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The main motivation for the application of the Crouzeix—Raviart nonconforming finite element method
(NCFEM) to the obstacle problem in this paper is that it allows for fully computable guaranteed lower
bounds of the energy and so for simple a posteriori error control. A further fully computable and guaranteed
upper error bound follows from Braess’” work, extended to the Crouzeix—Raviart NCFEM. This error bound
competes with the error control from the lower energy bounds. Both a posteriori estimates are efficient
with respect to the total error. The paper circumvents variational crimes through a medius analysis and
the design of conforming companions. This leads to an improved a priori error analysis for the NCFEMs
under minimal regularity assumptions on polyhedral domains. Numerical evidence supports the a priori
convergence analysis and confirms guaranteed error control with moderate efficiency indices for uniform
and adaptive mesh refinement.
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1. Introduction

The obstacle problem is the simplest mathematical model of a variational inequality, with countless
applications and related models in free boundary value problems. The trial functions are restricted to
some convex set K and any discretization replaces this set by a discrete approximation K. If K, C K the
discretization is called conforming and it is called nonconforming otherwise.

The particular motivation for the application of the Crouzeix—Raviart nonconforming finite element
method (NCFEM) in Wang (2003) remains less clear. Therein, compared with conforming finite ele-
ment methods (CFEMs), higher regularity assumptions are made to prove linear convergence for convex
domains £2 C R? with smooth boundary. The refined a priori error analysis of this paper shows, under the
minimal regularity assumption (i.e., Au € L*(£2)), that the NCFEM converges with optimal convergence
rates for arbitrary polyhedral domains 2 C R? (d = 2,3) and hence the Crouzeix—Raviart NCFEM
becomes competitive with the CFEM.

This paper also explores the a posteriori error control from two different points of view. In the first
place, the Crouzeix—Raviart NCFEM allows for the computation of guaranteed lower bounds for the
energy. Some simple postprocessing leads to a computable estimate for the energy difference and hence
also for the error in the energy norm. In the second place, the results in Braess (2005) for the CFEM are
adapted to the Crouzeix—Raviart NCFEM. The two error estimates for NCFEM are comparable (up to
unknown multiplicative constants).

© The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



NONCONFORMING FEM FOR THE OBSTACLE PROBLEM 65

Given a bounded polyhedral Lipschitz domain £2 C R (d = 2,3) with boundary 52, the energy
product a : H'(£2) x H'(£2) — R on the Hilbert space H'(£2) reads

a(u,v) :=/ Vu-Vvdx, forallu,ve H'(£2)
2

and induces the energy seminorm |||e||| := a(e, ®)"/?, whichis anorm on the vector space V := H;(£2) :=
{v € H'(£2)| v = 0 on 32}, and the corresponding local variant |||e[||,, := [Vell2, forw € £2. Given
some source term f € L*(£2), define F € L*(£2)* by

F(v) :=[fvdx, forall v € L*(£2).
2

We assume that the obstacle y € H'(£2) and the Dirichlet boundary value up € C(39£2) N H'/2(082)
satisfy x < up a.e. along 942 in order to ensure that the closed and convex subset

K:={ved|x<vae) of o :={veH (£2)|v=upalongiR)}

is nonempty. The well-established weak formulation of the obstacle problem leads to a unique u € K,
see Kinderlehrer & Stampacchia (1980, Chapter 2, Theorem 2.1), with

FOv—u) <a(u,v—u), forallveKk. (1.1)
The obstacle problem is also characterized by the minimization of the energy functional
EW) = %a(v, v) —F(v) overallveK. (1.2)

Throughout this paper, the exact solution # € K and the Lagrange multiplier A := F — a(u,e) € V*
are approximated by the discrete solution unc in some discrete analogue Kyc of K and a certain novel
discrete Lagrange multiplier Anc in the discrete space CR!(.7) (cf. (2.1)).

The first main result of this paper establishes an a priori error estimate for the Crouzeix—Raviart
NCFEM under the known regularity property Au € L*(£2) for Ay € L*(82) (cf. Rodrigues, 1987,
Proposition 5:2.2) so that A := f + Au € L*(£2). The second main result yields two guaranteed lower
bounds for the minimal energy E () and so allows for an a posteriori control of the error |||u — unc|||nc
in the discrete (i.e., piecewise) energy norm |||e|||xc := || Vncell2(q)- The third main result is an explicit
residual-based a posteriori error analysis with reliable and efficient control over the error |||z — unc|||nc +
[I|A — Axcl||- with the dual norm |||e|||, in H~'(£2) up to data oscillation terms. This extends the
a posteriori error analysis of Bartels & Carstensen (2004), Braess (2005) for the Courant FEM to the
Crouzeix—Raviart NCFEM; cf. also the recent work Braess et al. (2008) on the a posteriori error analysis
for mixed FEMs and Gudi & Porwal (2014) for dG FEMs. Numerical experiments confirm guaranteed
error control with moderate over-estimation by a factor typically in the range 2-3.5 and support adaptive
over uniform mesh refinement. An empirical comparison of the two a posteriori error estimates is included
and shows that both converge with the same convergence rate but the residual-based a posteriori error is
better by a small multiplicative constant.

The remaining parts of this paper are organized as follows. Section 2 introduces the discretization
of the obstacle problem and discusses the approximation of the nonhomogeneous Dirichlet data and the
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design of a specific conforming companion to the discrete solution. Section 3 presents a new a priori
error analysis under the reduced regularity assumption. Section 4 derives two guaranteed lower bounds
for the minimal energy and two a posteriori error estimates, followed by the discussion of efficiency in
Section 5. The paper concludes with three computational benchmark examples in Section 6 on uniform
and adapted triangulations.

The paper applies standard notation for Lebesgue and Sobolev spaces and their norms [le||;2 g,
[lo][] :== [IVe[l;2(q, as well as their local variants ||e||;2,, and |||e]||, for @ C §2. The integral mean is
denoted by {. Moreover A < B abbreviates A < CB for some generic constant C (which solely depends
on the shape regularity of the underlying triangulation in Section 2.1) and A &~ B abbreviates A < B < A.

The analysis in this paper is essentially carried out explicitly for the two-dimensional case but
the generalization to three dimensions is straightforward (with additional explanations stated whenever
necessary).

2. Preliminaries

This section introduces the discretization of the obstacle problem and discusses the approximation of
the nonhomogeneous Dirichlet data and of some conforming companion to a nonconforming Crouzeix—
Raviart function.

