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Abstract
This paper introduces an explicit residual-based a posteriori error analysis for the
symmetric mixed finite element method in linear elasticity after Arnold–Winther
with pointwise symmetric and H(div)-conforming stress approximation. The resid-
ual-based a posteriori error estimator of this paper is reliable and efficient and truly
explicit in that it solely depends on the symmetric stress and does neither need any
additional information of some skew symmetric part of the gradient nor any efficient
approximation thereof. Hence, it is straightforward to implement an adaptive mesh-
refining algorithm. Numerical experiments verify the proven reliability and efficiency
of the new a posteriori error estimator and illustrate the improved convergence rate in
comparison to uniform mesh-refining. A higher convergence rate for piecewise affine
data is observed in the L2 stress error and reproduced in non-smooth situations by the
adaptive mesh-refining strategy.
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1 Introduction

1.1 Overview

The design of a pointwise symmetric stress approximation σh ∈ L2(Ω;S) with diver-
gence in L2(Ω;Rd), written σh ∈ H(div,Ω;S), has been a long-standing challenge
[2] and the first positive examples in [5] initiated what nowadays is called the finite
element exterior calculus [4]. The a posteriori error analysis of mixed finite element
methods in elasticity started with [11] on PEERS [3], where the asymmetric stress
approximation γh arises in the discretization as a Lagrange multiplier to enforce
weakly the stress symmetry. This allows the treatment of the term C

−1σh + γh as
an approximation of the (nonsymmetric) functional matrix Du for the displacement
field [11] with the arguments of [1,9] developed for mixed finite element schemes
for a Poisson model problem. Here and throughout, C denotes a fourth-order elas-
ticity tensor with two Lamé constants λ and μ and C

−1 is its inverse. Mixed finite
element methods appear attractive in the incompressible limit for they typically avoid
the locking phenomenon [12] as λ → ∞.

Formixedfinite elementmethods like the symmetricArnold–Winther finite element
schemes [5], the subtle term is the nonconforming residual: Given any piecewise
polynomial σh ∈ H(div,Ω;S), compute an upper bound η(T , σh) of

inf
v∈V

∥
∥
∥C

−1/2σh − C
1/2ε(v)

∥
∥
∥
L2(Ω)

� η(T , σh).

Despite general results in this direction [10,17,18], this task had been addressed
only by the computation of an approximation to the optimal v with Green strain
ε(v) := sym Dv or of some skew-symmetric approximation γh motivated from the
first results in [11] on PEERS. In fact, any choice of a piecewise smooth and pointwise
skew-symmetric γh allows for an a posteriori error control of the symmetric stress error
σ − σh in [15]. Its efficiency, however, depends on the (unknown and uncontrolled)
efficiency of the choice of γh as an approximation to the skew-symmetric part γ of Du.

This paper proposes the first reliable and efficient explicit residual-based a pos-
teriori error estimator of the nonconforming residual with the typical contributions
to η(T , σh) computed from the (known) Green strain approximation εh := C

−1σh .
Besides oscillations of the applied forces in the volume and along theNeumann bound-
ary, there is a volume contribution h2T ‖ rot rot εh‖L2(T ) for each triangle T ∈ T and
an edge contribution with the jump [εh]E across an interior edge E with unit normal
νE , tangential unit vector τE , and length hE , namely

h1/2E ‖τE · [εh]EτE‖L2(E) + h3/2E ‖τE · [rotNC εh]E − ∂(νE · [εh]EτE )/∂s‖L2(E) ,

and corresponding modification on the edges on the Dirichlet boundary with the (pos-
sibly inhomogeneous) Dirichlet data; cf. Remark 2 for some partial simplification of
the last term displayed.

The analysis is restricted to the two dimensional case, since it involves explicit
calculations in two dimensions without any reference to the exterior calculus but with
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Residual-based AFEM for Arnold–Winther MFEM 207

inhomogeneous Dirichlet and Neumann boundary data. The main result is reliability
and efficiency to control the stress error robustly in the sense that the multiplicative
generic constants hidden in the notation � do neither depend on the (local or global)
mesh-size nor on the parameter λ > 0 but may depend on μ > 0 and on the shape
regularity of the underlying triangulation T of the domain Ω into triangles through a
lower bound of the minimal angle therein.

1.2 Linear elastic model problem

The elastic body Ω is a simply-connected bounded Lipschitz domain Ω ⊂ R
2 in

the plane with a (connected) polygonal boundary ∂Ω = ΓD ∪ ΓN split into parts.
The displacement boundary ΓD is compact and of positive surface measure, while
the traction boundary is the relative open complement ΓN = ∂Ω\ΓD with outer
unit normal vector ν. Given uD ∈ H1(Ω;R2), the volume force f ∈ L2(Ω;R2),
and the applied surface traction g ∈ L2(ΓN ;R2), the linear elastic problem seeks a
displacement u ∈ H1(Ω;R2) and a symmetric stress tensor σ ∈ H(div,Ω;S) with

− div σ = f and σ = Cε(u) in Ω,

u = uD on ΓD, σν = g on ΓN .
(1)

Throughout this paper, given the Lamé parameters λ,μ > 0 for isotropic linear
elasticity, the positive definite fourth-order elasticity tensor C acts as CE := 2μ E +
λ tr(E) 12×2 on any matrix E ∈ S with trace tr(E) and the 2 × 2 unit matrix 12×2.
Note that uD acts in (1) only on ΓD and is an extension of the continuous function
uD ∈ C(ΓD;R2) also supposed to belong to the edgewise second order Sobolev space
H2(E (ΓD)) below to allow second derivatives with respect to the arc length along
boundary edges.

More essential will be a discussion on the precise conditions on the Neumann data
g and its discrete approximation gh below for they belong to the essential boundary
conditions in the mixed finite element method based on the dual formulation.

In addition to the set of homogeneous displacements V and the aforementioned
stress space H(div,Ω;S), namely,

V := {v ∈ H1(Ω;R2)
∣
∣ v|ΓD = 0},

H(div,Ω;S) := {τ ∈ L2(Ω;S)
∣
∣ div τ ∈ L2(Ω;R2)},

and with the exterior unit normal vector ν along ∂Ω , the inhomogeneous stress space

Σ(g) :=
{

σ ∈ H(div,Ω;S)
∣
∣

∫

ΓN

ψ · (σν) ds =
∫

ΓN

ψ · g ds for all ψ ∈ V

}

is defined with respect to the Neumann data g ∈ L2(ΓN ) and, in particular, Σ0 :=
Σ(0) abbreviates the stress space with homogeneous Neumann boundary conditions.

Given data uD, f , g as before, the dual weak formulation of (1) seeks (σ, u) ∈
Σ(g) × L2(Ω;R2) with
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208 C. Carstensen et al.

∫

Ω

σ : C−1τ dx +
∫

Ω

u · div τ dx =
∫

ΓD

uD · (τν) ds for all τ ∈ Σ0,

∫

Ω

v · div σ dx = −
∫

Ω

f · v dx for all v ∈ L2(Ω;R2).

(2)

It is well known that the two formulations are equivalent and well posed in the
sense that they allow for unique solutions in the above spaces and are actually
slightly more regular according to the reduced elliptic regularity theory. The reader is
refereed to textbooks on finite element methods [6–8] for proofs and further descrip-
tions.

Throughout this paper, the model problem considers truly mixed boundary condi-
tions with the hypothesis that both ΓD and ΓN have positive length. The remaining
cases of a pure Neumann problem or a pure Dirichlet problem require standard
modification and are immediately adopted. The presentation focuses on the case
of isotropic linear elasticity with constant Lamé parameters λ and μ for brevity
and many results carry over to more general situations (cf. Remarks 1 and 2 for
instance).

1.3 Mixed finite element discretization

LetT denote a shape-regular triangulation of Ω into triangles (in the sense of Ciarlet
[8]) with set of nodes N , set of interior edges E (Ω), set of Dirichlet edges E (ΓD)

and set of Neumann edges E (ΓN ). The triangulation is compatible with the boundary
pieces ΓD and ΓN in that the boundary condition changes only at some vertexN and
ΓD (resp. ΓN ) is partitioned in E (ΓD) (resp. E (ΓN )).

The piecewise polynomials (piecewise with respect to the triangulationT ) of total
degree at most k ∈ N0 are denoted as Pk(T ), their vector- or matrix-valued versions
as Pk(T ;R2) or Pk(T ;R2×2) etc. The subordinated Arnold–Winther finite element
space AWk(T ) of index k ∈ N [5] reads

AWk(T ) :=
{

τ ∈ Pk+2(T ;S) ∩ H(div,Ω;S)
∣
∣ div τ ∈ Pk(T ;R2)

}

.

