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The main motivation for the application of the Crouzeix–Raviart nonconforming finite element method
(NCFEM) to the obstacle problem in this paper is that it allows for fully computable guaranteed lower
bounds of the energy and so for simple a posteriori error control. A further fully computable and guaranteed
upper error bound follows from Braess’ work, extended to the Crouzeix–Raviart NCFEM. This error bound
competes with the error control from the lower energy bounds. Both a posteriori estimates are efficient
with respect to the total error. The paper circumvents variational crimes through a medius analysis and
the design of conforming companions. This leads to an improved a priori error analysis for the NCFEMs
under minimal regularity assumptions on polyhedral domains. Numerical evidence supports the a priori
convergence analysis and confirms guaranteed error control with moderate efficiency indices for uniform
and adaptive mesh refinement.
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1. Introduction

The obstacle problem is the simplest mathematical model of a variational inequality, with countless
applications and related models in free boundary value problems. The trial functions are restricted to
some convex set K and any discretization replaces this set by a discrete approximation Kh. If Kh ⊆ K the
discretization is called conforming and it is called nonconforming otherwise.

The particular motivation for the application of the Crouzeix–Raviart nonconforming finite element
method (NCFEM) in Wang (2003) remains less clear. Therein, compared with conforming finite ele-
ment methods (CFEMs), higher regularity assumptions are made to prove linear convergence for convex
domainsΩ ⊂ R2 with smooth boundary. The refined a priori error analysis of this paper shows, under the
minimal regularity assumption (i.e.,Δu ∈ L2(Ω)), that the NCFEM converges with optimal convergence
rates for arbitrary polyhedral domains Ω ⊂ Rd (d = 2, 3) and hence the Crouzeix–Raviart NCFEM
becomes competitive with the CFEM.

This paper also explores the a posteriori error control from two different points of view. In the first
place, the Crouzeix–Raviart NCFEM allows for the computation of guaranteed lower bounds for the
energy. Some simple postprocessing leads to a computable estimate for the energy difference and hence
also for the error in the energy norm. In the second place, the results in Braess (2005) for the CFEM are
adapted to the Crouzeix–Raviart NCFEM. The two error estimates for NCFEM are comparable (up to
unknown multiplicative constants).
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Given a bounded polyhedral Lipschitz domain Ω ⊂ Rd (d = 2, 3) with boundary ∂Ω , the energy
product a : H1(Ω)× H1(Ω) → R on the Hilbert space H1(Ω) reads

a(u, v) :=
∫
Ω

∇u · ∇v dx, for all u, v ∈ H1(Ω)

and induces the energy seminorm |||•||| := a(•, •)1/2, which is a norm on the vector space V := H1
0 (Ω) :=

{v ∈ H1(Ω)| v = 0 on ∂Ω}, and the corresponding local variant |||•|||ω := ‖∇•‖L2(ω) for ω ⊆ Ω . Given
some source term f ∈ L2(Ω), define F ∈ L2(Ω)∗ by

F(v) :=
∫
Ω

fv dx, for all v ∈ L2(Ω).

We assume that the obstacle χ ∈ H1(Ω) and the Dirichlet boundary value uD ∈ C(∂Ω) ∩ H1/2(∂Ω)

satisfy χ � uD a.e. along ∂Ω in order to ensure that the closed and convex subset

K := {v ∈ A | χ � v a.e.} of A := {v ∈ H1(Ω)| v = uD along ∂Ω}

is nonempty. The well-established weak formulation of the obstacle problem leads to a unique u ∈ K ,
see Kinderlehrer & Stampacchia (1980, Chapter 2, Theorem 2.1), with

F(v − u) � a(u, v − u), for all v ∈ K . (1.1)

The obstacle problem is also characterized by the minimization of the energy functional

E(v) := 1
2 a(v, v)− F(v) over all v ∈ K . (1.2)

Throughout this paper, the exact solution u ∈ K and the Lagrange multiplier Λ := F − a(u, •) ∈ V ∗

are approximated by the discrete solution uNC in some discrete analogue KNC of K and a certain novel
discrete Lagrange multiplier ΛNC in the discrete space CR1(T ) (cf. (2.1)).

The first main result of this paper establishes an a priori error estimate for the Crouzeix–Raviart
NCFEM under the known regularity property Δu ∈ L2(Ω) for Δχ ∈ L2(Ω) (cf. Rodrigues, 1987,
Proposition 5:2.2) so that λ := f + Δu ∈ L2(Ω). The second main result yields two guaranteed lower
bounds for the minimal energy E(u) and so allows for an a posteriori control of the error |||u − uNC|||NC

in the discrete (i.e., piecewise) energy norm |||•|||NC := ‖∇NC•‖L2(Ω). The third main result is an explicit
residual-based a posteriori error analysis with reliable and efficient control over the error |||u−uNC|||NC +
|||Λ − ΛNC|||∗ with the dual norm |||•|||∗ in H−1(Ω) up to data oscillation terms. This extends the
a posteriori error analysis of Bartels & Carstensen (2004), Braess (2005) for the Courant FEM to the
Crouzeix–Raviart NCFEM; cf. also the recent work Braess et al. (2008) on the a posteriori error analysis
for mixed FEMs and Gudi & Porwal (2014) for dG FEMs. Numerical experiments confirm guaranteed
error control with moderate over-estimation by a factor typically in the range 2–3.5 and support adaptive
over uniform mesh refinement. An empirical comparison of the two a posteriori error estimates is included
and shows that both converge with the same convergence rate but the residual-based a posteriori error is
better by a small multiplicative constant.

The remaining parts of this paper are organized as follows. Section 2 introduces the discretization
of the obstacle problem and discusses the approximation of the nonhomogeneous Dirichlet data and the
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design of a specific conforming companion to the discrete solution. Section 3 presents a new a priori
error analysis under the reduced regularity assumption. Section 4 derives two guaranteed lower bounds
for the minimal energy and two a posteriori error estimates, followed by the discussion of efficiency in
Section 5. The paper concludes with three computational benchmark examples in Section 6 on uniform
and adapted triangulations.

The paper applies standard notation for Lebesgue and Sobolev spaces and their norms ‖•‖L2(Ω),
|||•||| := ‖∇•‖L2(Ω), as well as their local variants ‖•‖L2(ω) and |||•|||ω for ω ⊆ Ω . The integral mean is
denoted by

∫
. Moreover A � B abbreviates A � CB for some generic constant C (which solely depends

on the shape regularity of the underlying triangulation in Section 2.1) and A ≈ B abbreviates A � B � A.
The analysis in this paper is essentially carried out explicitly for the two-dimensional case but

the generalization to three dimensions is straightforward (with additional explanations stated whenever
necessary).

2. Preliminaries

This section introduces the discretization of the obstacle problem and discusses the approximation of
the nonhomogeneous Dirichlet data and of some conforming companion to a nonconforming Crouzeix–
Raviart function.

2.1 Discretization

Let Ω ⊂ R2 be a bounded polygonal Lipschitz domain partitioned in a shape-regular triangulation T
into triangles in the sense of Ciarlet (1978), with nodes N , interior nodes N (Ω) and nodes on the
boundary N (∂Ω). The set of edges is denoted by E , with interior edges E (Ω) := {E ∈ E |E � ∂Ω},
and edges E (∂Ω) along the boundary ∂Ω . Given any node z ∈ N , let T (z) denote the set of all triangles
T with z ∈ N (T) the set of the three vertices of a triangle T , let |T (z)| ≈ 1 denote the number of
triangles in T (z) and let ωz := ∪T∈T(z)T denote the node patch around z; ωT := ∪z∈N (T)ωz denotes a
patch around each triangle T ∈ T . Any edge E ∈ E has length |E|, midpoint mid(E) and unit normal
νE ; mid(E ) := {mid(E)| E ∈ E } denotes the set of the midpoints of all edges. For any k ∈ N0, set

Pk(T) :={vk : T → R| vk is a polynomial of degree � k};
Pk(T ) :={vk ∈ L∞(Ω)| ∀T ∈ T , vk|T ∈ Pk(T)};

CR1(T ) :={vNC ∈ P1(T )| vNC continuous at mid(E )};
VNC :={vNC ∈ CR1(T )| ∀E ∈ E (∂Ω), vNC(mid(E)) = 0};

V1(T ) :=P1(T ) ∩ C0(Ω); (2.1)

V2(T ) :=P2(T ) ∩ C0(Ω);

ANC :={vNC ∈ CR1(T )| ∀E ∈ E (∂Ω), vNC(mid(E)) = ∫
E uD ds};

KNC :={vNC ∈ ANC| ∀E ∈ E (Ω),
∫

E χ ds � vNC(mid(E))}.

