
Comput. Methods Appl. Math. 2021; 21(3): 529–556

Research Article

Carsten Carstensen* and Jun Hu

Hierarchical Argyris Finite Element Method for
Adaptive and Multigrid Algorithms
https://doi.org/10.1515/cmam-2021-0083
Received April 21, 2021; revised May 12, 2021; accepted May 12, 2021

Abstract:The global arrangement of the degrees of freedom in a standardArgyris finite elementmethod (FEM)
enforces C2 at interior vertices, while solely global C1 continuity is required for the conformity in H2. Since
the Argyris finite element functions are not C2 at the midpoints of edges in general, the bisection of an edge
for mesh-refinement leads to non-nestedness: the standard Argyris finite element space A(T) associated to
a triangulationTwith a refinement T̂ is not a subspace of the standardArgyris finite element spaceA(T̂) asso-
ciated to the refined triangulation T̂. This paper suggests an extensionA(T) ofA(T) that allows for nestedness
A(T) ⊂ A(T̂) under mesh-refinement. The extended Argyris finite element space A(T) is called hierarchical,
but is still based on the concept of theArgyris finite element as a triple (T, P5(T), (Λ1, . . . , Λ21)) in the sense of
Ciarlet. The othermain results of this paper are the optimal convergence rates of an adaptivemesh-refinement
algorithm via the abstract framework of the axioms of adaptivity and uniform convergence of a local multi-
grid V-cycle algorithm for the effective solution of the discrete system.

Keywords: Argyris Element, Adaptive Mesh-Refinement, Discrete Quasi-Interpolation, Multigrid V-Cycle
Algorithm

MSC 2010: 65N30, 65N12, 65N15

1 Introduction

1.1 Motivation

One of themost well-known conforming plate elements dates back to Argyris [4, 8, 15] with a quintic polyno-
mial space P5(T) on a triangle T and 21 degrees of freedom. The practical application is much less popular
amongst numerical analysts, because of the higher implementation efforts compared to piecewise quadratic
nonconforming Morley or discontinuous Galerkin finite element schemes for instance; the reader may con-
sider the finite element program in [11, Section 6.5] with less than 30 lines of Matlab, the clear analysis of the
C0 interior penaltymethod [9]. The point is that higher convergence rates of the quintic Argyris finite element
space are rarely visible even in simple computational benchmarks with the biharmonic equation and a right-
hand side in L2 in a polygonal bounded Lipschitz domain Ω. For a nonconvex domain Ω and a sequence of
quasi-uniform triangulations, the convergence rates of the aforementioned schemes are the same and the
extra effort for the quintic method appears not competitive.

Adaptive mesh-refinement algorithms are well established with optimal convergence rates [2, 10, 12,
13, 24] merely for the Morley (cf. [11, 20] and the references therein) amongst the aforementioned finite
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elementmethods (FEM) for fourth-order problems. The a posteriori error control for the Argyris FEM is known
formore than two decades and even included in the first book [26] on a posteriori error analysis. So it appears
surprising that the important task is open to design a rate-optimal adaptive mesh-refinement algorithm and
merely plain convergence has been achieved [23, Problem 44].

A closer look at the mathematical foundation of adaptive mesh-refinement reveals that the Argyris FEM
leads to non-nestedness under mesh-refinements and this causes mathematical difficulties in the overall
analysis in [2, 10, 12, 13, 24]. In fact, according to the knowledge of the authors, the only positive conver-
gence result in the context of adaptive algorithms of conforming FEM that overcomes non-nestedness is [31]
for a particular mesh-refinement strategy.

The treatment of non-nested subspaces has a longer tradition in themathematical foundation of themul-
tilevel solver, but uniform convergence of standard multigrid V-cycle algorithms has only been established
for the Bogner–Fox–Schmit and the Powell–Sabin FEMs [25, 30]. Those are the conforming FEMs for fourth-
order problems with the nestedness property under uniformmesh-refinement. See [28] for the Morley based
preconditioner for the Argyris element for biharmonic equations.

The two examples at least indicate severe difficulties in the mathematical investigation of non-nested
finite element spaces and this paper enforces the nestedness by a marginal extension of the global degrees
of freedom.

1.2 Hierarchical Argyris FEM

The adaptive mesh-refinement algorithms and the multigrid methods are typically based on admissible tri-
angulations obtained by amesh-refinement strategy such as the newest-vertex bisection [24]. Given an initial
triangulation T0 (and some initialization for the subordinated bisection rules), a sequence of successive
(admissible) refinements T0, T1, T2, . . . defines an admissible triangulation Tℓ and the set 𝕋 of admissible
triangulations of all those shape-regular triangulations. Any such admissible triangulation Tℓ leads to a non-
nested Argyris finite element space A(Tℓ) ⊂ H2

0(Ω) in the sense that A(Tℓ)  A(Tℓ+1) (if Tℓ+1 ̸= Tℓ is a strict
refinement of Tℓ). An immediate cure of this failure is the definition of the nested spaces

A(Tℓ) := A(T0) + A(T1) + ⋅ ⋅ ⋅ + A(Tℓ)

as the sumof all preceding finite element spaces: The nestedness of those sums A(Tℓ) ⊂ A(Tℓ+1) is immediate.
Suppose in addition that Tℓ+1 is a one-level refinement of Tℓ for any ℓ ∈ ℕ0, i.e., any refined edge in Tℓ

is bisected exactly once. Then, A(Tℓ) ⊂ H2
0(Ω) depends exclusively on T = Tℓ ∈ 𝕋 but is independent of

the finite sequence of successive (admissible) refinements that creates T. This leads to the proposed finite
element space A(T) for each T ∈ 𝕋 with the degrees of freedom of the classical Argyris finite element space
A(T) plus one extra function per each interior vertex z in the triangulation T that is not an initial vertex
(i.e., z is not a vertex in T0). In other words, the vertex z had been created by bisection in some coarser
triangulation T as the midpoint z = mid(E) of an interior edge E = ∂K+ ∩ ∂K− = conv{A, B} of length |E|
shared by the two triangles K+ and K− ∈ T of respective area |K±|. The additional nodal basis function
ψE ∈ H2

0(K+ ∪ K−) ∩ A(T) ⊂ H
2
0(Ω) reads

ψE := ∓
2|K±|
|E|

φ2
EφP± in K±.

(Herein φA, φB, φP± denote the barycentric coordinates of the vertices A, B, and P± in the triangle K± and
φE = 4φAφB abbreviates the quadratic edge-bubble function of the edge E with vertices A and B.) This is
the nodal basis function in the coarser triangulation T associated to the normal derivative at the midpoint
z of E with a jump of the second-order normal-normal derivative ∂2νν and has to be kept in the nested space
A(T); while the standard Argyris finite element space arranges the global degrees of freedom at the vertex z
in T such that all finite element functions in A(T) are C2 at z = mid(E). The increase of unknowns in A(T)
compared to A(T) is by a factor less than 7

6 only.
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1.3 Contributions and Outline of This Paper

Section 2 gives all the details of the global scheme called hierarchical Argyris FEM because of one addi-
tional degree of freedom that is a one-sided second-order normal-normal derivative at a new interior
node associated to the nodal basis function ψE from above. Let us emphasize that the shape functions
in each triangle are exactly those of the standard Argyris FEM; the scheme utilizes the Argyris finite element
(T, P5(T), (Λ1, . . . , Λ21)) in the sense of Ciarlet and modifies the global arrangements of the unknowns. This
standard Argyris FEM leads to a finite element space A(T) ⊂ H2(Ω) as a strict subspace of the C1 conforming
piecewise quintic polynomials Â(T) := P5(T) ∩ H2(Ω) characterized in [21] with singularities at cross-points
(those are systematically generated in the newest vertex bisection). The hierarchical Argyris FEM leads to
a finite element space A(T) ⊂ H2(Ω) with A(T) ⊂ A(T) ⊂ Â(T) that allows for the nestedness property as the
first main result of this paper: A(T) ⊂ A(T̂) holds for any (admissible) refinement T̂ of T ∈ 𝕋.

The quasi-interpolation operator is one main tool in the a posteriori error analysis and in the split
of multilevel schemes. Section 3 revisits [19] on the standard Argyris FEM and extends it to the discrete
quasi-interpolation for the hierarchical version at hand in Theorem 2 with a discrete version that enables
a proof of the discrete reliability from the axioms of adaptivity [10, 12] in Section 4. The second main result
is the rate-optimality of an adaptive algorithm in Theorem 6 that in fact recovers the quartic convergence
order of the scheme on polygons, even on non-convex ones, and clearly outperformed the aforementioned
quadratic schemes in practice. Since there is no general convergence result available for the discontinuous
Galerkin schemes, except for over-penalization as outlined in [3] for second-order problems, the presented
adaptive hierarchical Argyris FEM is the most competitive numerical scheme for biharmonic equations and
their relatives.

The third main result of this paper is the uniform convergence of a multigrid V-cycle algorithms with uni-
form convergence. Section 5 establishes a version for a sequence of successive one-level refinements based
on newest-vertex bisection with local smoothing for the new nodes plus their neighbors. This is an effective
algorithm known for second-order problems from [27] and Theorem 7 guarantees a bounded condition num-
ber for approximative inverse from the effective multigrid preconditioner for the biharmonic problem. The
proofs in Sections 6 and 7 of this paper concern an auxiliary uniform triangulation that allow for standard
approximation estimates from global interpolation of Sobolev norms. The link to the sequence of triangula-
tions with local refinement utilized in the multigrid algorithm is through geometric arguments in [27] that
on the specific geometric structure of bisection grids [14]. This paper replaces all geometry by a re-summation
argument that is utterly algebraic and hence not restricted to 2D.

The analysis is outlined for the quintic version of the Argyris FEM for an easy and explicit presentation of
the ideas. The results hold for the hierarchical conforming higher-order Argyris FEM as well. The motivating
plate model problem is intrinsically 2D, and so the analysis is carried out in 2D, but the arguments does not
rely on two space dimensions.

1.4 General Notation

Standard notation on Lebesgue and Sobolev spaces and norms applies throughout this paper, e.g., ‖ ⋅ ‖L2(Ω)
denotes the L2 norm. Sobolev functions are usually defined on open sets and the notation Wm,p(T) (resp.
Wm,p(T)) substitutes Wm,p(int(T)) for a (compact) triangle T and its interior int(T) (resp. Wm,p(int(T))) and
their vector and matrix versions.

The context-sensitive measure | ∙ | refers to (counting measure or cardinality) the number of elements of
some finite set or the surface measure |F| of a side F or the volume |T| of a tetrahedron T, etc., and not just to
the modulus of a real number or the Euclidean length of a vector.

Throughout this paper, A ≲ B abbreviates A ≤ C B for some generic constant C that solely depends on T0,
the initial triangulation of the bounded polygonal Lipschitz domain Ω into triangles, and A ≈ B abbreviates
A ≲ B ≲ A.
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2 The Hierarchical Argyris FEM
Based on the class of admissible triangulations generated from successivemesh-refinement, the Argyris finite
element (T, P5(T), (Λ1, . . . , Λ21)) in the sense of Ciarlet is minimally extended in the global arrangements of
the degrees of freedom.

2.1 Admissible Triangulations

Given any initial triangulation T0 of a bounded Lipschitz domain with polygonal boundary ∂Ω into triangles,
let 𝕋 = 𝕋(T0) be the set of all regular triangulations obtained from T0 with a finite number of successive
bisections of triangles [10, 24]. In fact, any triangle T = conv{P1, P2, P3} is tagged and identified with the
triple (P1, P2, P3) (the tag is a type and can be omitted in 2D).

The bisection bisec(T) := {T1, T2} of the finite element domain is simply T1 ≡ (P2, 12 (P1 + P3), P1) and
T2 ≡ (P3, 12 (P1 + P3), P2), but the order of vertices inherited are steered by certain rules plus some initial
conditions on T0. Further details on the newest-vertex bisection (NVB) can be found in [6, 24]. Define 𝕋(T)
as the set of all admissible refinements T̂ of T.

Given any admissible triangulation T ∈ 𝕋, let V (resp. E) denote the vertices (resp. edges) in T and let
V(Ω) (resp. E(Ω)) be the interior vertices (resp. edges); letM := {mid(E) : E ∈ E} denote the set of the edges’
midpoints. For any T ∈ 𝕋 and a vertex z ∈ V or a midpoint z = mid(E) ∈M of an edge E ∈ E, let

T(z) := {T ∈ T : z ∈ T}

denote the set of neighboring triangles that contain z. LetV(T) (resp.E(T)) denotes the set of the three vertices
(resp. edges) of a triangle T. For any T ∈ 𝕋 and a triangle T ∈ T letR1(T) := {K ∈ T : dist(T, K) = 0} denote the
neighboring triangles of T (i.e., T and one layer of triangles in T around it) and let

Ω(T) := int(⋃R1(T))

denote the interior of the union of all neighboring triangles of T.
Within the definition of T via the NVB, each node z ∈ V \ V0 has been created as a midpoint z = mid(E)

of an edge Ewith tangent vector τE and normal ν(z) := νE (with fixed orientation such that it points outwards
along the boundary ∂Ω). In this way, any node z ∈ V(Ω) \ V0 is associated to one direction ν(z). Each triangle
T ∈ T with vertex z ∈ V \ V0 either belongs to the closed half-space H+(z) := {x ∈ ℝ2 : (x − z) ⋅ ν(z) ≥ 0} or to
the closed half-space H−(z) := {x ∈ ℝ2 : (x − z) ⋅ ν(z) ≤ 0}. This gives rise to the partition

T±(z) := {T ∈ T(z) : T ⊂ H±(z)},

which shall be relevant for the additional global degrees of freedom in the extended Argyris finite element
space A(T).

2.2 Extended Argyris Finite Element Space

The extended Argyris finite element space A(T) is extended in the global degrees of freedom tomake it hierar-
chical. Given an admissible triangulation T ∈ 𝕋, recall that any interior vertex z ∈ V(Ω) \ V0 is associated to
some direction ν(z) and the separation T+(z) and T−(z) of the neighboring triangles T(z) := {T ∈ T : z ∈ V(T)}
with vertex z.

The elementwise degrees of freedomof theArgyris finite element space are not changed except for a trans-
formation of another global coordinate system in the direction ν(z) and its tangential direction τ(z) ⊥ ν(z).
The point is that the global degrees of freedom for the second-order normal-normal derivative ∂2ν(z)ν(z) at z is
not uniquely defined at z, but allows for one value in H+(z) and a second value in H−(z).

