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Direct guaranteed lower eigenvalue bounds

with optimal a priori convergence rates for the

bi-Laplacian

Carsten Carstensen∗ Sophie Puttkammer˚

An extra-stabilised Morley finite element method (FEM) directly computes
guaranteed lower eigenvalue bounds with optimal a priori convergence rates for
the bi-Laplace Dirichlet eigenvalues. The smallness assumption mintλh, λuh4max

ď 184.9570 in 2D (resp. ď 21.2912 in 3D) on the maximal mesh-size hmax makes
the computed k-th discrete eigenvalue λh ď λ a lower eigenvalue bound for the
k-th Dirichlet eigenvalue λ. This holds for multiple and clusters of eigenvalues
and serves for the localisation of the bi-Laplacian Dirichlet eigenvalues in partic-
ular for coarse meshes. The analysis requires interpolation error estimates for the
Morley FEM with explicit constants in any space dimension n ě 2, which are of
independent interest. The convergence analysis in 3D follows the Babuška-Osborn
theory and relies on a companion operator for the Morley finite element method.
This is based on the Worsey-Farin 3D version of the Hsieh-Clough-Tocher macro
element with a careful selection of center points in a further decomposition of
each tetrahedron into 12 sub-tetrahedra. Numerical experiments in 2D support
the optimal convergence rates of the extra-stabilised Morley FEM and suggest an
adaptive algorithm with optimal empirical convergence rates.

Keywords. biharmonic eigenvalue problem, direct guaranteed lower eigenvalue bounds,
Morley finite element, conforming companion, nonconforming interpolation, Hsieh-Clough-
Tocher, Worsey-Farin, a priori error estimates, adaptive mesh-refinement

1 Introduction

The biharmonic eigenvalue problem ∆2u “ λu allows upper bounds from the Rayleigh-Ritz
(or) min-max principle for conforming finite element methods (FEMs) [BO91, Bof10]. Guar-
anteed lower eigenvalue bounds (GLB) can be even more relevant in a safety analysis in com-
putational mechanics, for the detection of spectral gaps, or for valid bounds of the Sobolev
embedding H2

0 pΩq ãÑ L2pΩq. There is a rich literature on lower eigenvalue bounds for the
Laplace operator, cf., e.g., [ŠV14, CDM`18, HXYZ18] and the references therein. Through-
out this paper the focus is on the biharmonic eigenvalue problem with former contribution in
[YLBL12, CG14a, HHL14, Liu15, YLB16, LSL19].
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DirectGLB4BiLaplace

1.1 Motivation

A post-processing for the nonconforming Morley FEM allows for GLBs for the bi-Laplacian
in [CG14a]. The k-th discrete eigenvalue λM pkq computed from the Morley FEM (displayed
in (2.12) below) leads to a guaranteed lower bound

GLBpkq :“ λM pkq
1 ` λM pkqκ22h4max

ď λk (1.1)

for the exact k-th Dirichlet eigenvalue λk of the bi-Laplacian. The explicit analytical pa-
rameter κ2 “ 0.25746 for n “ 2 is known from [CG14a] and κ2 “ 0.21672 for n “ 3 is
provided in Theorem 2.1.b below. The numerical experiments in this paper utilize the im-
proved computational bound κ2 “ 0.07353 from [LSL19] for n “ 2. The maximal mesh-size
hmax enters as a global parameter in (1.1) and may cause a significant underestimation for
adaptive mesh-refinement, when local mesh-refining leaves a few simplices coarse and hmax

large. This leads to a dramatic underestimation in the following motivational example with
convergence history plot Fig. 1.1 and useless post-processed bound (1.1). The new method is
an extra-stabilised Morley FEM with an additional piecewise quadratic variable and the fine-
tuned parameter κ2 “ 0.07353. The new method allows for an optimal empirical convergence
rate one (with respect to the number |T | of triangles in the triangulation T ) with adaptive
mesh-refinement. The dumbbell domain with a slit (see Fig. 4.1.a below for the initial tri-
angulation) is an extreme example. The adaptive refinement occurs in one of the two cells
with minimal coupling, so that hmax is not reduced. The first and fourth Morley eigenvalue
λM pkq ă λk for k “ 1, 4 in Fig. 1.1 are smaller than the approximation λ1 “ 80.93261350 and
λ4 “ 386.80177939 of the exact eigenvalues, but this is not guaranteed in general, cf. [CG14a,
Sec. 2] for a counter example. The eigenvalues of the Morley FEM converge only asymp-
totically from below [YLBL12, YLB16] and it remains unclear whether a given triangulation
belongs to the asymptotic regime. Since λhpkqh4max ď κ´2

2 holds for all levels in Fig. 1.1, The-
orem 1.1 below implies that the discrete eigenvalue λhpkq ď λk for k “ 1, 4 is a guaranteed
lower eigenvalue bound under the hypothesis of the exact solve of the algebraic eigenvalue
problem. (The discussion of interval arithmetic and perturbation analysis for inexact solve in
numerical linear algebra is beyond this paper – the focus here is on the understanding of the
discretization error.) The numerical results for GLB ď λh ď λM are almost indistinguishable
for uniform mesh-refinement in Fig. 1.1 and result in one line with empirical convergence rate
1 for the principal and 1{2 for the fourth eigenvalue.
In short, if the GLB relies exclusively on (1.1), a naive adaptive mesh-refinement appears
useless in this example, while the new bound displays optimal empirical convergence rates.