The triangulation T is regular in the sense that any two distinct triangles in T with nonempty intersection
are either identical or share exactly one common node or one common edge. The triangulation T is shape
regular in the sense that any interior angle of any triangle is bounded from below by some universal positive
constant γ0 and all the generic constants hidden in the notation � (or ≈) solely depend on γ0 > 0. Given



NONCONFORMING FEM FOR THE OBSTACLE PROBLEM 67

the triangulation T , define the (local) mesh size hT ∈ P0(T ), the L2 projection Π0 : L2(Ω) → P0(T )

and the oscillation osc(f , T ) of f by hT |T := hT := diam(T), Π0|T f := ∫
T f dx := ∫

T f dx/|T | for all
T ∈ T and f ∈ L2(Ω) (as well as for vector-valued functions in L2(Ω; R2), etc.) and

osc2(f , T ) := ‖hT (f −Π0f )‖2
L2(Ω)

.

For any subsets T1, T2 ⊂ T , set

∫
T1

• dx :=
∫

∪T1

• dx and ‖•‖L2(T1∪T2) := ‖•‖L2(∪(T1∪T2)) .

With the piecewise gradient ∇NCvNC ∈ P0(T ; R2) of any discrete function vNC ∈ CR1(T ), the discrete
energy product aNC : CR1(T )× CR1(T ) → R reads

aNC(uNC, vNC) :=
∫
Ω

∇NCuNC · ∇NCvNC dx, for all uNC, vNC ∈ CR1(T )

and induces the discrete energy seminorm |||·|||NC := aNC(·, ·)1/2 in CR1(T ). With the discrete Friedrichs
inequality ‖vNC‖L2(Ω) � |||vNC|||NC, for all vNC ∈ VNC (see Brenner, 2003), this is a norm in VNC. The
local variant on ω ⊂ Ω of this discrete energy norm reads |||•|||NC(ω) := ‖∇NC•‖L2(ω).

The discrete analogue to the variational inequality (1.1) seeks uNC ∈ KNC with

F(vNC − uNC) � aNC(uNC, vNC − uNC), for all vNC ∈ KNC. (2.2)

As in the continuous case (1.2), the discrete solution uNC ∈ KNC is also the minimizer of the analogous
discrete energy functional

ENC(vNC) := 1
2 aNC(vNC, vNC)− F(vNC) over all vNC ∈ KNC. (2.3)

Each edge E ∈ E (Ω) is associated with its edge-oriented basis function ψE ∈ CR1(T ), which
satisfies ψE ≡ 1 along E and ψE(mid(F)) = 0 for any other edge F ∈ E \ {E}, and has support
ωE := ∪{T ∈ T | E ∈ E (T)}.

Lemma 2.1 For each edge E ∈ E (Ω), the solution uNC to the discrete variational inequality (2.2)
satisfies the discrete consistency condition (⊥ abbreviates orthogonality in R, i.e., a ⊥ b means ab = 0
for a, b ∈ R)

0 � uNC(mid(E))−
∫

E
χ ds ⊥ F(ψE)− aNC(uNC,ψE) � 0. (2.4)

Proof. The discrete consistency condition follows from direct considerations with the degrees of freedom
in (2.2). �
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The discrete consistency conditions are the discrete analogue of the well-known (continuous)
consistency condition (Kinderlehrer & Stampacchia, 1980) that the solution u ∈ H2

loc(Ω) to (1.1)
satisfies

0 � u − χ ⊥ f +Δu � 0 a.e. in Ω , (2.5)

where ⊥ abbreviates pointwise orthogonality.

2.2 Two interpolation operators

The conforming and nonconforming interpolation operators read

IC : C(Ω) → P1(T ) ∩ C(Ω), v �→
∑
z∈N

v(z)ϕz,

INC : H1(Ω) → CR1(T ), v �→
∑
E∈E

(∫
E

v ds

)
ψE .

Here and throughout this paper, ϕz denotes the (conforming) nodal basis function associated with the
node z ∈ N and ψE is the edge-oriented basis function of CR1(T ) associated with the edge E ∈ E .
Known interpolation error estimates in two dimensions involve the constants

κC(γ ) :=
√

1/4 + 2/j2
1,1

1 − | cos(γ )| and κNC :=
√

1/48 + 1/j2
1,1 � 0.2982 (2.6)

for the maximal interior angle γ in the triangle K and the smallest positive root j1,1 � 3.8317 of the
Bessel function of the first kind.

Lemma 2.2 (properties of the interpolation operators) Any v ∈ H1(Ω) and its interpolation INCv satisfy

�a
∥∥h−1

T (v − INCv)
∥∥

L2(Ω)
� κNC|||v − INCv|||NC;

�b ∇NCINCv = Π0∇v.

Any v ∈ H2(K) on a triangle K with diameter hK and κC(γ ) from (2.6) satisfies

�c
∥∥h−1

K ∇(v − ICv)
∥∥

L2(K)
� κC(γ )

∥∥D2v
∥∥

L2(K)
.

Remark 2.3 The assertions �a – �c hold also in the three-dimensional case with different universal
constants (Ciarlet, 1978).

Proof. The proof of �a follows as in Carstensen et al. (2012) with the improved constant in Carstensen
& Gallistl (2014, Theorem 4).
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The proof of �b follows from an integration by parts on each triangle and the integral mean property
of INC along each edge E ∈ E .

Assertion �c is contained in Carstensen et al. (2012, Theorem 3.1). �

2.3 Nonhomogeneous dirichlet data

The nonhomogeneous Dirichlet data uD leads to affine spaces, where uD needs to be adapted to the
corresponding discretization. Let the edge E := conv{A, B} and define the corresponding bubble function
bE := 6ϕAϕB with the nodal basis functions ϕA, ϕB for the nodes A, B, which satisfies supp(bE) =
supp(ϕA) ∩ supp(ϕB) and

∫
E bEds = 1.

Given the Dirichlet data uD ∈ C(∂Ω), the functions uD1 ∈ P1(T )∩ C(Ω) and uD2 ∈ P2(T )∩ C(Ω)
approximate the nonhomogeneous Dirichlet data. The function uD1 is defined by the nodal values

uD1(z) :=
{

uD(z) for z ∈ N (∂Ω),

0 for z ∈ N (Ω)

and the function uD2 is given by

uD2 := uD1 +
∑

E∈E(∂Ω)

∫
E
(uD − uD1) ds bE ∈ P2(T ) ∩ C(Ω).

Given uD1 and uD2, define the affine spaces

A1 := uD1 + V1(T ), A2 := uD2 + V2(T ), and recall ANC := INCuD + VNC.

Lemma 2.4 Let uD ∈ C(∂Ω) ∩ H2(E (∂Ω)). Then the quadratic approximation uD2 ∈ P2(T ) ∩ C(Ω)
satisfies

∫
E uD ds = ∫

E uD2 ds for any edge E ∈ E (∂Ω), uD2(z) = uD(z) at any node z ∈ N (∂Ω) and

|||uD2 − INCuD2|||NC �
∥∥∥∥h3/2

E

∂2uD

∂s2

∥∥∥∥
L2(∂Ω)

.

Proof. The first two properties follow from the definition of uD2. Since the function uD2 satisfies uD2|E ∈
P1(E) for any interior edge E ∈ E (Ω), it follows that uD2 − INCuD2 �= 0 only on triangles T ∈ T with
E (T) ∩ E (∂Ω) �= ∅. Let T ∈ T be such a triangle and assume first that E = ∂T ∩ ∂Ω . Then it holds
that

uD2|T = uD1|T +
∫

E
(uD − uD1) dsbE .

The properties of the interpolation operator INC lead to

(uD2 − INCuD2)|T =
∫

E
(uD − uD1) ds(bE − INCbE).
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The bubble function bE and its nonconforming interpolation INCbE satisfy

|||bE − INCbE|||NC(T) � 1.

It remains to estimate
∫

E(uD − uD1) ds. Let the edge E := conv{A, B} of length h = |E| = |A − B| have
the vertices A and B. Without loss of generality suppose A = (0, 0) and B = (0, h) and write uD(s) for
uD(s, 0). The definition of uD1 shows

I :=
∫

E
(uD − uD1) ds =

∫ h

0

(
uD(s)− uD(0)+ uD(h)

2

)
ds/h.