2.1 Discretization

Let 2 C RR? be a bounded polygonal Lipschitz domain partitioned in a shape-regular triangulation .7
into triangles in the sense of Ciarlet (1978), with nodes .4, interior nodes .4 (£2) and nodes on the
boundary .#"(352). The set of edges is denoted by &, with interior edges &(2) := {E € &|E € 982},
and edges &'(0£2) along the boundary 9£2. Given any node z € .47, let 7 (z) denote the set of all triangles
T with z € A(T) the set of the three vertices of a triangle 7, let |7 (z)| & 1 denote the number of
triangles in 7 (z) and let @, := Urcry T denote the node patch around z; wr := U.c_y (1)@, denotes a
patch around each triangle T € 7. Any edge E € & has length |E|, midpoint mid(E) and unit normal
vg; mid(&) := {mid(E)| E € &} denotes the set of the midpoints of all edges. For any k € Ny, set

P(T) :={v; : T — R] vy is a polynomial of degree < k};
P(T) :={v € LX()|IVT € T, wlr € Pu(D)};
CR'(7) :={vnc € P1(F)| vac continuous at mid(&)};
Vxe :={vnc € CR'(F)| VE € £(082), vne(mid(E)) = 0};
Vi(T) :=Pi(F) N Co(£2); 2.1
Va(T) :=Po(F) N Co(£2);
e :={vnc € CR'(T)| VE € £(82), vne(mid(E)) = f; up ds};
Kne :={vnc € | VE € £(£2), ]% x ds < vne(mid(E))}
The triangulation .7 is regular in the sense that any two distinct triangles in .7 with nonempty intersection
are either identical or share exactly one common node or one common edge. The triangulation .7 is shape

regular in the sense that any interior angle of any triangle is bounded from below by some universal positive
constant y, and all the generic constants hidden in the notation < (or =) solely depend on y, > 0. Given
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the triangulation .7, define the (local) mesh size h € Py(7), the L? projection Iy : L*(£2) — Py(.7)
and the oscillation osc(f, .7) of f by hz|r := hy := diam(T), [y|zf := f,fdx := [, f dx/|T| for all
T ¢ J andf € L*(£2) (as well as for vector-valued functions in L?(£2; R?), etc.) and

0sc*(f, 7) := llho (f = o)1z, -
For any subsets .77, % C 7, set

f odx::/ edx and ||o||L2(g]U92) = ||.||L2(U(9|Ug2)).
T Uz

With the piecewise gradient Vycvne € Po(7;R?) of any discrete function vye € CR!(2), the discrete
energy product anc : CR'(Z) x CR'(7) — R reads

anc (inc, VNe) 3=/ Vnctine - Vnevne dx,  for all uxc, vae € CR'(T)

2
and induces the discrete energy seminorm |||-|||xc := anc(, -)/? in CR'(.7). With the discrete Friedrichs
inequality [[vncll;2) S llvnelllne, for all vye € Vye (see Brenner, 2003), this is a norm in Vic. The
local variant on @ C 2 of this discrete energy norm reads |||e||Incw) = [[Vncell;2¢)-

The discrete analogue to the variational inequality (1.1) seeks unc € Knc with
F(vne — unc) < anc(unc, vne — unc),  forall vye € Knc. (2.2)

As in the continuous case (1.2), the discrete solution unc € Kc is also the minimizer of the analogous
discrete energy functional

Exc(xe) := 2axc(ne.vne) — F(vne)  over all vye € Kye. (2.3)

Each edge E € &(£2) is associated with its edge-oriented basis function ¢z € CR'(.7), which
satisfies ¥y = 1 along E and ¥(mid(F)) = O for any other edge F € & \ {E}, and has support
wg =U{T € J|E € &)}

LEMMA 2.1 For each edge E € &(£2), the solution uyc to the discrete variational inequality (2.2)
satisfies the discrete consistency condition (_L abbreviates orthogonality in R, i.e., @ L b means ab = 0
for a,b € R)

0 < unc(mid(E)) —][ 2 ds L F(re) — anc(itnes Yi) < 0. 2.4)

E

Proof. The discrete consistency condition follows from direct considerations with the degrees of freedom
in (2.2). O
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The discrete consistency conditions are the discrete analogue of the well-known (continuous)

consistency condition (Kinderlehrer & Stampacchia, 1980) that the solution u € HZ (§2) to (1.1)
satisfies

O<u—x Lf4+Au<0 ae.inf2, 2.5)

where | abbreviates pointwise orthogonality.

2.2 Two interpolation operators

The conforming and nonconforming interpolation operators read

Ic: C(R2) —> PI(T)NCE), v Y vR)e.,

eN

Ixc: H'(2) > CRY(T), vi> Y (][ vds) V.
E

Ee&

Here and throughout this paper, ¢, denotes the (conforming) nodal basis function associated with the
node z € .4 and v is the edge-oriented basis function of CR!(2) associated with the edge E € &.
Known interpolation error estimates in two dimensions involve the constants

1/442/j3
ke(y) = M and  knc = /1/48 + 1/2, < 0.2982 (2.6)
1 —Jcos(y)l ’

for the maximal interior angle y in the triangle K and the smallest positive root j;; > 3.8317 of the
Bessel function of the first kind.

LEmMA 2.2 (properties of the interpolation operators) Any v € H!(£2) and its interpolation Iycv satisfy

@ |hL v —Inev) ||Lz(9) < knelllv = InevllInes

@ VNclNCv = H()VV.
Any v € H*(K) on a triangle K with diameter s and «c(y) from (2.6) satisfies

© [r! VO =T oy < e [D7] 2y,

REMARK 2.3 The assertions @—©) hold also in the three-dimensional case with different universal
constants (Ciarlet, 1978).

Proof. The proof of @) follows as in Carstensen et al. (2012) with the improved constant in Carstensen
& Gallistl (2014, Theorem 4).
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The proof of ® follows from an integration by parts on each triangle and the integral mean property
of Inc along each edge E € &.

Assertion ©) is contained in Carstensen et al. (2012, Theorem 3.1). ]

2.3 Nonhomogeneous dirichlet data

The nonhomogeneous Dirichlet data up leads to affine spaces, where up needs to be adapted to the
corresponding discretization. Let the edge E := conv{A, B} and define the corresponding bubble function
bg := 6¢spp with the nodal basis functions ¢,, ¢p for the nodes A, B, which satisfies supp(bg) =
supp(¢4) N supp(pp) and f, brds = 1.

Given the Dirichlet data up, € C(342), the functions up; € P1(7)NC(2) and upy € P,(7)NC(2)
approximate the nonhomogeneous Dirichlet data. The function up; is defined by the nodal values

@) = up(z) forze A (352),
P o forz e A4 (£2)

and the function up, is given by

Upp 1= Up; + Z ][(MD — upy) dsbe € Po(T) N C(2).
E

Ec&(082)

Given up; and up,, define the affine spaces
M = up; + V](g), .!Z{Q = Uupy + Vz(g), and recall 'Q{NC = INCuD + VNC-

LEMMA 2.4 Let up € C(352) N H*(£(382)). Then the quadratic approximation up, € P,(.7) N C(2)
satisfies £, up ds = £, up, ds for any edge E € &(9£2), up>(z) = up(z) at any node z € #(352) and

3/2 82MD

[lup2 — Incua|lIne S ||hg 952

L2(3R)

Proof. The first two properties follow from the definition of up,. Since the function up, satisfies up; |z €
P, (E) for any interior edge E € &(§2), it follows that up, — Incup, # 0 only on triangles T € .7 with
ETM)NE@DR) #@. Let T € 7 be such a triangle and assume first that E = 97 N 9£2. Then it holds
that

upz|r = upilr +][ (up — upy) dsbg.
E

The properties of the interpolation operator Iyc lead to

(up2 — Incup2)|r = ][(MD — up1) ds(bg — Inchb).
E
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The bubble function bg and its nonconforming interpolation Incbg satisfy
11bE — IncbellInea) S 1.
It remains to estimate fE(uD — up) ds. Let the edge E := conv{A, B} of length & = |E| = |A — B| have

the vertices A and B. Without loss of generality suppose A = (0,0) and B = (0, k) and write up(s) for
up(s,0). The definition of up; shows

h
I:= ][(MD — upy)ds = / (MD(S) - M) ds/h.
E 0

The function

C(s.1) = {1 fort < s,

—1 fors<t

satisfies foh foh £ (x,y) dydx = 0. For the constant ¢ := foh dup(t)/9tdt/h € R, the fundamental theorem
of calculus along £ = (0, h) leads to

h s h
L ( / dun(®) / dua(t) dt) d
2h o Ot s ot
L[ ™
— ( t)( un(?) >dtd
h./o‘ /0 Z(s, » —c S.