1.2 Eigenvalue problems and main results

The continuous eigenvalue problem seeks eigenpairs pλ, uq P R
` ˆ V with

apu, vq “ λ bpu, vq for all v P V and }u}L2pΩq “ 1 (1.2)

in the Hilbert space V :“ H2
0 pΩq with the energy scalar product ap ‚ , ‚ q :“ pD2 ‚ ,D2 ‚ qL2pΩq

for the Hessian D2 and the L2 scalar product bp ‚ , ‚ q :“ p ‚ , ‚ qL2pΩq; the infinite but countable
many eigenvalues 0 ă λ1 ď λ2 ď . . . with limjÑ8 λj “ 8 in (1.2) are enumerated in ascending
order counting multiplicities. For any shape-regular triangulation T of Ω Ă R

n into simplices,
the piecewise constant mesh-size function hT P P0pT q is defined by hT |T “ hT :“ diampT q

2
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Figure 1.1: Convergence history plot for the error in the principal and in the fourth Dirichlet eigenvalue
of the bi-Laplacian on uniform (θ “ 1, solid) and adaptive (θ “ 0.5, dashed) triangulations of the
dumbbell-slit domain from Fig. 4.1.a.

in each simplex T P T and hmax :“ maxTPT hT . The discrete space Vh :“ P2pT q ˆ MpT q Ă
P2pT q ˆ P2pT q consists of piecewise quadratic polynomials. The Morley space MpT q is well
established for two-dimensional plate problems [Mor68] and generalized in [MX06] for any
space dimension (cf. Subsection 2.1 below for details). The algebraic eigenvalue problem of
the extra-stabilised method seeks discrete eigenpairs pλh,uhq P R

` ˆ pVhzt0uq with

ahpuh,vhq “ λhbhpuh,vhq for all vh P Vh. (1.3)

The discrete scalar product ah contains the scalar product apwp ‚ , ‚ q :“ pD2
pw

‚ ,D2
pw

‚ qL2pΩq

for the piecewise Hessian of the Morley functions inMpT q and some stabilisation; the bilinear
form bh is the L2 scalar product of the piecewise quadratic components in P2pT q,

ahpvh,whq :“ apwpvM , wM q ` κ´2
2 ph´4

T
pvpw ´ vM q, wpw ´ wM qL2pΩq,

bhpvh,whq :“ pvpw, wpwqL2pΩq for all vh “ pvpw, vM q, wh “ pwpw, wM q P Vh.

Since pVh,ahq is a Hilbert space and bh is a semi-scalar product with kernel t0uˆMpT q Ă Vh,
the algebraic eigenvalue problem (1.3) has M :“ dimpP2pT qq “

`
2`n
n

˘
|T | finite and positive

algebraic eigenvalues 0 ă λhp1q ď ¨ ¨ ¨ ď λhpMq ă 8 enumerated in ascending order counting
multiplicities. The new method (1.3) directly computes guaranteed lower eigenvalue bounds
for any space dimension n ě 2. The a priori and a posteriori smallness assumption is explicit
in terms of the maximal mesh-size hmax, but surprisingly robust with respect to the shapes
of the simplices in the triangulation T . The interpolation estimates of Theorem 2.1 below
define the global parameter

κ1 :“
d

1

π2
` 1

2npn ` 1qpn ` 2q and κ2 :“
κ1

π
`
d

nκ21 ` 2κ1
2pn ´ 1qpn ` 1qpn` 2q . (1.4)

Theorem 1.1 (GLB). For any k “ 1, . . . ,M , the k-th eigenvalue λk from (1.2) and the
k-th eigenvalue λhpkq from (1.3) satisfy that mintλhpkq, λkuκ22h4max ď 1 implies λhpkq ď λk.

3
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Notice that mintλhpkq, λkuκ22h4max ď 1 in Theorem 1.1 means that each of the conditions (i)
λkκ

2
2h

4
max ď 1 (a priori) or (ii) λhpkqκ22h4max ď 1 (a posteriori) implies the GLB property

λhpkq ď λk. Remarks 2.3–2.4 below explain that the choice κ2 “ 0.07353 in 2D (resp.
κ2 “ 0.21672 in 3D) is possible in the discrete system (1.3) and in Theorem 1.1 and leads to
the condition mintλh, λuh4max ď 184.9570 in 2D (resp. ď 21.2912 in 3D) sufficient for λ ď λh.