TheNeumannboundary conditions are essential conditions and are traditionally imple-
mented by some approximation gh to g in the normal trace space

G(T ) :=
{

(τhν)|ΓN ∈ L2(ΓN ;R2)
∣
∣ τh ∈ AWk(T )

}

(recall that ν is the exterior unit normal along the boundary). Given any gh ∈ G(T ),
the discrete stress approximations are sought in the non-void affine subspace

Σ(gh,T ) := Σ(gh) ∩ AWk(T )

of AWk(T ) with test functions in the linear subspace Σ(0,T ) := Σ0 ∩ AWk(T ).
Then there exists a unique discrete solution σh ∈ Σ(gh,T ) and uh ∈ Vh :=
Pk(T ;R2) to
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∫

Ω

σh : C−1τh dx+
∫

Ω

uh · div τh dx=
∫

ΓD

uD · (τhν) ds for all τh ∈Σ(0,T ),

∫

Ω

vh · div σh dx =
∫

Ω

f · vh dx for all vh ∈ Vh .

(3)

The explicit design of a Fortin projection leads in [5] to quasi-optimal a priori error
estimates for an exact solution (σ, u) ∈ (Σ(g)∩ Hk+2(Ω;S))× Hk+2(Ω) to (1) and
the approximate solution (σh, uh) to (3), namely (with the maximal mesh-size h)

‖σ − σh‖L2(Ω) � hm‖σ‖Hm (Ω) for 1 ≤ m ≤ k + 2,

‖u − uh‖L2(Ω) � hm‖u‖Hm+1(Ω) for 1 ≤ m ≤ k + 1.

Another stable pair of different and mesh-depending norms in [14] implies the L2

best approximation of the stress error σ − σh up to a generic multiplicative constant
and data oscillations on f under some extra condition (N) on the Neumann data
approximation gh implied by the first and zero moment orthogonality assumption g−
gh ⊥ P1(E (ΓN );R2) (⊥ indicates orthogonality in L2(ΓN )) met in all the numerical
examples of this paper.

For simple benchmark examples with piecewise polynomial data f and g, there is
even a superconvergence phenomenon visible in numerical examples. The arguments
of this paper allowaproof of fourth-order convergenceof the L2 stress error‖σ−σh‖ =
O(h4) in the lowest-order Arnold–Winther method with k = 1 for a smooth stress
σ ∈ H4(Ω;S) with f = fh ∈ P1(T ;R2) and g = gh ∈ G(T ). (In fact, once the
data are not piecewise affine, the arising oscillation terms are only of at most third
order and the aforementioned convergence estimates are sharp.)

This is stated as Theorem 5 in the appendix, because the a priori error analysis lies
outside of the main focus of this work. It is surprising though that adaptive mesh-
refining suggested with this paper recovers this higher convergence rate even for the
inconsistent Neumann data in the Cook membrane benchmark example below.

1.4 Explicit residual-based a posteriori error estimator

Thenovel explicit residual-based error estimator for the discrete solution (σh, uh) to (3)
depends only on the Green strain approximation C

−1σh and its piecewise derivatives
and jumps across edges.

Given any edge E of length hE , let νE denote the unit normal vector (chosen with
a fixed orientation such that it points outside along the boundary ∂Ω of Ω) and let
τE denote its tangential unit vector; by convention τE = (0,−1; 1, 0)νE with the
indicated asymmetric 2 × 2 matrix. The tangential derivative τE · ∇• along an edge
(or boundary) is identified with the one-dimensional derivative ∂ • /∂s with respect to
the arc-length parameter s. The jump [v]E of any piecewise continuous scalar, vector,
or matrix v across an interior edge E = ∂T+ ∩ ∂T− shared by the two triangles T+
and T− such that νE points outside T+ along E ⊂ ∂T+ reads

[v]E := (v|T+)|E − (v|T−)|E .

123



210 C. Carstensen et al.

The rotation acts on a vector field Φ (and row-wise on matrices) via rotΦ :=
∂1Φ2 − ∂2Φ1 and rotNC denotes its piecewise application.

Under the present notation and the throughout abbreviation εh := C
−1σh , the

explicit residual-based a posteriori error estimator reads

η2(T , σh)

:=
∑

T∈T
h4T ‖ rot rot εh‖2

L2(T )
+ osc2( f ,T ) + osc2(g − gh ,E (ΓN ))

+
∑

E∈E (Ω)

(

hE‖τE · [εh ]E τE‖2
L2(E)

+ h3E‖τE ·
(

[rotNC εh ]E − ∂[εh ]EνE

∂s

)

‖2
L2(E)

)

+
∑

E∈E (ΓD )

(

hE‖τE ·
(

εhτE − ∂uD
∂s

)

‖2
L2(E)

+ h3E‖τE · rot εh−νE ·
(

∂εhτE

∂s
− ∂2uD

∂s2

)

‖2
L2(E)

)

(4)

for the oscillations osc( f ,T ) of the volume force and the oscillations of the traction
boundary condition osc(g − gh,E (ΓN )), defined below.

Theorem 1 (reliability) There exists a mesh-size and λ independent constant Crel

(which may depend on μ and on the shape-regularity of the triangulation T through
a global lower bound of the minimal angle therein) such that the exact (resp. discrete)
stress σ from (1) [resp. σh from (3)] with g − gh ⊥ P0(E (ΓN );R2) and the error
estimator (4) satisfy

‖σ − σh‖L2(Ω) ≤ Crelη(T , σh).

The a posteriori error estimator η(T , σh) already involves two data oscillation
terms osc( f ,T ) and osc(g−gh,E (ΓN )) defined as the square roots of the respective
terms in

osc2( f ,T ) :=
∑

T∈T
h2T ‖ f − fh‖2L2(T )

for the L2 projection fh of f onto Pk(T ;R2);

osc2(g − gh,E (ΓN )) :=
∑

E∈E (ΓN )

hE‖g − gh‖2L2(E)
.

For any edge E and a degree m ≥ k + 2, let Πm,E : L2(E) → Pm(E) denote the
L2 projection onto polynomials of degree at most m. For any E ∈ E (ΓD) define the
two Dirichlet data oscillation terms

osc2I (uD, E) := hE‖(1 − Πm,E )∂(uD · τE )/∂s‖2L2(E)
, (5)

osc2I I (uD, E) := h3E‖(1 − Πm,E )∂2(uD · νE )/∂s2‖2L2(E)
. (6)

Their sum defines the overall Dirichlet data approximation osc(uD,E (ΓD)) as the
square root of

osc2(uD,E (ΓD)) :=
∑

E∈E (ΓD)

(

osc2I (uD, E) + osc2I I (uD, E)
)

.
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The analysis of Sect. 3 is local and states for each of the five local residuals an
upper bound related to the error in a neighborhood. The global efficiency is displayed
as follows.

Theorem 2 (efficiency) There exists a mesh-size and λ,μ independent constant Ceff

(which may depend on the shape-regularity of the triangulation T through a global
lower bound of the minimal angle therein) such that the exact (resp. discrete) stress σ

from (1) [resp. σh from (3)] with g−gh ⊥ P0(E (ΓN );R2) and the error estimator (4)
satisfy

C−1
eff η(T , σh)≤‖σ −σh‖L2(Ω)+osc( f ,T )+osc(g−gh,E (ΓN ))+osc(uD,E (ΓD)).

1.5 Outline of the paper

The remaining parts of this paper provide a mathematical proof of Theorems 1 and 2
and numerical evidence in computational experiments on the novel a posteriori error
estimation and its robustness as well as on associated mesh-refining algorithms.

The proof of the reliability of Theorem 1 in Sect. 2 adopts arguments of [11,15] and
carries out two integration by parts on each triangle plus one-dimensional integration
by parts along all edges. The resulting terms are in fact locally efficient in Sect. 3 with
little generalizations of the bubble-function methodology due to Verfürth [24]. The
five lemmas of Sect. 3 give slightly sharper results and in total imply Theorem 2.

The point in Theorems 1 and 2 is that the universal constants Crel and Ceff may
depend on the Lamé parameter μ but are independent of the critical Lamé parameter
λ as supported by the benchmark examples of the concluding Sect. 4. Adaptive mesh-
refining proves to be highly effectivewith the novel a posteriori error estimator even for
incompatibleNeumann data. Four benchmark exampleswith the Poisson ratio ν = 0.3
or 0.4999 provide numerical evidence of the robustness of the reliable and efficient
a posteriori error estimation and for the fourth-order convergence of Theorem 5.

Three appendices highlight some improvements in the numerical benchmarks:
Appendix A explains the improved convergence order for piecewise affine data and B
and C explain how to treat incompatible Neumann data successfully.

1.6 Comments on general notation

Standard notation on Lebesgue and Sobolev spaces and norms is adopted throughout
this paper and, for brevity, ‖ · ‖ := ‖ · ‖L2(Ω) denotes the L2 norm. The piecewise
action of a differential operator is denoted with a subindex NC , e.g., ∇NC denotes
the piecewise gradient (∇NC•)|T := ∇(•|T ) for all T ∈ T . Sobolev functions are
usually defined on open sets and the notation Wm,p(T ) (resp. Wm,p(T )) substitutes
Wm,p(int(T )) for a (compact) triangle T and its interior int(T ) (resp.Wm,p(int(T )))
and their vector and matrix versions.

