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ASYMPTOTIC EXACTNESS OF THE LEAST-SQUARES
FINITE ELEMENT RESIDUAL\ast 

CARSTEN CARSTENSEN\dagger AND JOHANNES STORN\ddagger 

Abstract. The discrete minimal least-squares functional LS(f ;U) is equivalent to the squared
error | | u - U | | 2 in least-squares finite element methods and so leads to an embedded reliable and effi-
cient a posteriori error control. This paper enfolds a spectral analysis to prove that this natural error
estimator is asymptotically exact in the sense that the ratio LS(f ;U)/| | u - U | | 2 tends to one as the
underlying mesh-size tends to zero for the Poisson model problem, the Helmholtz equation, the lin-
ear elasticity, and the time-harmonic Maxwell equations with all kinds of conforming discretizations.
Some knowledge about the continuous and the discrete eigenspectrum allows for the computation
of a guaranteed error bound C(\scrT )LS(f ;U) with a reliability constant C(\scrT ) \leq 1/\alpha smaller than
that from the coercivity constant \alpha . Numerical examples confirm the estimates and illustrate the
performance of the novel guaranteed error bounds with improved efficiency.
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1. Introduction. The least-squares finite element method (LSFEM) approxi-
mates the exact solution u \in X to a partial differential equation by the discrete
minimizer U \in X(\scrT ) of a least-squares functional LS(f ; \bullet ) over a discrete subspace
X(\scrT ) \subset X. For the problems in this paper, namely the Poisson model problem, the
Helmholtz equation, the linear elasticity, and the Maxwell equations, the functional
LS(f ; \bullet ) is equivalent to the norm \| \bullet \| 2X in X with equivalence constants \alpha and \beta . In
particular, the discrete minimizer U \in X(\scrT ) satisfies \alpha \leq LS(f ;U)/\| u  - U\| 2X \leq \beta 
and the computable residual LS(f ;U) leads to a guaranteed upper bound (GUB)
\| u - U\| 2X \leq \alpha  - 1LS(f ;U) [3]. Table 1 displays computed upper and lower bounds of
the quotient LS(f ;U)/\| u - U\| 2X for a Poisson model problem and provides numerical
evidence of asymptotic exactness of the least-squares residual LS(f ;U). This experi-
ment suggests that the GUB \alpha  - 1LS(f ;U) is too pessimistic for \alpha  - 1 = 1.442114.

The first main result of this paper verifies that the ratio LS(f ;U)/\| u  - U\| 2X
with the unique exact (resp., discrete) minimizer u (resp., U) tends to one in the
model problems from section 2 as the maximal mesh size \delta of the underlying regular
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Table 1
Guaranteed lower bounds (LB) and upper bounds (UB) for the quotient LS(f ;U)/\| u - U\| 2X in

the Poisson model problem with right-hand side f \equiv 1 on the L-shaped domain \Omega = ( - 1, 1)2 \setminus [0, 1)2
from subsection 5.1.

ndof LB UB
13 0.85367257 0.85996324
49 0.93237486 0.94497564
193 0.96674683 0.99157065
769 0.98486169 1.01697465
3073 0.96995255 1.01406884
12289 0.98692470 1.00963924

ndof LB UB
49153 0.99217867 1.00640795
196609 0.99522104 1.00419431
786433 0.99704395 1.00271554
3145729 0.99815838 1.00174352
12582913 0.99884783 1.00111247
50331649 0.99927741 1.00070662

triangulation \scrT , written \scrT \in \BbbT (\delta ), tends to zero:

\forall \varepsilon > 0 \exists \delta > 0 \forall \scrT \in \BbbT (\delta ) (1 - \varepsilon ) \| u - U\| 2X \leq LS(f ;U) \leq (1 + \varepsilon ) \| u - U\| 2X .(1)

One key observation is that \varepsilon and \delta are independent of the right-hand side f in L2(\Omega )
and do not depend on the polynomial degrees of a balanced or unbalanced conform-
ing discretization (but certainly depend on the domain and the parameters in the
differential operators). To the best of the authors' knowledge, this is the first result
of the asymptotically exact error estimation for those problems with standard dis-
cretizations; the results in [8] are caused by an unbalanced discretization. The proof
of (1) in section 3 utilizes a spectral decomposition of the ansatz space X and the
Galerkin orthogonality of the error u  - U . The asymptotic exactness result implies
the overestimation of \| u  - U\| 2X by the natural GUB \alpha  - 1LS(f ;U) with the factor
\alpha  - 1 > 1 as the maximal mesh-size tends to zero. The second aim of this paper is to
overcome this inefficiency by an (offline) improvement of the reliability constant C(\scrT )
with \| u  - U\| 2X \leq C(\scrT )LS(f ;U) in a GUB (displayed in Figure 1), which captures
the convergence of the least-squares residual to the exact error. Section 4 combines a
priori knowledge of the continuous eigenspectrum with additional information on the
discrete eigenspectrum and achieves a computable constant C(\scrT ). The proof utilizes
the Galerkin orthogonality of the discrete solution U and so the GUB requires an
exact solve but is independent of the data f ; i.e., the constant C(\scrT ) depends only
on \scrT and C( \^\scrT ) \leq C(\scrT ) for any refinement \^\scrT of \scrT even with polynomial enrichment
of the discrete ansatz space X( \^\scrT ). A three-stage algorithm leads in subsection 4.2
to C(\scrT ) and a significant improvement of the GUB \alpha  - 1LS(f ;U), which is up to 132
times larger than C(\scrT )LS(f ;U) in Figure 1. Further numerical experiments in sec-
tion 5 on the Laplace, Helmholtz, and Maxwell equations investigate the improvement
in computational benchmarks: Once the relevant eigenfunctions of the least-squares
system are resolved with sufficient accuracy, the novel reliability constant C(\scrT ) leads
to a significant improvement of the GUB. The relevant eigenmodes are of low fre-
quency in the Poisson and elasticity problems, while certain parameters of \omega in the
Helmholtz and Maxwell equations might lead to relevant high-frequency eigenmodes
solely resolved for very fine meshes.

Standard notation on Lebesque and Sobolev spaces applies throughout this paper,
H1(\Omega ) := \{ v \in L2(\Omega ;\BbbR ) : \nabla v \in L2(\Omega ;\BbbR d)\} , H1

0 (\Omega ) := \{ v \in H1(\Omega ) : v| \partial \Omega = 0\} ,
H(div,\Omega ) := \{ q \in L2(\Omega ;\BbbR d) : div q \in L2(\Omega ;\BbbR )\} , and, for d = 3 only, H(curl,\Omega ) :=
\{ F \in L2(\Omega ;\BbbR 3) : curlF \in L2(\Omega ;\BbbR 3)\} , H0(curl,\Omega ) := \{ F \in H(curl,\Omega ) : \nu \times F = 0 on
\partial \Omega \} with outer unit normal vector \nu \in \BbbR 3.

2. Four applications of the LSFEM. This section introduces the model prob-
lems and their finite element discretizations for a bounded polyhedral Lipschitz do-
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Fig. 1. Convergence history plot from subsection 5.4 of the squared error, residual, and GUB
for the Helmholtz equation with \omega = 4.

main \Omega \subset \BbbR d.

2.1. Poisson model problem. Given f \in L2(\Omega ;\BbbR ), the Poisson model problem
seeks (u, p) \in X := H1

0 (\Omega )\times H(div,\Omega ) with

 - div p = f in \Omega and \nabla u = p in \Omega .

First-order systems least-squares (FOSLS) methods such as, e.g., those in [2, 10, 18,
20] utilize the equivalence of the Poisson model problem to the minimization of the
least-squares functional

LS(f ; v, q) := \| q  - \nabla v\| 2L2(\Omega ) + \| f + div q\| 2L2(\Omega )

over all (v, q) \in X with norm \| (v, q)\| 2X := \| \nabla v\| 2L2(\Omega ) + \| q\| 2L2(\Omega ) + \| div q\| 2L2(\Omega ).

2.2. Helmholtz equation. Given some f \in L2(\Omega ;\BbbR ) and a frequency \omega 2 > 0
different from a Dirichlet eigenvalue of the Laplace operator, the Helmholtz equation
seeks (u, p) \in X := H1

0 (\Omega )\times H(div,\Omega ) with

 - div p - \omega 2u = f in \Omega and \nabla u = p in \Omega .

This problem is well posed. The equivalent FOSLS formulation from [10] minimizes
the least-squares functional

LS(f ; v, q) := \| q  - \nabla v\| 2L2(\Omega ) + \| f + \omega 2v + div q\| 2L2(\Omega )

over all (v, q) \in X with norm as in subsection 2.1.

2.3. Linear elasticity. Given f \in L2(\Omega ;\BbbR d), the linear elasticity seeks the
solution (u, \sigma ) \in X := H1

0 (\Omega ;\BbbR d)\times H(div,\Omega ;\BbbR d\times d) to

 - div\sigma = f and \sigma = \BbbC \varepsilon (u)

with the linear Green strain tensor \varepsilon (u) := (\nabla u+(\nabla u)\top )/2, positive Lam\'e constants
\lambda and \mu , and the fourth-order elasticity tensor \BbbC [14]. The problem is equivalent to
the minimization of the least-squares functional

LS(f ; v, \tau ) := \| \BbbC  - 1/2\tau  - \BbbC 1/2\varepsilon (v)\| 2L2(\Omega ) + \| f + div \tau \| 2L2(\Omega )

over all (v, \tau ) \in X with norm \| (v, \tau )\| 2X := \| \BbbC 1/2\varepsilon (v)\| 2L2(\Omega ) + \| \BbbC  - 1/2\tau \| 2L2(\Omega ) +

\| div \tau \| 2L2(\Omega ) [9].
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2.4. Time-harmonic Maxwell equations. Given some right-hand side f \in 
L2(\Omega ;\BbbR 3) and a frequency \omega 2 > 0 different from an eigenvalue of the resonant cav-
ity problem, the time-harmonic Maxwell equations in d = 3 space dimensions seek
(E,H) \in X := H0(curl,\Omega )\times H(curl,\Omega ) with

 - \omega 2E + curlH = f in \Omega and curlE  - H = 0 in \Omega .

The problem is well posed and its solution minimizes the least-squares functional

LS(f ;F,G) := \| G - curlF\| 2L2(\Omega ) + \| f + \omega 2F  - curlG\| 2L2(\Omega )

over all (F,G) \in X with norm \| (F,G)\| 2X := \omega 4\| F\| 2L2(\Omega )+\| curlF\| 2L2(\Omega )+\| G\| 2L2(\Omega )+

\| curlG\| 2L2(\Omega ). This problem is related to the problem in [6] with the exception of an
additional term similar to the extra term in subsection 3.3.

