptive LSFEMs 1103

3 Supercloseness results

This section is devoted to the proof that the divergence term in the least squares
functional at the discrete minimiser is much smaller than the dominating flux term.
Although the proof below is different from that in [8] and based on L2 error control
for Crouzeix–Raviart nonconforming FEM, we believe that it is known. Since the
following result seems unavailable in the literature for non-convex domains, some
direct proof is given below for convenient reading.

Let H denote the maximal mesh-size in the current regular triangulation T and let
1/2 < s < π/ω for the maximal interior angleω of the non-convex polygonal domain
�. Note the regularity index s attains the value 1 for convex domains.

Theorem 3.1 The LSFEM solution satisfies

‖�0 f + div pL S‖ � Hs‖pL S − ∇uL S‖. (3.1)

Before the remaining part of this section is devoted to the proof of Theorem 3.1,
various supercloseness results are deduced from it. Recall that (pL S, uL S) denotes the
least squares solution and pRT denotes the lowest-order Raviart–Thomas mixed FEM
approximation of the PMP [7,10,11,23], i.e., there exists (pRT , u RT ) ∈ RT0(T ) ×
P0(T ) with

∫

�

pRT · qRT dx +
∫

�

u RT div qRT dx = 0 for all qRT ∈ RT0(T ),

∫

T
( f + div pRT ) dx = 0 for all T ∈ T .

Moreover, let uC R (resp. ûC R) denote the NCFEM approximation of the PMP with
right-hand side f (resp. − div pL S). Proposition 2.1 leads to some ûC R ∈ C R1

0(T )

with �0pL S = ∇NC ûC R . Let uC ∈ V (T ) denote the Courant finite element solution
of the PMP with right-hand side f ∈ L2(�) with the oscillation term

osc2( f, T ) :=
∑

T ∈T
|T | || f − �0 f ||2L2(T )

.

Recall that ||| · ||| ≡ ||∇ · || denotes the H1 seminorm and define its discrete version
||| · |||NC := ||∇NC · || with respect to the underlying regular triangulation T .

Corollary 3.2 The aforementioned approximations satisfy

‖pL S − pRT ‖2 + |||̂uC R − uC R |||2NC + |||uL S − uC |||2
� H2s L S(�0 f ;pL S, uL S) + osc2( f, T ).

Proof All the three terms on the left-hand side are controlled by ‖�0 f +div pL S‖ and
then the corollary follows from (3.1). Since the supercloseness of the nonconforming
Crouzeix–Raviart FEM seems to be new, the proof below focusses on the estimation
of |||̂uC R − uC R |||NC .
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1104 C. Carstensen et al.

Let ûC R (resp. uC R and ũC R) solve the NCFEM for the PMP with right-hand
side − div pL S (resp. f and �0 f ). Proposition 2.1 and the admissible test function
ûC R − ũC R in NCFEM lead to

|||̂uC R − ũC R |||2NC =
∫

�

(�0 f + div pL S)(ũC R − ûC R) dx .

The discrete Friedrichs inequality [10] for functions in C R1
0(T ), i.e.,

‖vC R‖ ≤ cd F |||vC R |||NC for all vC R ∈ C R1
0(T ),

results in
|||̂uC R − ũC R |||NC ≤ cd F ||�0 f + div pL S‖. (3.2)

The solution uC R of NCFEM with right-hand side f satisfies

|||uC R − ũC R |||2NC =
∫

�

( f − �0 f )(uC R − ũC R) dx .

Since
∫

T ( f − �0 f ) dx = 0 for any T ∈ T , this equals

∫

�

( f − �0 f )(1 − �0)(uC R − ũC R) dx .

The piecewise Poincaré inequality (with hT |T := |T |1/2 for any triangle T ∈ T )
shows

∫

�

( f − �0 f )(1 − �0)(uC R − ũC R) dx � ‖hT ( f − �0 f )‖ |||uC R − ũC R |||NC

= osc( f, T )|||uC R − ũC R |||NC .

Consequently,
|||uC R − ũC R |||NC � osc( f, T ). (3.3)

The triangle inequality and the estimates (3.2)–(3.3) show that |||̂uC R − uC R |||2NC is
controlled by the right-hand side in the corollary. ��

The main tool in the proof of (3.1) is the following superior convergence of the
Crouzeix–Raviart errors in L2(�) (when compared with the nonconforming energy
norm) which is standard [7,10] for H2 regular problems when � is convex. Recall
that H denotes the maximal mesh-size and s is the index of elliptic regularity.