For a differentiable function φ, Curl φ := (−∂2φ, ∂1φ) is the rotated gradient; for
a two-dimensional vector field Φ, CurlΦ is the 2 × 2 matrix-valued rotated gradient
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212 C. Carstensen et al.

CurlΦ := (−∂2Φ1, ∂1Φ1;−∂2Φ2, ∂1Φ2) = DΦ(0, 1;−1, 0).

(The signs are not uniquely determined in the literature and some care is required.)
The colon denotes the scalar product A : B := ∑

α,β=1,2 Aα,βBα,β of 2×2matrices
A, B. The inequality A � B between two terms A and B abbreviates A ≤ C B with
some multiplicative generic constant C , which is independent of the mesh-size and
independent of the one Lamé parameter λ ≥ 0 but may depend on the other μ > 0
and may depend on the shape-regularity of the underlying triangulation T and the
parameter k related to the polynomial degree of the scheme.

2 Proof of reliability

This section is devoted to the proof of Theorem 1 based on a Helmholtz decomposition
of [11] with two parts as decomposed in Theorem 3 below. The critical part is the L2

product ofC−1(σ −σh) times theCurl of an unknown functionCurl β. The observation
from [15] is that one canfind anArgyris finite element approximationβh toβ ∈ H2(Ω)

such that the continuous function φ := β − βh ∈ H2(Ω) vanishes at all vertices N
of the triangulation. Two integration by parts on each triangle plus one-dimensional
integration by parts along the edges E of the triangulation eventually lead to a key
identity.

Lemma 1 (representation formula) Any function εh ∈ H2(T ;S) (i.e. εh is piecewise
in H2 with values in S) and any φ ∈ H2(Ω) with φ(z) = 0 at all vertices z ∈ N in
the regular triangulation T satisfy

(εh,Curl
2 φ)L2(Ω) = (rotNC rotNC εh, φ)L2(Ω)

+
∑

E∈E (Ω)

(

(τE · [εh]EτE , ∂νEφ)L2(E) −
(

[rotNC εh]E − ∂[εh]EνE

∂s
, φ τE

)

L2(E)

)

+
∑

E∈E (∂Ω)

(

(τE · εhτE , ∂νEφ)L2(E) −
(

rot εh − ∂εhνE

∂s
, φ τE

)

L2(E)

)

.

The subsequent integration by parts formula is utilized frequently throughout this
paper for φ ∈ H1(Ω;R2) and Ψ ∈ H1(Ω;R2×2)

∫

Ω

Ψ : Curl φ dx +
∫

Ω

φ · rotΨ dx =
∫

∂Ω

φ · Ψ τE ds.

Any differentiable (scalar) function ϕ, satisfies the elementary relations

τE · Curl ϕ = ∂ϕ/∂νE and νE · Curl ϕ = −∂ϕ/∂s = −∂ϕ/∂τE on E ∈ E .

Proof Integrate by parts twice on each triangle and rearrange the remaining boundary
terms to deduce (with the abbreviation rotNC rotNC ≡ rot2NC )
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(εh,Curl
2 φ)L2(Ω) = (rot2NC εh, φ)L2(Ω)

+
∑

E∈E (Ω)

(

([εh]EτE ,Curl φ)L2(E) − ([rotNC εh]E · τE , φ)L2(E)

)

+
∑

E∈E (∂Ω)

(

(εhτE ,Curl φ)L2(E) − (rot εh · τE , φ)L2(E)

)

.

The term ([εh]EτE ,Curl φ)L2(E) in the above sum is split into orthogonal components

Curl φ = (τE · Curl φ)τE + (νE · Curl φ)νE

= (τE · Curl φ)τE − (∂φ/∂s)νE on E ∈ E .

Since φ vanishes at the vertices, an integration by parts along each interior edge E for
the last term shows ([εh]EτE , (∂φ/∂s)νE )L2(E) = −(∂[εh]EτE/∂s, φνE )L2(E). This
proves

([εh]EτE ,Curl φ)L2(E) = (τE · [εh]EτE , ∂νEφ)L2(E) +
(

∂νE · [εh]EτE

∂s
, φ

)

L2(E)

.

The same formula holds for any boundary edge E when [εh]E is replaced by εh .
The combination of the latter identities with the first displayed formula of this proof
verifies the asserted representation formula. ��

The contribution of ε(u) = C
−1σ times the Curl2 φ ∈ L2(Ω;S) exclusively leads

to boundary terms. Throughout this paper, suppose that the Dirichlet data uD satisfies
uD ∈ C(ΓD) ∩ H2(E (ΓD)) in the sense that uD is globally continuous with uD|E ∈
H2(E;R2) for all E ∈ E (ΓD).

Lemma 2 (boundary terms) Any Sobolev function v ∈ H1(Ω;R2) with boundary
values uD ∈ C(ΓD) ∩ H2(E (ΓD)) on ΓD and any φ ∈ H2(Ω) with φ = ∂φ/∂ν = 0
along ΓN with φ(z) = 0 for any vertex z of ΓD in its relative interior satisfy

(ε(v),Curl2 φ)L2(Ω) =
∑

E∈E (ΓD)

((
∂uD

∂s
,

∂φ

∂νE
τE

)

L2(E)

+
(

∂2uD

∂s2
, φ νE

)

L2(E)

)

.

Proof A density argument shows that it suffices to prove this identity for smooth
functions v and φ, when integration by parts arguments show that the left-hand side
is equal to

∫

∂Ω

Curl φ · ∂v

∂s
ds =

∑

E∈E (∂Ω)

∫

E

(
∂φ

∂νE

∂(v · τE )

∂s
+ φ

∂2(v · νE )

∂s2

)

ds.

The equality follows from an orthogonal split Curl φ = (τ ·Curl φ)τ +(ν ·Curl φ)ν

into the normal and tangential directions of ν and τ along the boundary ∂Ω followed
by an integration by parts along ∂Ω with φ(z) = 0 for vertices z in ΓD with a jump
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of the normal unit vector. The substitution of the boundary conditions concludes the
proof. ��

The consequence of the previous two lemmas is a representation formula for the
error times a typical function Curl2 φ. To understand why the contributions on the
Neumann boundary of φ and ∇φ disappear along ΓN , some details on the Helmholtz
decomposition are recalled from the literature. For this, let Γ0, . . . , ΓJ denote the
compact connectivity components of ΓN .

Theorem 3 (Helmholtz decomposition [11, Lemma 3.2]) For σ − σh ∈ L2(Ω;S),
there exists α ∈ V , constant vectors c0, . . . , cJ ∈ R

2 with c0 = 0 and β ∈ H2(Ω)

with
∫

Ω
β dx = 0 and Curl β = c j on Γ j ⊆ ΓN for all j = 0, . . . , J such that

σ − σh = Cε(α) + Curl Curl β. (7)

��

The second ingredient is an approximation βh of β from the Helmholtz decom-
position in Theorem 3 based on the Argyris finite element functions A(T ) ⊂
C1(Ω) ∩ P5(T ) [7,8,20]. The local mesh-size hT ∈ P0(T ) in the triangulation
T is defined as its diameter hT |T := hT on each triangle T ∈ T .

Lemma 3 (quasi-interpolation) Given any β as in Theorem 3 there exists some
βh ∈ A(T ) such that φ := β − βh ∈ H2(Ω) vanishes at any vertex z ∈ N of
the triangulation, φ and its normal gradient ∇φ · ν vanish on ΓN , and the local
approximation and stability property holds in the sense that

‖h−2
T φ‖ + ‖h−1

T Curl φ‖ + ‖Curl2 φ‖ � ‖β‖H2(Ω).

Proof This has been (partly) utilized in [15] and also follows from [21]. ��

The combination of all aforementioned arguments leads to the following estimate
as an answer to the question of Sect. 1.1 in terms of directional derivatives of εh :=
C

−1σh . Recall the definition of η(T , σh) from (4).

Theorem 4 (key result) Let σ ∈ H(div,Ω;S) solve (1) and let σh ∈ AWk(T ) solve
(3). Given β from Theorem 3 and its quasi-interpolation βh from Lemma 3, the differ-
ence φ := β − βh satisfies

(C−1(σ − σh),Curl
2 φ)L2(Ω) � |β|H2(Ω)η(T , σh).