The resulting global degrees of freedom are summarized for clarity for a given admissible triangulation
T ∈ 𝕋. For each node z let m(z) denote the number of degrees of freedom associated to it while for each
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initial vertex z ∈ V0, the m(z) = 6 nodal degrees of freedom are the classical ones δz∂α for a multi-index
α ∈ {0, 1, 2}2 of order |α| := α1 + α2 = 0, 1, 2 in termsof theDirac evaluation functional δz at z (i.e., δz f = f(z))
of the derivative ∂α := ∂α1

xα11
∂α2
xα22

, i.e.,

δz∂α f = (−1)|α|∂α1xα11
∂α2
xα22
f(z) for any f ∈ C2.

In this lexicographic order of multi-indices and derivatives ∂α, those m(z) = 6 degrees of freedom at the
vertex z are also denoted as Λz,1, . . . , Λz,6. For any other interior vertex z ∈ V(Ω) \ V0, there are seven
nodal degrees of freedom in terms of the coordinate system with ν(z) and τ(z), namely, δz , δz∂ν(z), δz∂τ(z),
δz∂2τ(z)τ(z), δz∂

2
τ(z)ν(z), and the two functionals δ

±
z ∂2ν(z)ν(z), where δ

±
z evaluates a function f ∈ C2(H±(z)) on the

half-plane H±(z) and then takes the one-sided limit

δ±z ∂2ν(z)ν(z)f = lim
H±(x)∋x→z

(∂2ν(z)ν(z)f)(x)

at z. In this order those m(z) = 7 degrees of freedom are also denoted as Λz,1, . . . , Λz,7. The split into two
variables for the second-order normal derivatives in H±(z)makes the difference to the standard Argyris finite
element space. The remaining degrees of freedom, namely, the m(z) = 1 normal derivative Λz,1 := δmid(E)∂νE
at any midpoint z = mid(E) of an interior edge E with normal νE, are not modified. All the degrees of
freedom located at the boundary are set to zero except the m(z) = 1 second-order normal-normal deriva-
tive Λz,1 := δz∂2νν at a boundary node z ∈ V(∂Ω) that is not a corner of the boundary ∂Ω (i.e., the interior
angle ω = π at a vertex z ∈ ∂Ω and the exterior normal ν is constant in a neighborhood of z along ∂Ω) to
guarantee A(T) ⊂ P5(T) ∩ H2

0(Ω).

Remark 2.1 (Dimension). The dimension of the finite element space A(T) is

N := 7|V(Ω)| − |V0(Ω)| + |E(Ω)| + |V(∂Ω)| − |V(Ω)|

for the number |V(Ω)| (resp. |E(Ω)|) of interior verticesV(Ω) (resp. interior edges E(Ω)) and the number |V(Ω)|
of corners V(Ω) of the polygon (or the finite union of polygons) ∂Ω; V(∂Ω) := V \ V(Ω) is the set of vertices on
the boundary ∂Ω.

Notation 2.2 (Nodes). Given any admissible triangulation T ∈ 𝕋 and its set of vertices V and edges E, let the
set of nodes N be the set of all vertices or midpoints of edges that carry at least a degree of freedom in A(T).
LetM := {mid(E) : E ∈ E} denote the set of all midpoints of edges andM(Ω) := {z ∈M : z ∈ Ω} the set of all
midpoints of interior edges (which are those shared by two triangles in T). Then

N := V(Ω) ∪M(Ω) ∪ (V(∂Ω) \ V(Ω)).

Notation 2.3 (Degrees of Freedom). There arem(z) ∈ {1, . . . , 7} degrees of freedom Λz,1, . . . , Λz,m(z) associ-
ated to any node z ∈ N. Abbreviate the index set for all global degrees of freedom in A(T) by

I := {(z, j) ∈ N × {1, . . . , 7} : z ∈ N and j = 1, . . . ,m(z)} =⋃ {{z} × {1, . . . ,m(z)} : z ∈ N}.

It is also convenient to use an alternative notation and to enumerate the set of degrees of freedom Λ1, . . . , ΛN
in A(T),

{Λz,j : z ∈ N, j = 1, . . . ,m(z)} ≡ {Λ1, . . . , ΛN}.

Notation 2.4 (Nodal Basis). Given the N global degrees of freedom Λ1, . . . , ΛN of the extended Argyris finite
element space A(T), there exists a unique dual basis φ1, . . ., φN ∈ Â(T) ≡ P5(T) ∩ H2

0(Ω) with the duality
relationΛk(φj) = δjk for j, k = 1, . . . , N andKronecker’s δjk andA(T) = span{φ1, . . . , φN}. (This follows from
the linear independence of Λ1, . . . , ΛN in Â(T).) In the notation of the previous remark, the alternative nota-
tion ψz,j := φk applies when Λk = Λz,j and (z, j) ∈ I has the global number k ∈ {1, . . . , N}.

Remark 2.5 (Standard Argyris Finite Element). The standard Argyris finite element space

A(T) = {f ∈ A(T) : δ+z ∂ν(z)∂ν(z)f = δ−z ∂ν(z)∂ν(z)f for all z ∈ V(Ω) \ V0}

is a linear subspace of A(T).
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Unlike the classical Argyris finite element space A(T), the extended version A(T) of this paper leads to nested
subspaces. In fact, the desire for this nestedness property motivates the concept of the minimal extension of
the Argyris finite element for adaptively refined triangulations.

Theorem 1 (Nestedness). Any triangulation T ∈ 𝕋 and its refinement T̂ ∈ 𝕋(T) allow for A(T) ⊂ A(T̂).

Proof. It is straightforward to verify that any bisection of an interior edge E = ∂T+ ∩ ∂T− ∈ E(Ω) and the
attached two triangles T± ∈ T leads to seven new global degrees of freedom at the midpoint z := mid(E) of
an edge E ∈ E (E is the set of edges in T); whence z ∈ V̂(Ω) \ V (V̂(Ω) denotes the set of interior vertices in T̂).
Given vA ∈ A(T), the polynomial vA|T± ∈ P5(T±) and its gradient is continuous along E; whence vA, ∇vA, and
∂τ(z)∇vA are globally continuous at z. Note that the second order normal-normal derivative ∂ν(z)∂ν(z)vA is in
general discontinuous at zwhich canbe expressedby theglobal basis functions associated to functionalsΛz,6
and Λz,7. Consequently, vA can be representedwith the nodal basis functions φ̂1, . . . , φ̂N̂ ∈ P5(T̂) ∩ H

2
0(Ω) of

Notation 2.4 on the refined triangulation T̂; whence vA ∈ A(T̂). This proves the assertion A(T) ⊂ A(T̂) in case
that T̂ is refined from T by some bisection of an interior edge; the proof for an exterior edge can be adopted
and is hence omitted.

The general assertion follows from the above, because any NVB is obtained by a sequence of successive
bisections of marked edges.

3 Discrete Quasi-Interpolation
This section is devoted to the design of a quasi-interpolation operator for the extended Argyris finite element
spaces of this paper with properties (a)–(b) in this section as a tool for the proof of discrete reliability in
Section 4 and (c)–(d) for the multigrid analysis in Sections 6–7. Given any triangle T ∈ T with the diameter
hT := diam(T) recall the patch Ω(T) := int(⋃{T ∈ T : dist(T, T) = 0}) from Section 2.1.

Theorem 2 (Discrete Quasi-Interpolation). Given the initial triangulation T0 with initial conditions and the
associated NVB refinement that defines 𝕋, there exist positive constants Capx, Cc, and Cd such that, for any
triangulation T ∈ 𝕋 with any refinement T̂ ∈ 𝕋(T), there exists a linear operator J : H1(Ω)→ A(T) satisfying
(a)–(d) for any T ∈ T,
(a) v̂A = Jv̂A holds in T ∈ T ∩ T̂ for any v̂A ∈ A(T̂),
(b) ∑2m=0 hm−2T |f − Jf|Hm(T) ≤ Capx|f|H2(Ω(T)) holds for any f ∈ H2

0(Ω),
(c) C−1c ‖Jf‖L2(T) ≤ ‖f‖L2(Ω(T)) + hT‖∇f‖L2(Ω(T)) holds for any f ∈ H1(Ω(T)),
(d) ‖f − Jf‖L2(T) ≤ CdhT |f|H1(Ω(T)) holds for any f ∈ H1

0(Ω).

It is important to understand quasi-interpolation not as a single operator but rather as a class of operators
withmany choices [16] and the focus in this paper is on conditions frommesh-refinement. There are two con-
ditions (C1)–(C2) in the first part of this paper on the rate-optimal adaptive algorithm (and (C3)–(C4) in the
multigrid application in the second). Recall that the extended Argyris finite element space A(T) is associated
with the degrees of freedom {Λz,j : (z, j) ∈ I} of Notation 2.3 and the nodal basis functions {ψz,j : (z, j) ∈ I)}
of Notation 2.4. The definition of the quasi-interpolation in the proof of Theorem 2 below allows for a choice
of Tz,j ∈ T for each (z, j) ∈ I in the design of a functional Mz,j. Recall that T(z) is the set of neighboring
triangles T ∋ z and recall the half-planes H±(z) from Section 2.1 and T±(z) from Section 2.2.

Condition (C1). The family (Tz,j : (z, j) ∈ I) of triangles satisfies

Tz,1, . . . , Tz,m(z) ∈ T(z) := {T ∈ T : z ∈ T}

for all z ∈ N and, in addition, Tz,6 ∈ T+(z) and Tz,7 ∈ T−(z) at each z ∈ V(Ω) \ V0(Ω).

The next condition assures (a) for the admissible refinement T̂ of T. Define the set T̂(z) := {T̂ ∈ T̂ : z ∈ T̂}
of neighboring triangles T̂ from the refinement T̂ with z ∈ T̂ and observe that z ∈ N ⊂ N̂ is also a node of the
refined triangulation. Let T̂±(z)denote the subset of triangles in T̂(z) for z ∈ V(Ω) \ V0(Ω) that belong toH±(z).
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Condition (C2). The family (Tz,j : (z, j) ∈ I) of triangles satisfies, for all z ∈ N, that

T(z) ∩ T̂(z) ̸= 0 ⇒ Tz,1, . . . , Tz,m(z) ∈ T(z) ∩ T̂(z)

and in addition, for all z ∈ V(Ω) \ V0(Ω) (with m(z) = 7), that

T+(z) ∩ T̂+(z) ̸= 0 ⇒ Tz,6 ∈ T+(z) ∩ T̂+(z),
T−(z) ∩ T̂−(z) ̸= 0 ⇒ Tz,7 ∈ T−(z) ∩ T̂−(z).

If there is no coarse and fine triangle that contains z, i.e., if T(z) ∩ T̂(z) = 0, then (C2) puts no condition on the
choice of Tz,j; the condition (C2) is fully redundant in the extreme case of T ∩ T̂ = 0 of an overall refinement.

Conditions (C1)–(C2) can always be fulfilled by some choice of (Tz,j : (z, j) ∈ I), which is non-unique in
general, but any such choice with (C1) is sufficient for (b)–(d), while (C1)–(C2) are sufficient for (a). The proof
of Theorem 2 is amodification of that in [19] on the classical Argyris finite element space to the finite element
spaceA(T) of this paper. Hencewemerely sketch the arguments and comment on the necessarymodifications
in particular for (c)–(d). Homogeneous boundary conditions in this paper slightly simplify the presentation
because they allow for merely weighted averaging over triangles (and avoid weighted averaging over edges)
as pointed out already in [19, Remark 7.8].

Definition of J in Theorem 2. Given T ∈ 𝕋 and Notations 2.2–2.3, any global degree of freedom Λk = Λz,j in
the finite element space A(T) is associated to some node z ∈ N and is equal to some derivative Dα of order
0, 1, or 2 of a smooth function f restricted to some domain ωk with z ∈ ωk;

Λk f = Λz,j f = Dα(f|ωk )(zk) for all f ∈ C2(ωk).

Compared to the classical Argyris finite element space, the only modification here is that some nodes have 7
rather than 6 degrees of freedom of this form. The shape functions are the same but the global arrange-
ment involves functionals with one-sided second-order normal-normal derivatives when either ωk ⊂ H+(z)
or ωk ⊂ H−(z). Given f ∈ H1(Ω), its approximation

Jf =
N
∑
k=1

Mk(f)φk ∈ A(T) (3.1)

is defined in terms of the nodal basis functions φk = ψz,j ∈ A(T) of Notation 2.4 and some linear functionals
Mk = Mz,j as in [19] (explicitly given in integral formulas in [19, equation (4.15)]). We recall from [19] that,
given any Λz,j = Dα(∙|ωk )(z) one may select any Tz,j with (C1). Given (z, Tz,j , Dα), the proof designs a weight
function ψ̃k (and below ψk) on Tk and defines a derivative D̃k with

Mk(f) = ∫
Tz,j

ψ̃k(x)D̃k f(x) dx for all f ∈ H1(ωk) (3.2)

for all k = 1, . . . , N. The derivative D̃k is equal to Dk in case its order |Dk| is 0 or 1, while an integration by
parts in Tz,j allows for the order |D̃k| = 1 when |Dk| = 2. We refer to [19, equations (4.8)–(4.16)] for all the
details and the scaling properties of the associated functions and mention that [19] utilizes the notation κk
rather than Tz,j (for the treatment of inhomogeneous boundary conditions, when κk is a boundary edge).

The two one-sided second-order normal-normal derivatives ∂ν(z)∂ν(z) at z = zk ∈ V(Ω) \ V0(Ω) deserves
particular attention: Recall Tz,6 ⊂ H+(z) from (C1)whenΛk = Λz,6 is the version of ∂ν(z)∂ν(z)with values taken
fromωk ⊂ H+(z)and Tz,7 ⊂ H−(z) forΛk = Λz,7. The functionsφk,ψk, and the functional (3.2) are established
and analyzed in [19]; the only difference to the presented A(T) is their global arrangement.

The design of the weight functions implies Λk f = Mk(f) for all quintic polynomials f ∈ P5(ℝ2); cf.
[19, equation (4.11)] for the proof. This and a discussion of local and global degrees of freedom lead to
the projection property in [19, equation (5.6)], i.e., the idempotence J2 = J.

Proof of Theorem 2 (a). Given T ∈ T ∩ T̂ and v̂A ∈ A(T̂), the assertion Jv̂A = v̂A in T is an identity of twoquintic
polynomials that follows if all 21 degrees of freedomof the Argyris finite element at T coincide. It is important
to understand that (in a certain local coordinate system) those degrees of freedom are present in each of the
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extended Argyris finite element spaces A(T) and A(T̂) at hand. Let Λk = Λz,j be one degree of freedom at the
node z ∈ T that belongs to T with global number k ∈ {1, . . . , N} and (z, j) ∈ I. Since T̂ is a refinement, this
degree of freedom Λz,j is also contained in A(T̂) with some global number k̂, but the same index Λz,j (in
precisely this notation) because T ∈ T ∩ T̂.