2.5. Discretization. Let \BbbT be the set of admissible and shape regular tri-
angulations of the polyhedral bounded Lipschitz domain \Omega \subset \BbbR d into simplices
[5, Chap. 5]. Given \delta > 0, the subset \BbbT (\delta ) \subset \BbbT consists of all triangulations
\scrT \in \BbbT with diameter hT := diam(T ) < \delta for all T \in \scrT . Let \BbbP k(T ;\BbbR \ell ) de-
note the set of polynomials of total degree at most k \in \BbbN 0 seen as a map from
T to \BbbR \ell , \ell \in \BbbN , and define RTk(T ) := \BbbP k(T ;\BbbR \ell ) + \BbbP k(T ;\BbbR ) id \subset \BbbP k(T ;\BbbR \ell ) and
\scrN k(T ) := \BbbP k(T ;\BbbR 3) + \BbbP k(T ;\BbbR 3) \times id \subset \BbbP k(T ;\BbbR 3) with the identity id on T . Define
for all k \in \BbbN 0 the Courant, Raviart--Thomas, and N\'ed\'elec element spaces

Sk+1(\scrT ) := \{ V \in H1(\Omega ) : \forall T \in \scrT , V | T \in \BbbP k+1(T ;\BbbR )\} ,
RTk(\scrT ) := \{ Q \in H(div,\Omega ) : \forall T \in \scrT , Q| T \in RTk(T )\} ,
\scrN k(\scrT ) := \{ F \in H(curl,\Omega ) : \forall T \in \scrT , F | T \in \scrN k(T )\} .

Furthermore, set Sk+1
0 (\scrT ) := Sk+1(\scrT ) \cap H1

0 (\Omega ) and \scrN k
0 (\scrT ) := \scrN k(\scrT ) \cap H0(curl,\Omega ).

It is well known and understood throughout this paper that the discrete spaces X(\scrT )
in Table 2 and the continuous spaces X satisfy the pointwise density property [4, 5, 7]

\forall \varepsilon > 0 \forall w \in X \exists \delta > 0 \forall \scrT \in \BbbT (\delta ) \exists W \in X(\scrT ) \| w  - W\| X < \varepsilon .(D)

3. Proof of the asymptotic exactness. The unifying analysis departs with
an abstract framework and thereafter applies it to the model examples of section 2.

3.1. An abstract setting. This subsection provides an abstract asymptotic
exactness result based on three hypotheses.

(H1) Suppose a : X \times X \rightarrow \BbbR is a scalar product that is equivalent to the scalar
product b on the real Hilbert space (X, b) with associated norm \| \bullet \| b = \| \bullet \| X . In
particular, there exist positive constants \alpha , \beta with

\forall x \in X \alpha \| x\| 2b \leq a(x, x) =: \| x\| 2a \leq \beta \| x\| 2b .(2)

(H2) Suppose that there exist countably many pairwise distinct positive numbers
\mu (0) = 1, \mu (1), \mu (2), \mu (3), . . . with closed eigenspaces E(\mu (j)) \subset X for j \in \BbbN 0 and

\forall j \in \BbbN 0 \forall \phi j \in E(\mu (j)) \forall x \in X a(\phi j , x) = \mu (j)b(\phi j , x).(3)

Let the eigenspaces have finite dimension dimE(\mu (j)) \in \BbbN for all j \in \BbbN (while
dimE(\mu (0)) \in \BbbN 0 \cup \{ \infty \} may be infinity or zero), and suppose that the linear hull of
all eigenspaces E(\mu (0)), E(\mu (1)), . . . is dense in X,

X = span\{ E(\mu (j)) : j \in \BbbN 0\} .(4)
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(H3) Suppose \mu (0) = 1 is the only accumulation point of (\mu (j))j\in \BbbN 0
, limj\rightarrow \infty \mu (j) =

1.
Given a right-hand side F \in X\ast in the dual X\ast of X, let u \in X be the unique

solution to a(u, v) = F (v) for all v \in X. Furthermore, let X(\scrT ) \subset X satisfy the
density property (D), and define the discrete solution U \in X(\scrT ) with a(U, V ) = F (V )
for all V \in X(\scrT ).

Theorem 3.1. Suppose (H1)--(H3), (D), and \varepsilon > 0. Then there exists some
\delta > 0 for all F \in X\ast such that for all \scrT \in \BbbT (\delta )

(1 - \varepsilon )\| u - U\| 2b \leq \| u - U\| 2a \leq (1 + \varepsilon )\| u - U\| 2b .(5)

Some remarks are in order before the proof of the theorem concludes this subsec-
tion.

Remark 3.2 (bounded eigenvalues). It follows from (H1) that \mu (0), \mu (1), \mu (2), . . .
are bounded in the compact interval [\alpha , \beta ] and, since \mu (0) = 1, it holds that \alpha \leq 1 \leq \beta .

Remark 3.3 (orthogonal eigenspaces). The eigenvectors \phi j \in E(\mu (j)) and \phi k \in 
E(\mu (k)) with j, k \in \BbbN satisfy \mu (j)b(\phi j , \phi k) = a(\phi j , \phi k) = a(\phi k, \phi j) = \mu (k)b(\phi k, \phi j).
If j \not = k, it holds that 0 \not = \mu (j) \not = \mu (k) \not = 0, and so b(\phi j , \phi k) = a(\phi j , \phi k) = 0. Thus,

\forall j, k \in \BbbN 0 \wedge j \not = k E(\mu (j)) \bot a E(\mu (k)) and E(\mu (j)) \bot b E(\mu (k)).(6)

Remark 3.4 (orthogonal decomposition of X). Given an index set J \subset \BbbN 0, define
X(J) as the closure of span\{ E(\mu (j)) : j \in J\} , and set the complement Jc := \BbbN 0 \setminus J .
Then (4) implies that any v \in X can be decomposed into v = w + z with some
w =

\sum 
j\in J wj \in X(J) and some z =

\sum 
k\in Jc zk \in X(Jc) such that wj \in E(\mu (j)) for

all j \in J and zk \in E(\mu (k)) for all k \in Jc. Since X(J) and X(Jc) are closed with
respect to the norm \| \bullet \| b, (6) implies b(w, z) = 0. This proves the b-orthogonality
X(J) \bot b X(Jc). Similar arguments and the equivalence (2) of \| \bullet \| b and \| \bullet \| a imply
the a-orthogonality X(J) \bot a X(Jc).

Remark 3.5 (built-in error control of LSFEMs). The least-squares formulations
from section 2 allow (H1)--(H3) such that \| u  - U\| 2a = LS(f ;U) is a computable
residual and serves as an error estimator for the unknown error \| u - U\| b = \| u - U\| X .
The ellipticity in (H1) leads to

\alpha \| u - U\| 2b \leq LS(f ;U) = \| u - U\| 2a \leq \beta \| u - U\| 2b .(7)

This is well known in the least-squares community and called reliability and efficiency
in the a posteriori error analysis. It is a consequence of Theorem 3.1 that the GUB
in (7) leads to an overestimation by the factor \alpha  - 1 as the mesh size tends to zero.

Proof of Theorem 3.1. The Galerkin orthogonality a(u  - U,W ) = 0 for all W \in 
X(\scrT ) is rewritten as u  - U \in X(\scrT )\bot := \{ v \in X : \forall W \in X(\scrT ), a(v,W ) = 0\} . Then
the theorem follows from the more general assertion

\forall \varepsilon > 0 \exists \delta > 0 \forall \scrT \in \BbbT (\delta ) \forall v \in X(\scrT )\bot (1 - \varepsilon )\| v\| 2b \leq \| v\| 2a \leq (1 + \varepsilon )\| v\| 2b .(8)

To prove (8), let 0 < \varepsilon < 1 and v \in X(\scrT )\bot with \| v\| b = 1.
Step 1 (decomposition of v). Recall \mu (0), \mu (1), . . . from (H2), and, given \varepsilon > 0,

define the index set J(\varepsilon ) := \{ j \in \BbbN : | 1  - \mu (j)| > \varepsilon \} with complement Jc(\varepsilon ) :=
\BbbN 0 \setminus J(\varepsilon ). It is a consequence of (H3) that the index set J(\varepsilon ) is finite. As outlined
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Table 2
Notation in subsection 3.2.

\BbbM A \gamma D D\ast X(\scrT )

Poisson \BbbR d id 0 \nabla  - div Sk+1
0 (\scrT )\times RTk(\scrT )

Helmholtz \BbbR d id \omega 2 \nabla  - div Sk+1
0 (\scrT )\times RTk(\scrT )

Elasticity \BbbR d\times d \BbbC 0 \varepsilon (\bullet )  - div Sk+1
0 (\scrT )d \times RTk(\scrT )d

Maxwell \BbbR 3 id \omega 2 curl curl \scrN k
0 (\scrT )\times \scrN k(\scrT )

in Remark 3.4, (H2) leads to the a- and b-orthogonal decomposition v = w + z with
w \in X(J(\varepsilon )) and z \in X(Jc(\varepsilon )). The Pythagoras theorem reads

1 = \| v\| 2b = \| w\| 2b + \| z\| 2b and \| v\| 2a = \| w\| 2a + \| z\| 2a.(9)

Step 2 (upper bound for \| w\| a). Let (\phi 1, . . . , \phi m) be a b-orthonormal basis of
span\{ E(\mu (j)) : j \in J(\varepsilon )\} = span\{ \phi 1, . . . , \phi m\} with w =

\sum m
k=1 \xi k\phi k. The density (D)

leads to \delta > 0 such that for all k = 1, . . . ,m and \scrT \in \BbbT (\delta ) there exists a \Phi k \in X(\scrT )
with \| \phi k  - \Phi k\| b \leq \varepsilon /

\surd 
m. The discrete W :=

\sum m
k=1 \xi k\Phi k \in X(\scrT ) satisfies

\| w  - W\| b \leq 
m\sum 

k=1

| \xi k| \| \phi k  - \Phi k\| b \leq m - 1/2\varepsilon 

m\sum 
k=1

| \xi k| \leq \varepsilon 

\biggl( m\sum 
k=1

\xi 2k

\biggr) 1/2

= \varepsilon \| w\| b.