Lemma 3.3 (L2 error estimate for NCFEM) Any vC R ∈ C R1
0(T ) with

∫

�

∇NCvC R · ∇wC dx = 0 for all wC ∈ V (T )
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Convergence of natural adaptive LSFEMs 1105

satisfies

‖vC R‖ � Hs |||vC R |||NC .

Proof Let z ∈ H1+s(�) ∩ H1
0 (�) be the solution of the PMP with right-hand side

vC R = −�z. In case 0 < s < 1, the textbook analysis is not applicable and, hence,
arguments from a medius analysis are exploited. Given vC R ∈ C R1

0(T ), one defines
a conforming approximation by the averaging of the possible values

v1(z) := v∗
C R(z) := lim

δ→0

∫

B(z,δ)
vC R dx/|B(z, δ)|

of the (possibly) discontinuous vC R at any interior node z ∈ N (�) (v∗
C R denotes the

precise representation of the Lebesgue function vC R). Linear interpolation of those
values defines v1 ∈ P1(T ) ∩ C0(�).
In the second step, one defines v2 ∈ P2(T ) ∩ C0(�) which equals v1 at all nodes N
and satisfies

∫

E
vC R ds =

∫

E
v2 ds for all E ∈ E(�).

In the third step, one adds the cubic bubble functions to v2 such that the resulting
function v3 ∈ P3(T ) ∩ C0(�) equals v2 along the edges and satisfies

∫

T
vC R dx =

∫

T
v3 dx for all T ∈ T .

Therefore, an integration by parts shows

∫

T
∇vC R dx =

∫

T
∇v3 dx for all T ∈ T .

Altogether,

‖vC R‖2 =
∫

�

(vC R − v3)vC R dx +
∫

�

v3vC R dx

=
∫

�

(vC R − v3)(1 − �0)vC R dx −
∫

�

v3�z dx .

Piecewise Poincaré inequalities lead to

∫

�

(vC R − v3)(1 − �0)vC R dx ≤ H2|||vC R |||NC |||vC R − v3|||NC .

The design of the dual solution z leads to

−
∫

�
v3�z dx =

∫

�
∇v3 · ∇z dx =

∫

�
∇NCvC R · ∇z dx +

∫

�
∇NC (v3 − vC R) · ∇z dx .
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Since vC R is perpendicular to the conforming nodal interpolation IC z ∈ V (T ) and
since

∫

T ∇(v3 − vC R) dx = 0 for all T ∈ T , the last expression equals

∫

�

∇NCvC R · ∇(z − IC z) dx +
∫

�

∇NC (v3 − vC R) · ∇(z − IC z) dx .

The reduced elliptic regularity of the PMP plus standard finite element interpolation
estimates on polygonal domains bound the previous terms with some C(�, s) � 1
from above by

C(�, s)Hs‖vC R‖(|||vC R |||NC + |||v3 − vC R |||NC ).

The approximation and stability properties of v1 has been studied in a former work
on preconditioners for nonconforming FEM [9] (called enrichment therein). This and
standard arguments also prove stability in the sense that

|||v3|||NC � |||vC R |||NC .

The combination of the above estimates concludes the proof. ��
Proof of Theorem 3.1. Given the piecewise constant�0 f +div pL S ∈ P0(T ) and the
inf-sup condition (also called LBB condition) for the lowest-order Raviart–Thomas
functions, there exists some qRT ∈ RT0(T ) with

− div qRT = −�0 f − div pL S and ‖qRT ‖H(div,�) � ‖�0 f + div pL S‖.

Amongst all possible qRT ∈ RT0(T ) with prescribed divergence, the mixed finite
element solution minimises the L2 norm ‖qRT ‖ of the flux and, hence, is orthogonal
onto Curl(V (T )). Hence, Proposition 2.1 shows that we may and will assume that

qRT = ∇NCvC R + div qRT

2
(• − mid(T )) a.e. in �

with the Crouzeix–Raviart solution vC R of the PMP with right-hand side − div qRT .
Recall the analog identity for pL S with �0pL S = ∇NC ûC R . The LSFEM leads to

‖�0 f + div pL S‖2 =
∫

�

(�0 f + div pL S) div qRT dx =
∫

�

(∇uL S − pL S) · qRT dx .

The aforementioned identities for qRT and pL S show that the above term equals

−1

4

∫

�

div qRT div pL S|x − mid(T )|2 dx +
∫

�

∇NC (uL S − ûC R) · ∇NCvC R dx .