Theorem 1.1 leads under some condition at least a posteriori to GLB and hence the next
question is the quality of those. To describe optimal a priori convergence rates, let T denote the
set of uniformly shape-regular triangulation of a fixed bounded polyhedral Lipschitz domain
Ω Ă R

3 into tetrahedra with respect to a global shape-regularity constant Csr ą 0: Any
tetrahedron T P T P T with diameter hT and volume |T | satisfies |T |1{3 ď hT ď Csr|T |1{3.
The subset Tpδq Ă T denotes the triangulations with maximal mesh-size hmax ď δ. Let
σ :“ mint1, σregu denote the minimum of one and the index of elliptic regularity σreg ą 0
from (1.5) below.

Theorem 1.2 (a priori convergence). Suppose λ is an eigenvalue of (1.2) of multiplicity
µ with eigenspace Epλq Ă H2`tpΩq X V for some t with σ ď t ď 1. Then there exist δ, C ą 0
such that any triangulation T P Tpδq and the discrete space Vh :“ P2pT q ˆ MpT q lead in
(1.3) to exactly µ algebraic eigenvalues λh,1, . . . , λh,µ of (1.3) (counting multiplicities), that
converge to λ as hmax Ñ 0. Let Eh :“ spantuh P Ehpλh,kq : k “ 1, . . . , µu abbreviate the span
of the discrete eigenspaces Ehpλh,kq Ă Vh of λh,k for k “ 1, . . . , µ. Then

h´t
max max

k“1,...,µ
|λ ´ λh,k| ` h´σ

max max
uPEpλq

}u}
L2pΩq“1

min
uh“pupw,uMqPEh

}upw}
L2pΩq“1

}u´ upw}L2pΩq

`h´σ
max max

uh“pupw,uM qPEh

}upw}
L2pΩq“1

min
uPEpλq

}u}
L2pΩq“1

}u´ upw}L2pΩq ď Chtmax.

The results of Theorem 1.1 and 1.2 assume exact solve of the algebraic eigenvalue problem
(1.3), but standard perturbation results in numerical linear algebra [Par98] can be added to
obtain rigorous bounds in practical applications.

1.3 Outline

Section 2 analyses the discrete eigenvalue problem (1.3) and proves Theorem 1.1 in any
space dimension n ě 2. Subsection 2.1 recalls the Morley finite element (FE) and presents
interpolation error estimates in Theorem 2.1. The interpolation constant κ2 in (1.4) leads to
the guaranteed lower bound property from Theorem 1.1 in Subsection 2.2 and a generalization
of [CG14a] in Theorem 2.5. Subsection 2.3 introduces a reduced formulation for the new
method, remarks on the relation to the standard Morley eigenvalue problem, and introduces
a related extra-stabilised Crouzeix-Raviart method. The a priori convergence analysis in
3D of Section 3 is based on a conforming companion operator, i.e., a right-inverse of the
interpolation operator in MpT q with the extra properties in Theorem 3.1. This operator
relies on the conforming Hsieh-Clough-Tocher finite element in 3D suggested by Worsey-
Farin (WF) in [WF87] and allows for L2 error estimates of separate interest. The analysis of
the conforming companion contains some technical details like the correct scaling of the WF
basis functions, which extends [Cia78, § 6.1, p.340ff] to n “ 3 and is explained in the self-
contained supplement to this paper. The preparations in Subsections 3.1–3.2 allow the proof
of Theorem 1.2 in Subsection 3.3. Since the method is new in any space dimension, the 2D

4
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numerical experiments in Section 4 confirm the theoretical results, present details on Fig. 1.1,
and provide striking numerical evidence for the superiority of adaptive mesh-refinement for
the bi-Laplace Dirichlet eigenvalue problem.

1.4 Notation

Standard notation on Lebesgue and Sobolev spaces applies throughout this paper; p ‚ , ‚ qL2pΩq

abbreviates the L2 scalar product andH2pT q abbreviates H2pintpT qq for a compact set T with
non-void interior intpT q. The vector space H2pT q :“ tv P L2pΩq : v|T P H2pT qu consists of
piecewise H2 functions and is equipped with the semi-norm ~ ‚ ~2

pw :“ pD2
pw

‚ ,D2
pw

‚ qL2pΩq.
The piecewise Hessian D2

pw is understood with respect to the non-displayed regular triangu-
lation T of Ω Ă R

n into simplices. The context-depending notation | ‚ | denotes the euclidean
length of a vector, the cardinality of a finite set, as well as the non-trivial n-,pn ´ 1q-, or
pn ´ 2q- dimensional Lebesgue measure of a subset of Rn. Let P2pT q denote the space of
quadratic functions on T P T and P2pT q :“ tv P L2pΩq : v|T P P2pT q for all T P T u
the space of piecewise quadratic functions. Given a function v P L2pωq, define the integral
mean

ş́
ω
v dx :“ 1{|ω|

ş
ω
v dx. The L2 projection Π0 onto the piecewise constant functions

P0pT q reads Π0pfq|T :“ ´
ş
T
f dx for all f P L2pΩq and T P T . For any A P P0pT ;Rℓˆℓq

SPD, p ‚ , ‚ qA :“ pA ‚ , ‚ qL2pΩq abbreviates the weighted L2 scalar product with induced A-

weighted L2 norm } ‚ }A :“ }A1{2 ‚ }L2pΩq. Let σ :“ mint1, σregu denote the minimum of one
for the approximation property and the positive index of elliptic regularity σreg ą 0 for the
source problem of the bi-Laplacian ∆2 in H2