Since T ∈ T(z) ∩ T̂(z) ̸= 0, conditions (C1)–(C2) ensure Tz,j ∈ T(z) ∩ T̂(z). Moreover, if z ∈ V(Ω) \ V0(Ω) is
a new interior vertex, then T ∈ T+(z) and j = 6 (resp. T ∈ T−(z) and j = 7) imply Tz,j ∈ T+(z) ∩ T̂+(z) (resp.
Tz,j ∈ T−(z) ∩ T̂−(z)). The two triangles T and Tz,j in T(z) ∩ T̂(z) are in general distinct, so let f and g
in P5(ℝ2) denote the extension of the quintic polynomials v̂A|T and v̂A|Tz,j from T and Tz,j to the entire
plane ℝ2, respectively. The degree of freedom Λz,j is defined uniquely for the finite element space A(T)
and A(T̂) and so Λk f = Λk v̂A = Λkg. This follows for a new interior node z ∈ V(Ω) \ V0(Ω) and the two-sided
second-order normal-normal derivatives (i.e., j = 6, 7) from the selection of T, Tz,j ∈ T±(z) ∩ T̂±(z) in the same
half-plane H±(z).

The linear functionals Λk and Mk coincide in P5(ℝ2) and so Λkg = Mk(g) = Mk(v̂A) with (3.2) in the
last identity. The coefficient Mk(v̂A) arises in front of the nodal basis function φk in the definition (3.1)
of J and so the duality relation (from Notation 2.4) shows Mk(v̂A) = Λk(Jv̂A). In conclusion, Λk f = Λk(Jv̂A),
which also reads Λz,j(f − Jv̂A) = 0. Recall that this holds for all j = 1, . . . ,m(z) and any node z in T except
for any new interior vertex z ∈ V(Ω) \ V0(Ω) and j ∈ {6, 7}. In the later case Λz,6(f − Jv̂A) = 0 if T ∈ T+(z)
and Λz,7(f − Jv̂A) = 0 if T ∈ T−(z). For a triangle T with positive distance to the boundary this implies that
Lj(f − (Jv̂A)|T) = 0 for all j = 1, . . . , 21, when (T, P5(T), (L1, . . . , L21)) denotes the quintic Argyris finite
element (in the sense of Ciarlet).

In case dist(T, ∂Ω) = 0 that T hits the boundary ∂Ω of the domain Ω, not all of the 21 degrees of freedom
L1, . . . , L21 are contained in the list Λ1, . . . , ΛN because of the boundary conditions in H2

0(Ω). But the real-
ization of the boundary conditions in Jv̂A ∈ A(T) and v̂A ∈ A(T̂) imply

Dα(Jv̂A)(z) = 0 = Dα(v̂A)(z) (3.3)

at all nodes z ∈ V ∪M on the boundary ∂Ω with a derivative of order |α| = 0, 1 and also for |α| = 2 at a cor-
ner z ∈ V(Ω) of the domain. For a vertex z ∈ V(∂Ω) \ V(Ω) on a flat part of the boundary ∂Ω, (3.3) holds
for the two second-order derivatives Dα = ∂2ττ and Dα = ∂2τν at z with one or two tangential derivatives. The
remaining second-order normal-normal derivative Dα = ∂2νν = Λk = Λz,1 at z is a global degree of freedom
with some number k ∈ {1, . . . , N}. Then (3.3) may fail to hold, but ∂2νν(f − Jv̂A)(z) = Λz,1(f − Jv̂A) = 0 follows
from the previous analysis for z ∈ T. In summary, all 21 degrees of freedom vanish at (f − (Jv̂A)|T) in this case
dist(T, ∂Ω) = 0 as well. Since (T, P5(T), (L1, . . . , L21)) is a finite element in the sense of Ciarlet, the quintic
polynomial f − (Jv̂A)|T vanishes in T. This concludes the proof of (a).

Proof of Theorem 2 (b). The arguments in the proof of [19, Theorem 7.1] show, for any T with neighborhood
Ω(T) and m = 0, 1, 2, that

|Jf|Hm(T) ≲
2
∑
k=0

hk−mT |f|Hk(Ω(T)) for all f ∈ H2
0(Ω). (3.4)

It is a standard technique [8] to combine a stability property with an approximation property. If T has a pos-
itive distance to the boundary ∂Ω, then (3.1) leads to Jg = g in T for any affine g ∈ P1(Ω(T)). The choice of g
such that the integrals of f − g and ∇(f − g) over Ω(T) vanish leads with (3.4) to

|f − Jf|Hm(T) ≤ |f − g|Hm(T) + |J(f − g)|Hm(T) ≲
2
∑
k=0

hk−mT |f − g|Hk(Ω(T)) ≲ h
2−m
T |f|H2(Ω(T))

with Poincaré inequalities inΩ(T) in the final step. In the remaining case, T hits the boundary ∂Ω and at least
one edge E ∈ E on the boundary also belongs to ∂Ω(T) ⊃ E. Friedrichs inequalities for f ∈ H2(Ω(T))with f and
∇f vanishing on E and the shape-regularity of T imply h−2T ‖f‖L2((Ω(T)) + h

−1
T |f|H1((Ω(T)) ≲ |f|H2(Ω(T)). Since (3.4)

holds in this situation as well, this and triangle inequalities result in

|f − Jf|Hm(T) ≲ h2−mT |f|H2(Ω(T)) for all f ∈ H2
0(Ω).

This concludes the proof of (b).
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Proof of Theorem 2 (c). The point is that Jf is well defined for f ∈ H1(Ω(T)) and the stability analysis in
[19, equation (7.5)] in the present case of triangles κj = Tj (with dim(Tj) = 2) and for m = 0, the right-hand
side in (3.4) is replaced by∑1k=0 h

k
T |f|Hk(Ω(T)) without the derivatives of second order. This concludes the proof

of (c).

Proof of Theorem 2 (d). Given any f ∈ H1
0(Ω), the substitution of f by f − g for some constant g ∈ P0(Ω(T))

with Jg = g in T in (c), results in

‖f − Jf‖L2(T) ≲ ‖f − g‖L2(Ω(T)) + hT |f|H1(Ω(T)). (3.5)

If T has apositive distance to theboundary ∂Ω, then (3.1) shows Jg = g in T for the integralmean g ∈ P0(Ω(T))
of f in Ω(T). This and a Poincaré inequality show

‖f − g‖L2(Ω(T)) ≲ hT |f|H1(Ω(T)). (3.6)

If T hits the boundary ∂Ω, then some edge E ∈ E(∂Ω) on the boundary also belongs to ∂Ω(T) ⊃ E. Set g = 0
and deduce (3.6) from a Friedrichs inequality for f ∈ H1

0(Ω) with f|E = 0 and the shape-regularity of T. The
combination of (3.5)–(3.6) concludes the proof of (d).

4 Adaptive Mesh-Refinement Algorithm
The axioms of adaptivity are four abstract properties (A1)–(A4) for an estimator η and a distance function δ
to provide optimal convergence rates [6, 10, 12].

4.1 Error Estimator and Distance

For any admissible triangulationT ∈ 𝕋 and the extendedArgyris finite element spaceA(T) andany right-hand
side f ∈ L2(Ω), let uA ∈ A(T) ⊂ H2

0(Ω) solve

a(uA , vA) = F(vA) for all vA ∈ A(T) (4.1)

with the scalar product a and the linear form F defined by

a(u, v) := ∫
Ω

∆u ∆v dx and F(v) := ∫
Ω

f v dx for all u, v ∈ H2
0(Ω).

The unique discrete solution uA ∈ A(T) to (4.1) gives rise to the error estimator η(T, ∙ ) : T → (0,∞) defined
for any triangle T ∈ T with area |T| by the square root of

η2(T, T) := η2T := |T|
2‖f − ∆2uA‖2L2(T) + ∑

E∈E(T)∩E(Ω)
(|T|

1
2 ‖[∆uA]E‖2L2(E) + |T|

3
2

[
∂∆uA
∂νE
]
E



2

L2(E)
). (4.2)

Here and throughout thepaper, [ ∙ ]E := (∙|T+ ) − (∙|T− )denotes the jumpacross the interior edge E = ∂T+ ∩ ∂T−
shared by the two neighboring triangles T± ∈ T with unit normal νE (and a fixed orientation).

The analog formula applies to any admissible refinement T̂ ∈ 𝕋(T) with a discrete solution ûA and so
defines η2(T̂, T) for all T ∈ T̂. The distance of T and T̂ is

δ(T, T̂) := |ûA − uA|H2(Ω).

4.2 Stability (A1) and Reduction (A2)

The first index T in the estimator η(T, ∙ ) : T → (0,∞) refers to an admissible triangulation T ∈ 𝕋, while the
second in (4.2) is a triangle T thereof. It is convenient to abbreviate ℓ2 norms over subsets of trianglesM ⊂ T
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by the sum convention

η(T,M) := ( ∑
T∈M

η2(T, T))
1
2

for allM ⊂ T.

The empty sum is zero and the full sum is abbreviated η(T) := η(T, T). With those conventions, the stability
(A1) and the reduction (A2) read as follows.

Theorem 3 (Discrete Stability and Reduction). There exist universal constants Λ1, Λ2, which depend only on𝕋
through T0, such that the respective error estimators of (4.2) for any admissible refinement T̂ of T ∈ 𝕋 satisfy

|η(T̂, T̂ ∩ T) − η(T, T ∩ T̂)| ≤ Λ1 δ(T, T̂), (A1)

η(T̂, T̂ \ T) ≤ 2−
1
4 η(T, T \ T̂) + Λ2 δ(T, T̂). (A2)

Proof. Those results follow from triangle inequalities as outlined in second-order problems in [6, 10, 12, 13]
followed by (discrete) trace inequalities; further details are omitted.

4.3 Discrete Reliability (A3) and Quasi-Orthogonality (A4)

Thediscrete reliability is key to the aposteriori error analysis and followswith thediscrete quasi-interpolation
of Theorem 2 plus standard arguments.

Theorem 4 (Discrete Reliability). There exists a universal constant Λ3, which depends only on 𝕋 through T0,
such that the respective error estimators of (4.2) for any admissible refinement T̂ of T ∈ 𝕋 satisfy

δ(T, T̂) ≤ Λ3 η(T, T \ T̂). (A3)

Proof. Given the discrete solution uA ∈ A(T) (resp. ûA ∈ A(T̂)) to (4.1) with respect to A(T) (resp. A(T̂)) based
on T (resp. T̂), set ê := ûA − uA ∈ A(T̂) + A(T) and recall Theorem 1 to deduce ê ∈ A(T̂). Given the quasi-
interpolation of Theorem 2, set e := Jê ∈ A(T) and v̂ := ê − e = (1 − J)ê ∈ A(T̂). The Galerkin property with
e ∈ A(T) ⊂ A(T̂) ⊂ H2

0(Ω) leads to

δ2 := δ2(T, T̂) = |ê|2H2(Ω) = a(ê, ê) = a(ê, v̂) = F(v̂) − a(uA , v̂).

A piecewise integration by parts twice proves that the last residual term F(v̂) − a(uA , v̂) is equal to

∑
T∈T
∫
T

(f − ∆2uA)v̂ dx − ∑
E∈E(Ω)
∫
E

(
∂v̂
∂νE
[∆uA]E − v̂[

∂∆uA
∂νE
]
E
) ds.

The definition of ηT ≡ √η2T in (4.2), and Cauchy inequalities show that this is bounded from above by
a generic constant ≲ 1 times

∑
T∈T

ηT(|T|−1‖v̂‖L2(T) + |T|−
1
4

∂v̂
∂νE

L2(∂T)
+ |T|−

3
4 ‖v̂‖L2(∂T)).

A (discrete) trace inequality and the approximation properties for v̂ := (I − J)ê showwith the shape-regularity
|T| ≈ h2T that

|T|−1‖v̂‖L2(T) + |T|−
1
4

∂v̂
∂νE

L2(∂T)
+ |T|−

3
4 ‖v̂‖L2(∂T) ≲ |ê|H2(Ω(T)).

On the other hand, this contribution vanishes for all T ∈ T̂ ∩ T because v̂ = 0 therein. The finite overlap of the
neighborhoods (Ω(T) : T ∈ T) leads to the bound δ2 ≲ (∑T∈T\T̂ η

2
T)

1
2 |ê|H2(Ω) = η(T, T \ T̂) δ.

The nestedness property of the extended Argyris finite element spaces implies orthogonality.

Theorem 5 (Quasi-Orthogonality). Any sequence (Tk)k∈ℕ0 of successive admissible refinements of T0 satisfies,
for all ℓ ∈ ℕ0, that

∞
∑
k=ℓ
δ2(Tk , Tk+1) ≤ Λ4 η2(Tℓ) (A4)

with the universal constant Λ4 := Λ2
3 and Λ3 from the previous theorem.
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Proof. Based on Theorem 1, the successive application of the Pythagoras theorem leads to

δ2(Tℓ, Tℓ+m+1) =
ℓ+m
∑
k=ℓ

δ2(Tk , Tk+1).

This and Theorem 4 imply, for all m, ℓ ∈ ℕ0, that

ℓ+m
∑
k=ℓ

δ2(Tk , Tk+1) ≤ Λ2
3 η

2(Tℓ).

The proof concludes with m →∞.

4.4 Adaptive Algorithm and Optimal Convergence Rates

The subsequent adaptive mesh-refinement algorithm is the nowadays standard strategy.

Adaptive Algorithm. The algorithm has the input parameter 0 < Θ < 1 and the initial mesh T0. Given any
level ℓ = 0, 1, . . . , do
(a) compute uℓ ∈ A(Tℓ) with a(uℓ, vℓ) = F(vℓ) for all vℓ ∈ A(Tℓ).
(b) compute error estimator η(Tℓ, T) for any T ∈ Tℓ by (4.2) (with uℓ replacing uA on the right-hand side).
(c) markMℓ ⊂ Tℓ with (almost) minimal cardinality such that

Θ η(Tℓ) ≤ η(Tℓ,Mℓ).

(d) refine allMℓ in Tℓ and create new triangulation Tℓ+1 od.
Output are the discrete solutions uℓ, the error estimators ηℓ := η(Tℓ), and the triangulations (Tℓ) for all
ℓ = 0, 1, 2, . . . .

Let 𝕋(N) denote the set of all admissible triangulations T ∈ 𝕋 with number of triangles |T| ≤ |T0| + N. The
data oscillation osc(f, T) is first defined by

osc(f, T) := |T|‖f − fT‖L2(T)

for the integral mean fT of f ∈ L2(Ω) in T ∈ T ∈ 𝕋 and second as

osc(f, T) := ( ∑
T∈T

osc(f, T)2)
1
2

for T ∈ T.