The combination with a(w, z) = 0 = a(v,W ), a Cauchy--Schwarz inequality, and (2)
proves

\| w\| 2a = a(w, v) = a(w  - W, v) \leq \beta \| w  - W\| b \leq \varepsilon \beta \| w\| b \leq \alpha  - 1/2\varepsilon \beta \| w\| a.(10)

Step 3 (upper and lower bounds for \| z\| 2a). Since z is in the closure of the linear
hull span\{ E(\mu (j)) : j \in Jc(\varepsilon )\} with respect to \| \bullet \| a and \| \bullet \| b, the sums \| z\| 2a =\sum 

j\in Jc(\varepsilon )\| zj\| 2a and \| z\| 2b =
\sum 

j\in Jc(\varepsilon )\| zj\| 2b converge. Then 1  - \varepsilon \leq \mu (j) \leq 1 + \varepsilon and

\| zj\| 2a = \mu (j)\| zj\| 2b for all j \in Jc(\varepsilon ) imply

(1 - \varepsilon )\| z\| 2b \leq \| z\| 2a \leq (1 + \varepsilon )\| z\| 2b .(11)

Step 4 (upper bound for \| v\| 2a). The combination of (9)--(11) proves

\| v\| 2a = \| z\| 2a + \| w\| 2a \leq (1 + \varepsilon )\| z\| 2b + \| w\| 2a \leq 1 + \varepsilon + \varepsilon 2\beta 2/\alpha .

Step 5 (lower bound for \| v\| 2a). The combination of (2) and (9)--(10) shows 1  - 
\varepsilon 2\beta 2/\alpha 2 \leq 1 - \| w\| 2a/\alpha \leq 1 - \| w\| 2b = \| z\| 2b . Consequently,

(1 - \varepsilon )(1 - \varepsilon 2\beta 2/\alpha 2) \leq (1 - \varepsilon )\| z\| 2b \leq \| z\| 2a \leq \| w\| 2a + \| z\| 2a = \| v\| 2a.

Relabeling \varepsilon and \delta for sufficiently small \varepsilon concludes the proof of (8).

3.2. A class of problems sufficient for (H1)--(H3). This subsection compiles
the model problems in section 2 and verifies the assumptions of Theorem 3.1. Table 2
displays the particular meanings of the following abstract operators.

For all examples of section 2 the positive definite isomorphism A = A1/2 \circ A1/2

maps the subspace \BbbM \subset \BbbR m\times n with m,n \in \BbbN onto \BbbM . Furthermore, the linear
differential operator D maps the real Hilbert space V with norm \| \bullet \| 2V = \| \bullet \| 2L2(\Omega ) +

\| A1/2D\bullet \| 2L2(\Omega ) onto a closed subset of L2(\Omega ;\BbbM ). SinceD : V \rightarrow L2(\Omega ;\BbbM ) is bounded,
its kernel kerD is closed. This leads to the existence of an orthogonal complement
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W \subset V withW \bot V kerD and V =W\oplus kerD. There exist countably many eigenpairs
(\lambda j , \psi j) \in \BbbR \times W \setminus \{ 0\} with D\ast AD\psi j = \lambda j\psi j for j \in \BbbN , i.e.,

\forall v \in V (AD\psi j , Dv)L2(\Omega ) = \lambda j(\psi j , v)L2(\Omega ).(12)

Moreover, 0 < \lambda 1 \leq \lambda 2 \leq . . . with limj\rightarrow \infty \lambda j = \infty . The eigenfunctions (\psi j)j\in \BbbN 
form a basis of W = span\{ \psi j : j \in \BbbN \} in V and are orthonormal in the sense that
(\psi j , \psi k)L2(\Omega ) = \delta jk and (AD\psi j , D\psi k)L2(\Omega ) = \lambda j\delta jk for all j, k \in \BbbN .

Remark 3.6. In the Poisson model problem and the Helmholtz equation (resp.,
linear elasticity and Maxwell equations), \lambda 1, \lambda 2, . . . are the Dirichlet eigenvalues of
the Laplace operator (resp., the Dirichlet eigenvalues of the Lam\'e operator and the
eigenvalues of the resonant cavity problem). It is known that the eigenfunctions of
(12) satisfy the aforementioned properties [4, p. 15], [15, p. 720], [19, p. 97].

Define for any \tau \in L2(\Omega ;\BbbM ) and \chi \in L2(\Omega ;\BbbR m) with (\tau ,Dv)L2(\Omega ) = (\chi , v)L2(\Omega )

for all v \in V the operator D\ast \tau := \chi , and set

\Sigma := \{ \tau \in L2(\Omega ;\BbbM ) : D\ast \tau \in L2(\Omega ;\BbbR m)\} , \| \bullet \| 2\Sigma := \| A - 1/2\bullet \| 2L2(\Omega ) + \| D\ast \bullet \| 2L2(\Omega ).

In all model problems (\Sigma , \| \bullet \| \Sigma ) is a Hilbert space [4]. Since D\ast : \Sigma \rightarrow L2(\Omega ;\BbbR m)
is linear and bounded, the kernel kerD\ast is a closed subspace of \Sigma . Theorem 3.7
and Lemma 3.9 are well known in the least-squares community but are stated for
completeness.

Theorem 3.7 (equivalence of primal and first-order problem). Given a right-
hand side f \in L2(\Omega ;\BbbR m) and a constant \gamma \in \BbbR , u \in V solves the primal problem

\forall v \in V (ADu,Dv)L2(\Omega )  - \gamma (u, v)L2(\Omega ) = (f, v)L2(\Omega )(13)

if and only if (u, \sigma ) = (u,ADu) \in V \times \Sigma is the unique minimizer amongst all (v, \tau ) \in 
X := V \times \Sigma of the least-squares functional

LS(f ; v, \tau ) := \| A - 1/2\tau  - A1/2Dv\| 2L2(\Omega ) + \| f + \gamma v  - D\ast \tau \| 2L2(\Omega ).

Proof. The solution u \in V to the primal problem (13) satisfies (ADu,Dw)L2(\Omega ) =
(f + \gamma u,w)L2(\Omega ) for all w \in V . This shows ADu \in \Sigma with D\ast ADu = f + \gamma u \in 
L2(\Omega ;\BbbR m) and proves LS(f ;u,ADu) = 0. On the other hand, any (v, \tau ) \in X with
LS(f ; v, \tau ) = 0 satisfies \tau = ADv and so D\ast ADv  - \gamma v = f . Consequently v \in V
solves (13). The uniqueness of the solution implies v = u.

Throughout this paper, (13) is well posed because either the kernel kerD = \{ 0\} is
trivial and \gamma = 0 or \gamma \in (0,\infty )\setminus \{ \lambda 1, \lambda 2, . . . \} . Theorem 3.7 guarantees the equivalence
of (13) and the minimization of LS(f ; \bullet ) over all (v, \tau ) \in X := V \times \Sigma with norm
\| (v, \tau )\| X = \| (v, \tau )\| b induced by

b(u, \sigma ; v, \tau ) = \gamma 2(u, v)L2(\Omega ) + (A1/2Du,A1/2Dv)L2(\Omega )

+ (A - 1/2\sigma ,A - 1/2\tau )L2(\Omega ) + (D\ast \sigma ,D\ast \tau )L2(\Omega ).

The minimizer (u, \sigma ) \in X of the least-squares functional is characterized as the so-
lution to a(u, \sigma ; v, \tau ) =  - (f, \gamma v  - D\ast \tau )L2(\Omega ) for all (v, \tau ) \in X with the symmetric
bilinear form

a(u, \sigma ; v, \tau ) := (A1/2Du - A - 1/2\sigma ,A1/2Dv  - A - 1/2\tau )L2(\Omega )

+ (\gamma u - D\ast \sigma , \gamma v  - D\ast \tau )L2(\Omega ).
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Remark 3.8. Since most of the results in this work follow from a spectral analy-
sis, the scalar products read a(\bullet , \bullet ) and b(\bullet , \bullet ) rather than \langle L\bullet , L\bullet \rangle 0 := a(\bullet , \bullet ) and
\langle \bullet , \bullet \rangle X := b(\bullet , \bullet ), which is more frequent in least-squares publications.

Lemma 3.9. The following splits are orthogonal with respect to (A - 1\bullet , \bullet )L2(\Omega ):

L2(\Omega ;\BbbM ) = AD(V )\oplus kerD\ast and \Sigma =
\bigl( 
AD(V ) \cap \Sigma 

\bigr) 
\oplus kerD\ast .(14)

Proof. Step 1 (decomposition of L2(\Omega ;\BbbM )). Since the norm \| A1/2D\bullet \| L2(\Omega ) in

W is equivalent to \| \bullet \| V ,
\bigl( 
W, (AD\bullet , D\bullet )L2(\Omega )

\bigr) 
is a Hilbert space. Given any \sigma \in 

L2(\Omega ;\BbbM ), the Riesz representation \xi \in W satisfies

\forall w \in W (AD\xi ,Dw)L2(\Omega ) = (\sigma ,Dw)L2(\Omega ).

Define \sigma 0 := \sigma  - AD\xi with (\sigma 0, Dw)L2(\Omega ) = (\sigma ,Dw)L2(\Omega )  - (AD\xi ,Dw)L2(\Omega ) = 0
for all w \in W , whence \sigma 0 \in kerD\ast . Since \sigma 0 \in kerD\ast and (A - 1ADv, \sigma 0)L2(\Omega ) =
(v,D\ast \sigma 0)L2(\Omega ) = 0 for all v \in V , the split is orthogonal.

Step 2 (decomposition of \Sigma ). Given \sigma \in \Sigma , the split in L2(\Omega ;\BbbM ) leads to \xi \in V
and \sigma 0 \in kerD\ast \subset \Sigma with \sigma = AD\xi +\sigma 0 and (A - 1AD\xi , \sigma 0)L2(\Omega ) = 0. Since \sigma , \sigma 0 \in \Sigma 
and \Sigma is a vector space, AD\xi = \sigma  - \sigma 0 \in \Sigma .