0 pΩq on the bounded polyhedral Lipschitz domain
Ω Ă R

n: Given any right-hand side f P L2pΩq, the weak solution u P V to ∆2u “ f satisfies

u P H2`σpΩq and }u}H2`σpΩq ď Cpσq}f}L2pΩq. (1.5)

The Sobolev space H2`spΩq is defined for 0 ă s ă 1 by complex interpolation of H2pΩq and
H3pΩq. Notice Epλq Ă H2`σpΩq in Theorem 1.2 follows from (1.5) but Epλq Ă H2`tpΩq is
possible for t ě σ for some eigenvalues λ. Throughout this paper, a . b abbreviates a ď Cb

with a generic constant C only dependent on σ in (1.5) and the shape-regularity constant Csr

of T P T; a « b stands for a . b . a.

2 Eigensolver for guaranteed lower bounds in any dimension

2.1 The Morley finite element

Given a shape-regular triangulation T of a bounded polyhedral Lipschitz domain Ω Ă R
n

into n-simplices (tetrahedra in 3D) in the sense of Ciarlet [BS08, Bra13, BBF13], let V (resp.
VpΩq or VpBΩq) denote the set of all (resp. interior or boundary) vertices, let F (resp. FpΩq
or FpBΩq) denote the set of all (resp. interior or boundary) pn´1q-subsimplices (faces in 3D),
and let E (resp. EpΩq or EpBΩq) denote the set of all (resp. interior or boundary) pn ´ 2q-
subsimplices (edges in 3D and vertices in 2D) in T . The degrees of freedom for the Morley
element [MX06, Def. 1] on an n-simplex T P T are the integral means of the function f along
any pn ´ 2q-subsimplex E P EpT q of T and of the normal derivative Bf{Bν for each pn ´ 1q-
subsimplex F P FpT q of T . Let the integral mean over a node z P V be the point evaluation,
to see that this reduces to the classical definition [Mor68] for n “ 2. The m :“ |F |`|E | global
degrees of freedom are labelled, for any f P H2pΩq, by

LEpfq :“ ´
ż

E

f ds for any E P E and LF pfq :“ ´
ż

F

∇f ¨ νF dσ for any F P F ,

5
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where νF denotes the unit normal for any side F P F with a fixed orientation. Section 6
in [CGH14] introduces the dual basis for the Morley finite element in 2D and specifies an
implementation in 30 lines of matlab. The nodal basis in [MX06, Thm. 1] reads for n ě 3 as
follows.
Given any side F P F with unit normal νF of fixed orientation, the support supppφF q “
ωpF q of the basis function ΦF P P2pT q dual to LF consists of all adjacent n-simplices. For
any interior side F “ BT` X BT´ P FpΩq the side-patch ωpF q :“ T` Y T´ consists of the
neighbouring simplices T˘ P T with νF “ νT` |F “ ´νT´ |F . For any boundary side F “
BT` X BΩ P FpBΩq set ωpF q :“ T` with νF “ νT` |F . Suppose that F “ Fj is the side

opposite the vertex Pj with barycentric coordinate λj in T˘ Ă ωpF q, then

φF |T˘
:“ ˘

`
λjpnλj ´ 2q

˘
{
`
2|∇λj |

˘
. (2.1)

Let Ejk :“ convtP1, . . . , Pj´1, Pj`1, . . . , Pk´1, Pk`1, . . . , Pn`1u P EpT q denote the pn ´ 2q-
subsimplex of T :“ convtP1, . . . , Pn`1u P T in the intersection E P BFj X BFk of the sides
Fj , Fk P FpT q. Given a pn ´ 2q-subsimplex E P E , the support supppφEq “

Ť
T pEq of the

basis function ΦE P P2pT q dual to LE consists of all adjacent n-simplices T pEq :“ tT P T :

E P EpT qu. Suppose that E “ Ejk is the pn´2q-subsimplex in the intersection E P BFj X BFk
of the sides Fj , Fk P FpT q in T P T pEq with barycentric coordinates λj and λk in T (associated
with the opposite vertices Pj and Pk). Then

φE |T “ 1 ´ pn´ 1qpλj ` λkq ` npn´ 1qλjλk ´ pn´ 1q∇λj ¨ ∇λk
ÿ

ℓPtj,ku

λℓpnλℓ ´ 2q
2|∇λℓ|2

. (2.2)

This defines the nodal basis functions: LGpφF |T q “ δFG, LDpφE |T q “ δDE , and LF pφE |T q “
0 “ LEpφF |T q follows for any n-simplex T P T , any pn ´ 1q-simplices F,G P FpT q, and any
pn´ 2q-simplices D,E P EpT q. The Morley finite element space with homogeneous boundary
conditions reads

MpT q :“ spantφF : F P FpΩqu ‘ spantφE : E P EpΩqu Ă P2pT q.