The function

ζ(s, t) :=
{

1 for t < s,

−1 for s < t

satisfies
∫ h

0

∫ h
0 ζ(x, y) dy dx = 0. For the constant c := ∫ h

0 ∂uD(t)/∂t dt/h ∈ R, the fundamental theorem
of calculus along E ≡ (0, h) leads to

I = 1

2h

∫ h

0

(∫ s

0

∂uD(t)

∂t
dt −

∫ h

s

∂ud(t)

∂t
dt

)
ds

= 1

2h

∫ h

0

∫ h

0
ζ(s, t)

∂uD(t)

∂t
dt ds

= 1

2h

∫ h

0

∫ h

0
ζ(s, t)

(
∂uD(t)

∂t
− c

)
dt ds.

Since uD|E ∈ H2(E), the Cauchy inequality in L2(0, h) and ζ 2 = 1, followed by the Poincaré inequality,
lead to

|I| �
√

h

2

∥∥∥∥∂uD

∂s
− c

∥∥∥∥
L2(0, h)

� h3/2

2
π

∥∥∥∥∂2uD

∂s2

∥∥∥∥
L2(0, h)

.

This proves

|||uD2 − INCuD2|||NC(T) � h3/2
E

∥∥∥∥∂2uD

∂s2

∥∥∥∥
L2(E)

.

In the second case where two edges of T belong to E (∂Ω), the triangle inequality is used to obtain the
general result (with some hidden extra factor 2). The sum of all these estimates concludes the proof. �

Remark 2.5 In three dimensions, the bubble functions are defined analogously and the above proof
employs an interpolation error estimate for the nodal interpolation.
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Lemma 2.6 For any vD ∈ C(∂Ω) ∩ H2(E (∂Ω)) with vD = 0 at N (∂Ω) there exists wD ∈ H1(Ω) with
wD|∂Ω = vD|∂Ω , wD|E = 0 for E ∈ E (Ω), INCwD = 0, integral mean Π0wD = 0 and

|||wD||| �
∥∥∥∥h3/2

E

∂2vD

∂s2

∥∥∥∥
L2(∂Ω)

.

Proof. The proof follows from Bartels et al. (2004, Theorem 4.2). Therein a function wD is defined
by harmonic extension. Denote this function by w̃D. It can be modified to wD to achieve the property
Π0wD = 0. To this end, define, for each T ∈ T with T := conv{A, B, C}, the cubic bubble function
bT := 60ϕAϕBϕC , which satisfies supp(bT ) = T and

∫
T bT dx = 1. Then the function wD is given by

wD|T := w̃D|T − ∫
T w̃D dxbT , for all T ∈ T . �

2.4 Conforming companion

The design of two conforming companions to any vNC ∈ VNC in V1(T ) and V2(T ) starts with the map
J1 : VNC → V1(T ) defined, for vNC ∈ VNC, by

J1(vNC) :=
∑

z∈N (Ω)

( ∑
T∈T (z)

vNC|T (z)
|T (z)|

)
ϕz.

Recall that ϕz ∈ P1(T )∩C(Ω) denotes the P1 nodal basis function associated with the node z in N (Ω).
Define J2 : VNC → V2(T ) for vNC ∈ VNC by

J2(vNC) := J1(vNC)+
∑
E∈E

(∫
E

(
vNC − J1(vNC)

)
ds

)
bE (2.7)

with the bubble function bE associated with the edge E.

Lemma 2.7 (Carstensen et al., 2014, Proposition 2.3) Given vNC ∈ VNC, the function v2 := J2(vNC) ∈
V2(T ) satisfies

�a |||vNC − v2|||NC(T) � min
v∈V

|||v − vNC|||NC(ωT ), for any T ∈ T ;

�b |||vNC − v2|||NC � min
v∈V

|||v − vNC|||NC.

Any wNC ∈ ANC satisfies wNC = INCuD2 + (wNC − INCuD2) and wNC − INCuD2 ∈ VNC. A conforming
companion of wNC is designed with the boundary approximation uD2 of uD and the aforementioned
operator J2, namely

w2 := uD2 + J2(wNC − INCuD2) ∈ A2. (2.8)
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Fig. 1. Commutative diagram between the discrete and continuous spaces related to the admissible functions; wD ∈ H1(Ω) extends
uD − uD2 (cf. Lemma 2.6).

Figure 1 illustrates the relation between the vector spaces VNC, V2(T ) and the affine spaces ANC, A2.

Lemma 2.8 (properties of the conforming companion) Let uD ∈ C(∂Ω) ∩ H2(E (∂Ω)). Given any
wNC ∈ ANC, the conforming companion w2 ∈ A2 from (2.8) satisfies

�a INCw2 = wNC;

�b |||w2 − INCw2|||NC(T) � min
v∈A

|||wNC − v|||NC(ωT )

+
∥∥∥∥h3/2

E

∂2uD

∂s2

∥∥∥∥
L2(∂ωT ∩∂Ω)

, for all T ∈ T ;

�c |||w2 − INCw2|||NC � min
v∈A

|||wNC − v|||NC +
∥∥∥∥h3/2

E

∂2uD

∂s2

∥∥∥∥
L2(∂Ω)

.

Proof. A direct integration of (2.8) along any edge E ∈ E shows

∫
E

w2 dx =
∫

E
(uD2 + J2(wNC − INCuD2)) ds

=
∫

E
uD2 ds +

∫
E

J1(wNC − INCuD2) ds

+
∫

E
((wNC − INCuD2)− J1(wNC − INCuD2)) ds

∫
E

bE ds

=
∫

E
uD2 dx +

∫
E
(wNC − INCuD2) ds

= INCuD2(mid(E))+ wNC(mid(E))− INCuD2(mid(E))

=
∫

E
wNC ds.

This implies �a .
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The proof of �b utilises Lemmas 2.4–2.7. The triangle inequality yields

|||wNC − w2|||NC �|||uD2 − INCuD2|||NC + |||wNC − INCuD2 − w2 + uD2|||NC.

Lemma 2.4 shows |||uD2 − INCuD2|||NC �
∥∥∥h3/2

E ∂2uD/∂s2
∥∥∥

L2(∂Ω)
. Recall vNC := wNC − INCuD2 ∈ VNC and

v2 := J2(vNC) = −uD2 + w2 ∈ V2(T ) from (2.7). Lemma 2.7 �a implies

|||wNC − INCuD2 − w2 + uD2|||NC(T) � min
v∈V

|||v − wNC + INCuD2|||NC(ωT ).

With the approximations uD2 and INCuD2 of the Dirichlet data uD, Lemma 2.6 shows the existence
of some function wD ∈ H1(Ω) which satisfies wD|∂Ω = (uD − uD2)|∂Ω , INCwD = 0 and |||wD||| �∥∥∥h3/2

E ∂2uD/∂s2
∥∥∥

L2(∂Ω)
. The triangle inequality yields

min
v∈V

|||v − wNC + INCuD2|||NC(ωT ) � min
w∈A

|||w − wNC|||NC(ωT ) + |||uD2 − INCuD2|||NC(ωT ) + |||wD|||NC(ωT ).

Lemmas 2.4 and 2.6 estimate the second and third terms to prove �b .
The proof of �c follows from the summation of the squares of inequality �b and the finite overlap of

the element patches ωT . �

3. A priori error analysis

This section proves an a priori error estimate for the error |||u − uNC|||NC for the solutions u ∈ K and
uNC ∈ KNC to the continuous and discrete obstacle problem (1.1) and (2.2). The result uses only the
regularity property Δu ∈ L2(Ω) guaranteed for f ∈ L2(Ω) and Δχ ∈ L2(Ω) (see Rodrigues, 1987,
Proposition 5:2.2 for a proof) and generalizes Wang (2003) to singular solutions (e.g., as in the example
of Section 6.4). The a priori result employs four subsets of the triangulation T :

T+ := {T ∈ T | u > χ a.e. in T}, T0 := {T ∈ T | u = χ a.e. in T},
TM := T \ (T+ ∪ T0) and T∂Ω := {T ∈ T | |∂T ∩ ∂Ω| > 0}. (3.1)

In other words, T+ denotes the triangles without contact, T0 those with full contact, TM contains the
triangles at the interface and T∂Ω the triangles with at least one edge on the boundary (|∂T ∩ ∂Ω| > 0
means that ∂T ∩ ∂Ω has positive length).

Theorem 3.1 (A priori error estimate) Let χ ∈ H2(Ω). Then the continuous and discrete solutions u ∈ K
and uNC ∈ KNC to the obstacle problem satisfy

|||u − uNC|||NC � |||u − INCu|||NC + ‖hT (|f | + |λ|)‖L2(Ω)

+ ∥∥hT D2χ
∥∥

L2(T0∪TM)
+
∥∥∥h3/2

E ∂2uD/∂s2
∥∥∥

L2(∂Ω)
.