Remark 3.6 and (12) imply for each model problem in section 2 that the subspace
span\{ AD\psi j : j \in \BbbN \} \subset \Sigma is dense in AD(V ) \cap \Sigma with respect to \| \bullet \| \Sigma , i.e., AD(V ) \cap 
\Sigma = span\{ AD\psi j : j \in \BbbN \} . For all j \in \BbbN define \nu j := \lambda j(\gamma + 1)2/((\lambda j + 1)(\gamma 2 + \lambda j))
and set \mu 0 := 1 and \phi 0 \in kerD \times kerD\ast \subset X,

\mu 2j - 1 := 1 - \nu 
1/2
j and \phi 2j - 1 :=

\Bigl( 
(\lambda 2j + \lambda j)

1/2(\gamma 2 + \lambda j)
 - 1/2\psi j , AD\psi j

\Bigr) 
\in X,(15a)

\mu 2j := 1 + \nu 
1/2
j and \phi 2j :=

\Bigl( 
(\lambda 2j + \lambda j)

1/2(\gamma 2 + \lambda j)
 - 1/2\psi j , - AD\psi j

\Bigr) 
\in X.(15b)

Theorem 3.10. The formulae in (15) define the least-squares eigenpairs

\forall j \in \BbbN 0 \forall (v, \tau ) \in X a(\phi j ; v, \tau ) = \mu jb(\phi j ; v, \tau ).(16)

Proof. Step 1 (decomposition of the bilinear forms). Given (u, \sigma ), (v, \tau ) \in X,
(14) leads to \xi , \vargamma \in W and \sigma 0, \tau 0 \in kerD\ast with AD\xi ,AD\vargamma \in \Sigma , \sigma = AD\xi + \sigma 0, and
\tau = AD\vargamma + \tau 0. Furthermore, W = span\{ \psi j : j \in \BbbN \} and V = W \oplus kerD show the
existence of coefficients uj , vj , \xi j , \vargamma j \in \BbbR for j \in \BbbN and elements u0, v0 \in kerD with

u = u0 +
\sum 
j\in \BbbN 

uj\psi j , v = v0 +
\sum 
j\in \BbbN 

vj\psi j , \xi =
\sum 
j\in \BbbN 

\xi j\psi j , and \vargamma =
\sum 
j\in \BbbN 

\vargamma j\psi j .

The density of span\{ \psi j : j \in \BbbN \} in W \subset V , the density of span\{ AD\psi j : j \in \BbbN \} in
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AD(V ) \cap \Sigma \subset \Sigma , and the orthogonality of the eigenfunctions imply

a(u, \sigma ; v, \tau ) = (A1/2D(u - \xi ) - A - 1/2\sigma 0, A
1/2D(v  - \vargamma ) - A - 1/2\tau 0)L2(\Omega )

+ (\gamma u - D\ast AD\xi , \gamma v  - D\ast AD\vargamma )L2(\Omega )

=

\biggl( \sum 
j\in \BbbN 

(uj  - \xi j)A
1/2D\psi j ,

\sum 
k\in \BbbN 

(vk  - \vargamma k)A
1/2D\psi k

\biggr) 
L2(\Omega )

+

\biggl( \sum 
j\in \BbbN 

(\gamma uj  - \lambda j\xi j)\psi j ,
\sum 
k\in \BbbN 

(\gamma vk  - \lambda k\vargamma k)\psi k

\biggr) 
L2(\Omega )

+ (A - 1/2\sigma 0, A
 - 1/2\tau 0)L2(\Omega ) + \gamma 2(u0, v0)L2(\Omega )

=
\sum 
j\in \BbbN 

\biggl( 
uj
\xi j

\biggr) 
\cdot 
\biggl( 

\lambda j + \gamma 2  - \lambda j  - \gamma \lambda j
 - \lambda j  - \gamma \lambda j \lambda j + \lambda 2j

\biggr) \biggl( 
vj
\vargamma j

\biggr) 
+ (A - 1/2\sigma 0, A

 - 1/2\tau 0)L2(\Omega ) + \gamma 2(u0, v0)L2(\Omega ).

Similar arguments lead to

b(u, \sigma ; v, \tau ) =
\sum 
j\in \BbbN 

\biggl( 
uj
\xi j

\biggr) 
\cdot 
\biggl( 
\lambda j + \gamma 2 0

0 \lambda j + \lambda 2j

\biggr) \biggl( 
vj
\vargamma j

\biggr) 
+ (A - 1/2\sigma 0, A

 - 1/2\tau 0)L2(\Omega ) + \gamma 2(u0, v0)L2(\Omega ).

Step 2 (computation of eigenpairs). The decomposition of a and b in Step 1
shows that \mu 0 = 1 satisfies (16) for all elements \phi 0 in kerD \times kerD\ast . Moreover, the
decomposition leads for all j \in \BbbN and all (v, \tau ) \in X with decomposition as in Step 1
to

a(\phi 2j - 1; v, \tau ) =

\biggl( 
(\lambda 2j + \lambda j)

1/2(\gamma 2 + \lambda j)
 - 1/2

1

\biggr) 
\cdot 
\biggl( 

\lambda j + \gamma 2  - \lambda j  - \gamma \lambda j
 - \lambda j  - \gamma \lambda j \lambda j + \lambda 2j

\biggr) \biggl( 
vj
\vargamma j

\biggr) 
= \mu 2j - 1

\biggl( 
(\lambda 2j + \lambda j)

1/2(\gamma 2 + \lambda j)
 - 1/2

1

\biggr) 
\cdot 
\biggl( 
\lambda j + \gamma 2 0

0 \lambda j + \lambda 2j

\biggr) \biggl( 
vj
\vargamma j

\biggr) 
= \mu 2j - 1b(\phi 2j - 1; v, \tau ).

Analogously, a(\phi 2j ; v, \tau ) = \mu 2jb(\phi 2j ; v, \tau ) follows for all j \in \BbbN and (v, \tau ) \in X.

Theorem 3.11. The model problems satisfy (H1)--(H3) and (1).

Proof. Step 1 (proof of (3) from (H2)). The countably many numbers \mu 0, \mu 1, . . .
from (15) lead to countably many pairwise distinct numbers \mu (0) = 1, \mu (1), \mu (2), . . .
with \{ \mu k : k \in \BbbN 0\} = \{ \mu (j) : j \in \BbbN 0\} . Theorem 3.10 (resp., Theorem SM1.1) proves
that the closed subspaces E(\mu (0)) := kerD \times kerD\ast and E(\mu (j)) := span\{ \phi k : k \in 
\BbbN , \mu k = \mu (j)\} for all j \in \BbbN with \phi k from (15) (resp., (SM2)) satisfy (3).

Step 2 (proof of (H3)). It follows from a simple calculation that \mu 2j - 1 and \mu 2j

from (15) (resp., (SM1)), and so \mu (j) tend to one as j (and so \lambda j) tends to infinity.
Step 3 (proof of dimE(\mu (j)) \in \BbbN for all j \in \BbbN from (H2)). The eigenspace

E(\mu (j)) is the span of \phi k with \mu k = \mu (j). Since the eigenfunctions \phi 1, \phi 2, . . . are
linearly independent, it holds with the counting measure | \bullet | that

dimE(\mu (j)) = | \{ k \in \BbbN : \mu k = \mu (j)\} | .(17)

It follows from limk\rightarrow \infty \mu k = 1 and \mu (j) \not = 1 that (17) is for all j \in \BbbN a finite number.
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Table 3
Eigenvalues \mu j with (16) (resp., (18)) as a function of the eigenvalues \lambda j with (12) for all j \in \BbbN .

Problem Least-squares eigenvalues

Poisson \mu 2j - 1 = 1 - (\lambda j + 1) - 1/2

Elasticity \mu 2j = 1 + (\lambda j + 1) - 1/2

Helmholtz \mu 2j - 1 =
\omega 4+2\lambda j

2\lambda j
 - 

\sqrt{} 
(\omega 4+2\lambda j)2

4\lambda 2
j

 - (\omega 2 - \lambda j)2

(\lambda j+1)\lambda j

\mu 2j =
\omega 4+2\lambda j

2\lambda j
+

\sqrt{} 
(\omega 4+2\lambda j)2

4\lambda 2
j

 - (\omega 2 - \lambda j)2

(\lambda j+1)\lambda j

Maxwell \mu 2j - 1 = 1 - 
\bigl( 
1 - (\omega 2  - \lambda j)

2(\lambda j + 1) - 1(\omega 4 + \lambda j)
 - 1

\bigr) 1/2
\mu 2j = 1 - 

\bigl( 
1 + (\omega 2  - \lambda j)

2(\lambda j + 1) - 1(\omega 4 + \lambda j)
 - 1

\bigr) 1/2
Step 4 (proof of X = span\{ E(\mu (j)) : j \in \BbbN 0\} from (H2)). The model problems

satisfy either \gamma \not = 0 or \gamma = 0 and kerD = \{ 0\} . If \gamma \not = 0, it holds for all (v, \tau ) \in \Sigma that

min\{ 1, \gamma 2\} (\| v\| 2V + \| \tau \| 2\Sigma ) \leq \| (v, \tau )\| 2b \leq max\{ 1, \gamma 2\} (\| v\| 2V + \| \tau \| 2\Sigma ),

and with kerD = \{ 0\} it holds that (1+ \gamma 2\lambda  - 1
1 ) - 1\| (v, \tau )\| b \leq \| (v, \tau )\| b0 \leq \| (v, \tau )\| b. If

kerD = \{ 0\} and \gamma = 0, it holds for all (v, \tau ) \in \Sigma that

(1 + \lambda  - 1
1 ) - 1(\| v\| 2V + \| \tau \| 2\Sigma ) \leq \| (v, \tau )\| 2b \leq \| v\| 2V + \| \tau \| 2\Sigma .

Hence, the norms \| \bullet \| b and \| \bullet \| V\times \Sigma := (\| \bullet \| 2V + \| \bullet \| 2\Sigma )1/2 (resp., \| \bullet \| b0 and \| \bullet \| V\times \Sigma )

are equivalent. Since W = span\{ \psi j : j \in \BbbN \} in V , (\psi j , 0) \in span\{ E(\mu (k)) : k \in \BbbN \} 
for all j \in \BbbN , and kerD \subset E(\mu (0)), the equivalence of the norms and V =W \oplus kerD
lead to

V \times \{ 0\} \subset kerD \times \{ 0\} \oplus span\{ (\psi j , 0) : j \in \BbbN \} \subset span\{ E(\mu (j)) : j \in \BbbN \} .

The density of span\{ AD\psi 1, AD\psi 2, . . . \} in AD(V ) \cap \Sigma implies that (0, AD\psi j) \in 
span\{ E(\mu (k)) : k \in \BbbN \} for all j \in \BbbN . With the equivalence of the norms this leads to

\{ 0\} \times \Sigma \subset \{ 0\} \times kerD\ast \oplus span\{ (0, AD\psi j) : j \in \BbbN \} \subset span\{ E(\mu (j)) : j \in \BbbN \} .