Proof Lemmas 1 and 2 lead to a formula for (εh,Curl2 φ)L2(Ω), εh := C
−1σh , in

which all the contributions for E ∈ E (ΓN ) with φ and ∇φ vanish along ΓN . The
remaining formula reads
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(C−1(σ − σh),Curl2 φ)L2(Ω) = −(rot2NC εh , φ)L2(Ω)

−
∑

E∈E (Ω)

((

τE · [εh]E τE ,
∂φ

∂νE

)

L2(E)

−
(

[rotNC εh]E − ∂[εh]EνE

∂s
, φ τE

)

L2(E)

)

+
∑

E∈E (ΓD)

((
∂uD
∂s

− εhτE , τE
∂φ

νE

)

L2(E)

+
(

τE ·
(

rotNC εh − ∂(εhνE )

∂s

)

+ ∂2uD · νE

∂s2
, φ

)

L2(E)

⎞

⎠ .

The proof concludes with Cauchy–Schwarz inequalities, trace inequalities, and the
approximation estimates of Lemma 3. The remaining details are nowadays standard
arguments in the a posteriori error analysis of nonconforming andmixed finite element
methods and hence are omitted. ��

Before the proof of Theorem 1 concludes this section, three remarks and one lemma
are in order.

Remark 1 (nonconstant coefficients) The main parts of the reliability analysis of this
section hold for rather general material tensors C as long as εh := C

−1σh allows for
the existence of the traces and the derivatives in the error estimator (4) in the respective
L2 spaces. For instance, if λ andμ are piecewise smooth with respect to the underlying
triangulation T .

Remark 2 (constant coefficients) The overall assumption of constant Lamé parameters
λ and μ allows a simplification in the error estimator (4). It suffices to have μ globally
continuous and μ and λ piecewise smooth to guarantee

∂[εh]EνE

∂s
· τE = 0 along E ∈ E (Ω).

(The proof utilizes the structure of C−1 with C−1E = 1
2μ(E − λ

2(λ+μ)
tr(E)12×2) for

any E ∈ S as a linear combination of the identity and some scalar multiple of the 2×2
unit matrix. The terms with the identity lead to 1/(2μ) times the jump [σh]EνE = 0
of the H(div) conforming stress approximations. The jump terms with the unit matrix
(even with jumps of λ) are multiplied with the orthogonal unit vectors νE and τE and
so vanish as well.)

Remark 3 (related work) Although the work [22] concerns a different problem (bend-
ing of a plate of fourth order) with a different discretization (even nonconforming in
H(div)), some technical parts of that paper are related to those of this by a rotation of
the underlying coordinate system and the substitution of div div by rot rot etc. Another
Helmholtz decomposition also allows for a discrete version and thereby enables a proof
of optimal convergence of an adaptive algorithm with arguments from [13,19].

A technical detail related to the robustness in λ → ∞ is a well known lemma
that controls the trace of a matrix E ∈ R

2×2 by its deviatoric part dev E := E −
tr(E)/2 12×2 and its divergencemeasured in the dual V ∗ ⊂ H−1(Ω;R2) of V , namely
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‖ div τ‖−1 := sup
v∈V|v|H1(Ω)

=1

∫

Ω

τ : Dv dx for all τ ∈ L2(Ω;R2×2).

Lemma 4 (tr-dev-div) Let Σ0 be a closed subspace of H(div,Ω;R2×2), which does
not contain the constant tensor 12×2. Then any τ ∈ Σ0 satisfies

‖ tr(τ )‖L2(Ω) � ‖ dev τ‖L2(Ω) + ‖ div τ‖−1.

Proof There are several variants of the tr-dev-div lemma known in the literature [6,
Proposition 9.1.1]. The version in [11, Theorem 4.1] explicitly displays a version with
‖ div τ‖ replacing ‖ div τ‖−1. Since its proof is immediately adopted to prove the
asserted version, further details are omitted. ��

The remaining part of this section outlines why Theorem 1 follows from The-
orem 4 with the arguments from [11,15]. The energy norms for any v ∈ V and
τ ∈ H(div,Ω;S) read

|||v|||2 :=
∫

Ω

ε(v) : Cε(v) dx and ‖τ‖2
C−1 :=

∫

Ω

τ : C−1τ dx .

The remaining residual is denoted by

Res(v) :=
∫

Ω

f · v dx +
∫

ΓN

g · v ds −
∫

Ω

σh : ε(v) dx for all v ∈ V

with its dual norm

|||Res|||∗ := sup
v∈V|||v|||=1

Res(v).

It is shown in the proof of [15, Theorem 3.1] that α ∈ V and β ∈ H2(Ω) from the
Helmholtz decomposition of the error σ −σh in Theorem 3 are orthogonal with respect
to the L2 scalar product weighted with C

−1. This implies

‖σ − σh‖2C−1 = (σ − σh, ε(α))L2(Ω) + (C−1(σ − σh),Curl
2 β)L2(Ω). (8)

Letβh denote the quasi-interpolation ofβ fromLemma3. It is known [15] thatCurl2 βh

is a divergence-free element of Σ(0,T ). Therefore, (2) and (3) imply

(C−1(σ − σh),Curl
2 βh)L2(Ω) = 0.

Thus, with φ = β − βh , the second term of (8) equals (C−1(σ − σh),Curl2 φ)L2(Ω)

and hence is controlled in the key estimate of Theorem 4 as

(C−1(σ − σh),Curl
2 β)L2(Ω) � |β|H2(Ω)η(T , σh).
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Lemma 4 applies toΣ0 as the subspace of all τ ∈ H(div,Ω;S)with homogeneous
Neumann data τν = 0 alongΓN . Since τ := Curl2 β is divergence free (by the relation
div Curl = 0) and since τν = −∂ Curl β/∂s along ΓN (owing to the aforementioned
elementary relations and the convention that the first Curl acts row-wise on Curl β),
where Curl β in Theorem 3 is piecewise constant, it follows that τ ∈ Σ0. On the other
hand 12×2 /∈ Σ0 because ΓN �= ∅. Consequently, Lemma 4 implies ‖Curl2 β‖ �
‖ dev Curl2 β‖. This and elementary calculations with C

−1 lead to

|β|H2(Ω) = ‖Curl2 β‖ � ‖ dev Curl2 β‖ � ‖Curl2 β‖C−1 .

The combination with the estimate resulting from Theorem 4 proves

(C−1(σ − σh),Curl
2 β)L2(Ω) � ‖Curl2 β‖C−1 η(T , σh).

This, the stability ‖Curl2 β‖C−1 ≤ ‖σ − σh‖C−1 , and |||α||| = |||Res|||∗ lead in (8) to

‖σ − σh‖C−1 � |||Res|||∗ + η(T , σh). (9)

The remaining term is the estimate of the dual norm |||Res|||∗ of the residual which is
done, e.g., in [15, Lemma 3.3] (under the assumption g − gh ⊥ P0(E (ΓN )))

|||Res|||∗ � osc( f ,T ) + osc(g − gh,E (ΓN )) ≤ η(T , σh).

This and (9) imply

‖ dev(σ − σh)‖ � ‖σ − σh‖C−1 � η(T , σh).

For any test function v ∈ V with |v|H1(Ω) = 1,
∫

Ω
(σ − σh) : Dv dx = Res(v) and

so

‖ div(σ − σh)‖−1 = sup
v∈V|v|H1(Ω)

=1

Res(v) ≤ sup
v∈V‖ε(v)‖=1

Res(v) ≤ 2μ |||Res|||∗ � η(T , σh).

(In the second last step one utilizes that 2μ E : E ≤ E : CE for all E ∈ S.) The
combination of Lemma 4 for τ = σ − σh with the previous displayed estimates
concludes the proof of ‖σ −σh‖ � η(T , σh). There exist several appropriate choices
of Σ0 ⊂ H(div,Ω;S) in this last step. Recall that ΓN is the union of connectivity
components and so pick one edge E0 in this polygon and consider Σ0 := {τ ∈
H(div,Ω;S) : ∫

E0
τν ds = 0} with 12×2 /∈ Σ0. This choice of E0 and so Σ0

depend only on ΓN (independent of T ). Since g − gh = (σ − σh)ν along E0 has
(piecewise on E (E0), whence in total) an integral mean zero, Lemma 4 indeed applies
to τ = σ − σh ∈ Σ0. ��
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3 Local efficiency analysis

The local efficiency follows with the bubble-function technique for C1 finite elements
[24, Sec 3.7]. This section focuses on a constant C for linear isotropic elasticity with
constant Lamé parameters λ and μ such that εh := C

−1σh ∈ Pk+2(T ) for some
σh ∈ AWk(T ) is a polynomial of degree at most k + 2. Apart from this, the Lamé
parameters do not further arise in this section.

The moderate point of departure is the volume term for each triangle T ∈ T
with barycentric coordinates λ1, λ2, λ3 ∈ P1(T ) and their product, the cubic volume
bubble function, bT := 27 λ1λ2λ3 ∈ W 1,∞

0 (T ) plus its square b2T ∈ W 2,∞
0 (T ) with

0 ≤ b2T ≤ 1, ‖bT ‖L2(T ) � 1, and |bT |H2(T ) � h−2
T etc.