The interpretation of the subsequent consequence is that of optimal convergence rates: If the right-hand side
is smaller than infinity, then there is an optimal way to achieve the convergence rate s and the following
theorem asserts that also the outcome of the adaptive algorithm converges with the rate s.

Theorem 6 (Optimal Rates). There exists a universal constant 0 < Θ0 < 1 such that for all 0 < s <∞ there
exists some Λeq such that the output of the adaptive algorithm with Θ < Θ0 satisfies

sup
ℓ∈ℕ0
(1 + |Tℓ| − |T0|)−s(‖u − uℓ‖H2(Ω) + osc(f, Tℓ))

≤ Λeq sup
N∈ℕ0
(1 + N)−s min

T∈𝕋(N)
( min
uA∈A(T)
‖u − uA‖H2(Ω) + osc(f, T)).

The constant Λeq solely depends on 𝕋 through T0 and on Θ0 and s.

Proof. This follows from the axioms of adaptivity [6, 10, 12] that (A1)–(A4) and sufficiently small Θ0 lead to

sup
ℓ∈ℕ0
(1 + |Tℓ| − |T0|)−s ηℓ ≲ sup

N∈ℕ0
(1 + N)−s min

T∈𝕋(N)
η(T).

This, the best-approximation property of the scheme, and the equivalence of the error estimator plus data
oscillations η(T)+ osc(f,T) to the error plus data oscillations ‖u − uA‖H2(Ω) + osc(f,T) lead to the assertion.
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5 Multigrid V-Cycle Algorithm
The first subsection introduces the overall V-cycle algorithm with some smoothing operator that requires
a closer look at the degrees of freedom for the extended Argyris FEM in the second subsection.

5.1 The Multigrid V-Cycle Algorithm

Let T0, T1, T2, . . . be a sequence of nested conforming finite element triangulations of the domain Ω such
that Tℓ is a refinement of Tℓ−1 by the NVB algorithm and let A(Tℓ) be the extended Argyris finite element
space of the previous section for any ℓ ∈ ℕ0. Define the discrete operatorAℓ : A(Tℓ)→ A(Tℓ) and the discrete
right-hand side Fℓ ∈ A(Tℓ) by

(Aℓw, v)L2(Ω) := a(w, v) and (Fℓ, v)L2(Ω) := F(v) for all w, v ∈ A(Tℓ)

with the inner product ( ⋅ , ⋅ )L2(Ω) in L2(Ω). This defines the discrete problem on the level ℓ ∈ ℕ0: Seek
uℓ ∈ A(Tℓ) with

Aℓuℓ = Fℓ. (5.1)
The prolongation and restriction operators are defined in terms of the L2 inner product projection operator
Qℓ : H2

0(Ω)→ A(Tℓ) and the energy inner product projection operator Pℓ : H2
0(Ω)→ A(Tℓ) defined by

(Qℓw, vℓ)L2(Ω) = (w, vℓ)L2(Ω) and a(Pℓw, vℓ) = a(w, vℓ) (5.2)

for all w ∈ H2
0(Ω) and all vℓ ∈ A(Tℓ), ℓ ∈ ℕ0.

The local Gauss–Seidel relaxation of Section 5.2 defines a smoothing operatorRℓ : A(Tℓ)→ A(Tℓ) based
on a selection of ñℓ particular nodal basis functions ϕ1

ℓ , . . . , ϕ
ñℓ
ℓ in A(Tℓ) selected in Section 5.2 below.

This specifies the local projection operator Pjℓ : H
2
0(Ω)→ A(Tℓ) onto the one-dimensional span of ϕjℓ for all

j = 1, . . . , ñℓ and ℓ ∈ ℕ by

Pjℓw := (
a(w, ϕjℓ)

a(ϕjℓ, ϕ
j
ℓ

))ϕjℓ for all w ∈ H2
0(Ω). (5.3)

The smoothing operator Rℓ : A(Tℓ)→ A(Tℓ) reads

Rℓ := (I −
ñℓ
∏
k=1
(I − Pkℓ))A

−1
ℓ . (5.4)

Given an initial vector u(0)ℓ ∈ A(Tℓ), the standard V-cycle multigrid algorithm [5] solves system (5.1) by
the iterative method

u(k)ℓ = u
(k−1)
ℓ +Bℓ(Fℓ −Aℓu

(k−1)
ℓ ) for k ∈ ℕ (5.5)

with an approximate inverseBℓ ofAℓ recursively defined in a V-cycle.

Algorithm (V-Cycle). LetB0 := A−10 . For ℓ = 1, 2, 3, . . . and g ∈ A(Tℓ),
(1) Pre-smoothing: w1 := Rℓg.
(2) Correction: w2 := w1 +Bℓ−1Qℓ−1(g −Aℓw1).
(3) Post-smoothing:Bℓg := w2 + RTℓ (g −Aℓw2).
ThenBℓ is a uniform approximative inverse ofAℓ in the operator norm

‖I −BℓAℓ‖A := √ sup
vℓ∈A(Tℓ)\{0}

a(vℓ −BℓAℓvℓ, vℓ)
a(vℓ, vℓ)

.

Theorem 7. Under the assumptions of this subsection and with the selection of the basis functions ϕ1
ℓ , . . . , ϕ

ñℓ
ℓ

in A(Tℓ) from Section 5.2 below,Aℓ andBℓ satisfy

sup
ℓ∈ℕ0
‖I −BℓAℓ‖A ≤

c0
1 + c0
< 1

for some positive c0 bounded in terms of universal constants and the reduced elliptic regularity of the polygonal
domain Ω.



C. Carstensen and J. Hu, Multilevel Argyris FEM | 541

The proofs start after the description of the smoothing operator. Theorem 7 implies that the simple iterative
scheme (5.5) converges with rate smaller than or equal to some q < 1 independent of the number of lev-
els, triangles, or the dimension of the linear system. It also implies uniform convergence of preconditioned
schemes, e.g., the conjugate gradient scheme.

5.2 Partial Gauss–Seidel Relaxation

The smoothing operator Rℓ is a Gauss–Seidel relaxation performed for new degrees of freedom and their
neighbors, Recall that the finite element space A(Tℓ) on the level ℓ ∈ ℕ0 involves nodal basis functions
ψℓz,j and degrees of freedom Λℓz,j associated to a node z ∈ Nℓ ⊂Mℓ ∪ Vℓ. The set Vℓ (resp. Eℓ and Mℓ) of
vertices (resp. edges and edges’ midpoints) in the triangulation Tℓ defines a superset of the set of nodes Nℓ
as defined in Notation 2.2 (where Vℓ, Eℓ,Mℓ,Nℓ, Tℓ substitute V, E,M,N, T). Each node z ∈ Nℓ locates
m(z, ℓ) ∈ {1, 6, 7} degrees of freedom Λℓz,j which is a derivative of order μ(z, j, ℓ) ∈ {0, 1, 2} as introduced
in Section 2.2 and a nodal basis function ψℓz,j for j = 1, . . . ,m(z, ℓ).

The neighboring triangles Tℓ(z) := {T ∈ Tℓ : z ∈ T} are affected under mesh-refinement and the selection
of ψℓz,j to Ã(Tℓ) ⊂ A(Tℓ) below is characterized by the condition

Tℓ(z) ̸= Tℓ−1(z). (5.6)

In other words, (5.6) is the absence of Tℓ(z) = Tℓ−1(z) and involves some slightly pathological situations:
Given any z ∈Mℓ ∪ Vℓ the condition Tℓ(z) = Tℓ−1(z) is pointless if Tℓ−1(z) does not exist, i.e., either ℓ = 0 or
z ∈Mℓ \Mℓ−1 for ℓ ∈ ℕ. In those cases the condition Tℓ(z) ̸= Tℓ−1(z) is regarded as fulfilled. In the remain-
ing situations, i.e., z ∈Mℓ−1 ∪ Vℓ−1 and ℓ ∈ ℕ, the neighborhood Tℓ−1(z) is defined and then Tℓ(z) ̸= Tℓ−1(z)
is equivalent to the failure of one of the inclusions Tℓ(z) ⊂ Tℓ−1(z) and Tℓ−1(z) ⊂ Tℓ(z). This concludes the
comments on (5.6) and allows (in the notation of the previous subsections) for the definition

Ã(Tℓ) := span{ψℓz,j ∈ A(Tℓ) : z ∈Mℓ ∪ Vℓ, 1 ≤ j ≤ m(z, ℓ), (5.6) holds}

for ℓ ∈ ℕ. (Notice that Ã(Tℓ) depends on Tℓ−1 and Tℓ by (5.6), but the dependence on Tℓ−1 is suppressed in
the notation for brevity.)

Throughout the present paper, let ϕ1
ℓ , . . . , ϕ

ñℓ
ℓ be some enumeration of the selected shape functions

ψℓz,1, . . . , ψ
ℓ
z,m(z,ℓ) for all z ∈ Nℓ for ℓ ∈ ℕ with (5.6) with the linear hull

Ã(Tℓ) = span{ϕ1
ℓ , . . . , ϕ

ñℓ
ℓ }.

The nodal basis functions ϕ1
ℓ , . . . , ϕ

ñℓ
ℓ enter the definition of the smoother in (5.3)–(5.4) for ℓ ∈ ℕ (ℓ = 0

involves direct solve and Ã(T0) is not utilized).
The multigrid V-cycle algorithm is an adaptation of [27] (the Courant FEMs for second order problems)

to the extended Argyris FEM. The multigrid V-cycle algorithm of [14] can also be generalized to the extended
Argyris FEM.

6 Preliminaries in the Multigrid Analysis
This section starts with three preliminary subsections on the L2 norm of (extended) Argyris finite element
functions, on the NVB mesh-refinement, and on uniform meshes before the main result is established in
Section 7.

6.1 Lumped Mass Matrix

Note that each degree of freedom Λj ∈ A(T)∗ in the extended Argyris finite element space A(T) of dimen-
sion N := diam(A(T)) (and its dual A(T)∗) for an admissible triangulation T ∈ 𝕋 is associated with a node zj
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(a vertex of a triangle or themidpoint of an edge) and some (directional) derivative of order μj ∈ {0, 1, 2}. The
21 degrees of freedom that act on some triangle T ∈ T form the entries in the index list

I(T) := {j ∈ {1, . . . , N} : zj ∈ T}

of their global numbers; recall that the triangle T is the compact convex hull of its vertices and so its edges’
midpoints belong to T. Any function vA ∈ A(T) can be written in T ∈ T as

vA = ∑
j∈I(T)
(ΛjvA)φj a.e. in T (6.1)

with the real coefficient ΛjvA ≡ Λj(vA) of the (global) nodal basis function φj. Recall that the linear func-
tionals Λ1, . . . , ΛN (the degrees of freedom) and the (dual) nodal basis functions φ1, . . . , φN ∈ A(T) satisfy
Λjφk = δjk for all j, k = 1, . . . , N.

The extended as well as the classical Argyris finite elements are not affine equivalent (although quasi-
affine [15]) and so the scaling and the lumped representation of the L2 norms are not immediate. For admissi-
ble triangulations, however, the subsequent equivalent constants solely depend on T0. Recall that μj denotes
the order of the derivative Λj at the node zj.

Lemma 1 (Lumped L2 Norm). Adopt the aforementioned notation for vA ∈ A(T) in T ∈ T ∈ 𝕋with the represen-
tation (6.1). Then

‖vA‖2L2(T) ≈ ∑
j∈I(T)
|T|1+μj (ΛjvA)2.

Proof. Any triangle T ∈ T ∈ 𝕋 with edge E of length t := |E| > 0 can be translated so that its first vertex P
coincides with the origin and so there is one reference triangle Tref := conv{0, Q2, Q3} with Q2, Q3 ∈ ℝ2 and
|Q2| = 1 so that T = P + t Tref . This translation and scaling is possible for any triangle and leads to a set of
possible reference triangles Tref so that, for any T ∈ T ∈ 𝕋, there exists some Tref ∈ Tref, t > 0, and P ∈ ℝ2

with T = P + t Tref . The point is that the NVB leads to admissible triangulations with at most 8|T0| interior
different angles and the set Tref has finite cardinality at most 5|T0|.

The degrees of freedom simply translate, but the scaling depends on the order μ of the degree of freedom.
Let the 21 degrees of freedom Λref

1 , . . . , Λref
21 and the dual basis functions φref

1 , . . . , φref
21 on some reference

triangle Tref ∈ Tref be enumerated so that the order of the first three degrees of freedom is zero, the order
of those with index four to twelve is one and the remaining are of order two. Without loss of generality, let
I(T) = {1, . . . , 21}, so that the 21 degrees of freedom in (6.1) related to T are given as for each j as follows: Λj
is equal to Λref

j with an evaluation at a shifted node and the nodal basis function φj reads φj(x) = tμjφref
j (

x−P
t )

for all x ∈ T. Consequently, the 21 × 21mass matrix M(T) of T has the components

M(T)jk := ∫
T

φj(x)φk(x) dx = tμj+μk+2Mref
jk (6.2)

withMref
jk := ∫Tref φ

ref
j (ξ)φ

ref
k (ξ) dξ for all j, k = 1, . . . , 21. Each T

ref is associated to one SPDmass matrixMref

with positive eigenvalues. (The definiteness follows from the L2 norm representation exploited below.) Since
there is solely a finite number of reference triangles in Tref, there exist the minimum λ (resp. maximum λ) of
all eigenvalues of a mass matrix Mref associated to some Tref . The positive constants λ and λ solely depend
on T0, hence they are generic and denoted as λ ≈ 1 ≈ λ.

To prove the lemma, suppose T ∈ T ∈ 𝕋 and let Tref be associated as before with I(T) = {1, . . . , 21} and
the representation (6.1). The Rayleigh quotients withMref belong to the convex hull of its eigenvalues and so

λ|x|2 ≤ x ⋅Mrefx ≤ λ|x|2 (6.3)

holds for all x ∈ ℝ21 with the Euclid length |x|. Then xj := t1+μjΛjvA for j = 1, . . . , 21 leads in (6.2)–(6.3) to
some λ with λ ≤ λ ≤ λ and

‖vA‖2L2(T) = ∑
j,k∈I(T)
(ΛjvA)(ΛkvA)M(T)jk = x ⋅Mrefx = λ|x|2.

Since the scaling factor t satisfies |T| = t2|Tref | and each of the finite number of reference triangles satisfies
|Tref | ≈ 1, this concludes the proof.
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6.2 Re-summation

The analysis of multilevel methods requires global and local arguments. The re-summation lemma of this
section links the locally refined triangulations from NVB with a structured uniform partition.

6.2.1 Three Constants in NVB

Given the initial triangulation T0 and the set 𝕋 of admissible triangulations from Section 2.1, the following
three bounds M1,M2,M3 are universal in that they depend exclusively on T0.