Step 5 (proof of (H1)). The density of span\{ E(\mu (j)) : j \in \BbbN 0\} in X proves

inf
j\in \BbbN 0

\mu (j)\| (v, \tau )\| 2b \leq \| (v, \tau )\| 2a \leq sup
j\in \BbbN 0

\mu (j)\| (v, \tau )\| 2b

for any (v, \tau ) \in X. Since \gamma /\in \{ \lambda 1, \lambda 2, . . . \} and limj\rightarrow \infty \mu (j) = 1, this leads to (2)
with 0 < \alpha := minj\in \BbbN 0

\mu (j) \leq maxj\in \BbbN 0
\mu (j) =: \beta <\infty .

Step 6 (proof of (1)). The application of Theorem 3.1 and \| u - U\| 2a = LS(f ;U)
in the model problems results in (1).

Remark 3.12. It follows from 0 < \alpha := minj\in \BbbN 0 \mu (j) \leq maxj\in \BbbN 0 \mu (j) =: \beta < \infty 
that \alpha = \mu 1 and \beta = \mu 2 with \mu 1, \mu 2 from Table 3 for the Poisson model problem and
the linear elasticity. Furthermore, the Helmholtz equation and Maxwell equations
satisfy \alpha = \mu 2j - 1 and \beta = \mu 2j for some j \in \BbbN .

Remark 3.13. Table 3 shows that small eigenvalues \lambda of the differential operator
D\ast AD cause small and large eigenvalues \mu in the Poisson model problem and the lin-
ear elasticity. However, small and large eigenvalues \mu for the Maxwell and Helmholtz
equations result not only from the size of the eigenvalues \lambda but also from the dis-
tance | \lambda  - \omega 2| to the frequency \omega . Subsection 5.4 below presents a corresponding
example with a huge preasymptotic regime caused by the necessity to resolve the
high-frequency eigenfunctions sufficiently well.
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Remark 3.14. The detailed analysis behind Table 3 is performed for four model
problems but can be extended to other norms and bilinear forms exemplified for the
alternative choice

b0(u, \sigma ; v, \tau ) = (A1/2Du,A1/2Dv)L2(\Omega ) + (A - 1/2\sigma ,A - 1/2\tau )L2(\Omega ) + (D\ast \sigma ,D\ast \tau )L2(\Omega )

for all (u, \sigma ), (v, \tau ) \in X for the Helmholtz equation in Table 3 and the \omega -independent
norm \| \bullet \| b0 induced by b0(\bullet , \bullet ). The Helmholtz equation admits the eigenvalues \mu 0 = 1
and \mu j displayed for all j \in \BbbN in Table 3 of the eigenvalue problem

\forall (v, \tau ) \in X a(\phi j ; v, \tau ) = \mu jb0(\phi j ; v, \tau ).(18)

This follows analogously from the proof of Theorem 3.10, and so details are provided
in section SM1 of the supplementary material.

3.3. The Poisson model problem with \bfitH 1-conforming compatible con-
straint. The following FOSLS method for the Poisson model problem [11, 13] is
based on H1 conforming ansatz functions and adds the constraint curl p = 0 to the
problem in subsection 2.1. This ansatz leads to the norms

\| (v, \tau )\| 2a := \| \tau  - \nabla v\| 2L2(\Omega ) + \| div \tau \| 2L2(\Omega ) + \| curl \tau \| 2L2(\Omega ),(19a)

\| (v, \tau )\| 2b := \| \nabla v\| 2L2(\Omega ) + \| \tau \| 2L2(\Omega ) + \| div \tau \| 2L2(\Omega ) + \| curl \tau \| 2L2(\Omega )(19b)

for all (v, \tau ) \in X := H1
0 (\Omega )\times (H(div,\Omega )\cap H(curl,\Omega )) with associated scalar product

a(\bullet , \bullet ) to \| \bullet \| a and b(\bullet , \bullet ) to \| \bullet \| b.
Theorem 3.15. (a) The eigenvalue problem (16) has the eigenpairs (\mu j , \phi j) \in 

\BbbR \times X, j \in \BbbN , from (15) for the Poisson model problem, and \mu 0 = 1 has the eigenspace
\phi 0 \in \{ \tau \in H(div,\Omega ) \cap H(curl,\Omega ) : div \tau = 0\} .

(b) The model problem (19) satisfies (H1)--(H3) and (1).

Proof. Let (\lambda j , \psi j) \in \BbbR \times H1
0 (\Omega ), j \in \BbbN , denote the eigenpairs of the  - \Delta operator.

The spectral representation of H1
0 (\Omega ) functions and the orthogonal split of Lemma 3.9

lead, for any (u, \sigma ) and (v, \tau ) in X, to coefficients uj , vj , \sigma j , \tau j \in \BbbR for j \in \BbbN and zero-
divergence functions \sigma 0, \tau 0 \in H(div,\Omega ) \cap H(curl,\Omega ) with

u =
\sum 
j\in \BbbN 

uj\psi j , v =
\sum 
j\in \BbbN 

vj\psi j , \sigma = \sigma 0 +
\sum 
j\in \BbbN 

\sigma j\nabla \psi j , and \tau = \tau 0 +
\sum 
j\in \BbbN 

\tau j\nabla \psi j .

As in the proof of Theorem 3.10, this representation results in

a(u, \sigma ; v, \tau ) =
\sum 
j\in \BbbN 

\biggl( 
uj
\xi j

\biggr) 
\cdot 
\biggl( 
\lambda j  - \lambda j
 - \lambda j \lambda j + \lambda 2j

\biggr) \biggl( 
vj
\vargamma j

\biggr) 
+ (\sigma 0, \tau 0)L2(\Omega ) + (curl\sigma 0, curl \tau 0)L2(\Omega ),

b(u, \sigma ; v, \tau ) =
\sum 
j\in \BbbN 

\biggl( 
uj
\xi j

\biggr) 
\cdot 
\biggl( 
\lambda j 0
0 \lambda j + \lambda 2j

\biggr) \biggl( 
vj
\vargamma j

\biggr) 
+ (\sigma 0, \tau 0)L2(\Omega ) + (curl\sigma 0, curl \tau 0)L2(\Omega ).

The remaining details of the proofs of (a) and (b) follow those in Theorems 3.10
and 3.11 and are omitted for brevity.

4. Improved GUB. This section aims at the computation of a guaranteed up-
per bound (GUB) for the model problems that capture the convergence of LS(f ;U)/\| u - 
U\| 2X to one.
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4.1. A lower bound for the coercivity constant. Estimate (8) indicates
that the coercivity constant on the a-orthogonal complement X(\scrT )\bot := \{ v \in X :
\forall W \in X(\scrT ), a(v,W ) = 0\} of X(\scrT ) in X with \scrT \in \BbbT 

\alpha \leq \alpha (\scrT ) := inf
v\in X(\scrT )\bot \setminus \{ 0\} 

a(v, v)

\| v\| 2b
(20)

converges to one as the mesh size tends to zeros. This constant improves the GUB
for the exact and discrete LSFEM solution u and U to

\| u - U\| 2b \leq \alpha (\scrT ) - 1\| u - U\| 2a \leq \alpha  - 1\| u - U\| 2a.

The aim is the approximation of \alpha (\scrT ) - 1 from above by a constant C(\scrT ). The fol-
lowing ansatz requires the smallest discrete eigenvalues \mu 1(\scrT ) \leq \cdot \cdot \cdot \leq \mu n(\scrT ) for
a fixed n \leq dimX(\scrT ) with normed eigenfunctions \Phi 1, . . . ,\Phi n \in X(\scrT ), that is,
\| \Phi 1\| b = \cdot \cdot \cdot = \| \Phi n\| b = 1 and

\forall j = 1, . . . , n \forall W \in X(\scrT ) a(\Phi j ,W ) = \mu j(\scrT ) b(\Phi j ,W ).(21)

Furthermore, let \mu 1 \leq \cdot \cdot \cdot \leq \mu n+1 be the smallest exact least-squares eigenvalues with
eigenfunctions \phi 1, . . . , \phi n+1 such that b(\phi j , \phi k) = \delta jk for all j, k = 1, . . . , n+ 1, and

\forall w \in X a(\phi j , w) = \mu j b(\phi j , w).(22)

It follows from (H2) that 0 < \mu 1 and \{ \mu 1, . . . , \mu n+1\} \subset \{ \mu (j) : j \in \BbbN \} . The compari-
son of exact and discrete eigenvalue clusters in \{ \mu 1, . . . , \mu n\} and \{ \mu 1(\scrT ), . . . , \mu n(\scrT )\} 
is the basic idea in the computation of C(\scrT ) \geq \alpha (\scrT ) - 1. Therefore, define for any
compact interval [\alpha \prime , \beta \prime ] \subset \BbbR the spaces

E(\alpha \prime , \beta \prime ) := span\{ E(\mu (j)) : j \in \BbbN 0, \alpha \prime \leq \mu (j) \leq \beta \prime \} \subset X,

E(\alpha \prime , \beta \prime , \scrT ) := span\{ \Phi j : j \in \{ 1, . . . , n\} , \alpha \prime \leq \mu j(\scrT ) \leq \beta \prime \} \subset X(\scrT ),

and let [\alpha 1, \beta 1], . . . , [\alpha m, \beta m] be intervals which satisfy the following hypothesis.
(H4) Let [\alpha 1, \beta 1], . . . , [\alpha m, \beta m] be pairwise disjoint compact intervals with m \leq n

and 0 < \alpha 1 \leq \alpha \leq \beta 1 < \alpha 2 \leq \beta 2 < \cdot \cdot \cdot \leq \beta m < \alpha m+1, which satisfy, for all
\ell = 1, . . . ,m,

dimE(\alpha \ell , \beta \ell ) = dimE(\alpha \ell , \beta \ell , \scrT ) and X = E(\alpha 1, \beta \ell )\oplus E(\alpha \ell +1, \beta ).

The intervals from (H4) lead to

C(\scrT ) := \alpha  - 1
m+1

\Biggl( 
1 +

m\sum 
k=1

\alpha k+1
\alpha m+1  - \alpha k

\alpha k\beta k

\beta k  - \alpha k

\alpha k+1  - \alpha k

\Biggr) 
.(23)

Theorem 4.1. Suppose (H1)--(H4); then X(\scrT )\bot from (8) and C(\scrT ) satisfy

\forall v \in X(\scrT )\bot \| v\| 2b \leq C(\scrT )\| v\| 2a.