Given the dual basis for the Morley FEM in (2.1)–(2.2), define the interpolation operator
IM : V Ñ MpT q for any v P V :“ H2

0 pΩq by

IM pvq :“
ÿ

FPFpΩq

´
ż

F

∇v ¨ νF dσ φF `
ÿ

EPEpΩq

´
ż

E

v ds φE. (2.3)

This interpolation operator has the following important properties with the explicit constants
κ1 and κ2 from (1.4), which are not quantified in [MX06].

Theorem 2.1 (properties of IM). (a) Any v P V satisfies Π0D
2v “ D2

pwIMv, in particu-
lar apwpv´IMv,wM q “ 0 for all wM P MpT q and v P V ; IM is the apw-orthogonal projection
onto MpT q with ~v´ IMv~pw “ minvMPMpT q ~v´ vM~pw for any v P V . (b) Any v P H2pT q
in T P T satisfies |v ´ IMv|H2´ℓpT q ď κℓh

ℓ
T |v ´ IMv|H2pT q for ℓ “ 1, 2.

Proof. This is known for n “ 2 from [CG14a], so let n ě 3 in the sequel.

Proof of (a). The definition of IM implies
ş́
F
∇IMv ¨ νF dσ “

ş́
F
∇v ¨ νF dσ for any F P F .

This and an integration by parts prove Π0D
2v “ D2

pwIMv. Since wM P MpT q Ă P2pT q, this
concludes the proof of apwpv ´ IMv,wM q “ pp1 ´ Π0qD2v,D2

pwwM qL2pΩq “ 0. l

6
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Proof of (b) for ℓ “ 1. A key observation is that the piecewise gradient ∇pwvM P CR1
0pT qn

of any vM P MpT q is a Crouzeix-Raviart function in n components. (This follows from
´
ş
F
∇IMv dσ “ ´

ş
F
∇v dσ, since for any v P C1pT q in T P T the Morley degrees of freedom

uniquely determine ´
ş
F
∇v dσ for any F P FpT q [MX06, Lem. 1].) Moreover, the Crouzeix-

Raviart interpolation operator ICR [CR73] (applied component-wise) satisfies ∇pwIMv “
ICR∇v for any v P H2pT q in T P T . Lemma A.1 in [CZZ20] shows }f ´ ICRf}L2pT q ď
κ1hT |f ´ ICRf |H1pT q for f P H1pT q and any n ě 2. The choice f “ Bv{Bxj for j “ 1, . . . , n
concludes the proof of |v ´ IMv|H1pT q ď κ1hT |v ´ IMv|H2pT q for v P H2pT q. l

Proof of (b) for ℓ “ 2. Let g :“ v ´ IMv P H2pT q and set ICRpgq :“ ř
FPF

`
´
ş
F
g dσ

˘
ψF with

the side-oriented Crouzeix-Raviart basis function ψF P CR1pT q with ψF pmidpGqq “ δFG for
all F,G P F . The local mass matrix MpT q P R

pn`1qˆpn`1q for FpT q :“ tF1, . . . , Fn`1u reads

MpT q :“
´ ż

T

ψFj
ψFk

dσ
¯
j,k“1,...,n`1

“
˜

|T |p2 ´ n` n2δjkq
pn` 1qpn ` 2q

¸

j,k“1,...,n`1

.

The eigenvalue |T |{pn ` 1q of MpT q has the eigenvector p1, . . . , 1q P R
n`1. The eigenvalue

|T |n2{ppn ` 1qpn ` 2qq has the n-dimensional eigenspace of vectors in R
n`1 perpendicular to

p1, . . . , 1q. Hence the coefficient vector x :“ p´
ş
F
g dσ : F P FpT qq P R

n`1 of ICRg satisfies

}ICRg}2L2pT q “
ż

T

´ ÿ

FPFpT q

´
ż

F

g dσ ψF

¯2

dx “ x ¨ MpT qx

ď |T |n2
pn` 1qpn ` 2q |x|2 “ |T |n2

pn` 1qpn ` 2q
ÿ

FPFpT q

´
´
ż

F

g dσ
¯2

. (2.4)

If the m-simplex F has the pm ´ 1q-subsimplex E opposite to the vertex P in F for m ě 2,
then any v P H1pF q satisfies the trace identity

´
ż

E

v ds “ ´
ż

F

v dσ `m´1´
ż

F

px´ P q ¨ ∇v dσ. (2.5)

(This follows from an integration by parts [CGR12, CH17].) In each pn´ 1q-subsimplex F P
FpT q with midpoint midpF q, the set of pn´2q-subsimplices (edges in 3D) EpF q :“ tE P EpT q :
E Ă BF u “ tE1, . . . , Enu defines the sub-triangulation of F into Fj :“ convpmidpF q, Ejq Ă F

for j “ 1, . . . , n. Since the function g|F :“ pv ´ IMvq|F P H1pF q satisfies
ş́
Ej
g ds “ 0 for any

j “ 1, . . . , n, the trace identity (2.5) for each pn´ 1q-simplex Fj Ă F proves

´
ż

F

g dσ “ ´ 1

|F |pn´ 1q

ż

F

px´ midpF qq ¨ ∇g dσ ď 1

|F |pn ´ 1q} ‚ ´ midpF q}L2pF q}∇g}L2pF q

with the Cauchy-Schwarz inequality in the last step. For the pn ´ 1q-dimensional simplex
F “ convtP1, . . . , Pnu assume without loss of generality that midpF q “ 1

n

řn
j“1 Pj “ 0. An

estimation of the mass-matrix for the Courant basis functions associated with the vertices
P1, . . . , Pn of F leads to

} ‚ ´ midpF q}2L2pF q “
ż

F

|x|2 dσ “ |F |
npn` 1q

nÿ

ℓ“1

|Pℓ|2.