Since up|r € H*(E), the Cauchy inequality in (0, k) and ¢ = 1, followed by the Poincaré inequality,
lead to

dtd

f 8MD h3/2 aZuD
SN Fr S %e '
LZ(O, n) 57 20,
This proves
0%u
32| 9 ¥D
up2 — Incupa|lIncry S 1y, el .
) LZ(E)

In the second case where two edges of T belong to &(3£2), the triangle inequality is used to obtain the
general result (with some hidden extra factor 2). The sum of all these estimates concludes the proof. [

REMARK 2.5 In three dimensions, the bubble functions are defined analogously and the above proof
employs an interpolation error estimate for the nodal interpolation.
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LEMMA 2.6 For any vp € C(9£2) N H*(&(382)) with vp = 0 at 4 (0£2) there exists wp € H'(£2) with
Wwplae = vplse, wpleg = 0 for E € &(£2), Incwp = 0, integral mean ITywp = 0 and

2
3/2 0°vp
¢ 952

Hwoplll < |7

L2(052)

Proof. The proof follows from Bartels er al. (2004, Theorem 4.2). Therein a function wp is defined
by harmonic extension. Denote this function by wp. It can be modified to wp to achieve the property
ITywp = 0. To this end, define, for each T € 7 with T := conv{A, B, C}, the cubic bubble function
br = 60ppppc, which satisfies supp(by) = T and fT br dx = 1. Then the function wp is given by
wplr 1= Wplr — £, wp dxby, forall T € 7. O

2.4 Conforming companion

The design of two conforming companions to any vy € Ve in Vi(7) and V,(.7) starts with the map
Ji 1 Ve — Vi(T) defined, for vne € Ve, by

Ji(vne) = Z (Z T;'(TZ()Z'))%-

€N (2) \TeT(2)

Recall that ¢, € P,(.7) N C($2) denotes the P; nodal basis function associated with the node z in A/ (£2).
Define J, : Ve — V2 (7)) for vae € Vne by

f (sne = n0m0))as) @)
E

Ja(vxe) i=Ti(we) + ) (

Ee&

with the bubble function by associated with the edge E.

LemmA 2.7 (Carstensen et al., 2014, Proposition 2.3) Given vye € Vne, the function v, := Jr(vne) €
Vo () satisfies

@ [llvwe — »2llinen S 13161‘?|||V —wnellincwpy, forany T € 75

® [llvne — vallIne S Iglei‘;ﬂ”" — vnellIne-

Any wne € Ay satisfies wye = Incpz + (Wne — Incpz) and wye — Incpz € Vae. A conforming
companion of wyc is designed with the boundary approximation up, of up and the aforementioned
operator J,, namely

wy i= upy + Jo(Wne — Inclipn) € . (2.8)
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J
\%NTe) Vz(y) S Vv

—Incupa +INcup2 —upp +upy —up +up

GNe b of
up2 +J2 (e — Incuna) +wp

FiG. 1. Commutative diagram between the discrete and continuous spaces related to the admissible functions; wp € H' (£2) extends
up — upyp (cf. Lemma 2.6).

Figure 1 illustrates the relation between the vector spaces Vyc, V2(.7) and the affine spaces 2/, <.

LeEmMaA 2.8 (properties of the conforming companion) Let up € C(0£2) N H*(£(3£2)). Given any
Wne € e, the conforming companion w, € % from (2.8) satisfies

@ Incwr = wnes

® [llwz — Inew2llInery S {2}&1{} [lwne — vIlINcwr)

3/2 321413
+ g == , forall T € .7,
ds L2(dwrnif2)
9%u
) 37207 Up
© [llwz — Inewalllne < min [[wxe = vlinc + A2 — :
veal 8s Lz(aﬂ)

Proof. A direct integration of (2.8) along any edge E € & shows

][ wydx = ][ (upy + Jo(Wne — Incun)) ds
E E
= ][ upy ds + ][ Ji(wne — Incunz) ds
E E
+][((WNC — Incupz) — Ji(Wne — Incip?)) dsf b ds
E E

= ][ upy dx +][(WNC — Incipy) ds
E E

= Incupy (mid(E)) + wne(mid(E)) — Incup, (mid(E))

Zf WNC ds.
E

This implies @).
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The proof of ® utilises Lemmas 2.4-2.7. The triangle inequality yields

[lwne — walllne <llupz — Incpz|lIne + [[1Wne — IncUpz — w2 + ups|lInc.

hi{zazuD/Bsz ” ) . Recall Vne = Wne — Inclpr € Ve and
12009)

vy i=Jr(vne) = —tpy + wy € Vo(7) from (2.7). Lemma 2.7@) implies

Lemma 2.4 shows |[ups — Incitps|lIne < ‘

[llwne — Inclipe — wa + up|lIneny S I?Ei‘£1|||v — wxe + Incupz || Incp) -

With the approximations up, and Incup, of the Dirichlet data up, Lemma 2.6 shows the existence
of some function wp € H'(£2) which satisfies wplse = (up — up2)lse, Incwp = 0 and |[|wpl|| <

Hhi;/zazul)/asz ” , . The triangle inequality yields
2092)
1316151|||V — wne + Inctpa |l Incr) < ‘Wléij;”'w — wiellIncwr) + Hup2 — Incupz || Incwr) + HwollIncwr) -

Lemmas 2.4 and 2.6 estimate the second and third terms to prove ®.

The proof of © follows from the summation of the squares of inequality ® and the finite overlap of
the element patches wr. O

3. A priori error analysis

This section proves an a priori error estimate for the error |||u — unc|||nc for the solutions u € K and
unc € Knc to the continuous and discrete obstacle problem (1.1) and (2.2). The result uses only the
regularity property Au € L?(£2) guaranteed for f € L*(£2) and Ay € L*(£2) (see Rodrigues, 1987,
Proposition 5:2.2 for a proof) and generalizes Wang (2003) to singular solutions (e.g., as in the example
of Section 6.4). The a priori result employs four subsets of the triangulation .7

T, ={TeT|u> xae.inT}, T :=1{T € T|u= xae.inT},

Ti= T\(T.UT) and Fho :={T € T||9T N 32| > 0O}. 3.1)

In other words, .7, denotes the triangles without contact, .7, those with full contact, .7}, contains the
triangles at the interface and .7, the triangles with at least one edge on the boundary (|07 N 982| > 0
means that 97 N 952 has positive length).