Remark 4.2. Suppose (H1)--(H4) and \alpha \ell = \mu (\ell ) for all \ell = 1, . . . ,m + 1 with
the smallest pairwise distinct eigenvalues \mu (1), \mu (2), . . . , \mu (m + 1) of (3). A small
eigenvalue error \delta := max\ell =1,...,m(\beta \ell  - \mu (\ell )) of the discrete space guarantees

\alpha (\scrT ) - 1 \leq C(\scrT ) = \mu (m+ 1) - 1 +O(\delta ).
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Suppose the eigenvalue error is of the form \delta = O(hsmax) for some rate s > 0 and the
maximal mesh-size hmax in \scrT . With a constant C(m), which depends in particular
on m, (1) implies

\| u - U\| 2b/\| u - U\| 2a \leq \alpha (\scrT ) - 1 \leq C(\scrT ) \leq \mu (m+ 1) - 1 + C(m)hsmax.(24)

Proof of Theorem 4.1. Step 1 (decomposition of v \in X(\scrT )\bot ). Given any v \in 
X(\scrT )\bot \setminus \{ 0\} , (H2) implies X = E(\alpha 1, \beta 1) \oplus \cdot \cdot \cdot \oplus E(\alpha m, \beta m) \oplus E(\alpha m+1, \beta ) with
\beta m+1 := \beta from (2) and so the existence of v1, . . . , vm+1 \in X with vj \in E(\alpha j , \beta j) for

all j = 1, . . . ,m+ 1 and v =
\sum m+1

j=1 vj . The pairwise orthogonality of the eigenspaces
(6) implies that a(vj , vk) = 0 = b(vj , vk) for all j, k = 1, . . . ,m+ 1 with j \not = k.

Step 2 (existence of Vj \in E(\alpha 1, \beta j , \scrT ) with vj  - Vj \in E(\alpha j+1, \beta )). Let j \in 
\{ 1, . . . ,m\} and p = dimE(\alpha 1, \beta j), so that \phi 1, . . . , \phi p \in X form a basis of E(\alpha 1, \beta j).
Since dimE(\alpha 1, \beta j) = dimE(\alpha 1, \beta j , \scrT ), there exists a basis \Phi 1, . . . ,\Phi p \in X(\scrT ) of
E(\alpha 1, \beta j , \scrT ). It holds that X(\scrT ) \subset X = E(\alpha 1, \beta j)\oplus E(\alpha j+1, \beta ). Consequently, there
exists a p\times p matrix B = (Bk\ell )k,\ell =1,...,p \in \BbbR p\times p with

\forall k = 1, . . . , p \Phi k  - 
p\sum 

\ell =1

Bk\ell \phi \ell \in E(\alpha j+1, \beta ).

To prove that B is invertible, let \xi = (\xi 1, . . . , \xi p) \in \BbbR p with B\xi = 0. In other words,\sum p
k=1 \xi kBk\ell = 0 for all \ell = 1, . . . , p. Define

W := \xi 1\Phi 1 + \cdot \cdot \cdot + \xi p\Phi p \in E(\alpha 1, \beta j , \scrT ).

If \xi \not = 0, W \in E(\alpha 1, \beta j , \scrT ) \setminus \{ 0\} satisfies a(W,W )/b(W,W ) \leq \beta j . Furthermore, since

p\sum 
k=1

\xi k

p\sum 
\ell =1

Bk\ell \phi \ell =

p\sum 
\ell =1

\biggl( p\sum 
k=1

\xi kBk\ell 

\biggr) 
\phi \ell = 0,

it holds that

W =W  - 
p\sum 

k=1

\xi k

p\sum 
\ell =1

Bk\ell \phi \ell =

p\sum 
k=1

\xi k

\biggl( 
\Phi k  - 

p\sum 
\ell =1

Bk\ell \phi \ell 

\biggr) 
\in E(\alpha j+1, \beta ).

This implies \alpha j+1 \leq a(W,W )/b(W,W ) and contradicts \beta j < \alpha j+1. Therefore, W = 0
and (\xi 1, . . . , \xi p) = 0. This proves that B is invertible. Thus, there exist coefficients
b\ell 1, . . . , b\ell p \in \BbbR for all \ell = 1, . . . , p with

\phi \ell  - 
p\sum 

k=1

b\ell k\Phi k \in E(\alpha j+1, \beta ).

This implies for vj \in span\{ \phi 1, . . . , \phi p\} the existence of Vj \in span\{ \Phi 1, . . . ,\Phi p\} with

vj  - Vj \in E(\alpha j+1, \beta ) and Vj \in E(\alpha 1, \beta j , \scrT ).(25)

Step 3 (upper bound for \| Vj\| 2b). It follows from E(\alpha 1, \beta j) \bot a E(\alpha j+1, \beta ) and
E(\alpha 1, \beta j) \bot b E(\alpha j+1, \beta ) that for Vj from Step 2 the Pythagoras theorem, \| vj\| 2a =
\| Vj\| 2a  - \| vj  - Vj\| 2a and \| vj  - Vj\| 2b = \| Vj\| 2b  - \| vj\| 2b , holds. Since Vj \in E(\alpha 1, \beta j , \scrT ), it
holds that \| Vj\| 2a \leq \beta j\| Vj\| 2b . Moreover, vj - Vj \in E(\alpha j+1, \beta ) implies \alpha j+1\| vj - Vj\| 2b \leq 
\| vj  - Vj\| 2a; vj \in E(\alpha j , \beta j) induces \alpha j\| vj\| 2b \leq \| vj\| 2a. This leads to

\alpha j\| vj\| 2b \leq \| vj\| 2a = \| Vj\| 2a  - \| vj  - Vj\| 2a \leq \beta j\| Vj\| 2b  - \alpha j+1(\| Vj\| 2b  - \| vj\| 2b).
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Consequently,

\| Vj\| 2b \leq \alpha j+1  - \alpha j

\alpha j+1  - \beta j
\| vj\| 2b .(26)

Step 4 (upper bound for \| vj\| 2a). Case 1. Let vj \not = 0. This step utilizes a(vj , vj  - 
Vj) = 0 = a(v, Vj) and a Cauchy--Schwarz inequality to deduce

\| vj\| 2a = a(v, vj) = a(v, vj  - Vj) = a(v  - vj , vj  - Vj) \leq \| v  - vj\| a\| vj  - Vj\| a.

The combination with the Pythagoras theorem, \| v  - vj\| 2a = \| v\| 2a  - \| vj\| 2a and \| vj  - 
Vj\| 2a = \| Vj\| 2a  - \| vj\| 2a, leads to \| v\| 2a\| vj\| 2a + \| vj\| 2a\| Vj\| 2a \leq \| v\| 2a\| Vj\| 2a. Given vj \not = 0,
it follows from vj  - Vj \in E(\alpha j+1, \beta ) and E(\alpha j , \beta j)\cap E(\alpha j+1, \beta ) = \{ 0\} from (25) that
Vj \not = 0. Consequently, the division of the previous estimate by \| v\| 2a\| vj\| 2a\| Vj\| 2a \not = 0
results in

\| v\|  - 2
a + \| Vj\|  - 2

a \leq \| vj\|  - 2
a .(27)

Since Vj \in E(\alpha j , \beta j , \scrT ) and vj \in E(\alpha j , \beta j) fulfill \beta 
 - 1
j \| Vj\|  - 2

b \leq \| Vj\|  - 2
a and \| vj\|  - 2

a \leq 
\alpha  - 1
j \| vj\|  - 2

b , (26) leads in (27) to

\| vj\| 2b \leq 
\biggl( 

1

\alpha j
 - \alpha j+1  - \beta j
\beta j(\alpha j+1  - \alpha j)

\biggr) 
\| v\| 2a.(28)

Case 2. The estimate (28) is trivial for vj = 0.
Step 5 (lower bound for \| v\| 2a). The estimate \alpha j\| vj\| 2b \leq \| vj\| 2a for all j =

1, . . . ,m+ 1 and the pairwise a- and b-orthogonality of v1, . . . , vm+1 prove

m\sum 
j=1

\alpha j\| vj\| 2b + \alpha m+1

\biggl( 
\| v\| 2b  - 

m\sum 
j=1

\| vj\| 2b
\biggr) 

\leq 
m+1\sum 
j=1

\| vj\| 2a = \| v\| 2a.(29)

Since \alpha j  - \alpha m+1 < 0, the lower bound decreases monotonically in \| vj\| 2b for each
j = 1, . . . ,m and fixed \| v\| 2b . Hence, the substitution of (28) into (29) leads to

\alpha m+1\| v\| 2b \leq \| v\| 2a +
m\sum 
j=1

(\alpha m+1  - \alpha j)

\biggl( 
1

\alpha j
 - \alpha j+1  - \beta j
\beta j(\alpha j+1  - \alpha j)

\biggr) 
\| v\| 2a

=

\left(  1 +

m\sum 
j=1

\alpha j+1
\alpha m+1  - \alpha j

\alpha j\beta j

\beta j  - \alpha j

\alpha j+1  - \alpha j

\right)  \| v\| 2a.

4.2. Numerical realization. The application of Theorem 4.1 for the model
problems runs a three-stage algorithm.

Stage 1. Compute N + 1 lower bounds 0 < \mu low
1 \leq \cdot \cdot \cdot \leq \mu low

N+1 for the smallest

continuous eigenvalues in (16) (resp., (18)), i.e, \mu low
j \leq \mu j for j = 1, . . . , N + 1.

This computation is independent of the current triangulation and done offline. The
numerical experiments in this paper adopt [1, 12] as detailed in section 5.

Stage 2. Given a triangulation \scrT \in \BbbT , compute upper bounds for the smallest
discrete least-squares eigenvalues 0 < \mu 1(\scrT ) \leq \cdot \cdot \cdot \leq \mu N (\scrT ) with linear independent
eigenfunctions \Phi 1, . . . ,\Phi N \in X(\scrT ) \setminus \{ 0\} such that

\forall \ell = 1, . . . , N \forall W \in X(\scrT ) a(\Phi \ell ,W ) = \mu \ell (\scrT )b(\Phi ,W ).(30)
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This leads to \mu up
1 (\scrT ) \leq \cdot \cdot \cdot \leq \mu up

N (\scrT ) with \mu \ell (\scrT ) \leq \mu up
\ell (\scrT ) for all \ell = 1, . . . , N .