The theorem above shows that the nonconforming FEM requires weaker regularity than the conform-
ing Courant FEM, as it requires only that Δu ∈ L2(Ω). This is in contrast to the a priori error analysis
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for the Courant FEM presented in Falk (1974), where full H2 regularity is assumed and extra work is
required for reduced elliptic regularity with u ∈ H1+s(Ω) for 0 � s < 1.

Proof of Theorem 3.1. Step 1 of the proof utilises aNC(uNC, u) = aNC(uNC, INCu) and u2 := uD2+J2(uNC−
INCuD2) with INCu2 = uNC from Section 2.4. With the abbreviation

ΛNC(vNC) := F(vNC)− aNC(uNC, vNC) for vNC ∈ VNC, (3.2)

the discrete variational inequality (2.2) shows for INCu ∈ KNC that

0 � ΛNC(uNC − INCu).

Since uNC = INCu2, Lemma 2.2. �b shows Π0∇NC(u2 − uNC) = Π0∇NC(u − INCu) = 0. This leads to

|||u − uNC|||2NC � LHS2 := |||u − uNC|||2NC +ΛNC(uNC − INCu)

= a(u, u − u2)+ a(u − INCu, u2 − uNC)+ F(uNC − INCu).

With λ := f + Δu ∈ L2(Ω), the consistency conditions (2.5) read 0 � u − χ ⊥ λ � 0 (⊥ abbreviates
pointwise orthogonality a.e.). This, an integration by parts and wD ∈ H1(Ω), designed as in Lemma 2.6
with wD|∂Ω = (uD − uD2)|∂Ω , imply

a(u, u − u2) = a(u, u − u2 − wD)+ a(u, wD)

=
∫
Ω

(−λ)(u − u2) dx + F(u − u2)+
∫
Ω

wDΔu dx + a(u, wD)

=
∫
Ω

(−λ)(χ − uNC) dx +
∫
Ω

(−λ)(uNC − u2) dx + F(u − u2)+
∫
Ω

wDΔu dx + a(u, wD).

A Cauchy inequality for the term
∫
Ω

wDΔu dx followed by a Poincaré inequality (recall Π0wD = 0 and
the Poincaré constant hT /j1,1 from Laugesen & Siudeja, 2010) prove

∫
Ω

wDΔu dx =
∑

T∈T∂Ω

∫
T
(wD −Π0wD)(Δu −Π0Δu) dx � osc(Δu, T∂Ω)/j1,1|||wD|||.

The design of wD yields
∫

E wD ds = 0 for any edge E ∈ E and hence for any T ∈ T ,
∫

T ∇wD dx = 0 .
This, an integration by parts, and a Cauchy inequality yield, for T ∈ T∂Ω , that

∫
T
∇u · ∇wD dx =

∫
T
∇(u − uNC) · ∇wD dx � |||u − uNC|||NC(T)|||wD|||T .
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The combination of the aforementioned estimates proves

LHS2 �
∫
Ω

(−λ)(χ − uNC) dx +
∫
Ω

(−λ)(uNC − u2) dx

+ osc(Δu, T∂Ω)/j1,1|||wD||| + |||u − uNC|||NC|||wD|||
+ aNC(u − INCu, u2 − uNC)+ F(u − u2 + uNC − INCu).

Since INCu2 = uNC, a Cauchy inequality, Lemma 2.2 �a , and Lemma 2.8 �c show for A := |||u−uNC|||NC +∥∥∥h3/2
E ∂2uD/∂s2

∥∥∥
L2(∂Ω)

that

∫
Ω

(−λ)(uNC − u2) dx � ‖hT λ‖L2(Ω) A,

aNC(u − INCu, u2 − uNC) �|||u − INCu|||NCA,

F(u − u2 + uNC − INCu) � ‖hT f ‖L2(Ω) A.

With RHS1 := |||u − INCu|||NC + ‖hT (|f | + |λ|)‖L2(Ω) + ∥∥hE∂
2uD/∂s2

∥∥
L2(∂Ω)

, the combination of the
previous estimates and Lemma 2.6 results in

LHS2 −
∫
Ω

(−λ)(χ − uNC) dx � RHS1

(
|||u − uNC|||NC + RHS1

)
. (3.3)

Step 2 is the analysis of

IT :=
∫

T
(−λ)(χ − uNC) dx for any triangle T ∈ T .

It resolves the subtle third case, where T ∈ TM is neither fully in the contact zone nor in the noncontact
zone. Recall the three subsets T+, T0 and TM from (3.1).

Case 1: For any T ∈ T+ it holds that u > χ a.e. on T and the consistency condition (2.5) reveals
λ = 0 and hence IT = 0.

Case 2: For any T ∈ T0, u ≡ χ a.e. on T . Since λ := (Δu + f ) � 0, λT := ∫
T λ dx � 0. Since

INCχ − uNC is affine on T and
∫

E(INCχ − uNC) dx � 0, for all edges E ∈ E (T), it follows that

∫
T
(INCχ − uNC) dx � 0, whence 0 �

∫
T
λT (INCχ − uNC) dx.

With e := u − uNC = χ − uNC on T ∈ T0 and eT := ∫
T e dx, this leads to

IT =
∫

T
(λT − λ)e dx −

∫
T
λT (INCχ − uNC) dx −

∫
T
λT (χ − INCχ) dx

�
∫

T
(λT − λ)(e − eT ) dx −

∫
T
λT (χ − INCχ) dx.
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Since Π0∇χ = ∇NCINCχ , a Poincaré inequality with the constant hT /j1,1 from Laugesen & Siudeja
(2010), and Lemma 2.2 �a (with κNC � 0.2982) in the previous estimate shows

IT �osc(λ, T)/j1,1|||e|||NC(T) + h2
TκNC/j1,1 ‖λT‖L2(T)

∥∥D2χ
∥∥

L2(T)
.

Case 3: In the remaining case T ∈ TM ,
∣∣{x ∈ T | u(x) = χ(x)}∣∣ < |T | and so the compact subset

C := {x ∈ T | u(x) = χ(x) � uNC(x)}

has a measure |C | < |T |. (Note that u,χ , uNC are continuous on T and so C is closed.) For x ∈ T \ C
it follows that either χ(x) < u(x) or uNC(x) < χ(x). The continuous consistency conditions (2.5) show
that λ(x) = 0 for χ(x) < u(x) and since λ � 0 a.e. in Ω , it follows that for x ∈ T with uNC(x) < χ(x),

(−λ(x))(χ(x)− uNC(x)) � 0.

These observations and a Cauchy inequality imply

IT �
∫

C

(−λ)(χ − uNC) dx � ‖λ‖L2(C) |C |1/2 ‖χ − uNC‖L∞(C). (3.4)

For any edge E ∈ E ,

∫
E
(χ − uNC) ds =

∫
E
(INCχ − uNC) dx � 0.

(This follows for all interior edges E ∈ E (Ω) since uNC ∈ KNC, and from χ � uD on ∂Ω , also for any
edge on the boundary E ∈ E (∂Ω).) Hence, the continuous function w := χ − uNC satisfies w � 0 at
least at one point on ∂T .

Since w � 0 on C , the function w ∈ H2(T) has some zero x0 ∈ T . Therefore, for any x ∈ T , let
F := conv{x, x0}. A nondegenerate triangle K := conv{x0, x, P} can be defined as follows (cf. Fig. 2):
Any straight line s0 through x and x0 has parallels through the three vertices of T . Two of them, s1 and s2,
have a maximal distance d and the interior of the triangle T lies between them. Hence d � width(T) and
elementary considerations prove width(T) = min{height of a vertex of T}. The distance of the straight
line s0 to one of the lines s1 or s2 is d ′ and the other is d − d ′. Without loss of generality let d ′ be the
bigger distance with d ′ � d/2. Therefore there exists a vertex P of T such that the height d ′ of P onto
the line s0, which includes F := conv{x, x0}, satisfies d ′ � d/2. Then, K := conv{x0, x, P} satisfies
|K| � |F|width(T)/4. The triangle T satisfies

|T | = hT width(T)/2 = hT width(T)2/(2width(T)).

Since all angles γ in the triangle T satisfy γ0 � γ (by shape regularity), the definition of the tangent
shows hT/2 tan γ0 � width(T). This proves

|T |1/2 tan1/2(γ0) � width(T).
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Fig. 2. Design of the triangle K in Theorem 3.1.