Someconcepts are required todefineM1,M2,M3. Thefirst is the set of trianglesRj(T, T)of j layers around
some T ∈ T in a triangulation T ∈ 𝕋: Given T ∈ 𝕋 define R0(T, T) := {T} and, for j = 0, 1, successively define

Rj+1(T, T) := {K ∈ T : dist(T, K) = 0 for some T ∈ Rj(T, T)} (6.4)

and recall Ω(T) = int(⋃R1(T, T)) in Theorem 2.
The second concept is the refinement level ℓ(T) of a triangle T ∈ ⋃𝕋 ≡ {T triangle : there exists T ∈ 𝕋,

T ∈ T}. Since there exists a unique initial triangle K ∈ T0 with T ⊂ K, the quotient |T||K| = 2
−ℓ(T) of the areas

|T| and |K| of T and K belongs to the set {1, 12 ,
1
4 ,

1
8 , . . . } and defines the refinement level ℓ(T) of T. For

a set M ⊂ ⋃𝕋 of triangles, let |M| denote its cardinality and let ℓ(M) := {ℓ(M) : M ∈M} denote the set of
the refinement levels attained in that setM; min ℓ(M) ≡ minM∈M ℓ(M) denotes the minimal level.

Lemma 2 (Universal Bounds). The three positive constants

M1 := max
T∈𝕋

max
T∈T
|R1(T, T)|,

M2 := max
T∈𝕋

max
T∈T
(max ℓ(R1(T, T)) −min ℓ(R1(T, T))),

M3 := max
T∈⋃𝕋
|{R2(T, T) : ∃T ∈ 𝕋, T ∈ T}|

exclusively depend on T0; this is abbreviated by M1,M2,M3 ≈ 1.

Proof. Recall that there are a finite number of different interior angles (at most 7|T0|) possible in the triangles
⋃𝕋; in particular there is a smallest ω0 > 0. This leads to a very coarse bound M1 ≤ 5π

ω0
− 2. A closer look in

the initial condition andNVB proves that two triangles T+, T− ∈ T ∈ 𝕋 that share an edge E = ∂T+ ∩ ∂T− have
a level distance ℓ(T+) − ℓ(T−) ∈ {−1, 0, 1} at most one (as already observed in [2]). Consequently, M2 ≤ M1.

For each fixed triangle K ∈ ⋃𝕋, and any triangulation T ∈ 𝕋 containing K ∈ T, the patch R2(T, K) is
formed by at most M2

1 triangles and each angle in each of them has a value from a finite set of (at most
7 × |T0|) different angles. Since K is fixed, the number of different patches is bounded, i.e., the cardinality
|{R2(T, K) : ∃T ∈ 𝕋, K ∈ T}| ≤ M3 and M3 ≈ 1 is independent of K.

6.2.2 Uniform Mesh-Refinement

Recall that the initial triangulation T0 from Section 2.1 satisfies the initial condition: The refinement edge
E(T) := conv{P1, P3} associated to any triangle T = conv{P1, P2, P3} given by (P1, P2, P3) (its vertices in
a fixed order) satisfies that either E = E(T1) = E(T2) or E(T1) ̸= E ̸= E(T2) for any T1, T2 ∈ T0 with the com-
mon edge E = ∂T1 ∩ ∂T2 (see [10, 24]). Uniform NVB means one bisection for each triangle and leads to the
regular triangulationTuniform1 := {T ∈ bisec(T) : T ∈ T0} of bisected triangles. It also follows that the triangles
in Tuniform1 ∈ 𝕋 satisfy the initial condition as well and so the uniform refinement can be repeated:

Tuniformm+1 := {T ∈ bisec(T) : T ∈ Tuniformm } for all m ∈ ℕ0

defines a sequence of quasi-uniform admissible triangulation. Since T0 is fixed throughout this paper,
the shape-regular triangulation Tuniformℓ is associated with a global mesh-size ≈ 2− m2 in that each triangle
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T ∈ Tuniformm of area |T| and level ℓ(T) = m satisfies

h02−
m
2 ≤ |T|

1
2 ≤ H02−

m
2 for all T ∈ Tuniformm and all m ∈ ℕ0

for the minimal resp. maximal initial mesh-size h0 := min{|T| 12 : T ∈ T0} ≤ H0 := max{|T| 12 : T ∈ T0}.

6.2.3 Re-summation

Adopt the notation of the previous two subsections and consider a sequence (Tℓ)ℓ∈ℕ0 of admissible triangu-
lations obtained from T0 by successive admissible refinements Tℓ+1 ∈ 𝕋(Tℓ) for any ℓ = 0, 1, 2, . . . . Recall
the definition (6.4) of the neighborhood of a triangle T ∈ Tℓ and abbreviate

Rj,ℓ(T) := Rj(Tℓ, T) for all T ∈ Tℓ and all ℓ ∈ ℕ0 (6.5)

for j = 1, 2. For each ℓ ∈ ℕ0, define the two subsets T±ℓ of Tℓ by

T+ℓ := {T ∈ Tℓ : R1,ℓ(T) ̸= R1,ℓ+1(T)}, (6.6)
T−ℓ := {T ∈ Tℓ : R1,ℓ(T) ̸= R1,ℓ−1(T)}. (6.7)

For clarity set T−0 := T0 (for T−1 does not exist and R1,0(T) = R1,−1(T) is impossible). The subsequent re-
summation lemma allows the transfer of terms on the unstructured (and locally refined triangulations)
(Tℓ)ℓ∈ℕ0 to uniform triangulations (Tuniformm )m∈ℕ0 . It is written for fairly general summands to underline that
it is only a re-arrangement of the sums: suppose that s2(j, T) is a non-negative real number defined for any
triangle T ∈ ⋃𝕋 and any j ∈ ℕ0 with the sum convention

s2(j,M) := ∑
M∈M

s2(j,M)

for any finite setM of admissible triangles; set ( ∙ )+ := max{0, ∙ }.

Lemma 3 (Re-summation). Under the above notation,
L
∑
ℓ=0
∑
K∈T±

ℓ

s2(min ℓ(R1,ℓ(K)),R1,ℓ(K)) ≤ M1M3

∞
∑
m=0

m
∑

j=(m−M2)+

s2(j, Tuniformm )

holds for all L ∈ ℕ0 (T±ℓ in the second sum of the left-hand side denotes either T+ℓ from (6.6) or T−ℓ from (6.7),
the assertion holds in two versions).

Proof. Notice that the right-hand side is independent of L and so the upper index L in the sum on the left-
hand side could even be replaced by∞. Given any L ∈ ℕ0, however, the left hand-side is a finite sum unlike
the right-hand side that could possibly be equal to infinity. In the latter case the assertion is trivial and so,
without loss of generality, given L ∈ ℕ0 suppose that only those s2(j, T) that arise on the left-hand side are
possibly different fromzero (for thismakes the right-hand side as small as possible). Thenonly afinite number
of summands are non-zero on both sides.

The proof departs with the definition of M2 from Lemma 2 and T ∈ R1,ℓ(K) for some K ∈ Tℓ of level ℓ(T)
and concludes that

(ℓ(T) −M2)+ ≤ min ℓ(R1,ℓ(K)) ≤ ℓ(T).

Consequently,

s2(min ℓ(R1,ℓ(K)), T) ≤
ℓ(T)
∑

j=(ℓ(T)−M2)+

s2(j, T).

Any T ∈ R1,ℓ(K) for some K ∈ T±ℓ belongs to the set

Tℓ := {T ∈ Tℓ : R2,ℓ(T) ̸= R2,ℓ±1(T)}

and Lemma 2 asserts that there exist at most M1 of those neighboring triangles K in R1,ℓ(T). This leads for
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any ℓ ∈ ℕ0 to

∑
K∈T±

ℓ

∑
T∈R1,ℓ(K)

s2(min ℓ(R1,ℓ(K)), T) ≤ M1 ∑
T∈T

ℓ

ℓ(T)
∑

j=(ℓ(T)−M2)+

s2(j, T)

= M1

∞
∑
m=0

∑
T∈T

ℓ∩T
uniform
m

ℓ(T)
∑

j=(ℓ(T)−M2)+

s2(j, T).

The last identity utilizes that each admissible triangle T belongs to Tuniformm for the level m = ℓ(T) ∈ ℕ0. A re-
arrangement of the last inequality shows

L
∑
ℓ=0
∑
K∈T±

ℓ

∑
T∈R1,ℓ(K)

s2(min ℓ(R1,ℓ(K)), T) ≤ M1

L
∑
ℓ=0

∞
∑
m=0

∑
T∈T

ℓ∩T
uniform
m

ℓ(T)
∑

j=(ℓ(T)−M2)+

s2(j, T)

= M1

∞
∑
m=0

m
∑

j=(m−M2)+

∑
T∈Tuniform

m

μ(T)s2(j, T)

for the multiplicity μ(T) defined as the cardinality μ(T) = |L(T)| ≤ L + 1 of the set

L(T) := {ℓ1, . . . , ℓμ(T)} := {ℓ ∈ {0, 1, . . . , L} : T ∈ Tℓ}

of indices ℓ1 < ℓ2 < ⋅ ⋅ ⋅ < ℓμ(T). There is nothing to prove in the sequel for L(T) = 0 and μ(T) = 0, so suppose
μ(T) ∈ {1, . . . , L} for the moment. The definition of Tℓ implies R2,ℓ1 (T) ̸= R2,ℓ2 (T) ̸= ⋅ ⋅ ⋅ ̸= R2,ℓμ(T) (T). Since
Tℓ1 , Tℓ2 , . . . , Tℓμ(T) are successive refinements of each other, the sets R2,ℓ1 (T),R2,ℓ2 (T), . . . ,R2,ℓμ(T) (T) are
pairwise distinct. In other words, the map ℓ → R2,ℓ(T) is an injection of L(T) into {R2(T, T) : there exists
T ∈ 𝕋, T ∈ T}. The cardinality of the latter set is atmostM3 fromLemma2 and so μ(T) ≤ M3. The substitution
of this in the previous upper bound proves

L
∑
ℓ=0
∑
K∈T±

ℓ

∑
T∈R1,ℓ(K)

s2(min ℓ(R1,ℓ(K)), T) ≤ M1M3

∞
∑
m=0

m
∑

j=(m−M2)+

∑
T∈Tuniform

m

s2(j, T).

Recall the sum convention s2(j, Tuniformm ) = ∑T∈Tuniform
m

s2(j, T) to conclude the proof.

6.3 Analysis for Uniform Triangulations

All triangulations and the entire analysis throughout this subsection concern the uniform meshes from Sec-
tion 6.2.2 and so the upper index is skipped here (but added once the reference is made outside of this
subsection), so Tℓ ≡ Tuniformℓ and the mesh-size hℓ is 2−

ℓ
2 as h0 and H0 are viewed as global constants and

hidden in the notation 1 ≈ h0 ≈ H0 for simplicity. Recall that the shape regularity in Tℓ is inherited from T0
and so the diameter of T is ≈ 2− ℓ2 .

The strengthened Cauchy–Schwarz inequality reads as follows.

Lemma 4. Any ℓ,m ∈ ℕ0, vℓ ∈ A(Tℓ), and vm ∈ A(Tm) satisfy

2
|ℓ−m|
4 |a(vℓ, vm)| ≲ h−2ℓ ‖vℓ‖L2(Ω)h

−2
m ‖vm‖L2(Ω).

Proof. The proof may follow the lines in [30, Lemma 5.1]; a simplified version is given below based on the
trace inequality and inverse estimates. Their combination is sometimes called discrete trace inequality and
asserts ‖f‖L2(∂T) ≲ |T|−

1
4 ‖f‖L2(T) for each polynomial f ∈ P5(T) in the triangle T ∈ T ∈ 𝕋 (see [17]).Without loss

of generality let ℓ ≤ m and considerK ∈ Tℓ so that vℓ|K is a quintic polynomial and vm|K ∈ H2(K) is a piecewise
quintic polynomial. An integration by parts shows

∫
K

∆vℓ∆vm dx = ∫
∂K

(∆vℓ)(νK ⋅ ∇vm) dx − ∫
K

∇vm ⋅ ∇∆vℓ dx

≲ ‖∆vℓ‖L2(∂K)‖∇vm‖L2(∂K) + ‖∇vm‖L2(K) ‖∇∆vℓ‖L2(K).
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The discrete trace inequality leads to ‖∆vℓ‖L2(∂K) ≲ h
− 12
ℓ ‖∆vℓ‖L2(K) and to ‖∇vm‖L2(∂K∩∂T) ≲ h

− 12
m ‖∇vm‖L2(T) for

any T ∈ Tm. Let Tk(∂K) denote the set of all triangles T ∈ Tm with T ⊂ K and an intersection ∂K ∩ ∂T with the
boundary of K of positive length. The discrete trace estimate shows

‖∇vm‖2L2(∂K) = ∑
T∈T

k(∂K)
‖∇vm‖2L2(∂K∩∂T) ≤ ∑

T∈T
k(∂K)
‖∇vm‖2L2(∂T)

≲ h−1m ∑
T∈T

k(∂K)
‖∇vm‖2L2(T) ≤ h

−1
m ‖∇vm‖2L2(K).

The square root of this, the above estimates, and inverse estimates verify

∫
K

∆vℓ∆vm dx

≲ (h−

1
2
ℓ h

1
2
m + h−1ℓ hm)h

−2
ℓ ‖vℓ‖L2(K)h

−2
m ‖vℓ‖L2(K).

The sum of all those estimates over K ∈ Tℓ and h
− 12
ℓ h

1
2
m + h−1ℓ hm ≲ 2

ℓ−m
4 conclude the proof.

Let Pℓ ≡ Puniformℓ and Qℓ ≡ Quniform
ℓ denote the Galerkin and the L2 projection onto A(Tℓ) are linear and

bounded operators from H2
0(Ω) into H

2
0(Ω) defined for any v ∈ H

2
0(Ω) by Pℓv, Qℓv ∈ A(Tℓ) with

a(Pℓv, wA) = a(v, wA) for all wA ∈ A(Tℓ),
(Qℓv, wA)L2(Ω) = (v, wA)L2(Ω) for all wA ∈ A(Tℓ).

The quasi-uniform triangulations allow for approximation error estimates and for inverse estimates for
functions and norms in the Sobolev spaces Hs(Ω)with semi-norm | ∙ |Hs(Ω) for 0 ≤ s ≤ 2 defined, for instance,
by interpolation of L2(Ω) ≡ H0(Ω) and H1(Ω) resp. H2(Ω).

The followingapproximationand stability properties arewell known for thequasi-uniform triangulations
at hand in this subsection.