The MATLAB function eigs (with standard parameters) solves (30) in section 5 and
achieves \mu up

\ell (\scrT ) = \mu \ell (\scrT ) for all \ell = 1, . . . , N .
Stage 3. Given the lower and upper eigenvalue bounds from Stages 1 and 2,

compute C(\scrT ) for all n = 0, . . . , N via the subsequent routine
(i) set \alpha 1 := \mu low

1 and m := 0;
(ii) for k = 1, . . . , n,

if \mu up
k (\scrT ) < \mu low

k+1 then set m := m+ 1, \beta m := \mu up
k (\scrT ), \alpha m+1 := \mu low

k+1;
(iii) apply the formula (23);

Output: The minimum C(\scrT ) of the values from (iii) for n = 0, . . . , N

Proposition 4.3. The three-stage algorithm leads to C(\scrT ) in Theorem 4.1.

Proof. It suffices to show that the values \alpha 1, . . . , \alpha m+1 and \beta 1, . . . , \beta m from (i) and
(ii) in Stage 3 with n = 0, . . . , N satisfy (H4) for all \ell = 1, . . . ,m. Then Theorem 4.1
applies to all n = 0, . . . , N and results in the GUB.

Step 1 (proof of 0 < \alpha 1 \leq \alpha \leq \beta 1 < \alpha 2 \leq \beta 2 < \cdot \cdot \cdot \leq \beta m < \alpha m+1). For all
j = 1, . . . , n, the Rayleigh--Ritz principle leads to

\mu low
j \leq \mu j = min

Xj\subset X
dimXj=j

max
v\in Xj

\| v\| b=1

a(v, v) \leq \mu j(\scrT ) = min
Xj(\scrT )\subset X(\scrT )
dimXj(\scrT )=j

max
V \in Xj(\scrT )
\| V \| b=1

a(V, V ) \leq \mu up
j (\scrT ).

This proves 0 < \alpha 1 = \mu low
1 \leq \mu 1 = \alpha \leq \mu up

1 (\scrT ) = \beta 1. Moreover, for all \ell = 1, . . . ,m
there exists a k \in \{ 1, . . . , n\} such that \beta \ell = \mu up

k (\scrT ) < \mu low
k+1 = \alpha \ell +1. If \ell < m, it also

holds that \alpha \ell +1 = \mu low
k+1 \leq \mu up

k+1(\scrT ) \leq \beta \ell +1.
Step 2 (proof of dimE(\alpha \ell , \beta \ell ) = dimE(\alpha \ell , \beta \ell , \scrT )). Given an interval [\alpha \ell , \beta \ell ]

with \ell = 1, . . . ,m, let \ell 1 \in \{ 1, . . . , n\} be the smallest index with \alpha \ell = \mu low
\ell 1

and
\ell 2 \in \{ \ell 1, . . . , n\} the biggest index with \beta \ell = \mu up

\ell 2
(\scrT ). Then

\alpha \ell = \mu low
\ell 1 \leq \mu \ell 1 \leq \mu \ell 1+1 \leq \cdot \cdot \cdot \leq \mu \ell 2 \leq \mu up

\ell 2
(\scrT ) = \beta \ell 

implies \ell 2  - \ell 1 + 1 \leq dimE(\alpha \ell , \beta \ell ). If \ell 2  - \ell 1 + 1 < dimE(\alpha \ell , \beta \ell ), there exists
an eigenpair (\mu , \phi ) \in [\alpha \ell , \beta \ell ] \times X \setminus \{ 0\} with a(\phi ,w) = \mu b(\phi ,w) for all w \in X and
b(\phi , \phi k) = 0 for all k = 1, . . . , n + 1. The eigenvalue \mu is strictly smaller than
\mu \ell 2+1. This contradicts the assumption that \mu 1, . . . , \mu n+1 are the smallest eigenvalues.
Therefore, dimE(\alpha \ell , \beta \ell ) = \ell 2  - \ell 1 + 1. Similar arguments lead to dimE(\alpha \ell , \beta \ell , \scrT ) =
\ell 2  - \ell 1 + 1.

Step 3 (proof of X = E(\alpha 1, \beta \ell ) \oplus E(\alpha \ell +1, \beta )). For all \ell = 1, . . . ,m there exists
k \in \{ 1, . . . , n\} with \mu k \leq \mu up

k (\scrT ) = \beta \ell < \alpha \ell +1 = \mu low
k+1 \leq \mu k+1. Let \phi j \in E(\mu (j)) with

j \in \BbbN . Since \mu 1, . . . , \mu n are the smallest eigenvalues with (22), it holds that either
\mu (j) \leq \mu k or \mu k+1 \leq \mu (j). This reveals \phi j \in E(\alpha 1, \beta \ell ) or \phi j \in E(\alpha \ell +1, \beta ). Therefore,
any eigenfunction belongs to E(\alpha 1, \beta \ell )\oplus E(\alpha \ell +1, \beta ). The density of the linear hull of
eigenfunctions in X from (H2) implies X = E(\alpha 1, \beta \ell )\oplus E(\alpha \ell +1, \beta ).

Remark 4.4. It follows from the Rayleigh--Ritz principle that \mu up
1 (\scrT ), . . . , \mu up

N (\scrT )
are upper bounds for the smallest discrete eigenvalues in (30) for any discrete space
\^X(\scrT ) with X(\scrT ) \subset \^X(\scrT ). Thus, the GUB C(\scrT )LS(f ; \^U) holds for the solution \^U
to the LSFEM with any discrete space \^X(\scrT ) with X(\scrT ) \subset \^X(\scrT ). This enables the
possibility of applying (adaptive) hp-refinements.

5. Numerical experiments. This section underlines the theoretical results of
this paper with numerical experiments for the Poisson model problem, the Helmholtz
equation, and the Maxwell equations and exploits its efficiency.
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Fig. 2. Coercivity constant \alpha (dashed line) and C(\scrT ) - 1 on the unit square (left) and the
L-shaped domain (right) in the Poisson model problem.

5.1. Asymptotic exactness in the Poisson model problem. The first ex-
periment is displayed in Table 1 and investigates the asymptotic exactness of the resid-
ual LS(f ;uC , pRT ) with the discrete solution (uC , pRT ) \in X(\scrT ) := S1

0(\scrT )\times RT0(\scrT )
to the Poisson model problem on the L-shaped domain with constant right-hand side
f \equiv 1 on uniformly refined meshes. The exact solution (u, p) \in X to the problem is
unknown, but the computation of reference solutions on finer grids results in guaran-
teed upper and lower bounds for the error \| (u, p) - (uC , pRT )\| X ; details can be found
in section SM2 of the supplementary material. The outcome verifies the convergence
of the ratio LS(f ;uC , pRT )/\| (u, p)  - (uC , pRT )\| 2X to one and confirms (1). This is
also observed in other numerical examples outlined in section SM3.

5.2. Improved GUB for the Poisson model problem. This experiment ex-
ploits the improvement of the error estimation with the three-stage algorithm from
subsection 4.2 with N = 60. It solves the Poisson model problem with X(\scrT ) :=
S1
0(\scrT )\times RT0(\scrT ) on uniformly refined grids. The lower least-squares eigenvalue bounds

from Stage 1 utilize the Crouzeix--Raviart-FEM (see section SM4 of the supplemen-
tary material for details), which applies on the fly on each triangulation \scrT . The upper
bounds for the discrete eigenvalues in Stage 2 are computed with the MATLAB func-
tion eigs. The required CPU time for the first 60 eigenvalues in the algebraic eigenvalue
problem is approximately 15 times larger than the CPU time for one solve of the LS-
FEM with the MATLAB function mldivide. Figure 2 displays the result for the square
and the L-shaped domain and visualizes the convergence of C(\scrT ) (and so of \alpha (\scrT ))
to one as well as the improvement of the GUB \| u - U\| 2X \leq C(\scrT )LS(f ;U) compared
with the classical GUB \| u - U\| 2X \leq \alpha  - 1LS(f ;U) with coercivity constant \alpha from (2).
On the finest mesh the improvements read C(\scrT ) = 1.044854 \leq \alpha  - 1 = 1.281371 on
the square domain and C(\scrT ) = 1.108241 \leq \alpha  - 1 = 1.442114 on the L-shaped domain.

5.3. Improved GUB for the Helmholtz equation. This subsection investi-
gates the three-stage algorithm from subsection 4.2 with N = 60 for the Helmholtz
equation with X(\scrT ) := S1

0(\scrT )\times RT0(\scrT ) on the square domain \Omega = (0, 1)2 and on the
L-shaped domain \Omega = ( - 1, 1)2 \setminus [0, 1)2 with uniformly refined meshes. The lowest-
order Courant-FEM computes upper eigenvalue bounds for \lambda k and the Crouzeix--
Raviart-FEM computes lower eigenvalue bounds for \lambda k. If the lower eigenvalue bound
for \lambda k is bigger than \omega 2 or the upper eigenvalue bound for \lambda k is smaller than \omega 2, it
leads to a lower bound for the least-squares eigenvalue in Table 3. Otherwise, the
approach fails (this leads to the missing data in Figure 4). Figure 3 plots C(\scrT ) - 1
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Fig. 3. Coercivity constant \alpha (dashed line) and C(\scrT ) - 1 on the unit square (left) and the
L-shaped domain (right) in the Helmholtz equation.

for \omega = 1 and \omega = 2. It indicates the convergence of C(\scrT ) - 1 (and so of \alpha (\scrT )) to
one. The reliability constant C(\scrT ) improves the classical reliability constant \alpha  - 1 on
the finest grid as follows: C(\scrT ) = 1.093083 \leq \alpha  - 1 = 1.708149 on the square do-
main with \omega = 1, C(\scrT ) = 1.253660 \leq \alpha  - 1 = 4.256367 on the square domain with
\omega = 2, C(\scrT ) = 1.237410 \leq \alpha  - 1 = 2.290786 on the L-shaped domain with \omega = 1,
C(\scrT ) = 1.758341 \leq \alpha  - 1 = 11.521603 on the L-shaped domain with \omega = 2.