The first term is controlled by some H || div qRT || ||hT div pL S|| in terms of the local
mesh-size hT ∈ P0(T ). An inverse inequality proves that

||hT divNC (pL S − ∇uL S)|| � ||pL S − ∇uL S||.
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Convergence of natural adaptive LSFEMs 1107

This results in

−1

4

∫

�

div qRT div pL S|x − mid(T )|2 dx � H ||pL S − ∇uL S|| || div qRT ||.

The second term is recast with the observation that, given any vC ∈ V (T ) with
∇vC ∈ P0(T ; R

2), it follows

∫

�

∇NC (uL S − ûC R) · ∇vC dx =
∫

�

(pL S − �0pL S) · ∇vC dx = 0.

Hence, Lemma 3.3 implies

||̂uC R − uL S|| � Hs |||̂uC R − uL S|||NC .

This is applied at the last step after �0qRT = ∇NCvC R followed by an integration by
parts, namely

∫

�

∇NC (uL S − ûC R) · ∇NCvC R dx =
∫

�

qRT · ∇NC (uL S − ûC R) dx

=
∫

�

(̂uC R − uL S) div qRT dx

� Hs |||̂uC R − uL S|||NC || div qRT ||.

Notice that |||̂uC R − uL S|||NC = ||�0pL S − ∇uL S|| ≤ ||pL S − ∇uL S||. The com-
bination of the respective upper bounds for the first and second term yields (3.1).

��

4 Saturation for large bulk parameter

This section is devoted to the proof of the existence of constants 0 < �1 < ∞ and
0 < �1 < 1 with (1.1)–(1.2) for a uniform mesh-refining or some particular adaptive
mesh-refining strategy. The point of departure for the specification of the latter, is the
discussion of a general marking with the localisation of the least squares residual into

μ2
�(T ) := || f − �� f ||2L2(T )

+ ||�� f + div p�||2L2(T )

+ ||(1 − ��)p�||2L2(T )
+ ||��p� − ∇u�||2L2(T )

for the LSFEM solution (p�, u�) (and the L2 orthogonal projection�� onto the piece-
wise constants) with respect to the regular triangulation T� and a triangle T ∈ T�.
For any subset M� ⊂ T� of triangles, its contribution to the least squares functional
L S( f ;p�, u�) is abbreviated as

μ2
�(M�) :=

∑

T ∈M�

μ2
�(T ) and so μ2

�(T�) ≡ L S( f ;p�, u�).
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Given any bulk parameter 0 < � < 1, the step MARK of an adaptive refinement
selects some subset (e.g., of almost minimal cardinality) M� ⊂ T� with

�μ2
�(T�) ≤ μ2

�(M�). (4.1)

This is equivalent to

μ2
�(T�\M�) ≤ (1 − �)μ2

�(T�) = (1 − �) L S( f ;p�, u�).

Thehighly-oscillatory data example from the introductionwith (1.3) has to be excluded
to guarantee saturation (1.2). The underlying assumption throughout this section will
be that the data resolution error ‖ f − f�‖ is small compared to L S( f�;p�, u�) for
f� := �� f . At least the refined triangulation T�+1 shall resolve the data and then the
last condition implies

∑

T ∈T�\M�

‖p� − ∇u�‖2L2(T )
≤ (1 − �) L S( f�+1;p�, u�). (4.2)

All the triangulations in this paper are defined by a sequence of one-level refinements
starting with the initial triangulation T0 of � into triangles. A one-level refinement
consists of markings in the newest-vertex bisection as depicted in Fig. 1 to generate a
shape-regular refinement.

The following two refinement conditions (R1)–(R2) are imposed on the regular
triangulations T� and T�+1 of � with their respective LSFEM solutions (p�, u�) and
(p�+1, u�+1) for saturation.

(R1) The LSFEM solution (p�, u�) satisfies (4.2) with �2 ≤ � ≤ 1.
(R2) The regular triangulation T�+1 is a one-level refinement of T� such that any

triangle inM� is red-refined.

Theorem 4.1 Provided the initial regular triangulation T0 is sufficiently fine, there
exist constants 0 < �2 < 1, 0 < �2 < ∞, and 0 < �2 < 1 such that (R1)–(R2)
imply

L S( f�+1;p�+1, u�+1) + �2‖(1 − ��+1)p�+1‖2

≤ �2

(

L S( f�+1;p�, u�) + �2‖(1 − ��)p�‖2
)

.