THEOREM 3.1 (A priori error estimate) Let x € H?(£2). Then the continuous and discrete solutions u € K
and unc € Knc to the obstacle problem satisfy

[l — unclline < Hu — Inculllne + 12z (f] + XD 20

- ||h9D2X”L2(%UgM) + “h3é1282uo/3s2

209)

The theorem above shows that the nonconforming FEM requires weaker regularity than the conform-
ing Courant FEM, as it requires only that Au € L?(£2). This is in contrast to the a priori error analysis
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for the Courant FEM presented in Falk (1974), where full H? regularity is assumed and extra work is
required for reduced elliptic regularity with u € H'™*(£2) for 0 <s < 1.

Proof of Theorem 3.1. Step 1 of the proof utilises anc (unc, #) = anc(uUnc, Inctt) and uy 1= upy +J, (unc —
Incupy) with Iycus = unc from Section 2.4. With the abbreviation

Anc(vne) := F(vne) — anc(unc, vne)  for vae € Ve, (3.2)
the discrete variational inequality (2.2) shows for Iycu € Kyc that
0 < Anc(unc — Incu).
Since unxc = Incitz, Lemma 2.2.(0) shows ITy Ve (42 — unc) = Iy Ve (u — Incit) = 0. This leads to

2
[lu — unclllie < LHS? := |[|u — unc|llyc + Anc(unc — Inci)

=a(u,u — u) + a(u — Incu, ur — unc) + F(unc — Incit).

With A := f + Au € L*(£2), the consistency conditions (2.5) read 0 < u — x L A < 0 (L abbreviates
pointwise orthogonality a.e.). This, an integration by parts and wy, € H'(£2), designed as in Lemma 2.6
with wp |y = (up — upa)lae, imply

a(u,u — uy) = a(u,u — up — wp) + a(u, wp)

=/(—A)(u—u2)dx—l—F(u—u2)+/ wpAudx + a(u, wp)
2 2

_ / (=A)(x — une) dx + / (=2 (e — 1) dx + F(u — ) + / wo At dx + au, wp).
2 2 2

A Cauchy inequality for the term [ o WpAudx followed by a Poincaré inequality (recall I[Tywp = 0 and
the Poincaré constant /1 & /j; ; from Laugesen & Siudeja, 2010) prove

/ wpdudy = ) /(WD — Ioywp)(Au — ITo Au) dx < osc(Au, T3) /jiallIwplll-
2 T

TeTy0

The design of wp yields [, wp ds = 0 for any edge E € & and hence forany T € .7, [, Vwpdx = 0.
This, an integration by parts, and a Cauchy inequality yield, for T € J;q, that

/vaDdx=fV<u—uNc)~vWDdx< 1t = el Inean 1wl -
T T
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The combination of the aforementioned estimates proves

LHS? < / (=2)(x — tne) dr + f (=2 (e — ) dx
2 2

+ 0sc(Au, Zy2) /jialllwolll + [llu — uncllIxclllwoll]

+ anc(u — Incut, y — unc) + F(u — u + unc — Inctt).
Since Incut; = unc, a Cauchy inequality, Lemma 2.2@), and Lemma 2.8(C) show for A := |||u— unc|||nc+

Hhi;zazu,)/asz H that
L2(0%2)

/ (1) (ttne — 1) dx < [1hrhll 2 A,
2

anc (W — Inct, uy — unc) Slllu — IncullIncA,

F(u —uy + uxc — Inctt) S hafll20) A

With RHS; := |[|u — Inculllnc + 1o (] + AD I 20 + |hed®up/0s? ||L2(m), the combination of the
previous estimates and Lemma 2.6 results in
LHS® — / (=) — uxe) dx S RHS ([[lu = uxclllxc + RHS, ). (33)
2

Step 2 is the analysis of
I = /(—k)(x — unc) dx  for any triangle T € 7.
T

It resolves the subtle third case, where T € .9}, is neither fully in the contact zone nor in the noncontact
zone. Recall the three subsets .7, , %, and 9}, from (3.1).

Case 1: For any T € 7, it holds that u > x a.e. on T and the consistency condition (2.5) reveals
A = 0and hence I+ = 0.

Case 2: Forany T € %, u = x ae.onT. Since A := (Au+f) < 0, Ap := fTAdx < 0. Since
Incx — unc is affine on T and f, (Incx — unc) dx < 0, for all edges E € &(T), it follows that

/(Ich —unc)dx <0, whence 0 < /Kr(lch — unc) dx.
T T
With e := u — uxc = x —unc on T € J, and er := £, e dx, this leads to

Ir = /()»T —)\)edX—/)»T(INCX —MNC)dX—f)LT(X — Incx) dx
T T T

< /(M—/\)(e—er)dx—/kr(x ~ Ivex) d.
T T
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Since IT)Vx = VncIncx, a Poincaré inequality with the constant /&5 /j;; from Laugesen & Siudeja
(2010), and Lemma 2.2@) (with kxc < 0.2982) in the previous estimate shows

Iy <osch, T /jiilllellneer + irne/ivi Iz llzay [P x| 2

Case 3: In the remaining case T € Jy, |{x € T| u(x) = X(x)}| < |T| and so the compact subset

€ :={x eTlux) = x(x) = unc(x)}

has a measure |%’| < |T|. (Note that u, x, uxc are continuous on 7" and so % is closed.) Forx € T \ ¥
it follows that either x (x) < u(x) or unxc(x) < x (x). The continuous consistency conditions (2.5) show
that A(x) = 0 for x (x) < u(x) and since A < 0 a.e. in £2, it follows that for x € T with unc(x) < x (x),

(=2(x)) (x (%) — unc(x)) < 0.

These observations and a Cauchy inequality imply

Ir < / (=) (x —unc) dx < ||)\||L2(<g) |<g|l/2 lx — MNC||L°0(<g)- 34
€

For any edge E € &,

/(X — unc) ds = /(INCX —unc) dx < 0.
E E

(This follows for all interior edges E € &(£2) since unc € Knc, and from x < up on 952, also for any
edge on the boundary E € &(952).) Hence, the continuous function w := x — uxc satisfies w < 0 at
least at one point on 97

Since w > 0 on %, the function w € H*(T) has some zero x, € T. Therefore, for any x € T, let
F := conv{x, xy}. A nondegenerate triangle K := conv{xy, x, P} can be defined as follows (cf. Fig. 2):
Any straight line s, through x and x, has parallels through the three vertices of 7. Two of them, s, and s,,
have a maximal distance d and the interior of the triangle T lies between them. Hence d > width(7") and
elementary considerations prove width(7") = minf{height of a vertex of 7'}. The distance of the straight
line 5o to one of the lines s; or s, is d" and the other is d — d’. Without loss of generality let d" be the
bigger distance with d’ > d/2. Therefore there exists a vertex P of T such that the height d’ of P onto
the line sy, which includes F := conv{x,x,}, satisfies d’ > d/2. Then, K := conv{xo, x, P} satisfies
|K| > |F|width(T") /4. The triangle T satisfies

IT| = hywidth(T)/2 = hywidth(T)%/(2width(T)).

Since all angles y in the triangle T satisfy y, < y (by shape regularity), the definition of the tangent
shows Az /2 tan ¥y < width(7T'). This proves

IT|"/* tan' () < width(T).
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FI1G. 2. Design of the triangle K in Theorem 3.1.