Lemma 5 (efficiency of volume residual) Any v ∈ H1(T ;R2), T ∈ T , satisfies

h2T ‖ rot rot εh‖L2(T ) � ‖εh − ε(v)‖L2(T ).

Proof An inverse estimate for the polynomial rot rot εh ≡ rot2 εh implies the estimate

‖ rot2 εh‖2L2(T )
� ‖bT rot2 εh‖2L2(T )

= (rot2 εh, b
2
T rot2 εh)L2(T ).

Lemma 1 with φ = b2T rot2 εh and (ε(v),Curl2 φ)L2(T ) = 0 leads to

‖bT rot2 εh‖2L2(T )
= (εh − ε(v),Curl2(b2T rot2 εh))L2(T )

≤ ‖εh − ε(v)‖L2(T )‖Curl2(b2T rot2 εh)‖L2(T ).

This and the inverse estimate ‖Curl2(b2T rot2 εh)‖L2(T ) � h−2
T ‖b2T rot2 εh‖L2(T )

imply

‖ rot2 εh‖2L2(T )
� ‖εh − ε(v)‖L2(T )h

−2
T ‖ rot2 εh‖L2(T ).

This concludes the proof. ��
The localization of the first edge residual involves the piecewise quadratic edge-

bubble function bE with support T+ ∪ T− for an interior edge E = ∂T+ ∩ ∂T− shared
by the two triangles T+ and T− with edge-patchωE := ( T+∪T−).With an appropriate
scaling bE |T = 4λ1λ2 for the two barycentric coordinates λ1, λ2 on T ∈ {T+, T−}
associated with the two vertices of E . Then bE ∈ W 1,∞(ωE ) and b2E ∈ W 2,∞(ωE )

satisfy 0 ≤ b2E ≤ bE ≤ 1 and |bE |H1(E) � h−1
E etc.

The remaining technical detail is an extension of functions on the edge E to ωE .
Throughout this section those functions are polynomials and given ρE ∈ Pm(E), their
coefficients (in some fixed basis) already define an algebraic object that is a natural
extension ρ ∈ Pm(Ê) along the straight line Ê := mid(E)+R τE that extends E with
midpoint mid(E) and tangential unit vector τE . This and

PE (ρE )(x) := ρ(τE · (x − mid(E))) for all x ∈ R
2
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define a linear extension operator PE : Pm(E) → C∞(R2) with PE (ρE ) = ρE on E
for any ρE ∈ Pm(E), which is constant in the normal direction, ∇PE (ρE ) · νE ≡ 0.
This design is different from that in [24].

Lemma 6 (efficiency of first interior edge residual) Any v ∈ H1(ωE ;R2), E ∈ E (Ω),
satisfies

h1/2E ‖τE · [εh]EτE‖L2(E) � ‖εh − ε(v)‖L2(ωE ).

Proof Since τE · [εh]EτE ∈ Pk+2(E) is a polynomial, the above extension PE (τE ·
[εh]EτE ) and the function b ∈ W 2,∞

0 (ωE ) with

b(x) := b2E (x) νE · (x − mid(E)) for all x ∈ R
2 (10)

define some function φ := b PE (τE · [εh]EτE ). Since b = 0 and∇bE ·νE = b2E along
E , the test function φ ∈ H2

0 (ωE ) ⊂ H2
0 (Ω) leads in Lemma 1 to

(τE · [εh]EτE , ∂νEφ)L2(E) = (εh,Curl
2 φ)L2(ωE ) − (rot2NC εh, φ)L2(ωE ).

Since ∂νEφ = b2E τE · [εh]EτE on E and ε(v) ⊥ Curl2 φ, an inverse estimate shows

‖τE · [εh]EτE‖2L2(E)
� (εh − ε(v),Curl2 φ)L2(ωE ) − (rot2NC εh, φ)L2(ωE ).

At the heart of the bubble-function methodology are inverse and trace inequalities that
allow for appropriate scaling properties [24] under the overall assumption of shape-
regularity. In the present case, one power of hE ≈ hT± is hidden in the function b
and

h1/2E |φ|H2(ωE ) + h−3/2
E ‖φ‖L2(ωE ) � ‖τE · [εh]EτE‖L2(E). (11)

The combination with the previous estimate results in

‖τE · [εh]EτE‖2L2(E)

� ‖τE · [εh]EτE‖L2(E)

(

h−1/2
E ‖εh − ε(v)‖L2(ωE )+h3/2E ‖ rot2NC εh‖L2(ωE )

)

.

This and Lemma 5 conclude the proof. ��

For any edge E ∈ E (ΓD), the edge-bubble function bE = 4λ1λ2 ∈ W 1,∞(ωE )

for the two barycentric coordinates λ1, λ2 associated with the two vertices of E and
bE vanishes on the remaining sides ∂ωE\E of the aligned triangle ωE . The Dirichlet
data uD allows for some polynomial approximation Πm,EuD ∈ Pm(E) of a maximal
degree bounded by m ≥ k + 2; recall the definition of oscI (uD, E) from (5).
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Lemma 7 (efficiency of first boundary edge residual)Any v ∈ H1(ωE ;R2)with v|E =
uD|E along E ∈ E (ΓD) satisfies

h1/2E ‖τE · (εhτE − ∂uD/∂s)‖L2(E) � ‖εh − ε(v)‖L2(ωE ) + oscI (uD, E).

Proof Since τE · εhτE is a polynomial of degree at most k + 2 ≤ m along the exterior
edge E , the residual τE · (εhτE − ∂uD/∂s) is well approximated by its L2 projection
ρE := (τE · (εhτE − Πm,E∂uD/∂s)) onto Pm(E). The Pythagoras theorem based on
the L2 orthogonality reads

hE‖τE · (εhτE − ∂uD/∂s)‖2L2(E)
= hE‖ρE‖2L2(E)

+ osc2I (uD, E)

and it remains to bound h1/2E ‖ρE‖L2(E) by the right-hand side of the claimed inequality.
The extension PEρE ∈ C∞(R2) and the function b from (10) lead to an admissible
test function φ := bPEρE ∈ W 2,∞

0 (ωE ). Two successive integration by parts as in
Lemma 1 show

(ε(v),Curl2 φ)L2(ωE ) = (∂uD/∂s, τE (νE · ∇φ))L2(E).

This and Lemma 1 lead to

(

τE ·
(

εhτE − ∂uD
∂s

)

,
∂φ

∂νE

)

L2(E)

= (εh − ε(v),Curl2 φ)L2(ωE ) − (rot2NC εh , φ)L2(ωE ).

Since ∂νEφ = b2EρE along E and ρE is the L2 projection of τE · (εhτE −∂uD/∂s), the
left-hand side equals ‖bEρE‖2

L2(E)
− ((1 − Πm,E )∂uD/∂s, b2EρE )L2(E). The scaling

argument which leads to (11) shows that the left-hand side of (11) is � ‖ρE‖L2(E).
The combination with the previously displayed identity leads to

‖ρE‖2L2(E)
� ‖ρE‖L2(E)

(

h−1/2
E ‖εh − ε(v)‖L2(ωE )

+h3/2E ‖ rot2NC εh‖L2(ωE ) + h−1/2
E oscI (E, uD)

)

.

This and Lemma 5 conclude the proof. ��
The edge-bubble functions for the second edge residuals are defined slightly dif-

ferently to ensure some vanishing normal derivative.

Lemma 8 (efficiency of second interior edge residual) Any v ∈ H1(ωE ;R2), E ∈
E (Ω), satisfies

h3/2E ‖τE · ([rotNC εh]E − ∂[εh]E/∂s νE )‖L2(E) � ‖εh − ε(v)‖L2(ωE ).

Proof There are many ways to define an edge-bubble function for this situation
and one may first select a maximal open ball B(xE , 2rE ) ⊂ ωE around a point
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xE ∈ E with maximal radius 2rE , which is entirely included in ωE . The charac-
teristic function χB(xE ,rE ) of the smaller ball B(xE , rE ) may be regularized with a
standard mollification ηrE to define the smooth function b := χB(xE ,rE ) ∗ ηrE ∈
C∞
c (ΩE ) with values in [0, 1] and with ∇b · νE = 0 along E . The polynomial

ρE := τE · ([rotNC εh]E − ∂[εh]E/∂s νE ) and its extension PEρE define the test
function φ := bPEρE ∈ C∞

0 (ωE ) in Lemma 1. The representation formula and
(ε(v),Curl2 φ)L2(ωE ) = 0 lead to

‖b1/2ρE‖2L2(E)
= (ε(v) − εh,Curl

2 φ)L2(ωE ) + (rot2NC εh, φ)L2(ωE ).

The inverse inequality ‖ρE‖L2(E) � ‖b1/2ρE‖L2(E), Cauchy-Schwarz inequalities,
and the right scaling properties of φ lead to

‖ρE‖2L2(E)
� ‖ρE‖L2(E)

(

h−3/2
E ‖εh − ε(v)‖L2(ωE ) + h1/2E ‖ rot2NC εh‖L2(ωE )

)

.