7
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Similar to [CZZ20, Lem. A.1], elementary algebra with 1
n

řn
j“1 Pj “ 0 and |Pj ´Pk| ď hF for

all j, k “ 1, . . . , n with j “ k lead to

nÿ

ℓ“1

|Pℓ|2 “ 1{p2nq
nÿ

j,k“1

|Pj ´ Pk|2 ď h2F pn´ 1q{2.

The combination of the last three displayed estimates reads

˜
´
ż

F

g dσ

¸2

ď 1

pn´ 1q2|F |2
h2F |F |pn ´ 1q
2npn` 1q }∇g}2L2pF q ď h2T

|F |
`
2npn´ 1qpn ` 1q

˘´1}∇g}2L2pF q.

The trace inequality }v}2
L2pF q ď p|F |{|T |q}v}L2pT qp}v}L2pT q ` 2hT {n}∇v}L2pT qq for v P H1pT q

and F P FpT q is a direct consequence of the trace identity (2.5) for the n-simplex T P T with
pn´ 1q-subsimplex F P FpT q. This and Young’s inequality show

|T |
|F | }∇g}2L2pF q ď p1 ` pκ1nq´1q}∇g}2L2pT q ` h2Tκ1n

´1}D2g}2L2pT q.

The proven Theorem 2.1.b for ℓ “ 1 shows }∇g}L2pT q ď κ1hT }D2g}L2pT q. In combination with
the last two displayed inequalities and (2.4), this reads

}ICRg}2L2pT q ď nκ21 ` 2κ1
2pn ´ 1qpn` 1qpn ` 2qh

4
T }D2g}2L2pT q. (2.6)

On the other hand, the Crouzeix-Raviart interpolation operator ICR satisfies }p1´ICRqg}L2pT q

ď κ1hT }∇p1 ´ ICRqg}L2pT q and ∇ICRg “ Π0∇g as in [CG14a, CG14b] for n “ 2 and in
[CZZ20] for n ě 3. Hence, the Poincaré inequality with Payne-Weinberger constant [PW60,
Beb03] shows

}p1 ´ ICRqg}L2pT q ď κ1hT }∇p1 ´ ICRqg}L2pT q “ κ1hT }p1 ´ Π0q∇g}L2pT q ď κ1

π
h2T }D2g}L2pT q.

The combination of this with (2.6) and a triangle inequality concludes the proof of }v ´
IMv}L2pT q ď κ2h

2
T |v ´ IMv|H2pT q for any v P H2pT q. l

The constant κ2 “ 0.25746 for n “ 2 from [CG14a, Thm. 3] is recovered, if the Poincaré
constant 1{π is replaced by the optimal 1{j1,1 in 2D [LS10]. The computational bounds
κ1 ď 0.1893 from [Liu15] and κ2 ď 0.07353 [LSL19] improve the analytical bounds from
[CG14a] in 2D.

Corollary 2.2 (further properties). (a) Any v P H2`spΩq with 0 ď s ď 1 satisfies

~p1 ´ IM qv~pw ď phmax{πqs}v}H2`spΩq.

(b) Any v, w P V and vM P MpT q satisfy apwpv, vM q “ apwpIMv, vM q and

apwpv, p1 ´ IM qwq “ apwpp1 ´ IM qv, p1 ´ IM qwq
ď min

vMPMpT q
~v ´ vM~pw min

wMPMpT q
~w ´ wM~pw.

8
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Proof. Theorem 2.1.a and a piecewise Poincaré inequality (as above from [PW60, Beb03])
show for s “ 0 and s “ 1 that

~p1 ´ IM qv~pw “ }D2v ´ Π0D
2v}L2pΩq ď phmax{πqs}v}H2`spΩq. (2.7)

Since H2`spΩq is defined by complex interpolation of H2pΩq and H3pΩq, each component
of the Hessian D2v belongs to HspΩq P rL2pΩq,H1pΩqss in the complex interpolation space
between L2pΩq and H1pΩq [Tar07]. The interpolation of (2.7) concludes the proof of (a).
Theorem 2.1.a implies the first claim in (b). The combination with the Cauchy-Schwarz
inequality implies the second. l

2.2 Guaranteed lower bounds

This section proves that the discrete method (1.3) indeed provides GLBs for the continuous
eigenvalues in any space dimension n ě 2.