Since |K| � |T | it follows that

|F| tan1/2(γ0)
|K|1/2

4
� |F| tan1/2(γ0)

|T |1/2
4

� |K|.

In other words,

|F|
|K|1/2 � 4cot1/2(γ0). (3.5)

Suppose for the moment that w ∈ C1(Ω) with w(x0) = 0. Then

|w(x)| � w(x0)+
∫ 1

0
|∇w(x0 + t(x − x0)) · (x − x0)|dt � |F|

∫
F
|∇w| ds.

The trace identity (Carstensen et al., 2012, Lemma 2.1) yields

∫
F
|∇w| ds =

∫
K

|∇w| dx + 1

2

∫
K

D(|∇w|) · (x − P) dx.

The combination of the previous two displayed formulas shows

|w(x)| � |F|
∫

K
|∇w| dx + |F|

2

∫
K

D(|∇w|) · (x − P) dx.
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Notice that the derivative of the modulus function is bounded by the modulus of the derivative. The
estimate (3.5) and a Cauchy inequality imply

cot1/2(γ0)|w(x)| � |||w|||K + hT

∥∥D2w
∥∥

L2(K)
.

Since x is arbitrary in T and since D2w = D2χ it follows that

‖χ − uNC‖L∞(T) � tan1/2(γ0)(|||χ − uNC|||NC(T) + hT

∥∥D2χ
∥∥

L2(T)
).

A triangle and a Poincaré inequality (with Π0∇χ = ∇NCINCχ ) show

‖χ − uNC‖L∞(T) � tan1/2(γ0)(|||INCχ − uNC|||NC(T) + hT (1 + 1/j1,1)
∥∥D2χ

∥∥
L2(T)

). (3.6)

Estimate (3.6) holds for all w := χ −uNC ∈ C1(T)∩H2(T). A density argument reveals that it also holds
for all χ ∈ H2(T). Since ∇(INCχ − uNC) is constant on the triangle T , it follows that

|||INCχ − uNC|||NC(T) = |T |1/2|C |−1/2| ‖∇(INCχ − uNC)‖L2(C)

� |T |1/2|C |−1/2
(

‖∇(χ − INCχ)‖L2(C)

+ ‖∇(χ − u)‖L2(C) + ‖∇(u − uNC)‖L2(C)

)
.

A Poincaré inequality (with the Poincaré constant hT/j1,1 from Laugesen & Siudeja, 2010) yields

‖∇(χ − INCχ)‖L2(C) � ‖∇(χ − INCχ)‖L2(T) � hT

∥∥D2χ
∥∥

L2(T)
/j1,1.

Since u − χ = 0 on the compact set C , it holds that ‖∇(u − χ)‖L2(C) = 0. Therefore

|||INCχ − uNC|||NC(T) �|T |1/2|C |−1/2
(

hT/j1,1

∥∥D2χ
∥∥

L2(T)
+ |||u − uNC|||NC(T)

)
.

Combination with (3.4) and (3.6) results in

IT � tan1/2(γ0) ‖hTλ‖L2(C)

(
|||u − uNC|||NC(T) +

∥∥hT D2χ
∥∥

L2(T )
(1 + 2/j1,1)

)
.

This concludes Case 3.
The summary of the three cases leads to∫

Ω

(−λ)(χ − uNC) dx � ‖hT λ‖L2(Ω) (|||u − uNC|||NC + ∥∥hT D2χ
∥∥

L2(T0∪TM)
). (3.7)

The combination of (3.3) and (3.7) reads

LHS2 � RHS1

(
RHS1 + ∥∥hT D2χ

∥∥
L2(T0∪TM)

+ |||u − uNC|||NC

)
.

A Young inequality and the absorption of |||u − uNC|||NC � LHS conclude the proof. �
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4. A posteriori error analysis

This section provides guaranteed lower bounds for the exact energy E(u) in (1.2) based on the discrete
energy ENC(uNC) in (2.3), as well as reliable error estimators for the obstacle problem. Given the discrete
Crouzeix–Raviart solution uNC ∈ KNC of (2.2), define some discrete Lagrange multiplier

λNC :=
∑

E∈E(Ω)

ρEψE/ ‖ψE‖2
L2(Ω)

with ρE := F(ψE)− aNC(uNC,ψE) (4.1)

with the edge-oriented basis function ψE ∈ VNC associated with the edge E ∈ E (Ω). Recall ΛNC from
(3.2) and notice that

ΛNC(vNC) =
∫
Ω

λNCvNC dx, for all vNC ∈ VNC.

In the sequel,ΛNC(v) will always denote the L2 scalar product of any Lebesgue function v ∈ L2(Ω) with
λNC ∈ VNC. The residual-based a posteriori error estimate involves the continuous Lagrange multiplier

Λ := F − a(u, ·) ∈ V ∗

with the L2 representation λ = f +Δu. The dual norm |||Λ−ΛNC|||∗ reads

|||Λ−ΛNC|||∗ := sup
v∈V\{0}

∫
Ω

v(λ− λNC) dx/|||v|||.

The subset T ′ :=
{

T ∈ T
∣∣∣ 0 < |{x ∈ T | λNC(x) > 0}|

}
of T is employed in Theorems 4.1 and 4.4.

The lower bounds for the exact energy E(u) are given in the following theorem with the constant
κNC � 0.2983 from Lemma 2.2 �a .

Theorem 4.1 (Lower energy bounds) The discrete solution uNC and the continuous solution u to the
obstacle problem satisfy

�a ENC(uNC)− κ2
NC

2
‖hT f ‖2

L2(Ω)
� E(u)−ΛNC(uNC − INCu) � E(u)

�b ENC(uNC)−
(
κNC ‖hT (f − λNC)‖L2(Ω) + osc(λNC, T ′)

)2
/2

−
∫

T ′
(χ − uNC)Π0λNC dx +

∫
T \T ′

(INCχ − χ)λNC dx

� E(u)−
∫

T \T ′
(χ − u)λNC dx −

∫
T ′
(χ − u)Π0λNC dx � E(u).

The lower energy bounds of Theorem 4.1 are of separate interest, but may be used for error control
of any v ∈ K based on the identity

1

2
|||u − v|||2 +Λ(u − v) = E(v)− E(u). (4.2)
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Combination with Theorem 4.1 �b leads to the error bound in the following result where all summands
on the left-hand side are non-negative and all summands on the right-hand side are computable.

Corollary 4.2 Any v ∈ K satisfies

1

2
|||u − v|||2 +Λ(u − v)+

∫
T \T ′

(χ − u)λNC dx +
∫

T ′
(χ − u)Π0λNC dx

� E(v)− ENC(uNC)+ 1

2

(
κNC ‖hT (f − λNC)‖L2(Ω) + osc(λNC, T ′)

)2

+
∫

T ′
(χ − uNC)Π0λNC dx +

∫
T \T ′

(χ − INCχ)λNC dx. �

Remark 4.3 In practice, v ∈ K can be chosen with the help of any conforming companion, for example
J2 from (2.7). Then v = max{χ , wD + uD2 + J2(uNC − INCuD2)} ∈ K for wD ∈ H1(Ω) as in Lemma 2.6
with wD|∂Ω = uD − uD2 is an admissible function.

The following residual-based a posteriori error analysis generalizes Braess (2005).

Theorem 4.4 (Guaranteed upper error bound) Any v ∈ K satisfies

�a
1

2
|||u − uNC|||2NC +Λ(u − v)+

∫
T ′
(χ − u)Π0λNC dx +

∫
T \T ′

(χ − u)λNC dx

� 1

2
|||v − uNC|||2NC +

∫
T ′
(χ − v)Π0λNC dx +

∫
T \T ′

(χ − v)λNC dx

+ 1

2

(
κNC ‖hT (f − λNC)‖L2(Ω) + osc(λNC, T ′)/j1,1

)2

�b |||Λ−ΛNC|||∗ � |||u − uNC|||NC + osc(f − λNC, T )/j1,1

+ 1

2

∥∥Π0(f − λNC)(• − mid(T ))
∥∥

L2(Ω)
+ |||uNC − v|||NC + |||wD|||.

Remark 4.5 The comparison of Corollary 4.2 with Theorem 4.4 �a is possible through the following
formula (which follows from straightforward algebra):

E(v)− ENC(uNC) = 1

2
|||v − uNC|||2NC +ΛNC(uNC − v)+ (ΛNC − F)(v − INCv). (4.3)

Theorem 4.1 plus (4.2) and (4.3) imply Theorem 4.4 with different constants in the form

|||u − uNC|||2NC �3|||uNC − v|||NC +ΛNC(uNC − v)+ 3κ2
NC ‖hT (f − λNC)‖2

L2(Ω)
+ 2 osc(λNC, T ′)2

+ 2
∫

T ′
(χ − uNC)Π0λNC dx + 2ΛNC(uNC − v)+ 2

∫
T \T ′

(χ − INCχ)λNC dx.