Lemma 5 ([30, Lemma 5.2]). For any 0 ≤ r ≤ 2 and ℓ ∈ ℕ0,

‖v − Qℓv‖Hr(Ω) ≲ 2(
r
2−1)ℓ|v|H2(Ω) and ‖Qℓw‖Hr(Ω) ≲ ‖w‖Hr(Ω)

hold for v ∈ H2(Ω) and w ∈ Hr(Ω).

The analysis requires the known reduced elliptic regularity on polygons that involves some index 1
2 < σ ≤ 1

throughout the remaining parts of this paper.

Theorem 8 (Regularity Shift). Given the bounded Lipschitz domain Ω ⊂ ℝ2 with polygonal boundary ∂Ω, there
exist some constants σ > 1

2 and C > 0 such that any v ∈H
2
0(Ω)with ∆2v ∈Hσ−2(Ω) satisfies v ∈H

2
0(Ω)∩H2+σ(Ω)

and ‖u‖H2+σ(Ω) ≤ C‖∆2u‖Hσ−2 .

Proof. The result has been established by Blum and Rannacher for convex domains with σ = 1 and for the
maximal interior angle ω smaller than 1.4π with σ = 2. The non-convex case leads to σ < 1 depending
on the maximum angle and σ > 1

2 follows for ω < 2π. The result is frequently accepted and more details
may be found in [1, 22]. It turns out that v ∈ H2

0(Ω) with ∆2v ∈ Hs−2(Ω) satisfies v ∈ H2
0(Ω) ∩ H2+s(Ω) and

‖u‖H2+σ(Ω) ≤ C‖∆2u‖Hs−2 for all s with 0 ≤ s ≤ σ and this explains the description as a shift theorem.

The reduced elliptic regularity and the Aubin–Nitsche duality technique provide error estimates in weaker
Sobolev norms; the proof is outlined for completeness.

Lemma 6 (Duality). Any v ∈ H2
0(Ω) and ℓ ∈ ℕ0 satisfy

|v − Pℓv|H2−σ(Ω) ≲ 2−
σℓ
2 |v − Pℓv|H2(Ω).

Proof. Given v − Pℓv ∈ H2
0(Ω) ⊂ H2−σ(Ω), there exists a functional F in the dual Hσ−2(Ω)with norm one such

that ‖v − Pℓv‖H2−σ(Ω) = F(v − Pℓv) froma corollary of theHahn–Banach extension theorem. Theweak solution
z ∈ H2

0(Ω) to ∆2z = F belongs to H2+σ(Ω) by Theorem 8. Then F(v − Pℓv) = a(v − Pℓv, z) = a(v − Pℓv, z − zA)
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for some approximation zA to z and standard arguments on the (standard) Argyris finite element interpolation

‖v − Pℓv‖H2−σ(Ω) ≤ |v − Pℓv|H2(Ω)|z − zA|H2(Ω) ≲ hσℓ |v − Pℓv|H2(Ω)|z|H2+σ(Ω)

conclude the proof with ‖z‖H2+σ(Ω) ≲ 1 and hℓ ≈ 2−
ℓ
2 .

Lemma 7 (Stability). Any v ∈ H2
0(Ω) and ℓ,m ∈ ℕ0 with vℓ := (Pℓ − Pℓ−1)v satisfy (Qm − Qm−1)vℓ = 0 for

ℓ ≤ m − 1 and for m ≤ ℓ that
|(Qm − Qm−1)vℓ|H2(Ω) ≲ 2−

σ(ℓ−m)
2 |vℓ|H2(Ω).

Proof. The proof follows that in [30, Lemma 5.3] and is merely outlined with less typos. On uniformmeshes,
the interpolation theory provides an inverse estimate

|(Qm − Qm−1)vℓ|H2(Ω) ≲ 2
σm
2 |(Qm − Qm−1)vℓ|H2−σ(Ω)

in fractional-order Sobolev spaces. The stability in Lemma 5 (b) leads to |(Qm − Qm−1)vℓ|H2−σ(Ω) ≲ |vℓ|H2−σ(Ω).
Lemma 6 applies to vℓ = (1 − Pℓ)Pℓ−1v and shows |vℓ|H2−σ(Ω) ≲ 2−σ

ℓ
2 |vℓ|H2(Ω). The combination of the afore-

mentioned estimates concludes the proof.

Lemma 8. Any v ∈ H2
0(Ω) and 0 ≤ r < 2 satisfy

∞
∑
ℓ=1
|(Qℓ − Qℓ−1)v|2H2(Ω) ≲ |v|

2
H2(Ω), (a)

∞
∑
ℓ=0

2(2−r)ℓ‖v − Qℓv‖2Hr(Ω) ≲ |v|
2
H2(Ω). (b)

Remark 6.1. Lemma 8 (b) fails for r = 2. A counterexample concerns L ∈ ℕ and some vL ∈ A(TL) of H2 norm
one, which is L2 orthogonal to A(TL−1). Then the left-hand side of Lemma 8 (b) is L and the right-hand side
is one.

Proof of Lemma 8 (a). The proof follows that of [30, Lemma 5.4]. Abbreviate vℓ := (Pℓ − Pℓ−1)v for all ℓ ∈ ℕ0
with P−1v := 0 and observe that the series v = ∑∞ℓ=0 vℓ converges in H2

0(Ω) by the convergence of the Galerkin
scheme and |v|2H2(Ω) = ∑

∞
ℓ=0 |vℓ|2H2(Ω). Lemma 7 and triangle inequalities show

∞
∑
m=1
|(Qm − Qm−1)v|2H2(Ω) =

∞
∑
m=1



∞
∑
ℓ=m
(Qm − Qm−1)vℓ



2

H2(Ω)

≤
∞
∑
m=1
(
∞
∑
ℓ=m
|(Qm − Qm−1)vℓ|H2(Ω))

2
≲
∞
∑
m=1
(
∞
∑
ℓ=m

2−
σ(ℓ−m)

2 |vℓ|H2(Ω))
2
.

With the abbreviations aℓ := |vℓ|H2(Ω) and 0 < q := 2−
σ
2 < 1, the last sum reads

∞
∑
m=1
(
∞
∑
ℓ=m

aℓqℓ−m)
2
=
∞
∑
m=1

∞
∑

k,ℓ=m
akaℓqk+ℓ−2m =

∞
∑
k,ℓ=1

akaℓ(
min{k,ℓ}
∑
m=1

qk+ℓ−2m)

≤
1

1 − q2
∞
∑
k,ℓ=1

akaℓq|k−ℓ| =
1

1 − q2
a ⋅ Qa

for the vector a = (aj : j ∈ ℕ0) and the infinite matrix Q with the entry Qjk = q|j−k| for j, k ∈ ℕ0. The Ger-
shgorin circle theorem shows (for each finite submatrix of Q and hence for Q) that all eigenvalues of the
symmetric matrix Q belong to the compact interval [1 − q

1−q , 1 +
q

1−q ]. Consequently, a ⋅ Qa ≤
1

1−q a ⋅ a. This
and a ⋅ a = |v|2H2(Ω) conclude the proof.

Proof of Lemma 8 (b). Set wm := (Qm − Qm−1)v and apply Lemma 5 (for v and ℓ replaced by wm and m with
wm = wm − Qm−1wm) to verify

‖wm‖Hr(Ω) ≲ γm|wm|H2(Ω) for 0 < γ := 2
r
2−1 < 1.

After triangle inequalities this leads for bm := |wm|H2(Ω) to

‖v − Qℓv‖Hr(Ω) ≤
∞
∑

m=ℓ+1
‖wm‖Hr(Ω) ≲

∞
∑

m=ℓ+1
γmbm .
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The remaining calculations follow the arguments of part (a) of the proof and utilize the last estimate to
establish

∞
∑
ℓ=0

2(2−r)ℓ‖v − Qℓv‖2Hr(Ω) ≲
∞
∑
ℓ=0

∞
∑

k,m=ℓ+1
γm+k−2ℓbkbm

=
∞
∑

k,m=1
bkbm(

min{k,m}−1
∑
ℓ=0

γm+k−2ℓ) ≤ 1
1 − γ2

∞
∑

k,m=1
γ|m−k|bkbm .

The last sum is the product of the vector (bk : k ∈ ℕ) times an infinite matrix Q := (γ|m−k| : k,m ∈ ℕ) times
the vector (bm : m ∈ ℕ). The eigenvalues of Q are bounded by 1

1−γ and hence

(1 − γ)2(1 + γ)
∞
∑
ℓ=0

2(2−r)ℓ‖v − Qℓv‖2Hr(Ω) ≤
∞
∑
j=1
b2j =

∞
∑
j=1
|(Qj − Qj−1)v|2H2(Ω).

This and Lemma 8 (a) conclude the proof.

7 Convergence Analysis

7.1 Overview

The proof of Theorem 7 concludes in Section 7.6 with arguments of a general multilevel theory [5, 29] based
on certain decompositions. Throughout the analysis of the multigrid algorithm of Section 5, there is a given
sequence (Tℓ)ℓ∈ℕ0 of successive one-level mesh-refinements in 𝕋 and ℓ ∈ ℕ0. Section 7.2 adapts the quasi-
interpolation of Theorem 2 to the reduced space Ã(Tℓ) = span{ϕ1

ℓ , . . . , ϕ
ñℓ
ℓ } from Section 5.2 and defines

a sequence (Jℓ)ℓ∈ℕ0 of quasi-interpolation operators. Sections 7.3–7.5 provide three estimates of partial sums
in the split

vL = J0vL +
L−1
∑
ℓ=0
(Jℓ+1 − Jℓ)vL (7.1)

of an arbitrary vL ∈ A(TL) and L ∈ ℕ. The key point in Propositions 1–3 below is that the generic constants
do neither depend on L ∈ ℕ nor on (Tℓ)ℓ∈ℕ0 , but solely on T0 through the constants M1,M2,M3 of Lemma 2
and Cd from Theorem 9 (d) (resp. Theorem 2 (d)).

7.2 Quasi-Interpolation

The design of the quasi-interpolation operator in Theorem 2 looks ahead towards a refinement T̂ of the cur-
rent triangulation T under conditions (C1)–(C2). The multigrid convergence analysis relies on a sequence
(Jℓ)ℓ∈ℕ0 of quasi-interpolation operators, which look backwards in the sequence (Tℓ)ℓ∈ℕ0 of the successive
mesh-refinements.

Theorem 9. Given a sequence (Tℓ)ℓ∈ℕ0 of successive one-level mesh-refinements in 𝕋, there exists a sequence
(Jℓ)ℓ∈ℕ0 of quasi-interpolation operators that satisfy properties (b)–(d) in Theorem 2 for all ℓ ∈ ℕ0 (when Tℓ

and Jℓ substitute T and J) and property (a’) for all ℓ ∈ ℕ0:
(a’) (Jℓ+1 − Jℓ)v ∈ Ã(Tℓ+1) for all v ∈ H2

0(Ω).

The definition of J is steered by a family (Tz,j : (z, j) ∈ I) of triangles with (C1). Adapt all the notation T, N,
m(z) for z ∈ N, ψz,j for (z, j) ∈ I for the level ℓ ∈ ℕ and write Tℓ,Nℓ, m(z, ℓ) for z ∈ Nℓ, ψℓz,j for (z, j) ∈ Iℓ, etc.
In particular, Tℓ(z) := {T ∈ Tℓ : z ∈ T} for all z ∈ Nℓ and Tℓ,±(z) = Tℓ(z) ∩ H±(z) for all z ∈ Vℓ(Ω) \ V0(Ω).

Condition (C3) is nothing else than a rewriting of (C1) for each level.

Condition (C3). For any ℓ ∈ ℕ0, the family (Tℓz,j : (z, j) ∈ Iℓ) of triangles satisfies T
ℓ
z,1, . . . , T

ℓ
z,m(z,ℓ) ∈ Tℓ(z) for

all z ∈ Nℓ and, in addition, Tℓz,6 ∈ Tℓ,+(z) and T
ℓ
z,7 ∈ Tℓ,−(z) at each z ∈ Vℓ(Ω) \ V0(Ω).
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Note that the set of nodes increases with the levelNℓ ⊂ Nℓ+1 for any ℓ ∈ ℕ0 and

Ñℓ+1 := {z ∈ Nℓ : Tℓ(z) ̸= Tℓ+1(z)} ∪ (Nℓ+1 \Nℓ) ⊂ Nℓ+1

defines the space Ã(Tℓ+1) = span{ψℓ+1z,j : j = 1, . . . ,m(z, ℓ + 1) for z ∈ Ñℓ+1}.

Condition (C4). For any ℓ ∈ ℕ0, the family (Tℓ+1z,j : (z, j) ∈ Iℓ+1) of triangles satisfies

Tℓ+1z,j = T
ℓ
z,j for all z ∈ Nℓ+1 \ Ñℓ+1 and all j = 1, . . . ,m(z, ℓ + 1).

Definition of (Jℓ)ℓ∈ℕ0 in Theorem 9. Mathematical induction proves that a family (Tℓz,j : (z, j) ∈ Iℓ, ℓ ∈ ℕ0) of
triangles with (C3)–(C4) can be designed. (Note that z ∈ Nℓ+1 \ Ñℓ+1 implies z ∈ Nℓ and Tℓ(z) = Tℓ+1(z) so
thatm(z, ℓ + 1) = m(z, ℓ) and Tℓz,j ∈ Tℓ(z) from (C3) enables the selection Tℓ+1z,j = T

ℓ
z,j ∈ Tℓ+1(z) for (C3).) Con-

dition (C3)means that (C1)holds onany level and this is sufficient for properties (b)–(d) asserted inTheorem2
for all ℓ ∈ ℕ0 when Tℓ and Jℓ substitute T and J.

Proof of Theorem 9 (a’). Consider z ∈ Nℓ+1 \ Ñℓ+1 and j = 1, . . . ,m(z, ℓ + 1) and revisit of the design of the
functionals andweight functions in (3.2) of the proof of Theorem2. SinceTℓ(z)=Tℓ+1(z),m(z, ℓ + 1)=m(z, ℓ),
and Tℓz,j = T

ℓ+1
z,j from (C4), it holdsψℓz,j = ψ

ℓ+1
z,j ,Λ

ℓ
z,j = Λ

ℓ+1
z,j , and theweight functions, and the resulting respec-

tive functionals in (3.1)–(3.2) are equal. For instance Mℓk = M
ℓ+1
m provided k is the number of the degree

of freedom Λℓz,j = Λ
ℓ
k on the level ℓ and m is the number of the same degree of freedom Λℓz,j = Λ

ℓ+1
z,j = Λ

ℓ+1
m

on the level ℓ + 1. The coefficient Mℓkv of ψ
ℓ
z,j = ψ

ℓ+1
z,j in the definition of Jℓv is the same coefficient Mℓ+1m v

of ψℓz,j = ψ
ℓ+1
z,j in the definition of Jℓ+1v. This and the duality relation (from Notation 2.4) imply on the level

ℓ + 1 that
Λℓ+1z,j (Jℓ+1v − Jℓv) = 0 for all z ∈ Nℓ+1 \ Ñℓ+1 and j = 1, . . . ,m(z, ℓ + 1).