Proof of Theorem 1.1. Abbreviate λ “ λk from (1.2) and λh “ λhpkq from (1.3). Let
φ1, . . . , φk denote the first k b-orthonormal eigenfunctions of (1.2); the min-max principle
[SF08, Bof10] guarantees ~φ~2 ď λ for any φ P spantφ1, . . . , φku with }φ}L2pΩq “ 1. Let Π2

denote L2 projection onto P2pT q.

Case 1. Assume the L2-projections Π2φ1, . . . ,Π2φk are linear dependent. Then there exists
some φ P spantφ1, . . . , φku with }φ}L2pΩq “ 1 and Π2φ “ 0. Let κ1

2 denote the best possible
constant in

}p1 ´ Π2qψ}L2pΩq ď κ1
2h

2
max~p1 ´ IM qψ~pw for all ψ P H2

0 pΩq. (2.8)

The approximation property of Π2 and MpT q Ă P2pT q imply (2.8) with κ1
2 ď κ2. The above

φ therefore satisfies

1 “ }φ}L2pΩq “ }p1 ´ Π2qφ}L2pΩq ď κ1
2h

2
max~p1 ´ IM qφ~pw.

The Pythagoras theorem from Theorem 2.1.a and ~φ~2 ď λ from the min-max principle
[SF08, Bof10] for (1.2) show

~p1 ´ IMqφ~2
pw ` ~IMφ~2

pw “ ~φ~2 ď λ.

The combination of the last two displayed inequalities reads 1 ď λpκ1
2q2h4max. Throughout

this paper, the values used for κ2 satisfy κ1
2 ă κ2 (see Remarks 2.3–2.4 below), whence

λκ22h
4
max ą 1. In other words, the a priori condition λκ22h

4
max ď 1 fails and (the remaining

hypothesis of Theorem 1.1) λhκ
2
2h

4
max ď 1 holds. This proves λhκ

2
2h

4
max ď 1 ă λκ22h

4
max and

concludes the proof of λh ď λ in the first case.

Case 2. Assume that the projections Π2φ1, . . . ,Π2φk are linear independent. Set Sk :“
span

 `
Π2φ1, IMφ1

˘
, . . . ,

`
Π2φk, IMφk

˘
u Ă Vh with dimpSkq “ k. Since bh is positive def-

inite on Sk ˆ Sk, the min-max principle [SF08, Bof10] for (1.3) shows

λh ď max
vhPSkzt0u

ahpvh,vhq
bhpvh,vhq . (2.9)

9
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Let vh “ pΠ2φ, IMφq P Skzt0u be some maximizer in the upper bound of (2.9) with }φ}L2pΩq “
1 and deduce ~φ~2 ď λ from the min-max principle [SF08, Bof10] for (1.2). The inequality
(2.9) ensures for vh “ pΠ2φ, IMφq P Skzt0u that

λh}Π2φ}2L2pΩq “ λhbhpvh,vhq ď ahpvh,vhq “ ~IMφ~2
pw ` κ´2

2 }h´2
T

pΠ2 ´ IM qφ}2L2pΩq.

Since the piecewise constant mesh-size hT does not interact with the piecewise L2 projections,
the Pythagoras theorem shows

}h´2
T

pΠ2 ´ IMqφ}2L2pΩq “ }h´2
T

p1 ´ IM qφ}2L2pΩq ´ }h´2
T

p1 ´ Π2qφ}2L2pΩq

ď κ22~p1 ´ IM qφ~2
pw ´ h´4

max ` h´4
max}Π2φ}2L2pΩq

with Theorem 2.1.b for ℓ “ 2 and 1´ }Π2φ}2
L2pΩq ď h4max}h´2

T
p1´Π2qφ}2

L2pΩq in the last step.
The combination of the previous two displayed estimates leads to

pλh ´ κ´2
2 h´4

maxq}Π2φ}2L2pΩq ` κ´2
2 h´4

max ď ~IMφ~2
pw ` ~p1 ´ IM qφ~2

pw “ ~φ~2 ď λ (2.10)

with the Pythagoras theorem from Theorem 2.1.a in the equality and ~φ~2 ď λ from above
in the last step. The inequality (2.10) implies

1 ´ λκ22h
4
max ď p1 ´ λhκ

2
2h

4
maxq}Π2φ}2L2pΩq. (2.11)

Without loss of generality assume λκ22h
4
max ď 1, otherwise the remaining hypothesis λhκ

2
2h

4
max

ď 1 ă λκ22h
4
max proves the claim. Since the linear independence of Π2φ1, . . . ,Π2φk shows

}Π2φ}L2pΩq ą 0, (2.11) implies λhκ
2
2h

4
max ď 1. Hence }Π2φ}L2pΩq ď }φ}L2pΩq “ 1 and (2.11)

imply 1 ´ λκ22h
4
max ď 1 ´ λhκ

2
2h

4
max. This proves λh ď λ in the second case. l

Remark 2.3 (choice of κ2 “ 0.07353 in 2D) The computational bound κ2 “ 0.07353 ą κ‹
2 in

2D from [LSL19] is a guaranteed upper bound for some optimal κ‹
2 with }v ´ IMv}L2pT q ď

κ‹
2h

2
T |v ´ IMv|H2pT q for all v P H2pT q, T P T . Hence κ1

2 :“ κ‹
2 ă κ2 and Theorem 1.1 holds

for this improved choice of κ2.