Since |K| < |T] it follows that

K12 T|1/2
IFlan' () T < 1F a0 < K]
In other words,
|F|
K7 < 4eot'2 (). (3.5)

Suppose for the moment that w € C'(£2) with w(xo) = 0. Then

1
W) | < wixo) +/ [Vw(xo + 1(x — x0)) - (x — xo)|dt < IFI][ |Vwlds.
0 F

The trace identity (Carstensen ef al., 2012, Lemma 2.1) yields

1
][ |[Vw|ds :][ [Vw|dx + —][ D(|[Vw]) - (x — P) dx.
F K 2 K
The combination of the previous two displayed formulas shows

wx)| < |F|][ [Vw]|dx + @][ D(|Vw]|) - (x — P) dx.
K 2 Jk
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Notice that the derivative of the modulus function is bounded by the modulus of the derivative. The

estimate (3.5) and a Cauchy inequality imply
1/2 2
cot (o) w)| < 1wl + hr [ D*w] 2, -
Since x is arbitrary in T and since D*w = D? it follows that
1x = uncllzocry < tan'? () (lIx = uclllvea + hr [ D*x | 27)-

A triangle and a Poincaré inequality (with I1,V x = VncIncyx) show

x — uncll ooy < tan'? (o) (llnex — unclllneay + hr(1+1/j11) | D*x HL2(T))'

(3.6)

Estimate (3.6) holds for all w := x —unc € C'(T) N H*(T). A density argument reveals that it also holds

for all x € H*(T). Since V(Ixcx — Unc) is constant on the triangle T, it follows that

lnex — unclllneay = IT12IE17 21V Unex — uno)ll 26

<7121 2 (190G = he 0z
+ IV O = Wll20e) + 190 = 102 )-
A Poincaré inequality (with the Poincaré constant /7 /j; ; from Laugesen & Siudeja, 2010) yields
IV = IncX) 266y < IVOC— IneX) 2y < hr [ D*x ||L2(T) JAIRE
Since u — x = 0 on the compact set ¢, it holds that ||V (u — x)Il;2(4, = 0. Therefore
liex = xcllixea <TG (/i [0 | agry + 11l = xcllinean)-
Combination with (3.4) and (3.6) results in
tr <tan'2 () Iyl (111 = uscllivea + [ArD*x ] 2, (0 +2/i10)).

This concludes Case 3.
The summary of the three cases leads to

/ (=) (x = uxc) dx S llhahllizg) (llu = uxcllve + A7 D¢ | 2 0 ,)-
2
The combination of (3.3) and (3.7) reads

LHS? S RHS; (RHS, + [ D% | 12 705 + 111 = txcllInc)

A Young inequality and the absorption of |||z — unc||Inc < LHS conclude the proof.

3.7
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4. A posteriori error analysis

This section provides guaranteed lower bounds for the exact energy E(u) in (1.2) based on the discrete
energy Enc(unc) in (2.3), as well as reliable error estimators for the obstacle problem. Given the discrete
Crouzeix—Raviart solution unc € Knc of (2.2), define some discrete Lagrange multiplier

Ine = Y peve/ 1Wellag  with pg = F(Yg) — anclinc, Vi) @.1)

Ec&(82)

with the edge-oriented basis function ¥z € Vxc associated with the edge E € &(£2). Recall Ayc from
(3.2) and notice that

Anc(ine) = / AncVne dx,  forall vye € Vne.
2

In the sequel, Axc(v) will always denote the L* scalar product of any Lebesgue function v € L*(§2) with
Anc € Vine. The residual-based a posteriori error estimate involves the continuous Lagrange multiplier

A:=F—a(u,)eV*

with the L? representation A = f + Au. The dual norm |||A — Axc|||, reads

1A — Axcllls == sup /V(/\—?»Nc)dX/IIIVIH.
2

veV\{0}

The subset .7 := {T € 9’ 0 < |{x € T| Anc(x) > 0}|} of 7 is employed in Theorems 4.1 and 4.4.

The lower bounds for the exact energy E(u) are given in the following theorem with the constant
kne < 0.2983 from Lemma 2.2@).

THEOREM 4.1 (Lower energy bounds) The discrete solution uyc and the continuous solution u to the
obstacle problem satisfy

2
K
@ Exc(uxc) = =5 lhaf I g, < E@) = Axclitne — Ivet) < E(u)

2
® Excluxe) = (xc 1 = o)z + 05cne 7)) /2
- / (x — unc)MoAnc dx +/ (IneX — X)Anc dx
T T\NT’

<E@) - / (= wWinedr — [ (x = u)Myhe dx < EQu).
7\T! 7

The lower energy bounds of Theorem 4.1 are of separate interest, but may be used for error control
of any v € K based on the identity

1
5|||u—v|||2+A<u—v) =E®) — E(u). 4.2)
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Combination with Theorem 4.1®) leads to the error bound in the following result where all summands
on the left-hand side are non-negative and all summands on the right-hand side are computable.

COROLLARY 4.2 Any v € K satisfies

1
5|IIM—V|I|2+A(M—V) +f

(X — w)incdx + (x — w)ylnc dx
T T/

1 2
< E() = Exclitne) + 5 (e I1h7(f = o)l 20y + 0scine. 7))

+ [ (= une) Tohe de + f (X — Ine3)hnc dr. 0
7! T

REMARK 4.3 In practice, v € K can be chosen with the help of any conforming companion, for example
J,, from (2.7). Then v = max{x, wp + ups + J>(tne — Inciipn)} € K for wp € H'(£2) as in Lemma 2.6
with wp|ye = up — up, is an admissible function.

The following residual-based a posteriori error analysis generalizes Braess (2005).

THEOREM 4.4 (Guaranteed upper error bound) Any v € K satisfies
1
@ 5= wcllfe + Aw=v+ [ -wiisedr+ [ o= winedr
2 d a\g’

1
<§|||V—MNC|||12\JC+/ (X—V)Ho)»NCdX—Ff (X —v)Ancdx
7 T

1 N s \2
+ 3 (KNC Az (f — Anc)ll 2@y + 0sc(Ane, T )/]1,1)
® 1A = Axcllls < [[lu — uxclllne +0sc(f = Axcs T) /i

1 .
+ 3 [ ITo(f — Anc) (e — mld(y))”Lz(m + [llunc = vllIne + [[Iwpll].

REMARK 4.5 The comparison of Corollary 4.2 with Theorem 4.4@) is possible through the following
formula (which follows from straightforward algebra):

1
E(v) — Enc(uxc) = §|||V — unclllfe + Anclunc —v) + (Anc — F)(v — Incv). 4.3)
Theorem 4.1 plus (4.2) and (4.3) imply Theorem 4.4 with different constants in the form
[[|u — uNC|||12\]C <Blunc — VllIne + Anc(unc —v) + 3K1%1c ha(f — )»NC)”iz(g) + 2 0sc(Ane, )

+2 [ (x — unc)oinc dx + 2 Anc(une — v) + 2/ (X — IncX)Anc dx.
7 T

The remaining parts of this section are devoted to the proofs of Theorems 4.1 and 4.4. The analysis
of the nonlinearity utilizes the subsequent lemma.
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LEMMA 4.6 The continuous and discrete solutions u and unc, and the discrete Lagrange multiplier Anc,
satisfy

Anc(u — unc) = / (x — unc)oAnc dx — AncUncx —u)dx
Pl AT

— | (X —wlincdx+ | (1 = Io)Anc(l — Io)(u — unc) dx.
7 7
Proof. The discrete consistency conditions (2.4) show that the product

Anc(Ine X — unc)

vanishes at the midpoint mid(E) of any edge E € &. Since the three-point quadrature formula at the edge
midpoints is exact for quadratic polynomials P,(7T) on the triangle T, it follows that

/)»Nc(lNcX —unc)dx =0 foranyT € 7.
T

Hence, with fg\g, edx =31, J; @ dx, it holds that

/ Anc( — unc) dx = Anc(u — Incx) dx.
g\’ T\T!