The remaining parts of this section are devoted to the proofs of Theorems 4.1 and 4.4. The analysis
of the nonlinearity utilizes the subsequent lemma.
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Lemma 4.6 The continuous and discrete solutions u and uNC, and the discrete Lagrange multiplierΛNC,
satisfy

ΛNC(u − uNC) =
∫

T ′
(χ − uNC)Π0λNC dx −

∫
T \T ′

λNC(INCχ − u) dx

−
∫

T ′
(χ − u)Π0λNC dx +

∫
T ′
(1 −Π0)λNC(1 −Π0)(u − uNC) dx.

Proof. The discrete consistency conditions (2.4) show that the product

λNC(INCχ − uNC)

vanishes at the midpoint mid(E) of any edge E ∈ E . Since the three-point quadrature formula at the edge
midpoints is exact for quadratic polynomials P2(T) on the triangle T , it follows that

∫
T
λNC(INCχ − uNC) dx = 0 for any T ∈ T .

Hence, with
∫

T \T ′ • dx := ∑
T∈T \T ′

∫
T • dx, it holds that

∫
T \T ′

λNC(u − uNC) dx =
∫

T \T ′
λNC(u − INCχ) dx.

It remains to perform the analysis for T ∈ T ′. Recall that the L2 projection Π0 onto P0(T ) is the
piecewise integral mean operator with respect to the triangulation T . The inequalities

Π0λNC � 0 � Π0(uNC − INCχ) a.e.

and algebraic transformations motivate the split

∫
T
λNC(u − uNC) dx =

∫
T
(u − uNC)Π0λNC dx +

∫
T
(1 −Π0)λNC(u − uNC) dx

=
∫

T
(u − χ)Π0λNC dx +

∫
T
(χ − uNC)Π0λNC dx

+
∫

T
(1 −Π0)λNC(1 −Π0)(u − uNC) dx.

The combination of the aforementioned estimates concludes the proof. �

Proof of Theorem 4.1. The proof is divided into seven steps.

Step 1. The properties of the nonconforming interpolation operator and a direct calculation lead to

1

2
|||u − INCu|||2NC = E(u)− ENC(INCu)+ F(u − INCu).
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Step 2. Some algebra with the definition of ΛNC in (3.2) leads to

ΛNC(uNC − INCu)+ 1

2
|||INCu − uNC|||2NC = ENC(INCu)− ENC(uNC).

Step 3. Since
∫

T ∇NC(u − INCu) dx = 0 on each triangle T ∈ T , the Pythagorean theorem yields

|||u − uNC|||2NC = |||u − INCu|||2NC + |||INCu − uNC|||2NC.

Step 4. The combination of Steps 1–3 leads to

ΛNC(uNC − INCu)+ 1

2
|||u − uNC|||2NC = E(u)− ENC(uNC)+ F(u − INCu). (4.4)

Step 5 is the proof of assertion �a . Lemma 2.2 �a shows

∥∥h−1
T (u − INCu)

∥∥
L2(Ω)

� κNC|||u − INCu|||NC � κNC|||u − uNC|||NC.

This, a Cauchy inequality and some Young inequality lead to

F(u − INCu) � κ2
NC

2
‖hT f ‖2

L2(Ω)
+ 1

2
|||u − uNC|||2NC. (4.5)

The combination of (4.4) and (4.5) concludes the proof of �a .

Step 6. Identity (4.4) also reads

ΛNC(uNC − u)+ 1

2
|||u − uNC|||2NC = E(u)− ENC(uNC)+ (F −ΛNC)(u − INCu).

Lemma 2.2. �a leads to

ΛNC(uNC − u)+ 1

2
|||u − uNC|||2NC � E(u)− ENC(uNC)+ κNC ‖hT (f − λNC)‖L2(Ω) |||u − uNC|||NC.

(4.6)

Step 7 concludes the proof of �b . Lemma 4.6 shows

ΛNC(u − uNC) =
∫

T ′
(χ − uNC)Π0λNC dx −

∫
T \T ′

λNC(INCχ − χ) dx

−
∫

T \T ′
λNC(χ − u) dx −

∫
T ′
(χ − u)Π0λNC dx

+
∫

T ′
(1 −Π0)λNC(1 −Π0)(u − uNC) dx. (4.7)
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The Poincaré inequality with constant hT /j1,1 from Laugesen & Siudeja (2010) for each triangle T ∈ T ′

yields

∫
T ′
(1 −Π0)λNC(1 −Π0)(u − uNC) dx � osc(λNC, T ′)/j1,1|||u − uNC|||NC(T ′). (4.8)

The combination of this with (4.7) and (4.6) plus the absorption of |||u − uNC|||NC conclude the proof of
�b in Theorem 4.1. �

Proof of Theorem 4.4. Given any v ∈ K , the definitions ofΛ andΛNC plus elementary algebra show for
e := u − uNC that

Λ(u − v)+ aNC(e, u − v) = F(1 − INC)(u − v)+ΛNC(INC(u − v))

=
∫
Ω

(f − λNC)(1 − INC)(u − v) dx +ΛNC(u − v).

The binomial theorem shows

2aNC(e, u − v) = |||e|||2NC + |||u − v|||2 − |||v − uNC|||2NC.

Lemma 2.2 and a Cauchy inequality yield

∫
Ω

(f − λNC)(1 − INC)(u − v) dx � κNC ‖hT (f − λNC)‖L2(Ω) |||u − v|||.

The combination of the above-displayed estimates proves

2Λ(u − v)+ |||e|||2NC + |||u − v|||2 � 2κNC ‖hT (f − λNC)‖L2(Ω) |||u − v|||
+ |||v − uNC|||2NC + 2ΛNC(u − v). (4.9)

Lemma 4.6 yields

ΛNC(u − v) = ΛNC(uNC − v)+
∫

T ′
(χ − uNC)Π0λNC dx −

∫
T \T ′

λNC(χ − u) dx

−
∫

T ′
(χ − u)Π0λNC dx +

∫
T ′
(1 −Π0)λNC(1 −Π0)(u − uNC) dx. (4.10)

The properties of the integral, the Poincaré inequality with the constant hT/j1,1 from Laugesen & Siudeja
(2010) on each triangle T ∈ T ′, and the Cauchy inequality prove

∫
T ′
(1 −Π0)λNC(1 −Π0)(u − uNC) dx � osc(λNC, T ′)|||u − v|||NC(T ′)/j1,1

+
∫

T ′
(1 −Π0)λNC(1 −Π0)(v − uNC) dx.
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It holds that

ΛNC(uNC − v)+
∫

T ′
(1 −Π0)λNC(1 −Π0)(v − uNC) dx

=
∫

T ′
(uNC − v)Π0λNC dx +

∫
T \T ′

(uNC − v)λNC dx. (4.11)

The first and second terms on the right-hand side of (4.11) satisfy

∫
T ′
(uNC − v)Π0λNC dx +

∫
T ′
(χ − uNC)Π0λNC dx =

∫
T ′
(χ − v)Π0λNC dx

and∫
T \T ′

(uNC − v)λNC dx −
∫

T \T ′
λNC(INCχ − u) dx =

∫
T \T ′

(u − χ)λNC dx +
∫

T \T ′
(χ − v)λNC dx.

The combination with the above estimates and the absorption of |||u−v||| conclude the proof of assertion
�a of Theorem 4.4.

The proof of �b employs an auxiliary Laplace problem with right-hand side f − λNC ∈ L2(Ω).
Following Braess (2005), let w denote the weak solution of the Laplace equation with Dirichlet boundary
conditions uD and right-hand side f − λNC ∈ L2(Ω), which corresponds to F −ΛNC ∈ H−1(Ω). That is,
w ∈ H1(Ω) satisfies w = uD on ∂Ω and

a(w, v) = (F −ΛNC)(v), for all v ∈ V . (4.12)

Since w is the solution to (4.12), any v ∈ V satisfies a(u − w, v) = (Λ−ΛNC)(v).
The choice of v := u − w ∈ V leads to |||u − w||| � |||Λ−ΛNC|||∗. On the other hand, it holds that

(Λ−ΛNC)(v) � |||u − w||| |||v||| for any v ∈ V .
Altogether it follows that

|||Λ−ΛNC|||∗ = |||u − w|||.