Some comments are in order on the parameters before the proof of Theorem 4.1.

Remark 4.1 Theorem 4.1 implies saturation (1.2) under the aforementioned assump-
tion f = f�+1 := ��+1 f . Since the refinement rules (R1)–(R2) do not provide the
resolution of the data, additional algorithms are required to guarantee this assumption,
e.g., the data approximation algorithm in the separate marking of [15,18].

Remark 4.2 The crucial point is that �2 < 1 may be large (i.e., close to one) and so
is � with (R1). Some closer investigations on the parameters at the very end of this
section reveal that �2 < 1 implies 2/3 ≤ �2. This is crucial and seems to expel the
proof of optimal convergence rates with arguments from [12,18,28].
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Remark 4.3 Somecloser investigations on the parameters at the very endof this section
reveal that 0 < �2 < ∞ can be arbitrarily small. However, 0 < �2 << 1 implies
that �2,�2 < 1 are very close to one and the initial triangulation T0 is very fine.

Remark 4.4 The condition (R2) on the red-refinement can be relaxed. However,
Lemma 4.3 requires that all edges of any triangle inM� are bisected.

The proof of Theorem 4.1 is split into four ingredients. The first of those is based
on the stability of the mixed FEM plus elementary algebra.

Lemma 4.2 It holds

‖ f� + div p�‖2 + 2‖ f�+1 − f� + div(p�+1 − p�)‖2 − 2‖ f�+1 + div p�+1‖2
� ‖p�+1 − p� − ∇(u�+1 − u�)‖2.

Proof The inf-sup condition from the Proof of Theorem 3.1 leads to q� ∈ RT0(T�)

with f� + div p� = div q� and some stability constant Cstab ≈ 1 with

‖q�‖2 ≤ Cstab‖ div q�‖2 = Cstab‖ f� + div p�‖2.

The LSFEM on the level � shows

‖ f� + div p�‖2 =
∫

�

(∇u� − p�) · q� dx .

The LSFEM on the level � + 1 with test function q� shows that the last term equals

∫

�

(p�+1 − p� − ∇(u�+1 − u�)) · q� dx +
∫

�

( f�+1 + div p�+1) div q� dx .

Since div q� = f� + div p�, the binomial formula shows that the second summand in
the last term equals one half times

‖ f�+1 + div p�+1‖2 + ‖ f� + div p�‖2 − ‖ f�+1 − f� + div(p�+1 − p�)‖2.

The combination of the aforementioned identities shows

‖ f� + div p�‖2 + ‖ f�+1 − f� + div(p�+1 − p�)‖2 − ‖ f�+1 + div p�+1‖2

= 2
∫

�

(p�+1 − p� − ∇(u�+1 − u�)) · q� dx

≤ ‖q�‖2/(2Cstab) + 2Cstab‖p�+1 − p� − ∇(u�+1 − u�)‖2.

The combination of ‖q�‖2/Cstab ≤ ‖ f� + div p�‖2 with the previous inequality con-
cludes the proof. ��

The second ingredient exploits arguments from a discrete efficiency analysis of
adaptive mixed FEM.
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Lemma 4.3 It holds

‖��p� − ∇u�‖2 � ‖p�+1 − p� − ∇(u�+1 − u�)‖2 + (1 − �)L S( f�+1;p�, u�).

Proof Recall the representation ��p� = ∇NC û� from Proposition 2.1. Then vC R :=
û� − u� ∈ C R1

0(T�) satisfies

‖��p� − ∇u�‖2 =
∫

�

(p� − ∇u�) · ∇NCvC R dx .

The nonconforming vC R is first approximated similar to the proof of Lemma 3.3 by
some v� ∈ V (T�) with v∗

C R(z) = v�(z) = v�+1(z) for any interior node z ∈ N�(�).
Whenever an interior edge E ∈ E� of length |E | is refined, written E ∈ E�(�)\E�+1,
its midpoint mid(E) ∈ N�+1(�) is an interior node in the refined triangulation T�+1
and has some conforming nodal basis function ϕE ∈ V (T�+1). Then

v�+1 := v� +
∑

E∈E�(�)\E�+1

2
∫

E
(vC R − v�)ds/|E | ϕE ∈ V (T�+1)

satisfies, for all E ∈ E�(�)\E�+1, that

∫

E
v�+1 ds =

∫

E
vC R ds.

Since any T ∈ M� is red-refined by (R2), all its edges are bisected and the previous
identity leads (via an integration by parts) to

∫

T
(p� − ∇u�) · ∇(vC R − v�+1) dx = 0 for all T ∈ M�.