It remains to perform the analysis for 7 € 7’. Recall that the L? projection I, onto Py(.7) is the
piecewise integral mean operator with respect to the triangulation .7. The inequalities

TTodne < 0 < Ho(une — Incx) ace.
and algebraic transformations motivate the split
/ Anc(u — unc) dx = /(H — unc) ornc dx + /(1 — o) Anc(u — unc) dx
T T T
= /(M — X)pAnc dx + /(X — unc)oAnc dx
T T

+ /(1 — ) Anc (1 — To) (u — unc) dx.
T

The combination of the aforementioned estimates concludes the proof. U

Proof of Theorem 4.1. The proof is divided into seven steps.

Step 1. The properties of the nonconforming interpolation operator and a direct calculation lead to

1
Sl = Incull Ine = E) — Exc(nctt) + F(u — Incu).
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Step 2. Some algebra with the definition of Axc in (3.2) leads to
Anc(unc — Incut) + %HUNCM — uxclllje = ExcUxcut) — Exc(unc).
Step 3. Since fT Vne(u — Inctt) dx = 0 on each triangle T € .7, the Pythagorean theorem yields
N — unclllie = I — Incul| e + [nctt — unclllye-
Step 4. The combination of Steps 1-3 leads to
Anclitne — Inct) + %mu — uncllke = E@) — Excluxc) + F(u — Ixcu). 44)

Step 5 is the proof of assertion @). Lemma 2.2@) shows
W5 = Ine) | 2, < tenclllu = Inctlline < &nelllu — uncllne

This, a Cauchy inequality and some Young inequality lead to

K2 1
F(u — Incu) < % ||h9f||iz(9) + §|||u — unclllfe- 4.5)

The combination of (4.4) and (4.5) concludes the proof of (@).

Step 6. Identity (4.4) also reads
1 2
Anc(uxe —u) + §|||M —unclllye = Eu) — Exc(unc) + (F — Anc) (0 — Incu).
Lemma 2.2.@) leads to

1
Axc(unc —u) + §|||M — unclllie < E) — Exc(unc) + knc lha(f — Axc)ll 2 | — uncllinc-

(4.6)
Step 7 concludes the proof of ®. Lemma 4.6 shows
Anc(u — unc) =/ (x — unc)IoAnc dx — f AncUncx — x) dx
a T
— / Anc(x —u)dx — (X — wIyAnc dx
T\ 7
+ | (I = My)Anc(l — ITy) (e — unc) dux. 4.7

Ed
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The Poincaré inequality with constant 2 5 /j; ; from Laugesen & Siudeja (2010) for each triangle T € .7
yields

(1 — Hop)Anc (1 — o) (u — unc) dx < osc(ine, T [inlllu — unclllnc - (4.3)
9/

The combination of this with (4.7) and (4.6) plus the absorption of |||# — unc||Inc conclude the proof of
® in Theorem 4.1. O

Proof of Theorem 4.4. Given any v € K, the definitions of A and Ayc plus elementary algebra show for
e := u — unc that

A(u —v) +anc(e,u —v) = F(1 — Inc)(u — v) + Anc(nc(u — v))
= /;Z(f = Anco) (1 = Inc) (e — v) dx + Anc(u — ).
The binomial theorem shows
2anc(e,u —v) = lllelllxc + 1w = vIII> = IV — uxcll ke

Lemma 2.2 and a Cauchy inequality yield

/ (f = Anc) (1 = Inc)(u — v) dx < kne |h7 (f — Anc 2 [u = VI
2
The combination of the above-displayed estimates proves

2A@ =) + lllellRe + u = vIII* < 2ene 7o (F = Anc) N2 [Hu = vl
+ 111V = uncllRe + 2 Anc (= v). (4.9)

Lemma 4.6 yields
Anc(u —v) = Anc(une —v) + / (x — unc)yAnc dx — / Anc(x —u)dx
7 T
- (x — u)Iyhync dx + (I = M) Anc(1 — Iy) (u — unc) dx. (4.10)
a 7

The properties of the integral, the Poincaré inequality with the constant /7 /j; | from Laugesen & Siudeja
(2010) on each triangle T € .7, and the Cauchy inequality prove

(1 — Mp)Anc(1 — ITy) (u — unc) dx < osc(ine, T — vllInccan /i
3/

+ (I = M) Anc (1 — Iy) (v — unc) dx.
-
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It holds that
Anc(unc —v) + / (1 = IMo)Anc (1 — o) (v — unc) dx
9/
= / (unc — v)IoAnc dx + / (unc — v)Anc dx. (4.11)
7 T
The first and second terms on the right-hand side of (4.11) satisfy
(unc — v)ToAnc dx + / (x — unc)oincdx = | (x — v)[ToAnc dx
Ed Ed Ed

and

/ (unc — V)Anc dx — f AncUncx —u)dx = / ( — x)Anc dx + / (X — v)Anc dx.
T T T T

The combination with the above estimates and the absorption of |||u — v||| conclude the proof of assertion
@) of Theorem 4.4.

The proof of ® employs an auxiliary Laplace problem with right-hand side f — Anc € L2*(£2).
Following Braess (2005), let w denote the weak solution of the Laplace equation with Dirichlet boundary
conditions uy, and right-hand side f — Anc € L?(£2), which corresponds to F — Ayc € H™'(£2). That s,
w e H'(£) satisfies w = up on 952 and

aw,v) = (F — Axc)(v), forallv e V. (4.12)
Since w is the solution to (4.12), any v € V satisfies a(u — w,v) = (A — Anxc) (V).

The choice of v :=u —w € V leads to |||lu — w||| < |||A — Axcl|]«. On the other hand, it holds that
(A = Ano) @) < lu = wl[| [[Iv]]| forany v € V.

Altogether it follows that

1A — Ancllls = [llu — wlll.

The triangle inequality leads to

A — Axclll« < [l — unclllne + W — uxc|lInc.

By definition of Anc, the discrete approximation uyc equals the nonconforming finite element solution
to the Poisson model problem (4.12), namely

anc(unc, Vne) = (F — Anc)(Wne),  forall vae € Ve

with right-hand side f —Anc € L?(£2) and exact solution w. Hence, the error of the continuous and discrete
solution |||w—unc|||nc to the Poisson model problem and its error control may follow from the a posteriori
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error analysis of variational equations. For instance, Carstensen & Merdon (2013, Theorem 3.1) show
that

[llw — uncllIne <lllune = vllIne + 0se(f — Anc, 7)) /i

1 .
+ 5 [0 = 2xe) (o = mid( )] 20, + 1wl -
This concludes the proof of ® of Theorem 4.4. 0

5. Efficiency

This section discusses the efficiency of the global upper bound (GUB) from Theorem 4.4 for piecewise
affine obstacles x € V(7).