Consequently (with the duality in the first equality),

Jℓ+1v − Jℓv = ∑
z∈Nℓ+1

m(z,ℓ+1)
∑
j=1
(Λℓ+1z,j (Jℓ+1v − Jℓv))ψ

ℓ+1
z,j

= ∑
z∈Ñℓ+1

m(z,ℓ+1)
∑
j=1
(Λℓ+1z,j (Jℓ+1v − Jℓv))ψ

ℓ+1
z,j ∈ Ã(Tℓ+1).

The inclusion in the last step follows from the above characterization of Ã(Tℓ+1) by Ñℓ+1 and concludes the
proof of (a’).

7.3 Stability of the Decomposition

The subsequent proposition is of general interest where hℓ+1 ∈ P0(Tℓ+1) is the piecewise constant mesh-size
in the triangulation Tℓ+1.

Proposition 1 (Stability). The decomposition (7.1) of vL ∈ A(TL) satisfies
L−1
∑
ℓ=0
(‖h−2ℓ+1(Jℓ+1 − Jℓ)vL‖

2
L2(Ω) + |(Jℓ+1 − Jℓ)vL|

2
H2(Ω)) ≲ |vL|

2
H2(Ω).

Proof. The proof utilizes the L2 projection Qm ≡ Quniform
m with respect to the uniform triangulationsTuniformm of

Section 6.3. Abbreviate vℓ+1 := (Jℓ+1 − Jℓ)vL for ℓ = 0, . . . , L − 1. Recall the neighborhoodsRj,ℓ(T) := Rj(Tℓ, T)
for neighboring triangles of T ∈ Tℓ with respect to Tℓ from Section 6.2.1.

Step one provides for ℓ = 0, 1, . . . , L − 1 andm(T) := min ℓ(R1,ℓ(T)) for T ∈ Tℓ with Ω(T) = int(⋃R1,ℓ(T)) the
estimate

‖vℓ+1‖L2(T) ≲
{
{
{

0 if R1,ℓ(T) = R1,ℓ+1(T),
hT |(1 − Qm(T))vL|H1(Ω(T)) else.

(7.2)

The proof of (7.2) departs from the definition of Jℓ and Theorem 2 and verifies Jℓ+1vL = JℓvL a.e. in T in case
R1,ℓ(T) = R1,ℓ+1(T); this proves the first alternative in (7.2).
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Hence suppose R1,ℓ(T) ̸= R1,ℓ+1(T). The discrete function vℓ+1|T = ((Jℓ+1 − Jℓ)vL)|T is defined by the
data vL|H1(Ω(T)) with stability as in Theorem 2 (d). The definition of m(T) := min ℓ(R1,ℓ(T)) as a minimal
level near T in Tℓ guarantees that wm(T) := (Qm(T)vL)|Ω(T) is a quintic polynomial in each triangle in R1,ℓ(T)
and in each triangle in R1,ℓ+1(T̂) for T̂ ∈ Tℓ+1 with T̂ ⊂ T. This and the definition of Jℓ resp. Jℓ+1 show that
Jℓwm(T) = wm(T) = Jℓ+1wm(T) a.e. in T. Hence

‖vℓ+1‖L2(T) = ‖(Jℓ+1 − Jℓ)(vL − Qm(T)vL)‖L2(T)
≤ ‖(1 − Jℓ+1)(vL − Qm(T)vL)‖L2(T) + ‖(1 − Jℓ)(vL − Qm(T)vL)‖L2(T).

For j = 0, Theorem 2 (d) shows

‖(1 − Jℓ+j)(vL − Qm(T)vL)‖L2(T) ≲ hT |(1 − Qm(T))vL|H1(Ω(T)). (7.3)

Theorem 2 (d) also applies to each T̂ ∈ Tℓ+1 with T̂ ⊂ T as well and the sum of all those contributions proves
(7.3) for j = 1. The combination with the second last displayed estimate concludes the proof of (7.2).

Step two recalls the abbreviations T+ℓ from (6.6) and m(K) from Step one and provides, for each ℓ ∈ ℕ0, that

‖h−2ℓ+1vℓ+1‖
2
L2(Ω) + |vℓ+1|

2
H2(Ω) ≲ ∑

K∈T+
ℓ

∑
T∈R1,ℓ(K)

|T|−1|vL − Qm(K)vL|2H1(T). (7.4)

The proof of (7.4) departs with piecewise (with respect to Tℓ+1) inverse estimates and the piecewise constant
mesh-sizes for the one-level refinement Tℓ+1 of Tℓ with hℓ+1 ≤ hℓ ≤ 2hℓ+1 to verify

|vℓ+1|H2(Ω) ≲ ‖h−2ℓ+1vℓ+1‖L2(Ω).

Recall that any K ∈ Tℓ with R1,ℓ(K) ̸= R1,ℓ+1(K) belongs to K ∈ T+ℓ . This and (7.2) lead to

‖h−2ℓ+1vℓ+1‖L2(Ω) + |vℓ+1|
2
H2(Ω) ≲ ∑

K∈T+
ℓ

|K|−1 |vL − Qm(K)vL|2H1(Ω(K)).

Since |K| ≈ |T| for T ∈ R1,ℓ(K) (from M2 ≈ 1), this implies (7.4).

Step three applies the re-summation of Lemma 3with s(j, T) := |T|−1|vL − QjvL|2H1(T) and so controls the right-
hand side of (7.4). This and |T| ≈ 2−m for T ∈ Tuniformm result in an estimate

LHS :=
L−1
∑
ℓ=0
(‖h−2ℓ+1vℓ+1‖L2(Ω) + |vℓ+1|

2
H2(Ω)) ≲

∞
∑
m=0

m
∑

j=(m−M2)+

2m|vL − QjvL|2H1(Ω)

for the left-hand side LHS in Proposition 1.

Step four finishes the proof. For any j = (m −M2)+, . . . ,m, Lemma 2 and 2m ≤ (2M2 )2(m−M2)+ ≤ 2M22j ≤ 2m

show 2m ≈ 2j. Consequently,

LHS ≲
∞
∑
m=0

m
∑

j=(m−M2)+

2j|vL − QjvL|2H1(Ω) ≤ (M2 + 1)
∞
∑
m=0

2m|vL − QmvL|2H1(Ω).

This and Lemma 8.b for r = 1 conclude the proof.

7.4 Second Estimate for the Decomposition

The main argument for the following stability result requires Sobolev–Slobodeckij norms addressed before
the proof concludes this subsection.

Proposition 2 (Key Estimate). Any vL ∈ A(TL) satisfies

L−1
∑
ℓ=0

ñℓ
∑
k=1

a(vL − JℓvL , ϕkℓ)2

|ϕkℓ |
2
H2(Ω)

≲ |vL|2H2(Ω).
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The proof below requires Sobolev spaces Hs(ω) and their norms with a general index 1
2 < s < 1 on tri-

angles. The possible choice s = 3
4 underlines that the parameter s has nothing to do with the regularity

index σ. The most explicit definition for a subdomain ω of Ω in 2D is the Sobolev–Slobodeckij norm
‖ ∙ ‖Hs(ω) := (‖ ∙ ‖2L2(ω) + | ∙ |

2
Hs(ω))

1
2 with the semi-norm defined in two space dimensions for any f ∈ H1(ω)

by

|f|2Hs(ω) := ∬
ω×ω

|f(x) − f(y)|2

|x − y|2+2s
dx dy.

There are equivalent alternative definitions with equivalence constants that may depend on the domain ω.
The decomposition

∑
T∈T
|f|2Hs(T) ≤ |f|

2
Hs(Ω) for all f ∈ Hs(Ω) and T ∈ 𝕋 (7.5)

is obvious for the (non-local) Sobolev–Slobodeckij semi-norm.

Lemma 9 (Trace and Inverse Inequality). Any f ∈ Hs(T) ≡ Hs(int(T)) and any quartic polynomial p4 ∈ P4(T)
defined in a (compact) triangle T with interior int(T) of diameter hT with minimal interior angle greater than or
equal to ω0 > 0 and 1

2 < s ≤ 1 satisfy the trace (7.6) and inverse (7.7) inequality,

c(s, ω0)h
1
2
T ‖f‖L2(∂T) ≤ ‖f‖L2(T) + h

s
T |f|Hs(T), (7.6)

c(s, ω0)hsT |p4|Hs(T) ≤ ‖p4‖L2(T), (7.7)

for a universal positive constant c(s, ω0) ≈ 1 that exclusively depends on s and ω0.

Proof. The trace and the inverse inequality are well established for a fixed domain such as the reference
triangle Tref := conv{(0, 0), (1, 0), (0, 1)} for various definitions of the semi-norm | ∙ |Hs(T). Any of which
leads to the assertion for T = Tref . A standard scaling argument, i.e., the transformation of Tref onto T
by an affine diffeomorphism and the substitution formula for integrals, then proves the lemma for the
Sobolev–Slobodeckij semi-norm. The trace lemma has been utilized, e.g., in [7, (2.11)]; further details are
found in [18, Lemma 7.2].

Proof of Proposition 2. Adopt the above notation on (Tℓ)ℓ∈ℕ0 and abbreviate wℓ := vL − JℓvL for ℓ ∈ ℕ0 (with
0 = wL = wL+1 = ⋅ ⋅ ⋅ ). Recall T−ℓ from (6.7) and that ϕkℓ = ψ

ℓ
z,j has been selected in Section 5.2 with condi-

tion (5.6).

Step one establishes Tℓ(z) ⊂ T−ℓ for all z ∈Mℓ ∪ Vℓ with (5.6) and ℓ ∈ ℕ0. There is nothing to prove for ℓ = 0
and otherwise, if z ∈Mℓ ∪ Vℓ satisfies (5.6) and z ∈ T ∈ Tℓ, ℓ ∈ ℕ, then there exists K ∈ Tℓ(z) \ Tℓ−1 and so
K ∈ R1,ℓ(T) \ R1,ℓ−1(T). Hence T ∈ T−ℓ .

Step two comments on the finite overlap of the supports of the nodal basis functions ϕ1
ℓ , . . . , ϕ

ñℓ
ℓ . The

nodal basis function ϕjℓ is (uniquely) associated to a nodal degree of freedom Λjℓ ∈ A(Tℓ)∗ acting at a node
zjℓ ∈Mℓ ∪ Vℓ for each j = 1, . . . , ñℓ. The support supp ϕ

j
ℓ = ⋃Tℓ(z

j
ℓ) of ϕ

j
ℓ is covered by the triangles Tℓ(z

j
ℓ)

that contain zjℓ. Let Iℓ ⊂ {1, . . . , ñℓ} × {1, . . . , ñℓ} denote the subset of all index pairs (j, k) with overlap
supp ϕjℓ ∩ supp ϕ

k
ℓ of positive area, i.e., if Tℓ(z

j
ℓ) ∩ Tℓ(z

k
ℓ) ̸= 0, for j, k = 1, . . . , ñℓ. Given any j = 1, . . . , ñℓ,

let Iℓ(j) := {k = 1, . . . , nℓ : (j, k) ∈ Iℓ} denote the set of all k such that the supports of the associated nodal
basis functions overlap and let |Iℓ(j)| denote its cardinality. Suppose M0 is a universal upper bound of
the number |Tℓ(z

j
ℓ)| ≤ M0 of triangles in a nodal patch Tℓ(z

j
ℓ) for j = 1, . . . , ñℓ (and so M0 ≤ M1). Then at

most 9M0 + 7 degrees of freedom with a number k (at most M0 + 1 vertices and 2M0 edges belong to the
patch Tℓ(z

j
ℓ) of an interior node z

j
ℓ carrying at most 7 and 1 degree of freedom in A(Tℓ), respectively) satisfy

(j, k) ∈ Iℓ, i.e.,
M0 := max

j=1,...,ñℓ
|Iℓ(j)| ≤ 9M0 + 7 ≲ 1.

Step three verifies that left-hand side LHS in Proposition 2 satisfies

LHS ≲
L−1
∑
ℓ=0
∑
T∈T−

ℓ

(|T|−1|wℓ|2H1(T) + |T|
s−1|∇wℓ|2Hs(T)).
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Given any nodal basis function ϕkℓ in Ã(Tℓ) for ℓ ∈ ℕ0 and k = 1, . . . , ñℓ, a piecewise integration by parts
shows

a(wℓ, ϕkℓ) = ∑
T∈Tℓ

( ∫
∂T

∆ϕkℓ∂wℓ
∂νT

ds − ∫
T

∇∆ϕkℓ ⋅ ∇wℓ dx).

Standard trace and inverse inequalities of the quintic polynomial ϕkℓ on T ∈ Tℓ and (7.6) of Lemma 9 for
1
2 < s < 1 (for each component of ∇w ∈ Hs(T;ℝ2)) control each summand


∫
∂T

∆ϕkℓ∂wℓ
∂νT

ds − ∫
T

∇∆ϕkℓ ⋅ ∇wℓ dx

≲ |ϕkℓ |H2(Ω)(h−1T |wℓ|H1(T) + hs−1T |∇wℓ|Hs(T)).

The sum is over all T ∈ Tℓ but the summands vanish for all triangles except for T ∈ Tℓ(zkℓ) in the support ofϕ
k
ℓ .

Step one assures that all of those triangles T in the support of at least one of the basis functions ϕ1
ℓ , . . . , ϕ

ñℓ
ℓ

are contained in T−ℓ . Step two bounds the overlap. For any fixed ℓ ∈ ℕ, this leads to
ñℓ
∑
k=1

a(wℓ, ϕkℓ)2

|ϕkℓ |
2
H2(Ω)
≲ ∑
T∈T−

ℓ

(h−2T |wℓ|
2
H1(T) + h

2(s−1)
T |∇wℓ|2Hs(T)).

The sum of the lower bounds for ℓ = 0, . . . , L − 1 is LHS and the sum of the upper bounds of the proceeding
estimate is asserted bound.

Step four recalls the L2 projection Qj onto A(Tuniformj ) and considersWj := vL − QjvL ∈ H2
0(Ω) and defines

s2(j, T) := |T|−2‖Wj‖2L2(T) + |T|
−1|Wj|2H1(T) + |T|

s−1|∇Wj|2Hs(T)

for any admissible triangle T ∈ ⋃𝕋 and for any j ∈ ℕ0. Recall the sum convention s2(j,M) := ∑M∈M s2(j,M)
for a finite setM ⊂ ⋃𝕋 of triangles.