5.4. Improved GUB for the Helmholtz equation with large frequen-
cies. Table 4 compares the reliability constant \alpha  - 1 (computed with the Dirichlet
eigenvalues of  - \Delta from [21] and [17]) with the reliability constant C(\scrT ) (computed
with the three-stage algorithm from subsection 4.2) for the Helmholtz equation of
subsection 5.3 with frequencies \omega = 0, . . . , 10. For frequencies \omega \geq 7 the compu-
tation leads to C(\scrT ) close to \alpha  - 1. In other words, the improvement of the GUB
with the three-stage algorithm was negligible. To study the efficiency of the GUB
C(\scrT )LS(f ;U), Figure 4 and Table 5 compare the residual and the exact error of
the LSFEM for the Helmholtz equation on the unit square with \omega = 4 and known
solution (sin(\pi x) sin(\pi y),\nabla sin(\pi x) sin(\pi y)) as well as with \omega = 7 and known solu-
tion (sin(2\pi x) sin(\pi y),\nabla sin(2\pi x) sin(\pi y)). The experiment indicates that the GUB
\alpha  - 1LS(f ;U) is indeed an accurate upper bound in the preasymptotic regime and
cannot be improved by C(\scrT ). However, for finer triangulations and small frequen-
cies such as \omega = 4, the GUB C(\scrT )LS(f ;U) captures the fast decay of the error and
results in an improvement by several orders of magnitude and so justifies the higher
CPU time as discussed in subsection 5.7. For large frequencies \omega \geq 7, the FEM does
not resolve the highly oscillating eigenfunctions in the computational domain of this
experiment. This provides numerical evidence for an efficient error control despite the
fact that the constant is far away from one in the preasymptotic regime. The limited
memory of the computer does not allow us to determine the constant C(\scrT ) on finer
grids than the nine times uniformly refined mesh \scrT 9, and so C(\scrT 9) is applied to finer
meshes as well with reduced efficiency.

5.5. Improved GUB for the Maxwell equations. The three-stage algorithm
from subsection 4.2 is run with N = 20 to the Maxwell LSFEM withX(\scrT ) = \scrN 0

0 (\scrT )\times 
\scrN 0(\scrT ) on the cube domain \Omega = (0, 1)3 and the Fichera corner domain \Omega = ( - 1, 1)3 \setminus 
[0, 1)3. The lower eigenvalue bounds in Stage 1 are taken from the exact Maxwell
eigenvalues \lambda j on the cube domain from [16]. The upper and lower eigenvalue bounds
for \lambda j on the Fichera corner domain from [1] lead with the identities in Table 3 to
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Table 4
Reliability constants C(\scrT ) and \alpha  - 1 in the Helmholtz equation on the uniformly refined unit

square with ndof = 1048577, hmax = 2 - 15/2 (left) and the L-shaped domain with ndof = 786433,
hmax = 2 - 13/2 (right).

\omega C(\scrT ) \alpha  - 1

0 1.04485379 1.28137056
1 1.09308333 1.70814860
2 1.25365982 4.25636803
3 1.58732441 21.4998095
4 3.32921432 438.219776
5 4.73101753 497.903825
6 8.98796502 394.084011
7 1010101.01 1041666.66
8 160.287234 1520.40382
9 90171.3255 128700.129
10 558659.22 598802.395

\omega C(\scrT ) \alpha  - 1

0 1.10824134 1.44211422
1 1.23740999 2.29078585
2 1.75834047 11.5216028
3 2.34866936 2607.01809
4 7.40823054 7198.38756
5 193.267713 1021.20011
6 1319.38306 2678.88237
7 1204819.28 1041666.67
8 151285.930 -
9 125786.164 -
10 609756.098 -
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Fig. 4. Error \| u - U\| 2X ( ), residual LS(f ;U) ( ), GUB LS(f ;U)/\alpha ( ), and GUB
C(\scrT )LS(f ;U) ( ) in the Helmholtz equation with \omega = 4 (left) and \omega = 7 (right).

Table 5
Ieff(C(\scrT )) := C(\scrT )1/2LS(f ;U)1/2/\| u - U\| X and Ieff(\alpha ) := \alpha  - 1/2LS(f ;U)1/2/\| u - U\| X .

\omega = 4 \omega = 7
ndof Ieff(C(\scrT )) Ieff(\alpha ) Ieff(C(\scrT )) Ieff(\alpha )
257 33.44 1.23 - 1.75
1025 1.60 1.29 - 1.24
4097 1.27 1.77 - 1.06
16385 1.22 3.02 - 1.02
65537 1.23 5.56 1.47 1.01
262145 1.25 9.72 1.09 1.01
1048577 1.23 14.15 1.03 1.05
4194305 1.46 16.70 1.15 1.17
16777217 1.53 17.60 1.54 1.56

lower eigenvalue bounds for the Fichera corner domain. Table 6 shows a preasymptotic
regime with C(\scrT ) and \alpha  - 1 close (C(\scrT ) = \alpha  - 1 on the coarsest mesh) together without
significant improvement of C(\scrT ). As hmax \ll 1 decreases, the values C(\scrT ) decrease
and lead to a smaller reliability constant.

5.6. Convergence speed. Remark 4.2 states that with a fixed number N of
approximated eigenvalues the constant C(\scrT ) - 1 converges toward the inverse \mu  - 1

N+1 of
theN+1 smallest least-squares eigenvalue \mu N+1 in (16) (resp., (18)). The convergence
speed depends on the convergence speed of the eigenvalue bounds toward the exact
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Table 6
C(\scrT ) for \omega = 1 and \omega = 2 on the unit cube (left) and Fichera corner domain (right).

ndof \omega = 1 \omega = 2
106 1.749637 5.433454
772 1.673570 5.328303
6024 1.494625 4.071214
47888 1.372395 2.962454
382496 1.297562 2.269467

ndof \omega = 1 \omega = 2
96 7.005450 282.3264
682 6.519202 282.3264
5284 4.981221 279.1736
41928 3.746034 261.4379
334736 3.066027 232.3960
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Fig. 5. Distance \mu  - 1
N+1  - C(\scrT ) in the Poisson model problem on the unit square (left) and the

L-shaped domain (right).

eigenvalues. This leads to C(\scrT ) - \mu  - 1
N+1 = \scrO (h2max) for the Poisson model problem on

the unit square. The reduced elliptic regularity on the L-shaped domain results for
the Poisson model problem in the reduced convergence speed C(\scrT ) - \mu  - 1

N+1 = \scrO (h2 - \epsilon 
max)

with \epsilon > 0 and an educated guess \epsilon = 2/3. Figure 5 displays the distance C(\scrT ) - \mu  - 1
N+1

from a computation as in subsection 5.2 with fixed N = 1, 4, 19 and uniformly refined
meshes. It confirms the expected convergence rate on the unit square. On the L-
shaped domain, the displayed convergence speed equals \scrO (h1.7max) for N = 1, 4 and

differs from the expected rate \scrO (h
4/3
max). This might indicate that the computation

with up to ndof = 1048577 degrees of freedom does not overcome the preasymptotic
regime. For the same reason, no convergence rate can be observed for N = 19 on the
L-shaped domain.

5.7. Discussion. The overall conclusions from all the numerical benchmarks re-
ported in this section are in agreement with the theoretical predictions of this work.
The improvement of the reliability constant \alpha C(\scrT ) is visible in all experiments and
moderate for the Poisson model problem without degenerated geometry but can ex-
ceed several orders of magnitude for certain parameters of \omega in the Helmholtz and
Maxwell equations. A possible explanation starts with the overall observation that
\| u  - U\| 2X \leq LS(f ;U) in (1) so that 1 \leq C(\scrT ) \leq \alpha  - 1 and \alpha  - 1 moderate merely
implies a moderate improvement of \alpha C(\scrT ) \leq 1. For critical parameter 2 \leq \omega \leq 6 in
subsection 5.4, Table 4 displays 4 \leq \alpha  - 1 \leq 500 and allows for a dramatic improvement
of \alpha C(\scrT ) \ll 1. In those examples, a few eigenfunctions need to be resolved (with hmax

sufficiently small) so that (24) leads to C(\scrT ) close to \mu (m+1) - 1 \ll \mu (1) - 1 = \alpha  - 1 with
a moderate m \in \BbbN . This reduction factor of nearly \alpha \mu (m+ 1) - 1 for fine meshes has
to be evaluated in relation to the additional costs for several eigenvalue calculations.

The remaining parts of this subsection focus on the guaranteed error control as
a stopping criterion of an adaptive mesh-refinement with guaranteed control of \| u - 
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U\| X smaller than a given tolerance tol. Suppose that a fine triangulation \scrT satisfies
C(\scrT )LS(f ;U) \leq tol2 with ndof degrees of freedom in the discrete system. For a
simplified comparison, suppose that the computational costs CPU are proportional to
ndof (for an optimal iterative solver despite the fact that our numerical examples run
with the direct MATLAB solver mldivide). Subsection 5.2 suggests that the adaptive
algorithm may stop with the triangulation \scrT , but requires extra costs of 15CPU for
the more expansive improved GUB; the final result is obtained with the costs 16CPU
(online) with the application of the three-stage algorithm of subsection 4.2. In the
present model situation, the usage of \alpha  - 1LS(f ;U) implies further mesh-refinements
until the bound \alpha  - 1LS(f ;U \prime ) \leq tol2 holds for a discrete solution U \prime with respect
to a much finer mesh \scrT \prime with ndof\prime degrees of freedom. In the case of low-order
discretizations at hand and an optimal convergence rate 0.5 of the adaptive algorithm
in 2D, one may expect \alpha ndof\prime = ndof/C(\scrT ). The computational costs of the discrete
solutions with respect to \scrT \prime are larger than \alpha  - 1C(\scrT ) - 1. Hence, if \alpha C(\scrT ) \leq 1/16, the
three-stage algorithm of subsection 4.2 appears less expensive in the computational
online costs. This calculation leaves out the additional mesh-refinements required
in the adaptive algorithm to compute \scrT \prime and therefore is very conservative. This
discussion also ignores the fact that C( \v \scrT ) may be computed on a moderate mesh \v \scrT 
and may utilize C(\scrT ) \leq C( \v \scrT ) for all refinements \scrT .

The offline costs concern the eigenvalues of the domain, which are known in
subsection 5.5 and are less laborious in subsections 5.2--5.4: the convergence rate
O(h2smax) of the eigenvalue error is of higher order compared to O(hsmax) in the source
problem for s \leq 1 depending on the reduced elliptic regularity.

Based on this discussion, the three-stage algorithm of subsection 4.2 is advanta-
geous in subsection 5.4 for 3 \leq \omega \leq 6 (and for higher \omega with much finer meshes). As
a rule of thumb, the proposed algorithm appears advantageous if 16\alpha \leq \mu (m+ 1) for
moderate m and sufficiently small tolerances in guaranteed error control.
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