The triangle inequality leads to

|||Λ−ΛNC|||∗ � |||u − uNC|||NC + |||w − uNC|||NC.

By definition of λNC, the discrete approximation uNC equals the nonconforming finite element solution
to the Poisson model problem (4.12), namely

aNC(uNC, vNC) = (F −ΛNC)(vNC), for all vNC ∈ VNC

with right-hand side f −λNC ∈ L2(Ω) and exact solution w. Hence, the error of the continuous and discrete
solution |||w−uNC|||NC to the Poisson model problem and its error control may follow from the a posteriori
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error analysis of variational equations. For instance, Carstensen & Merdon (2013, Theorem 3.1) show
that

|||w − uNC|||NC �|||uNC − v|||NC + osc(f − λNC, T )/j1,1

+ 1

2

∥∥Π0(f − λNC)(• − mid(T ))
∥∥

L2(Ω)
+ |||wD|||.

This concludes the proof of �b of Theorem 4.4. �

5. Efficiency

This section discusses the efficiency of the global upper bound (GUB) from Theorem 4.4 for piecewise
affine obstacles χ ∈ V1(T ).

For any v ∈ K , the a posteriori error estimate from Theorem 4.4 leads to a computable global upper
bound GUB(v) of the five non-negative error terms in LHS(v) � GUB(v),

LHS(v) :=|||u − uNC|||NC + |||Λ−ΛNC|||∗ +Λ(u − v)1/2

+
(∫

T ′
λNCΠ0(χ − u) dx

)1/2

+
(∫

T \T ′
(χ − u)λNC dx

)1/2

,

GUB(v) :=|||v − uNC|||NC + ‖hT (f − λNC)‖L2(Ω) + osc(λNC, T ′)+ |||wD|||

+
(∫

T ′
λNCΠ0(χ − v) dx

)1/2

+
(∫

T \T ′
λNC(χ − v) dx

)1/2

.

For χ ∈ V1(T ), the a posteriori error estimate LHS(v) � RHS(v) is efficient in the sense that the
converse inequality holds up to some generic factor and oscillation terms. Recall the assumption uD ∈
C(∂Ω) ∩ H2(E (∂Ω)) and suppose that v is postprocessed from uNC such that it holds that

|||u − v||| � |||u − uNC|||NC +
∥∥∥∥∥h3/2

E ∂2uD

∂s2

∥∥∥∥∥
L2(∂Ω)

. (5.1)

Theorem 5.1 (Efficiency of GUB) Any function v ∈ K with (5.1) satisfies

GUB(v) � LHS(v)+ osc(f , T )+ osc(λ, T )+
∥∥∥∥∥h3/2

E ∂2uD

∂s2

∥∥∥∥∥
L2(∂Ω)

.

Remark 5.2 Given any postprocessing v ∈ A with (5.1), the function max{v,χ} belongs to K and
satisfies

|||u − max{v,χ}||| � |||u − uNC|||NC +
∥∥∥∥∥h3/2

E ∂2uD

∂s2

∥∥∥∥∥
L2(∂Ω)

+ |||min{0, v − χ}|||.

The conforming companion u2 from Section 2.4 satisfies this estimate.
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Proof of Theorem 5.1. Step 1 is the proof of

‖hT (f − λNC)‖L2(Ω) � osc(f , T )+ |||Λ−ΛNC|||∗ + |||u − uNC|||NC. (5.2)

Proof. The triangle inequality and fT := Π0f with fT := fT |T for T ∈ T imply

‖hT (f − λNC)‖L2(Ω) � osc(f , T )+ ‖hT (fT − λNC)‖L2(Ω).

The efficiency of ‖hT (fT − λNC)‖L2(T) is shown as for boundary value problems in Verfürth (1996).
Consider the cubic bubble function bT := 60Πz∈N (T)ϕz on the triangle T ∈ T and set wT := (fT −λNC)bT

which satisfies

‖hT (fT − λNC)‖2
L2(T) � h2

T

∫
T

wT (fT − λNC) dx. (5.3)

The Cauchy and Friedrichs inequalities lead to

∫
T

wT (fT − f ) dx � |||wT |||T osc(f , T).

An integration by parts yields

∫
T
(f − λNC)wT dx = (Λ−ΛNC)(wT )−

∫
T
∇u · ∇wT dx.

Since
∫

T ∇wT dx = 0, it follows that

∫
T
∇u · ∇wT dx =

∫
T
(∇u − ∇NCuNC) · ∇wT dx � |||u − uNC|||NC(T)|||wT |||T .

The combination of the previous estimates shows

‖hT (fT − λNC)‖2
L2(T) �h2

T |||wT |||T
(
|||u − uNC|||NC(T) + |||Λ−ΛNC|||∗,T + osc(f , T)

)
. (5.4)

The triangle inequality implies

|||wT |||T � ‖(fT − λNC)∇bT‖L2(T) + ‖bT∇(fT − λNC)‖L2(T).

The properties of bT (Verfürth, 1996, Lemma 1.3) result in

‖(fT − λNC)∇bT‖L2(T) � h−1
T

∥∥∥b1/2
T (fT − λNC)

∥∥∥
L2(T)

.

An inverse estimate shows

‖bT∇(fT − λNC)‖L2(T) � h−1
T

∥∥∥b1/2
T (fT − λNC)

∥∥∥
L2(T)

.
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Therefore,

|||wT |||T � h−1
T

∥∥∥b1/2
T (fT − λNC)

∥∥∥
L2(T)

. (5.5)

The combination of (5.4) and (5.5) implies

‖hT (fT − λNC)‖L2(T) � osc(f , T)+ |||Λ−ΛNC|||∗,T + |||u − uNC|||NC(T).

This is already a local version of the assertion for some fixed triangle T . To prove the global form, let
wT be defined as above on each triangle. Then wT ∈ V and h2

T wT ∈ V and (5.4) is replaced by

‖hT (fT − λNC)‖2
L2(Ω)

�
∑
T∈T

h2
T |||wT |||T

(
osc(f , T )+ |||λ− λNC|||∗,T + |||u − uNC|||NC(T)

)
.

Since (5.5) holds, this leads to

‖hT (f − λNC)‖L2(Ω) � |||u − uNC|||NC + |||Λ−ΛNC|||∗ + osc(f , T ).

This concludes the proof of (5.2). �

Step 2 verifies

osc(λNC, T ) � |||Λ−ΛNC|||∗ + osc(λ, T ). (5.6)

Proof of Step 2. Let bT := 60Πz∈N (T)ϕz be the cubic bubble function on the triangle T ∈ T and set
wT := bT (λNC −Π0λNC). This gives

‖hT (λNC −Π0λNC)‖2
L2(T) � h2

T

∫
T

wT (λNC −Π0λNC) dx.

Since
∫

T wT dx = 0, it follows that

∫
T

wT (λNC −Π0λNC) dx =
∫

T
wT (λNC − λ) dx +

∫
T

wT (λ−Π0λ) dx.

With wT |T := wT on each triangle T ∈ T , the summation over all triangles results in

‖hT (λNC −Π0λNC)‖2
L2(Ω)

�
∫
Ω

h2
T wT (λNC − λ) dx +

∫
Ω

h2
T wT (λ−Π0λ) dx

� |||Λ−ΛNC|||∗|||h2
T wT ||| + osc(λ, T ) ‖hT wT ‖L2(Ω).

An inverse estimate as in Step 1 and a Friedrichs inequality prove

|||h2
T wT ||| ≈ ‖hT wT ‖L2(Ω) ≈ osc(λNC, T ).

The division by osc(λNC, T ) concludes the proof of (5.6).
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Step 3 is the proof of

(∫
T ′
(χ − v)Π0λNC dx

)1/2

+
(∫

T \T ′
(χ − v)λNC dx

)1/2

� LHS(v). (5.7)

Proof of Step 3. The proof starts with the split of the first term:

∫
T ′
(χ − v)Π0λNC dx =

∫
T ′
(χ − u)Π0λNC dx +

∫
T ′
λ(u − v) dx

+
∫

T ′
(λ− λNC)(v − u) dx +

∫
T ′
(λNC −Π0λNC)(1 −Π0)(v − u) dx.

The Cauchy, Poincaré and Young inequalities and (5.1) show

∫
T ′
(λNC −Π0λNC)(1 −Π0)(v − u) dx � |||u − uNC|||2NC + osc(λNC, T ′)2 +

∥∥∥∥∥h3/2
E ∂2uD

∂s2

∥∥∥∥∥
L2(∂Ω)

.