Let �′ := ∪(T�\M�) abbreviate that part of the domain which is not covered by the
marked triangles. Then,

‖��p� − ∇u�‖2 =
∫

�
(p� − ∇u�) · ∇v�+1 dx +

∫

�′
(p� − ∇u�) · ∇NC (vC R − v�+1) dx .

The test function v�+1 ∈ V (T�+1) in LSFEM on the level � + 1 satisfies

∫

�

(p�+1 − ∇u�+1) · ∇v�+1 dx = 0.

Therefore,

‖��p� − ∇u�‖2 ≤ −
∫

�

(p�+1 − p� − ∇(u�+1 − u�)) · ∇v�+1 dx

+||p� − ∇u�||L2(�′) |||vC R − v�+1|||NC .
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The stability of the discrete approximation operators [9] reads

|||v�+1||| � |||vC R |||NC = ||��p� − ∇u�||.

Observe that (R1) and (4.2) imply

||p� − ∇u�||2L2(�′) ≤ (1 − �)L S( f�+1;p�, u�).

The combination of the previous three displayed formulas concludes the proof. ��
The third ingredient is the well-established Galerkin orthogonality for LSFEM.

Lemma 4.4 It holds

L S(0;p�+1 − p�, u�+1 − u�) = L S( f ;p�, u�) − L S( f ;p�+1, u�+1).

Proof The proof is straightforward with elementary algebra and the Galerkin orthog-
onality of the LSFEM. ��

The last ingredient is the explicit reduction for ‖(1 − ��)p�‖.
Lemma 4.5 The refinement conditions (R1)–(R2) with (4.2) imply

‖(1 − ��+1)p�‖2 ≤ 1/4 ‖(1 − ��)p�‖2 + 3(1 − �)/4 L S( f�+1;p�, u�).

Proof Any T ∈ M� with vertices P1, P2, P3 and opposite edges E1, E2, E3 of lengths
|E1|, |E2|, |E3| satisfies

|| • −mid(T )||2L2(T )
= |T |(|E1|2 + |E2|2 + |E3|2)/36. (4.3)

(The proof of (4.3) is by direct calculations and hence omitted.) The red-refinement
T�+1(T ) of T consist of the four congruent subtriangles T1, T2, T3, T4 enumerated
such that T4 is the triangle in the centre and the subtriangle Tj has the vertex Pj for
any j = 1, 2, 3. The four contributions of the four subtriangles are equal to each other
and can also be calculated with (4.3). This results in

∫

Tj

| • −mid(Tj )|2 dx = |T4|(|E1|2 + |E2|2 + |E3|2)/144 for j = 1, . . . , 4.

The comparisonwith (4.3) proves that the identitymapping• and its piecewise constant
integral means (which interpolate at the centres of inertia) satisfy

‖(1 − ��+1) • ‖2L2(T )
= 1/4 ‖(1 − ��) • ‖2L2(T )

.

The multiplication with the constant | div p�|T |2 proves

‖(1 − ��+1)p�‖2L2(T )
= 1/4 ‖(1 − ��)p�‖2L2(T )

.
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This verifies even equality in the key estimate

‖(1 − ��+1)p�‖2L2(T )
≤ �3 ‖(1 − ��)p�‖2L2(T )

for all T ∈ M�

with �3 = 1/4. Any triangle which is bisected (also called green refined), shows the
previous inequality with �3 = 1/2 while � = 1 for the unrefined; further details are
omitted.

Recall from the proof of Lemma 4.3 that �′ := ∪(T�\M�) abbreviates that part
of the domain which is not covered by the marked triangles. The sum of all triangles
leads to

‖(1 − ��+1)p�‖2 ≤ 1/4‖(1 − ��)p�‖2L2(�\�′) + ‖(1 − ��)p�‖2L2(�′)

= 1/4‖(1 − ��)p�‖2 + 3/4‖(1 − ��)p�‖2L2(�′).

This and (4.2) conclude the proof. ��
Proof of Theorem 4.1. Recall (2.3) and set L S′

� := L S( f�;p�, u�), ˜L S� :=
L S( f�+1;p�, u�) = L S′

� + || f�+1 − f�||2, and ˜L S�+1 := L S( f�+1; p�+1, u�+1).
This and Lemmas 4.2–4.3 show, with some C ≈ 1, that

L S′
� − ‖(1 − ��)p�‖2 = ‖ f� + div p�‖2 + ‖��p� − ∇u�‖2

≤ 2‖ f�+1 + div p�+1‖2 − 2‖ f�+1 − f� + div(p�+1 − p�)‖2
+ C‖p�+1 − p� − ∇(u�+1 − u�)‖2 + C(1 − �)˜L S�.