Step five establishes, for each T ∈ T−ℓ , ℓ ∈ ℕ0, that

|T|−1|wℓ|2H1(T) + |T|
s−1|∇wℓ|2Hs(T) ≲ s

2(min ℓ(R1,ℓ(T)),R1,ℓ(T)).

Any T ∈ T−ℓ , ℓ ∈ ℕ0, is admissible (T ∈ ⋃𝕋) and has a level ℓ(T) ∈ ℕ0 with |T|−1 ≈ 2ℓ(T). The quasi-interpola-
tion (JℓvL)|T of Theorem 2 depends merely on vL|Ω(T) in the neighborhood Ω(T) := int(⋃R1,ℓ(T)) of T and
satisfies

wℓ ≡ (1 − Jℓ)vL = (1 − Jℓ)Wm a.e. in T

provided m := min ℓ(R1,ℓ(T)) andWm ≡ vL − QmvL from step four. (Notice that 0 = (1 − Jℓ)QmvL in T follows
as in step four of the proof of Proposition 1.) This and a triangle inequalities show

|T|−
1
2 |wℓ|H1(T) + |T|

s−1
2 |∇wℓ|Hs(T) = |T|−

1
2 |(1 − Jℓ)Wm|H1(T) + |T|

s−1
2 |∇(1 − Jℓ)Wm|Hs(T)

≤ s(T) + |T|−
1
2 |JℓWm|H1(T) + |T|

s−1
2 |∇JℓWm|Hs(T)

with s(T) := |T|− 12 |Wm|H1(T)+ |T|
s−1
2 |∇Wm|Hs(T) as a temporary abbreviation. The inverse estimate (7.7) applies

to each component of ∇JℓWm ∈ P4(T;ℝ2). This and a standard inverse estimate show

|T|
s−1
2 |∇JℓWm|Hs(T) ≲ |T|−

1
2 |JℓWm|H1(T) ≲ |T|−1‖JℓWm‖L2(T).

The combination with the previous estimate plus Theorem 2 (c) with f = Wm ≡ vL − QmvL in the neighbor-
hood Ω(T) ≡ int(⋃R1,ℓ(T)) of T leads to

|T|−
1
2 |wℓ|H1(T) + |T|

s−1
2 |∇wℓ|Hs(T) ≲ s(T) + |T|−1‖JℓWm‖L2(T)

≲ s(T) + |T|−1‖Wm‖L2(Ω(T)) + |T|−
1
2 |Wm|H1(Ω(T)).

This and |T| ≈ |K| for K ∈ R1,ℓ(T) prove the assertion.

Step six concludes the proof. Steps two and four plus Lemma 3 show

LHS ≲
L−1
∑
ℓ=0
∑
T∈T−

ℓ

s2(min ℓ(R1,ℓ(T)),R1,ℓ(T)) ≲
∞
∑
m=0

m
∑

j=(m−M2)+

s2(j, Tuniformm ).
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Step four in the proof of Proposition 1 explains |T| ≈ 2−m ≈ 2−j for any T ∈ Tuniformm in the sum over all
j = (m −M2)+, . . . ,m with a bounded number of summands. This and (7.5) show the equivalence of the last
upper bound to

∞
∑
j=0

22j‖Wj‖2L2(Ω) +
∞
∑
j=0

2j|Wj|2H1(Ω) +
∞
∑
j=0

2(s−1)j|∇Wj|2Hs(Ω).

Lemma 8.b applies to each of the three sums for r = 0, 1, 1 + s for v replaced by vL and conclude the proof
of LHS ≲ |vL|2H2(Ω).

7.5 Third Estimate of a Decomposition

This subsection concerns an arbitrary discrete function ṽℓ ∈ Ã(Tℓ) on fixed level ℓ ∈ ℕ (uniquely) rewritten
as

ṽℓ =
ñℓ
∑
k=1

vkℓ with vkℓ ∈ span{ϕ
k
ℓ} for all k = 1, . . . , ñℓ. (7.8)

Recall that Pjℓ is the local Galerkin projection from (5.3).

Proposition 3 (Remains). Any function ṽℓ ∈ Ã(Tℓ) with (7.8) satisfies

ñℓ
∑
j=1


Pjℓ

ñℓ
∑
k=j+1

vkℓ


2

H2(Ω)
≲ ‖h−2ℓ vℓ‖

2
L2(Ω).

Proof. Recall the notation from step two in the proof of Proposition 2 on the finite overlap of the supports
of the basis functions ϕ1

ℓ , ϕ
2
ℓ , . . . , ϕ

ñℓ
ℓ and the universal boundM0. Abbreviate wj := ∑

ñℓ
k=j+1 v

k
ℓ and evaluate

the norm of Pjℓwj from (5.3) for j = 1, . . . , ñℓ. Triangle and Cauchy inequalities verify

|Pjℓwj|H2(Ω) ≤ ∑
k∈Iℓ(j)
|vkℓ |H2(Ω) ≤ √M0√ ∑

k∈Iℓ(j)
|vkℓ |

2
H2(Ω).

The equivalence of norms ‖Pjℓwj‖H2(Ω) ≈ |P
j
ℓwj|H2(Ω) in H2

0(Ω), the square of the last displayed identity, and
its sum over all j = 1, . . . , ñℓ lead to an estimate for the left-hand side LHS in Proposition 3, namely,

LHS ≡
ñℓ
∑
j=1


Pjℓ

ñℓ
∑

k=k+1
vnℓ


2

H2(Ω)
≈

ñℓ
∑
j=1
|Pjℓwj|

2
H2(Ω) ≤

ñℓ
∑
j=1
∑

k∈Iℓ(j)
|vkℓ |

2
H2(Ω).

The upper bound is a sum of |vkℓ |
2
H2(Ω) over all pairs (j, k) ∈ Iℓ and equal to

ñℓ
∑
k=1
∑

j∈Iℓ(k)
|vkℓ |

2
H2(Ω) =

ñℓ
∑
k=1
|Iℓ(k)| |vkℓ |

2
H2(Ω) ≤ M


0

ñℓ
∑
k=1
|vkℓ |

2
H2(Ω).

Consequently,

LHS ≲
ñℓ
∑
k=1
|vkℓ |

2
H2(Ω) = ∑

T∈Tℓ

ñℓ
∑
k=1
|vkℓ |

2
H2(T).

For a fixed T ∈ Tℓ, an inverse estimate

|vkℓ |H2(T) ≲ h−2T ‖v
k
ℓ‖L2(T)

is followed by Lemma 1. Let I(ℓ, T) ⊂ {1, . . . , ñℓ} denote the set of at most 21 indices j such that zjℓ ∈ T and
its associated degree of freedom Λjℓ ∈ A(Tℓ)∗ is a derivative of order μ

j
ℓ ∈ {0, 1, 2} evaluated at zjℓ. The split

(7.8) and the duality of ϕ1
ℓ , . . . , ϕ

ñℓ
ℓ and Λ1

ℓ , . . . , Λ
ñℓ
ℓ leads to Λkℓ(ṽℓ)ϕ

k
ℓ = v

k
ℓ and

ṽℓ =
ñℓ
∑
k=1

vkℓ = ∑
k∈I(ℓ,T)

vkℓ = ∑
k∈I(ℓ,T)

Λkℓ(ṽℓ)ϕ
k
ℓ a.e. in T.
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This is the identity (6.1)whenϕjℓ, Λ
j
ℓ, ñℓ, ṽℓ, and I(ℓ, T) replaceψj , Λj,N, vA, and I(T). In the current notation

Lemma 1 therefore establishes
‖ṽℓ‖2L2(T) ≈ ∑

k∈I(ℓ,T)
|T|1+μ

k
ℓ |Λkℓ(ṽℓ)|

2.

Replace vA by vkℓ in Lemma 1 for the proof of ‖vkℓ‖
2
L2(T) ≈ |T|

1+μkℓ |Λkℓ(ṽℓ)|2. The combination of the previous
estimates verifies that

∑
k∈I(ℓ,T)
‖vkℓ‖

2
L2(T) ≈ ‖ṽℓ‖

2
L2(T).

This and the aforementioned inverse inequality result in

|T|2
ñℓ
∑
k=1
|vkℓ |

2
H2(T) ≲ ∑

k∈I(ℓ,T)

v
k
ℓ

2
L2(T) ≲ ‖ṽℓ‖

2
L2(T)

for each T ∈ Tℓ. The sum over all T ∈ Tℓ provides the second estimate in

LHS ≲
ñℓ
∑
k=1

v
k
ℓ

2
A ≲ ‖h

−2
ℓ ṽℓ‖

2
L2(Ω).

This concludes the proof.

7.6 Proof of Theorem 7

Themultigrid V-cycle operatorBL of Section 5.1 allows for a compact representation of the self-adjoint opera-
tor

I −BLAL = R∗R for R := (I − P0)
L
∏
ℓ=1

ñℓ
∏
k=1
(I − Pkℓ)

with adjoint R∗ in the Hilbert space H2
0(Ω) with the energy inner product a( ∙ , ∙ ) and induced norm

‖ ∙ ‖A := a( ∙ , ∙ ) 12 ; cf., e.g., [5, equation (3.4)] for proofs and details. Recall that P0 is the Galerkin pro-
jection H2

0(Ω) onto A(T0) from (5.2), and Pkℓ is the local Galerkin projection from (5.3). The square of the
operator norm

‖I −BLAL‖2A =

(I − P0)

L
∏
ℓ=1

ñℓ
∏
k=1
(I − Pkℓ)



2

A

has been characterized in [29, Corolary 4.3] as c0
1+c0 for an expression c0 that reads in the notation of this

subsection as

c0 = sup
‖v‖A=1

inf
v=v0+∑Lℓ=1 ∑

ñℓ
k=1 v

k
ℓ

(

P0

L
∑
ℓ=1

ñℓ
∑
k=1

vkℓ


2

A

+
L
∑
ℓ=1

ñℓ
∑
k=1


Pkℓ ∑
(m,n)>(ℓ,k)

vnm


2

A

).

Given any L ∈ ℕ and any vL ∈ A(TL)with norm one in the semi-norm of H2
0(Ω), the infimum in the definition

of c0 runs over all decompositions

vL = v0 +
L
∑
ℓ=1

ñℓ
∑
k=1

vkℓ ∈ A(TL)

with vkℓ ∈ span{ϕ
k
ℓ} in the direction of the nodal basis function ϕkℓ selected in Section 5.2 for the smoother

in (5.3)–(5.4). The symbol > represents the lexicographic order and (m, n) > (ℓ, k) under the sum indicates
a summation over all m = ℓ, . . . , L and n = 1, . . . , ñm with either m > ℓ or (m = ℓ and n > k).

The bound of c0 from above follows with the particular choice (7.1); this decomposition may not be
infimal in the definition of c0, but it leads to an upper bound c0 ≲ 1 in the end and so concludes the proof.

The details of the proof of c0 ≲ 1 depart with the definition as a supremum. The lower bound c0
2 of the

supremum c0 > 0 (there is nothing left to prove if c0 = 0) allows for L ∈ ℕ0 and vL ∈ A(TL) with norm one
in H2

0(Ω) such that the infimum over all decompositions is greater than c0
2 . Theorem 9 (a’) guarantees that

the split (7.1) is admissible in that

ṽℓ := (Jℓ − Jℓ−1)vL ∈ Ã(Tℓ) = span{ϕ1
ℓ , . . . , ϕ

ñℓ
ℓ } for all ℓ = 1, . . . , L
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can be written uniquely as a sum over vkℓ ∈ span{ϕ
k
ℓ} for all k = 1, . . . , ñℓ and ℓ = 1, . . . , L so that v0 =: J0vL

and

vL = v0 +
L
∑
ℓ=1

ṽℓ and ṽℓ =
ñℓ
∑
k=1

vkℓ ∈ Ã(Tℓ). (7.9)

Abbreviate∑ℓ,k := ∑
L
ℓ=1∑

ñℓ
k=1 in the sequel. Then (7.9) (and triangle andYoung inequalities) leads to anupper

bound
c0
2 ≤

P0∑
ℓ,k
vkℓ


2

A

+ 2∑
ℓ,k


Pkℓ

ñℓ
∑
j=k+1

vjℓ


2

A

+ 2∑
ℓ,k


Pkℓ

L
∑

m=ℓ+1

ñm
∑
n=1

vnm


2

A

.

The three sums in the upper bounds are named S1, S2, and S3 in the following analysis that concludes the
proof by Sj ≲ ‖vL‖2H2(Ω) ≈ 1 for j = 1, 2, 3.

Proof of S1 ≲ 1. The first sum concerns ∑ℓ,k vkℓ = vL − J0vL. This, the stability of the Galerkin projection P0,
and the stability of the quasi–interpolation operator J0 of Theorem 2 show

S1 ≡ ‖P0 ∑
ℓ,k=1

vkℓ‖
2
A = ‖P0(vL − J0vL)‖2A ≲ ‖vL‖

2
H2(Ω) = 1.

Proof of S2 ≲ 1. The second sum involves ṽℓ ∈ Ã(Tℓ) in Proposition 3 and shows

S2 ≡ 2
ñℓ
∑
ℓ,k

P
k
ℓ

ñℓ
∑
j=k+1

vjℓ

2
A ≲

L
∑
ℓ=1
‖h−2ℓ ṽℓ‖

2
L2(Ω) =

L
∑
ℓ=1
‖h−2ℓ (Jℓ − Jℓ−1)vL‖

2
L2(Ω).

The last identity follows from the definition of ṽℓ and allows for Proposition 1 to conclude S2 ≲ ‖vL‖2H2(Ω) = 1.

Proof of S3 ≲ 1. The third sum concerns (for ℓ = 1, . . . , L)
L
∑

m=ℓ+1

ñm
∑
n=1

vnm =
L
∑

m=ℓ+1
ṽm = vL − JℓvL

and the norm ‖Pkℓ(vL − JℓvL)‖A of its projection Pkℓ(vL − JℓvL) with

‖Pkℓ(v − Jℓv)‖
2
A =

a(vL − JℓvL , ϕkℓ)2

|ϕkℓ |
2
H2(Ω)

.

This and Proposition 2 (note that vL − JLvL = 0) show

S3 ≡ 2∑
ℓ,k
‖Pkℓ

L
∑

m=ℓ+1

ñm
∑
m=1

vnm‖2A = 2∑
ℓ,k

a(vL − JℓvL , ϕkℓ)2

|ϕkℓ |
2
H2(Ω)

≲ 1.

Finish of the proof. The summary of c02 ≤ S1 + S2 + S3 ≲ 1 concludes the proof.
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