For any v € K, the a posteriori error estimate from Theorem 4.4 leads to a computable global upper
bound GUB(v) of the five non-negative error terms in LHS(v) < GUB(v),

LHS(v) :=|||u — unclllnc + 1|4 = Axcllls + A =)'

1/2 12
+ </ AnclTo(x — u) dx) + </ (x — u)Anc dx) ,
7 T

GUB(®) :=|llv — uxclllnc + 1h7(f — Anc)lli2@) + 0sc(ine, 77) + [lIwpll]

12 12
+ (/ AncIlo(x —v) dx) + </ Anc(X — V) dx) .
T 7T

For x € Vi(7), the a posteriori error estimate LHS(v) < RHS(v) is efficient in the sense that the
converse inequality holds up to some generic factor and oscillation terms. Recall the assumption up €
C(0£2) N H*(£(3£2)) and suppose that v is postprocessed from uyc such that it holds that

hifzazu[)

T 5.1)

M = vl < 1w — unclline +

L2(382)
THEOREM 5.1 (Efficiency of GUB) Any function v € K with (5.1) satisfies

hgzazu[)

GUB(v) < LHS(v) + osc(f,.7) + osc(r, T) + 552
s

L2(052)

REMARK 5.2 Given any postprocessing v € o7 with (5.1), the function max{v, x} belongs to K and
satisfies
hie/zazbt])

952 + [[Imin{0, v — x}I[].

L2(0%2)

[l — max{v, x }II < [llu — uxcllne +

The conforming companion u, from Section 2.4 satisfies this estimate.
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Proof of Theorem 5.1. Step 1 is the proof of
lhe (f = Anc)ll2g) S ose(f, 7) + 1114 — Axcllle + 1w — unclllnc- (5.2)
Proof. The triangle inequality and fo := ITof with f; := f| for T € .7 imply
lha (f = Anc)ll2g) < oself, 7) + lha (fr — Anc)ll 2 o)

The efficiency of [|hr(fr — Anc)ll 2 is shown as for boundary value problems in Verflirth (1996).
Consider the cubic bubble function by := 60I1c_y 1@, onthe triangle T € .7 and set wr := (fr —Anc)br
which satisfies

VG = inNia, S B [ wrthe = i) d. 53)
The Cauchy and Friedrichs inequalities lead to
[ rtt =18 S wlirosees, 1.
An integration by parts yields
/(f — Ano)wr dx = (A — Ane)(wr) — / Vu - Vwydx.
T T

Since [, Vwy dx = 0, it follows that

[ v 9wrax = [ Vucine) - Vwrax S il = uselliean 1ol
T T
The combination of the previous estimates shows

e (= i) 2, <Nl (11l = iclliveen + 1114 = Axclllor +o0se(£, 1)), (54)
The triangle inequality implies
Mwrlllr < (fr — Ana) Vb2 + 162V (i — Anc) 2

The properties of by (Verflrth, 1996, Lemma 1.3) result in

I(fr — Ane) Vorll 2y S ' ||by > (fr — dnc)

21

An inverse estimate shows

rV{r —Axclli2ry S hr 112 T — ANC
16rV (fr — Anc) 2y S byt || b1 (Fr — Axc)

2y
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Therefore,

welllr S Bt b2 (fr — Anc)

(5.5)

2y

The combination of (5.4) and (5.5) implies

ks (fr — Axc 2y S0se(f, T) + 1114 — Anclllir + [lu — unclllnea-

This is already a local version of the assertion for some fixed triangle 7. To prove the global form, let
w o be defined as above on each triangle. Then wo € V and hzgw 7 € V and (5.4) is replaced by

Vo (Fr = )z S D Bllwsllr (0se(f, 7) + 111A = Axclller + lllw = wxclllnean -
TeT

Since (5.5) holds, this leads to
lha(f — Anoll2e) S N — unclllne + 111A — Axclllx + osc(f, 7).
This concludes the proof of (5.2). ]
Step 2 verifies
osc(Anc, 7) S 1A — Axcllls + osc(r, 7). (5.6)

Proof of Step 2. Let by := 6011 41 ¢, be the cubic bubble function on the triangle 7 € .7 and set
Wrp (= bT ()\'NC — HO)\'NC)- This gives

lair (Ane — Ho)»Nc)Hiz(T) < hy / wr(Anc — IoAine) dx.
T
Since [, wr dx = 0, it follows that

[ wr0se = Moiscr s = [ wrne =2y dx+ [ wrn =
T T T
With w & |7 := wr on each triangle T € .7, the summation over all triangles results in

I e = i) o, 5 [ HywrGine =2 s+ [ owru = on) d
<A = Axclll 1B w [l 4 0sc(hy T) lhaw 7 ll2q)-
An inverse estimate as in Step 1 and a Friedrichs inequality prove
1AW |l| 2 lhaw 7l 2.@) & 0sc(ine, T).

The division by osc(Axc, 7) concludes the proof of (5.6).
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Step 3 is the proof of
12 1/2
< (x = v one dx) + (/ (X —V)Anc dx) < LHS(v). (5.7
Ll T
Proof of Step 3. The proof starts with the split of the first term:
(x = pAncdx = | (x —u)IToAnc dx + / Au—v)dx
Ll Ll L
+ ) A—Anc)(v—uwdx+ / (Anc — MoAnc) (1 — o) (v — u) dx.
T T

The Cauchy, Poincaré and Young inequalities and (5.1) show

3/2
hé{ azuD

| s = Moisc) (1 = B =1 dx < 1 = el + osctine: 70+ | “5
9/

L2(0%2)

The second term satisfies

/ (X —V)Ancdx = (X—u)chdx+/ (u—v)(ANC—A)dx+/ (u —v)Ardx.
T T T T

The square roots of the terms [, AxcITo(x — u) dx, osc(Anc, 7")%, |||lu — uncl||* and fg\g,(Ich -
u)Anc dx are part of LHS(v). The combination of the remaining terms with (5.1) leads to

/ A(u—v)dx+/ AMu—v)ydx = A(u—v)

7 7T

and
f(x—ch><v—u>dx+f (= 2 — ) dx < 114 — AxclIP + 1l — uxclli2e.
! 9\9/

The square roots of these terms are part of LHS(v). This concludes the proof of (5.7).

Step 4. The efficiency of ||£,.(f — Axc) dx(e — mid(7))|| + |||wp]|| follows from Carstensen &

Merdon (2013, Theorem 3.1) and Lemma 2.6.

L2(2)

The combination of Steps 1—4 and the triangle inequality conclude the proof of Theorem 5.1.