The multiplication by any δ with 0 < δ < min{1/2, 1/C} and Lemma 4.4 lead to

˜L S�+1 + ‖ div(p�+1 − p�)‖2 + 2δ‖ f�+1 − f� + div(p�+1 − p�)‖2
≤ (1 − δ)˜L S� + δ|| f�+1 − f�||2 + 2δ‖ f�+1 + div p�+1‖2

+ δ‖(1 − ��)p�‖2 + (1 − �)˜L S�. (4.4)

The further analysis uses the following list of arguments (a)–(c) for the estimation of
three terms on the right-hand side in the preceding inequality.

(a) The Young inequality

‖ f�+1 − f�‖2 ≤ 2‖ f�+1 − f� + div(p�+1 − p�)‖2 + 2‖ div(p�+1 − p�)‖2.

(b) The supercloseness result of Theorem 3.1 for T ≡ T�+1 reads

‖ f�+1 + div p�+1‖2 ≤ ε ˜L S�+1

with some ε ≈ Hs which tends to zero as the maximal mesh-size of T� tends to
zero; 0 < ε < 1/2 will be chosen sufficiently small via the condition that the
initial triangulation T0 is sufficiently fine.
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(c) The Young inequality shows, for any 0 < λ < ∞

‖(1 − ��+1)p�+1‖2 ≤ (1 + λ)‖(1 − ��+1)p�‖2 + (1 + 1/λ)‖(1 − ��+1)(p�+1 − p�)‖2.

Lemma 4.5 implies some reduction formula for ‖(1−��+1)p�‖. To control the second
term ‖(1−��+1)(p�+1−p�)‖, observe that the integrand ‖(1−��+1)(p�+1−p�)‖2 is
equal to the constant divergence of p�+1−p� in T ′ times |x −mid(T ′)|2 ≤ h2

�+1|T ′ :=
|T ′| of T ′ ∈ T�+1 at any x in some triangle T ′ in T�+1. This proves

‖(1 − ��+1)(p�+1 − p�)‖2 ≤ ‖h�+1 div(p�+1 − p�)‖2. (4.5)

The combination of all arguments of (c) results in

‖(1 − ��+1)p�+1‖2
≤ (1 + λ)/4‖(1 − ��)p�‖2 + 3(1 + λ)(1 − �)/4 ˜L S�

+(1 + 1/λ) H2‖ div(p�+1 − p�)‖2.

Multiply the respective inequalities (a), (b), and (c) by δ, 2δ, and some factor 0 <

� < ∞ and add them to (4.4). The result is equivalent to

(1 − 2δε)˜L S�+1 + �‖(1 − ��+1)p�+1‖2
≤ (2 − � − δ + 3�(1 + λ)(1 − �)/4) ˜L S�

+ (δ + �(1 + λ)/4) ‖(1 − ��)p�‖2

+
(

h2�(1 + 1/λ) + 2δ − 1
)

‖ div(p�+1 − p�)‖2.

This inequality is divided by 1 − 2δε and then proves the assertion with �2 :=
�/ (1 − 2δε) and �2 := �/ (1 − 2δε) for

� := max{1 − δ + (1 − �) (1 + 3�(1 + λ)/4) , δ/� + (1 + λ)/4}

provided that

H2�(1 + 1/λ) + 2δ ≤ 1.

The latter condition as well as �3 < 1 follow for sufficiently fine meshes (as h and ε

become small) once the parameters 0 < λ,� < ∞ and 0 < δ < min{1/2, 1/C} are
fixed with � < 1. The crucial condition δ < 1/2 and � < 1 is feasible for large �2;
further details on the parameter choice are omitted for brevity. ��
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Fig. 2 Convergence history plot of the least squares functional L S( f ; p�, u�) in Sect. 5

5 Numerical experiments on L-shaped domain

Let � := (−1, 1)2\[0, 1]2 be the L-shaped domain and let f ≡ 1. The Fig. 2 shows
convergence of the natural adaptive LSFEM for a wide range of bulk parameters
0 < � ≤ 1. This indicates that the restrictions on the parameter in condition (R1)
does not seem to be very sharp. However, they are crucial for the analysis at hand.
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