This and Lemma 5 conclude the proof. ��
The efficiency of the last edge contribution involves the second Dirichlet data oscil-

lation oscI I (uD, E) from (6).

Lemma 9 (efficiency of second boundary edge residual) Any v ∈ H1(ωE ;R2) with
v|E = uD|E along E ∈ E (ΓD) satisfies

h3/2E ‖τE · rot εh − νE ·
(

∂εhτE

∂s
− ∂2uD

∂s2

)

‖L2(E)

� ‖εh − ε(v)‖L2(ωE ) + oscI I (uD, E).

Proof Select a maximal open ball B(xE , 2rE ) ∩ Ω ⊂ ωE around a point xE ∈ E
with maximal radius 2rE such that B(xE , 2rE ) ∩ ωE is a half ball. The regularization
b := χB(xE ,rE ) ∗ ηrE ∈ C∞

c (R2) of the characteristic function χB(xE ,rE ) attains values
in [0, 1] and a positive integral mean h−1

E

∫

E b ds ≈ 1 along E (depending only on the
shape regularity of T ); b vanishes on ∂ωE\E and its normal derivative ∇b · ν = 0
vanishes along the entire boundary ∂ωE .

The Pythagoras theorem ‖ρ‖2
L2(E)

= ‖ρE‖2
L2(E)

+h−3
E osc2I I (uD, E) for the resid-

ual ρ := τE · rot εh − νE · (
∂εhτE

∂s − ∂2uD
∂s2

) and its L2 projection ρE := Πm,Eρ onto
Pm(E) reduces the proof to the estimation of ‖ρE‖L2(E). The normal derivative of
φ := b PEρE ∈ C∞(ωE ) vanishes along the boundary ∂ωE and Lemma 1 shows

(

rot εh − ∂εhνE

∂s
, bρEτE

)

L2(E)

= (rot2NC εh, φ)L2(ωE ) − (εh,Curl
2 φ)L2(ωE ).

The arguments in Lemma 2 show (∂2uD/∂s2, bρE νE )L2(E) = (ε(v),

Curl2 φ)L2(ωE ). The combination of the two identities leads to a formula for
(ρ, bρE )L2(E). Since ρ−ρE is controlled in osc2I I (uD, E), this and an inverse inequal-
ity in the beginning result in
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‖ρE‖2L2(E)
� (bρE , ρE )L2(E) = (ρ, bρE )L2(E) − (ρ − ρE , bρE )L2(E)

� (rot2NC εh , φ)L2(ωE ) − (εh − ε(v),Curl2 φ)L2(ωE ) + ‖ρE‖L2(E)h
−3/2
E oscI I (uD, E).

The scaling properties ofφ and its derivatives are as in the proof of the previous lemma.
With Lemma 5 in the end, this concludes the proof. ��

4 Numerical examples

This section is devoted to numerical experiments for four different domains to demon-
strate robustness in the reliability and efficiency of the a posteriori error estimator
η(T�, σ�). The implementation follows [12,15,16] for k = 1 with Lamé parameters λ

and μ from λ = Eν/((1+ ν)(1− 2ν)) and μ = E/(2(1+ ν)) for a Young’s modulus
E = 105 and various Poisson ratios ν = 0.3 and ν = 0.4999.

4.1 Academic example

The model problem (1) on the unit square Ω = (0, 1)2 with homogeneous Dirichlet
boundary conditions and the right-hand side f = ( f1, f2),

f1(x, y) = − f2(y, x) = −2μπ3 cos(π y) sin(π y)(2 cos(2πx) − 1) for (x, y) ∈ Ω,

allows the smooth exact solution

u(x, y)=π sin(πx) sin(π y) (cos(π y) sin(πx),− cos(πx) sin(π y)) for (x, y)∈Ω.

Note that f depends only on the Lamé parameter μ and not on the critical Lamé
parameter λ. For uniform mesh refinement, Fig. 1 displays the robust third-order
convergence of the a posteriori error estimatorη(T�, σ�) aswell as theArnold–Winther
finite element stress error. The convergence is robust in the Poisson ratio ν → 1/2
and the a posteriori error estimator proves to be reliable and efficient. In this example,
the oscillations osc( f ,T�) dominate the a posteriori error estimator.

This typical observation motivates numerical examples with f ≡ 0 in the sequel.

4.2 Circular inclusion

The second benchmark example from the literature models a rigid circular inclusion
in an infinite plate for the domain Ω with rather mixed boundary conditions indicated
with mechanical symbols in Fig. 2. The exact solution [23] to the model problem (1)
reads (with polar coordinates (r , φ) and κ = 3 − 4ν, γ = 2ν − 1, a = 1/4)

ur = 1

8μr

(

(κ − 1)r2 + 2γ a2 +
(

2r2 − 2(κ + 1)a2

κ
+ 2a4

κr2

)

cos(2φ)

)

,

uφ = − 1

8μr

(

2r2 − 2(κ − 1)a2

κ
− 2a4

κr2

)

sin(2φ).

123



Residual-based AFEM for Arnold–Winther MFEM 223

Fig. 1 Convergence history plot in academic example

Fig. 2 Domain circular inclusion

ΓD

ΓN

25
75

25 75

The approximation of the circular inclusion through a polygon is rather critical for the
higher-order Arnold–Winther MFEM. In the absence of an implementation of para-
metric boundaries, adaptive mesh refinement is necessary for higher improvements.
The adaptive algorithm of this section is the same for all examples and acts on poly-
gons; in particular, it does not monitor the curved boundary, but whenever some edge
at the curved part ΓD is refined in this example, the midpoint is a new node and pro-
jected onto ΓD . The convergence history plot in Fig. 3 shows a reduced convergence
for uniform refinement, while adaptive refinement (of the circular boundary) leads to
optimal third-order convergence.
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Fig. 3 Convergence history plot in circular inclusion benchmark

4.3 L-shaped benchmark

Consider the rotated L-shaped domainwithDirichlet andNeumann boundary depicted
in Fig. 4. The exact solution reads in polar coordinates

ur (r , φ) = rα

2μ
(−(α + 1) cos((α + 1)φ) + (C2 − α − 1)C1 cos((α − 1)φ)) ,

uφ(r , φ) = rα

2μ
((α + 1) sin((α + 1)φ) + (C2 + α − 1)C1 sin((α − 1)φ)) .

The constants areC1 := − cos((α+1)ω)/ cos((α−1)ω) andC2 := 2(λ+2μ)/(λ+μ),
where α = 0.544483736782 is the first root of α sin(2ω) + sin(2ωα) = 0 for ω =
3π/4. The volume force f ≡ 0 and the Neumann boundary data g ≡ 0 vanish, and
the Dirichlet boundary conditions uD are extracted from the exact solution.

Figure 5 shows suboptimal convergence O(N−0.27
� ), namely an expected rate α in

terms of the maximal mesh-size, for uniform and fourth-order L2 stress convergence
for adaptive mesh-refinement.

Despite the singular solution, the adaptive algorithm recovers the higher conver-
gence of Theorem 5 as in [15].

4.4 Cookmembrane problem

One of the more popular benchmarks in computational mechanics is the tapered panel
Ω with the vertices A, B,C, D of Fig. 6 clamped on the left side ΓD = conv(D, A)

(with uD ≡ 0) under no volume force ( f ≡ 0) but applied surface tractions g = (0, 1)
along conv(B,C) and traction free on the remaining parts conv(A, B) and conv(C, D)

along the Neumann boundary.
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Fig. 4 L-shaped domain

Fig. 5 Convergence history plot in L-shaped benchmark for ν = 0.4999

This example is a particular difficult one for the Arnold–Winther MFEM because
of the incompatible Neumann boundary conditions on the right corners [12,15,16].
That means, although g is piecewise constant, g does not belong to G(T ) for
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Fig. 6 Cook membrane

ΓD

ΓN

48

44
16

A

D

C

B

Fig. 7 Convergence history plot in Cook’s membrane benchmark

any triangulation. In the two Neumann corner vertices B and C we therefore
strongly impose the values σ�(B) = (0.2491, 0.7283; 0.7283, 0.6676) and σ�(C) =
(3/20, 11/20; 11/20, 11/60) for the design of g� ∈ G(T�).

Since the exact solution is unknown, the error approximation rests on a reference
solution σ̃ computed as P5(T ) displacement approximation on the uniform refinement
of the finest adapted triangulation.

The large pre-asymptotic range of the convergence history plot in Fig. 7 illustrates
the difficulties of the Arnold–Winther finite element method in case of incompatible
Neumann boundary conditions according to its nodal degrees of freedom. Once the
resulting and dominating boundary oscillations (caused by the necessary choice of
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Fig. 8 Convergence history plot in Cook’s membrane benchmark with modifications near the right corner
points

discrete compatible Neumann conditions in G(T�)) osc(g− g�,E�(ΓN )) are resolved
through adaptive mesh-refining, even the fourth-order L2 stress convergence is vis-
ible in a long asymptotic range in (the approximated error and) the equivalent error
estimator.