6. Computational benchmarks

This section is devoted to the performance of the a priori and a posteriori error estimates in three
benchmark examples implemented as in Alberty et al. (1999) and Bahriawati & Carstensen (2005).
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6.1 Numerical realization

The output of the following algorithm are the two lower energy bounds, the value of two error estimators
and the corresponding efficiency indices. The lower bounds i, @, of E(u) from Theorem 4.1 are
given by

1 :=Enc(uxc) — kxc/2 ||hf7f||22(9)’
1 nY
o :=Enc(unc) — E<KNC 1 (f = Anc)llz2@) + 05¢(hne, T )>

- (X — unc) oAnc dx + / (IncX — X)Anc dx.
Pl T

With .7’ from Section 4 and v := max{x, wp + up, + Jo(unc — Incinz)} € K for wp € H'(£2) as in
Lemma 2.6 with wp|yo = up — up, and J, from (2.7), the estimator n; and 7, are given by

2
e i=lllie = vIIE +2(E0) = Excno)) + (e 1 = inc) 2y + 05e(f, 7))

+2 | (x — unc)oinc dx + 2/ (X — IncX)nc dx,
T 7T

2
e 1=y = el lBe + (e 1 = Ano)ll ) +05e(f, 7))
+2 | (x —v)pincdx + 2/ (X — v)Anc dx.
o T\NT'

Algorithm. INPUT an initial triangulation 7.
LOOP for all £ = 0,1,2,... until termination repeating the three steps -3

(D COMPUTE the discrete solution uyc on .7, with ndof unknowns.
@) ESTIMATE the error |||lu — v||| for v := max{x, wp + tp, + J>(tnc — IncUpz)} With 1, and 1, and
compute the lower energy bounds ., and ;.

The related efficiency indices Eff (1,) and Eff (1,) read

Eff (n)) := /Z 17 )/ lu = uncl|Inc forj = 1,2.
TeT

® REFINE .7, by red refinement of all triangles and compute .7, ;.
OUTPUT efficiency indices Eff(n,), Eff (1,), and the lower energy bounds 1, w, on each level £.

6.2 Square domain

The function u(r, ) := max{r’> — 0.49, 0}? solves the obstacle problem from Nochetto et al. (2003)
with the constant obstacle y = 0, the nonhomogeneous Dirichlet data up = u|ye and the right-hand
side f(r, ¢) which equals —16r% + 3.92 for r > 0.7 and —5.8408 + 3.92s2 for r < 0.7 on the square
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A
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Eff(n1) uniform
Eff(n 1) adaptive |
Eff(nz) uniform ||
Eff(nz) adaptive

10° : 3.8
-= -error uniform
—=—error adaptive 3.67
—aMy uniform
—a_, adaptive 3.47
101 if x
_+ .M, uniform 832
_ 7, adaptive £
5 ——'l 3 3l
3 3
o 28l
10° °
2.6
2.4f
-1
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ndof

ndof

FiG. 3. Convergence history plot of the error |||u — unc|||nc and the two error estimators (left) and efficiency indices of the two
error estimators (right) for the NCFEM as functions of ndof in Section 6.2.

20 -2
101 1 _a} e
ol ]
[} o —4f
E !
g 10/ g
g 5 5 —
(=2} (e}
& —20f 1 &
c B c T
9] _u My uniform o _g| _e by uniform ||
-30; —ah, adaptive || —a_M, adaptive
_a0} _a b, uniform || -7t - a -k, uniform f
—a_M, adaptive My adaptive
-50 . . L : -8 . . :
10° 10' 10° 10° 10 10° 10’ 10 10° 10* 10°
ndof ndof

FiG. 4. Upper and lower energy bounds in Sections 6.2 (left) and 6.3 (right).

domain (—1, 1)? in polar coordinates (7, ¢) at the origin. Figure 3 displays the error estimators 7; and
1, of ||lu — unc|||. On the left, the error estimator and the corresponding exact error converge with
a convergence rate —0.5 with respect to ndof as anticipated by Theorem 3.1 both for the uniform
algorithm (described above) and an adaptive algorithm based on the error estimator 7, as a refine-
ment indicator with Dorfler marking and a bulk parameter ® = 0.5. On the right, Fig. 3 shows that
the a posteriori error estimators are efficient with efficiency indices between 2 and 3. Figure 4 shows
the lower energy bounds w; and p, for adaptive and uniform mesh refinement and their convergence
towards the exact energy on the left. Both lower bounds converge and they exhibit the same overall

behaviour.
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-= -error uniform
—=—error adaptive 2.7¢ A
Sany uniform .
My adaptive 2.6/
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5 8 24 4 Eff(n,) uniform |
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FiG. 5. Convergence history plot of the error |||u — unc|||nc and the two error estimators (left) and efficiency indices of the two
error estimators (right) for the NCFEM as functions of ndof in Section 6.3.

6.3  Smooth obstacle

The function u= x € K from Graser & Kornhuber (2009) solves the obstacle problem on the square
domain with the smooth obstacle x (x,y) := —(x>—1)(y>—1), the homogeneous Dirichlet data up| := 0
and the source term f := — A x. Figure 5 investigates the quality of the error estimators for |||u — uncl||
on the left and confirms that the error estimator and the corresponding error converge with a convergence
rate —0.5 as anticipated by Theorem 3.1, for the adaptive and uniform mesh refinements. Figure 5 reveals
on the right that all three error estimators are efficient with efficiency indices between 2 and 2.8. Figure 4
shows the lower energy bounds ¢ and u, on adaptive and uniform meshes and their convergence towards
E(u) on the right.

6.4 L-shaped domain

The example from Bartels & Carstensen (2004) considers a zero obstacle and Dirichlet data up = x =0
on the L-shaped domain £2 := (-2, 2)\[0, 2] x [—2, 0] with the source term

7 0g(r)  0%g(r)
3r or ar?

g(r) == max{0, min{1, —6s°> + 15s* — 105> + 1}} fors := 2(r — 1/4)

f(r.9) == —r*sin2¢/3) ( ) —H(r—5/4),

with the Heaviside function H. The exact solution

u(r, ) = r* g(r) sin(2¢/3)

has a typical corner singularity at the reentrant corner and illustrates the superiority of an adaptive mesh-
refinement strategy that accompanies Theorem 4.4. Figure 6 (left) displays a significantly improved
convergence rate for the adaptive algorithm compared with uniform mesh refinement. The efficiency
indices for guaranteed error control in Fig. 6 on the right range between 2 and 3 for uniform and adaptive
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1 6 , , -
10 _ = -Eff(n,) uniform
5.5r +Eff(n1) adaptive |
5 \ Ca _Eff(nz) uniform
1o x \\ _._Eff(n,) adaptive
" 3 4.5 N
N £ \
o RN g 4
] - = -error uniform T @
|| =—error adaptive SN £ 3.5/
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FIiG. 6. Convergence history plot of the error |||u — unc|||nc and the two error estimators (left) and efficiency indices of the two
error estimators (right) for the NCFEM as functions of ndof in Section 6.4.

mesh refinement. The errors in Fig. 6 on the left converge with the same rate as the estimators, which
also follows from the efficiency indices displayed in Fig. 6 (right).

6.5 Comments

All numerical experiments confirm the a priori convergence rates anticipated by Theorem 3.1 even in
Section 6.4 with a singular solution on a polygon; the theoretical result in Wang (2003) does not cover
this situation. The guaranteed error estimates lead to upper error bounds confirmed in all numerical
examples. Additional undisplayed numerical experiments with nonconforming and conforming finite
element methods show comparable accuracies even in the presence of singular solutions. The lower
energy bound u, leads to a better approximation of the exact energy E () on coarse grids. This behaviour
also holds true for the experiment in Section 6.4 (undisplayed). On fine grids, the two lower energy
bounds p; and u, lead to comparable bounds. Adaptive mesh refinement leads to optimal convergence
rates in all considered experiments. In all numerical examples, the error estimator 1, leads to slightly
better efficiency indices with less over-estimation of the true error. Overall efficiency indices between 2
and 3.5 are obtained for the estimators n; and 7,.
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