The second term satisfies∫
T \T ′

(χ − v)λNC dx =
∫

T \T ′
(χ − u)λNC dx +

∫
T \T ′

(u − v)(λNC − λ) dx +
∫

T \T ′
(u − v)λ dx.

The square roots of the terms
∫

T ′ λNCΠ0(χ − u) dx, osc(λNC, T ′)2, |||u − uNC|||2 and
∫

T \T ′(INCχ −
u)λNC dx are part of LHS(v). The combination of the remaining terms with (5.1) leads to

∫
T ′
λ(u − v) dx +

∫
T \T ′

λ(u − v) dx = Λ(u − v)

and ∫
T ′
(λ− λNC)(v − u) dx +

∫
T \T ′

(λ− λNC)(v − u) dx � |||Λ−ΛNC|||2∗ + |||u − uNC|||2NC.

The square roots of these terms are part of LHS(v). This concludes the proof of (5.7).

Step 4. The efficiency of
∥∥∫

T
(f − λNC) dx(• − mid(T ))

∥∥
L2(Ω)

+ |||wD||| follows from Carstensen &
Merdon (2013, Theorem 3.1) and Lemma 2.6.

The combination of Steps 1–4 and the triangle inequality conclude the proof of Theorem 5.1.

6. Computational benchmarks

This section is devoted to the performance of the a priori and a posteriori error estimates in three
benchmark examples implemented as in Alberty et al. (1999) and Bahriawati & Carstensen (2005).
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6.1 Numerical realization

The output of the following algorithm are the two lower energy bounds, the value of two error estimators
and the corresponding efficiency indices. The lower bounds μ1, μ2 of E(u) from Theorem 4.1 are
given by

μ1 :=ENC(uNC)− κ2
NC/2 ‖hT f ‖2

L2(Ω)
,

μ2 :=ENC(uNC)− 1

2

(
κNC ‖hT (f − λNC)‖L2(Ω) + osc(λNC, T ′)

)2

−
∫

T ′
(χ − uNC)Π0λNC dx +

∫
T \T ′

(INCχ − χ)λNC dx.

With T ′ from Section 4 and v := max{χ , wD + uD2 + J2(uNC − INCuD2)} ∈ K for wD ∈ H1(Ω) as in
Lemma 2.6 with wD|∂Ω = uD − uD2 and J2 from (2.7), the estimator η1 and η2 are given by

η1 :=|||uNC − v|||2 + 2
(

E(v)− ENC(uNC)
)

+
(
κNC ‖hT (f − λNC)‖L2(Ω) + osc(f , T ′)

)2

+ 2
∫

T ′
(χ − uNC)Π0λNC dx + 2

∫
T \T ′

(χ − INCχ)λNC dx,

η2 :=|||v − uNC|||2NC +
(
κNC ‖hT (f − λNC)‖L2(Ω) + osc(f , T ′)

)2

+ 2
∫

T ′
(χ − v)Π0λNC dx + 2

∫
T \T ′

(χ − v)λNC dx.

Algorithm. INPUT an initial triangulation T0.

LOOP for all � = 0, 1, 2, . . . until termination repeating the three steps �1 – �3

�1 COMPUTE the discrete solution uNC on T� with ndof unknowns.
�2 ESTIMATE the error |||u − v||| for v := max{χ , wD + uD2 + J2(uNC − INCuD2)} with η1 and η2 and

compute the lower energy bounds μ2 and μ2.
The related efficiency indices Eff(η1) and Eff(η2) read

Eff(ηj) :=
√∑

T∈T

η2
j (v)/|||u − uNC|||NC for j = 1, 2.

�3 REFINE T� by red refinement of all triangles and compute T�+1.

OUTPUT efficiency indices Eff(η1), Eff(η2), and the lower energy bounds μ1, μ2 on each level �.

6.2 Square domain

The function u(r,ϕ) := max{r2 − 0.49, 0}2 solves the obstacle problem from Nochetto et al. (2003)
with the constant obstacle χ ≡ 0, the nonhomogeneous Dirichlet data uD = u|∂Ω and the right-hand
side f (r,ϕ) which equals −16r2 + 3.92 for r > 0.7 and −5.8408 + 3.92r2 for r � 0.7 on the square
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Fig. 3. Convergence history plot of the error |||u − uNC|||NC and the two error estimators (left) and efficiency indices of the two
error estimators (right) for the NCFEM as functions of ndof in Section 6.2.

Fig. 4. Upper and lower energy bounds in Sections 6.2 (left) and 6.3 (right).

domain (−1, 1)2 in polar coordinates (r,ϕ) at the origin. Figure 3 displays the error estimators η1 and
η2 of |||u − uNC|||. On the left, the error estimator and the corresponding exact error converge with
a convergence rate −0.5 with respect to ndof as anticipated by Theorem 3.1 both for the uniform
algorithm (described above) and an adaptive algorithm based on the error estimator η2 as a refine-
ment indicator with Dörfler marking and a bulk parameter Θ = 0.5. On the right, Fig. 3 shows that
the a posteriori error estimators are efficient with efficiency indices between 2 and 3. Figure 4 shows
the lower energy bounds μ1 and μ2 for adaptive and uniform mesh refinement and their convergence
towards the exact energy on the left. Both lower bounds converge and they exhibit the same overall
behaviour.
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Fig. 5. Convergence history plot of the error |||u − uNC|||NC and the two error estimators (left) and efficiency indices of the two
error estimators (right) for the NCFEM as functions of ndof in Section 6.3.

6.3 Smooth obstacle

The function u ≡χ ∈ K from Gräser & Kornhuber (2009) solves the obstacle problem on the square
domain with the smooth obstacleχ(x, y) := −(x2−1)(y2−1), the homogeneous Dirichlet data uD|∂Ω := 0
and the source term f := −Δχ . Figure 5 investigates the quality of the error estimators for |||u − uNC|||
on the left and confirms that the error estimator and the corresponding error converge with a convergence
rate −0.5 as anticipated by Theorem 3.1, for the adaptive and uniform mesh refinements. Figure 5 reveals
on the right that all three error estimators are efficient with efficiency indices between 2 and 2.8. Figure 4
shows the lower energy boundsμ1 andμ2 on adaptive and uniform meshes and their convergence towards
E(u) on the right.

6.4 L-shaped domain

The example from Bartels & Carstensen (2004) considers a zero obstacle and Dirichlet data uD ≡ χ ≡ 0
on the L-shaped domain Ω := (−2, 2)2\[0, 2] × [−2, 0] with the source term

f (r,ϕ) := −r2/3 sin(2ϕ/3)

(
7

3r

∂g(r)

∂r
+ ∂2g(r)

∂r2

)
− H(r − 5/4),

g(r) := max{0, min{1, −6s5 + 15s4 − 10s3 + 1}} for s := 2(r − 1/4)

with the Heaviside function H. The exact solution

u(r,ϕ) = r2/3g(r) sin(2ϕ/3)

has a typical corner singularity at the reentrant corner and illustrates the superiority of an adaptive mesh-
refinement strategy that accompanies Theorem 4.4. Figure 6 (left) displays a significantly improved
convergence rate for the adaptive algorithm compared with uniform mesh refinement. The efficiency
indices for guaranteed error control in Fig. 6 on the right range between 2 and 3 for uniform and adaptive
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Fig. 6. Convergence history plot of the error |||u − uNC|||NC and the two error estimators (left) and efficiency indices of the two
error estimators (right) for the NCFEM as functions of ndof in Section 6.4.

mesh refinement. The errors in Fig. 6 on the left converge with the same rate as the estimators, which
also follows from the efficiency indices displayed in Fig. 6 (right).

6.5 Comments

All numerical experiments confirm the a priori convergence rates anticipated by Theorem 3.1 even in
Section 6.4 with a singular solution on a polygon; the theoretical result in Wang (2003) does not cover
this situation. The guaranteed error estimates lead to upper error bounds confirmed in all numerical
examples. Additional undisplayed numerical experiments with nonconforming and conforming finite
element methods show comparable accuracies even in the presence of singular solutions. The lower
energy boundμ2 leads to a better approximation of the exact energy E(u) on coarse grids. This behaviour
also holds true for the experiment in Section 6.4 (undisplayed). On fine grids, the two lower energy
bounds μ1 and μ2 lead to comparable bounds. Adaptive mesh refinement leads to optimal convergence
rates in all considered experiments. In all numerical examples, the error estimator η2 leads to slightly
better efficiency indices with less over-estimation of the true error. Overall efficiency indices between 2
and 3.5 are obtained for the estimators η1 and η2.
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