This example underlines that adaptive mesh-refining is unavoidable in computa-
tional mechanics with optimal rates and a large saving in computational time and
memory compared to naive uniform mesh-refining.

With the modifications of the Arnold-Winter MFEM for incompatible Neumann
data as outlined in Appendix B, which only involves adjustments of the right-hand side
at the critical incompatible nodal stress degrees of freedom, we observe optimal con-
vergence rates from the very beginning in Fig. 8without any visible pre-asymptotically
reduced convergence caused by incompatible Neumann boundary conditions.

4.5 Comments

The generic constants in this paper are not worked out explicitly in detail and so
a numerical comparison with the earlier paper [15] cannot be quantitatively. It is
conjectured that the residual-based error estimation with the reliability constants (for a
guaranteed upper error bound) overestimates the true error up to an order ofmagnitude.

The qualitative comparison in Fig. 5 (without the reliability constants for the esti-
mators) provides numerical evidence that the error estimators of this paper converge
with the same convergence rates as those from [15] and it also indicates global equiv-
alence of the errors with the two error estimators. The theoretical evidence in [15] for
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efficiency depends on unrealistically high regularity assumptions – unlike the general
efficiency results of this paper.
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A Fourth-order convergence of the stress in L2

This appendix explains a high-order convergence phenomenon observed in some
numerical benchmark examples for the lowest-order Arnold–Winther method. Adopt
the notation from this paper for k = 1 and let σ solve (1) and let σh ∈ AWk(T )

solve (3).

Theorem 5 (fourth-order convergence) Suppose f = fh ∈ P1(T ;R2) and g = gh ∈
G(T ) and suppose that the stress σ ∈ H4(Ω;S). Then the L2 stress error satisfies
(with the maximal mesh-size h)

‖σ − σh‖L2(Ω) � h4‖σ‖H4(Ω).

Proof Since the stress error σ − σh ∈ H4(T ;S) is divergence-free, α vanishes in
(7) and σ − σh = Curl2 β ∈ H4(T ;S). Since β ∈ H2(T ) is piecewise in C2,
it follows β ∈ C1(Ω). The Arnold–Winther finite elements have nodal degrees of
freedom at the vertices and hence σh is continuous at each vertex z ∈ N . Hence the
second derivatives of β ∈ C2(T ) ∩ C1(Ω) are continuous at each vertex z ∈ N . It
follows that the nodal interpolation operator IA associated to the Argyris finite element
space A(T ) ⊂ C1(Ω) ∩ P5(T ) exists for β in the classical sense and is composed
of the piecewise local interpolation. This defines βh = IAβ and the divergence-free
τh := Curl2 βh ∈ AWk(T ) test function in (1) and in (3). Consequently,

‖σ − σh‖2L2(Ω)
= (σ − σh,Curl

2(β − βh))L2(Ω) ≤ ‖σ − σh‖L2(Ω) |β − IAβ|H2(Ω).

This and standard local interpolation error estimates for the nodal interpolation of the
quintic Argyris finite elements [7,8,20] show

‖σ − σh‖L2(Ω) � h4|β|H6(T ) = h4|σ |H4(Ω).

(With σ − σh = Curl2 β and |σh |H4(T ) = 0 for piecewise cubic σh in the
last step.) ��
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B General Neumann data

The nodal degrees of freedom of the Arnold–Winther stresses do not allow a nodal
interpolation of arbitrary Neumann data. As documented in [15,16] the performance
of the numerical method indeed suffers from that property.

In this work, the following alternative is proposed. Let g ∈ L2(Γ ;R2) be the
Neumann data. Define gh := ΠΓ

k+2g where ΠΓ
k+2 denotes the L2 projection onto

Pk+2(E (Γ );R2). Note that gh may be discontinuous. Let σ P ∈ H(div,Ω;S) be any
piecewise polynomial stress approximation with σ P = gh on ΓN . The explicit design
of such a particular solution is outlined in Appendix C below.

The proposed scheme is to seek a solution σ 0
h ∈ Σ(0,T ) and uh ∈ Vh such that,

for all τh ∈ Σ(0,T ) and all vh ∈ Vh ,

∫

Ω

σ 0
h : C−1τh dx +

∫

Ω

uh · div τh dx =
∫

ΓD

uD · (τhν) ds −
∫

Ω

σ P : C−1τh dx

∫

Ω

vh · div σh dx = −
∫

Ω

( f + div σ P ) · vh dx . (12)

Then σh := σ 0
h + σ P satisfies the Neumann boundary conditions along Γ as well

as − div σh = f in Ω . Note that this modification merely affects the right-hand side
while the system matrix remains unchanged.

The scheme allows for a direct a priori error analysis. The following result states a
quasi-optimal a priori error estimate provided σ P is chosen sufficiently accurate.

Theorem 6 (a priori error estimate) The discrete solution (σh, uh) to the modified
scheme (12) satisfies

‖σ − σh‖C−1 � inf
σ�
h∈Σ(0,T )

(

‖σ − σ�
h − σ P‖C−1 + ‖Πk( f + div(σ �

h + σ P )‖
)

.

Proof The discrete inf-sup condition (with appropriate discrete test functions τh ∈
Σ(0,T ) and vh ∈ Vh with norm 1) and the discrete equations (12) show that, for any
σ�
h ∈ Σ(0,T ),

‖σ�
h − σ 0

h ‖C−1 + ‖ div(σ �
h − σ 0

h )‖ + ‖uh − Πku‖
� (σ �

h − σ 0
h ,C−1τh)L2(Ω) + (div(σ �

h − σ 0
h ), vh)L2(Ω) + (div τh, uh − Πku)L2(Ω)

= (σ �
h + σ P − σ,C−1τh)L2(Ω) + (Πk(div σ�

h + f + div σ P , vh)L2(Ω)

≤ ‖σ − σ�
h − σ P‖C−1 + ‖Πk( f + div(σ �

h + σ P )‖.

The decomposition σh = σ 0
h − σP and the triangle inequality

‖σ − σh‖C−1 ≤ ‖σ − σ�
h − σ P‖C−1 + ‖σ�

h − σ 0
h ‖C−1

thus imply the stated bound. ��
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The a posteriori error estimates from Theorem 1, Sects. 2 and 3 hold verbatim also
for this case. For the efficiency proof it is required that σ P is piecewise polynomial.
Appendix C proposes an explicit design as a discrete particular solution.

C Neumann boundary conditions

This section explains the modification of the lowest-order Arnold–Winther finite ele-
ment methods that requires a different treatment of the nodal degrees of freedom at
a vertex z on the Neumann boundary ΓN in the presence of incompatible Neumann
data.

Two situations arise at the vertex z ∈ N in the relative interior of ΓN with neigh-
boring triangles T (z) := {T ∈ T : z ∈ N (T )} =: {T1, . . . , TJ } enumerated
counterclockwise. For J = 1 there is no option to modify nodal degrees of freedom to
allow for incompatible Neumann boundary conditions at the vertex z and one requires
J ≥ 2 (resp. J ≥ 3) in case the angle at the polygon ΓN is different from π (resp.
equal to π ). The idea behind the required modification of the Arnold–Winther finite
element space AWk(T ) is to split the various degrees of freedom σAW |Tj (z) ∈ S for
j = 1, . . . , J , which coincide in AWk(T ). This modification leads to some conform-
ing and piecewise Arnold–Winther space AW ′

k(T ) ⊂ H(div,Ω;S) and its modified
finite element space

Σ ′(gh,T ) := Σ(Πkg) ∩ AW ′
k(T )

for the edgewise L2 projection Πkg of the Neumann data g.

Two triangles at an interior vertex of the Neumann boundary

In the first part suppose that J = 2 and that the node z is a vertex of the polygon ΓN

with an interior angle ω1 + ω2 �= π for the interior angle ω j of the triangle Tj at the
vertex z. Let α denote the angle of the edge E1 ⊂ ΓN in the global coordinate system,
so that the interior edge E2 shared by T1 and T2 has the angle ϕ := α + ω1, while
the remaining edge E3 ⊂ ΓN has the angle β = α + ω1 + ω2; the respective normals
νE1 , νE2 , and −νE3 read (sin(ψ),− cos(ψ)) for ψ = α, ϕ, and β; νE1 and νE3 point
outwards of the domain.

Let (σ
( j)
11 , σ

( j)
12 , σ

( j)
22 ) denote the three components of σ ′

AW |Tj (z) ∈ S for j = 1, 2.

Those six variables (rather then three σ
(1)
11 = σ

(2)
11 etc. for the classical nodal values of

AW ) are required to satisfy boundary conditions

σ ′
AW|T1(z)νE1 = Πk(g|E1)(z) and σ ′

AW|T2(z)νE3 = Πk(g|E3)(z)

and, for H(div,Ω;S)-conformity, the interface conditions

σ ′
AW|T1(z)νE2 = σ ′

AW|T2(z)νE2 .
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This 6 × 6 linear system of equations has a unique solution (despite of possibly
incompatible conditions providedbyΠk(g|E1)(z) andΠk(g|E3)(z). The proof requires
the regularity of the corresponding 6 × 6 coefficient matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

sin α − cosα 0
0 sin α − cosα

sin ϕ − cosϕ 0 − sin ϕ cosϕ 0
0 sin ϕ − cosϕ 0 − sin ϕ cosϕ

− sin β cosβ 0
0 − sin β cosβ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

with empty space representing 2× 3 zero blocks, which is multiplied with the coeffi-
cient vector

(σ
(1)
11 , σ

(1)
12 , σ

(1)
22 , σ

(2)
11 , σ

(2)
12 , σ

(2)
22 ) ∈ R

6

representing (σ ′
AW|T1 , σ ′

AW|T2) at z.
There are several ways to cross-check the regularity of this coefficient matrix. One

reduces it to the regularity of the 3 × 3 matrix
⎛

⎝

cos2 α sin α cosα sin2 α

cos2 ϕ sin ϕ cosϕ sin2 ϕ

cos2 β sin β cosβ sin2 β

⎞

⎠

as follows. The following abbreviations apply throughout this section

m(ψ) := (cos2 ψ, sinψ cosψ, sin2 ψ)T and N (ψ) :=
(

sinψ − cosψ 0
0 sinψ − cosψ

)

.

Any vector (x1, . . . , x6) in the kernel of the above displayed 6 × 6 coefficient matrix
satisfies in particular N (α)(x1, x2, x3)T = 0 ∈ R

2. Hence it is parallel to the cross-
product of the two rowvectors in the 2×3matrix N (α) and so (x1, x2, x3)T ||m(α). The
same is true for (x4, x5, x6)T ||m(β). The remaining two conditions for (x1, . . . , x6)
to be a kernel vector read N (ϕ)(x4 − x1, x5 − x2, x6 − x3)T = 0 ∈ R

2 and so
(x4 − x1, x5 − x2, x6 − x3)||m(ϕ). This leads to (x1, . . . , x6) = 0 ∈ R

6 if and only if
the displayed 3×3matrix (m(α),m(ϕ),m(β))T ∈ R

3×3 is regular. Its determinant det
depends onω1 andω2 and not onα if one substitutesϕ := α+ω1 andβ := α+ω1+ω2;
the elementary proof abbreviates the Vandermonde determinant

det =:
∣
∣
∣
∣

cos2 sin cos sin2

α ϕ β

∣
∣
∣
∣

of a 3 × 3 matrix with columns determined by the three functions cos2, sin cos, sin2

and rows evaluated respectively at α, ϕ, β. The derivative ∂ det /∂α of the determinant
det with respect to the variable reads

∣
∣
∣
∣

−2 sin cos sin cos sin2

α ϕ β

∣
∣
∣
∣
+

∣
∣
∣
∣

cos2 cos2 − sin2 sin2

α ϕ β

∣
∣
∣
∣
+

∣
∣
∣
∣

cos2 sin cos 2 sin cos
α ϕ β

∣
∣
∣
∣
.
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Each of these three determinants vanishes (for the columns are linearly dependent).
This proves that ∂ det /∂α = 0 and so one may choose without loss of generality
α = 0 to compute

det = sin(ω1) sin(ω2) sin(ω1 + ω2).

Since β − α = ω1 + ω2 �= π , det �= 0 and the design of a minimum norm solution of
the above six conditions is feasible for any (in particular incompatible) discrete data.

Provided the angle at a node in the relative interior of the Neumann boundary is π ,
the design of this subsection may be infeasible (although solutions exist for discrete
compatible data) and J ≥ 3 is required.

Three triangles at a node in the Neumann boundary

Suppose T (z) = {T1, T2, T3} enumerated counterclockwise with interior angles
ω1, ω2, ω3 at the vertex z and E1 parallel to E4 on ΓN and ω1 + ω2 + ω3 = π

with β = α + π . Let (σ ( j)
11 , σ

( j)
12 , σ

( j)
22 ) denote the three components of σ ′

AW|Tj (z) ∈ S

for j = 1, 2, 3. With the aforementioned block matrices, the four Neumann bound-
ary conditions and the four interface conditions for H(div,Ω;S)-conformity can be
summarized into a linear system of equations with the 8 × 9 coefficient matrix

⎛

⎜
⎜
⎝

N (α)

N (α + ω1) −N (α + ω1)

N (α + ω1 + ω2) −N (α + ω1 + ω2)

N (α)

⎞

⎟
⎟
⎠

.

In order to prove that the design of (σ (1)
11 , σ

(1)
12 . . . , σ

(3)
22 ) ∈ R

9 is always possible (even
for incompatible discreteNeumann data), it suffices to prove that this coefficientmatrix
has full rank. The subsequent regular transformation matrix

T :=
⎛

⎝

− sin α − cosα cos2 α

cosα − sin α sin α cosα

sin α cosα sin2 α

⎞

⎠

leads to a new set of variables (τ
(1)
11 , τ

(1)
12 . . . , τ

(3)
22 ) ∈ R

9 by (σ
( j)
11 , σ

( j)
12 , σ

( j)
22 )T :=

T (τ
( j)
11 , τ ( j)

12 , τ
( j)
22 )T for j = 1, 2, 3. Elementary trigonometry shows

Ñ (ψ − α) := N (ψ)T =
(− cos(ψ − α) − sin(ψ − α) cosα sin(ψ − α)

sin(ψ − α) − cos(ψ − α) sin α sin(ψ − α)

)

.

In particular, −N (α)T is the unit matrix and shows that the kernel vectors
(τ

(1)
11 , τ

(1)
12 . . ., τ

(3)
22 ) ∈ R

9 of the aforementioned 8 × 9 coefficient matrix satisfy

τ
( j)
11 = 0 = τ

( j)
12 for j = 1 and j = 3. Moreover, the remaining components

τ
(1)
22 , τ

(2)
11 , τ

(2)
12 , τ

(2)
22 , and τ

(3)
22 of a (transformed) kernel vector satisfy
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⎛

⎜
⎜
⎜
⎜
⎜
⎝

cos(ω1) sin(ω1) −2 cosα sin(ω1) − cosα sin(ω1)

− sin(ω1) cos(ω1) −2 sin α sin(ω1) − sin α sin(ω1)

− cos(ω1 + ω2) − sin(ω1 + ω2) cosα sin(ω1 + ω2) 2 cosα sin(ω1 + ω2)

sin(ω1 + ω2) − cos(ω1 + ω2) sin α sin(ω1 + ω2) 2 sin α sin(ω1 + ω2)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

τ
(2)
11

τ
(2)
12

τ
(2)
22 − τ

(1)
22

τ
(2)
22 − τ

(3)
22

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0.

It remains to prove that the determinant of this 4 × 4 coefficient matrix is nonzero,
because this proves τ

(2)
11 = 0 = τ

(2)
12 and τ

(1)
22 = τ

(2)
22 = τ

(3)
22 and so the null space is

one-dimensional and the rank of the above 8 × 9 matrix is 8, i.e., all conditions can
be satisfied by a one-dimensional (whence non-empty) solution space.

The expansion of the determinant of the 4 × 4 coefficient matrix confirms that the
determinant is equal to−3 sin(ω1) sin(ω2) sin(ω1+ω2) and so negative for 0 < ω1 <

ω1 + ω2 < π .

More triangles at a node in the Neumann boundary

The general situation is that there are J ≥ 2 (resp. J ≥ 3) triangles at a node z ∈ ΓN

in the relative interior of the Neumann boundary ΓN with an interior angle �= π (resp.
= π ) of the polygon ΓN at z. The above analysis shows that the modified Arnold–
Winther space AW′

k(T ) ⊂ H(div,Ω;S) allows for solutions for J = 2 (resp. J = 3).
In case that J is larger, one may choose a partition of T1, . . . , TJ in two (resp. three)
groups T1, . . . , Tk, Tk+1, . . . TJ (resp. T1, . . . , Tk, Tk+1, . . . , T�, T�+1, . . . TJ ). Then
the extra constraint σ ′

AW|T1 = . . . = σ ′
AW|Tk and σ ′

AW|Tk+1 = . . . = σ ′
AW|TJ for each

group reduces the discussion to the above calculations with two triangles (resp. to the
calculations with three triangles).

Modified Arnold–Winter FEM for Neumann boundary

The implementation of nodes at theNeumann boundary concerns only z in (the relative
interior of) ΓN in case of incompatible discrete Neumann data. The most general case
may be implemented via Lagrange multipliers for the interface conditions of the nodal
values of σ ′

AW|Tj (z) in AW
′
k(T ) ⊂ H(div,Ω;S).
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