Remark 2.4 (choice of κ2 in (1.4)) Standard arguments including successive (piecewise) Poin-
caré inequalities [PW60, Beb03] eventually imply κ1

2 ď 1{π2 and the analytical bound in (1.4)
satisfies 1{π2 ă κ2, hence the claim κ1

2 ă κ2 follows for n ě 3 as well.

The standard Morley eigenvalue problem seeks pλM , φM q P R
` ˆ

`
MpT qzt0u

˘
with

apwpφM , vM q “ λM pφM , vM qL2pΩq for all vM P MpT q. (2.12)

Assume the N :“ dimpMpT qq algebraic eigenvalues 0 ă λM p1q ď λM p2q ď ¨ ¨ ¨ ď λM pNq ă 8
of (2.12) are enumerated in ascending order counting multiplicities. The following Theo-
rem 2.5 refines [CG14a] for n “ 2 by removing an unnecessary separation condition [Liu15,
Rem. 2.2] and generalizes it to n ě 3.

Theorem 2.5 (GLB in (1.1)). For any k “ 1, . . . , N the k-th eigenvalue λM pkq of (2.12)
leads in (1.1) to a guaranteed lower bound GLBpkq ď λk for the k-th eigenvalue λk of (1.2).

10
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Proof. Let φ1, . . . , φk denote the first k L2-orthonormal eigenfunctions in (1.2). Assume first,
that the interpolations IMφ1, . . . , IMφk are linear dependent. Let φ P spantφ1, . . . , φku with
}φ}L2pΩq “ 1 and IMφ “ 0. Theorem 2.1.b and the min-max principle for (1.2) show

1 “ }φ}2L2pΩq “ }p1 ´ IM qφ}2L2pΩq ď κ22h
4
max~p1 ´ IM qφ~2

pw “ κ22h
4
max~φ~2 ď λkκ

2
2h

4
max.

It follows κ´2
2 h´4

max ď λk and GLBpkq “ λM pkq{
`
1 ` λM pkqκ22h4max

˘
ď κ´2

2 h´4
max ď λk con-

cludes the proof. Theorem 2 in [CG14a] states (1.1) under a separation condition h4maxκ
2
2 ă

p
?
1 ` k´1 ´ 1q{

?
λk (with adapted notation) in 2D. If IMφ1, . . . , IMφk are linearly indepen-

dent, the proof in [CG14a] does not need the separation condition to show (1.1) and holds
with Theorem 2.1.b for n ě 3. The remaining details in [CG14a] apply verbatim and are
therefore omitted. l

2.3 Comments

This section introduces a reduced problem (2.13) as a disturbed nonconforming eigenvalue
problem and compares the new method with the standard Morley formulation.

2.3.1 Reduced eigenvalue problem

Under the condition λhκ
2
2h

4
max ă 1, the algebraic eigenvalue problem (1.3) is equivalent to a

reduced form that seeks pλh, uM q P R
` ˆ

`
MpT qzt0u

˘
with

apwpuM , vM q “ λh b
´ uM

1 ´ λhκ
2
2h

4
T

, vM

¯
for all vM P MpT q. (2.13)

The formulation (2.13) is reduced in that the additional variables upw and vpw in (1.3) are
condensed out; but (2.13) is a (simple) rational eigenvalue problem with the same dimension
and sparsity as the Morley eigenvalue problem (2.12). A solution pλh, uM q to (2.13) is also
called an eigenpair and the (geometric) multiplicity ě 1 is the dimension of the eigenspace of
all uM P MpT qzt0u so that pλh, uM q solves (2.13). The numerical treatment of the rational
eigenvalue problem (2.13) is left as a topic for future research in numerical linear algebra.

Proposition 2.6 (equivalence). (a) If the eigenpair pλh,uhq of (1.3) satisfies λh ăκ´2
2 h´4

max

with uh “ pupw, uM q P Vhzt0u, then pλh, uM q solves (2.13) and upw “ p1 ´ λhκ
2
2h

4
T q´1uM .

(b) If pλh, uM q is a solution to (2.13) with 0 ă λh ă κ´2
2 h´4

max, then λh, uM , and upw “
p1 ´ λhκ

2
2h

4
T q´1uM in uh “ pupw, uM q form an eigenpair pλh,uhq of (1.3).

(c) The set of eigenvalues of (1.3) in the open interval p0, κ´2
2 h´4

maxq is equal to the set of
solutions λh to (2.13) in p0, κ´2

2 h´4
maxq counting (geometric) multiplicities.

Proof. Throughout this proof with a specific and fixed λh with 0 ă λh ă κ´2
2 h´4

max, abbreviate

δ :“ 1

1 ´ λhκ
2
2h

4
T

´ 1 “ λhκ
2
2h

4
T

1 ´ λhκ
2
2h

4
T

“ h4T κ
2
2λhp1 ` δq P P0pT q. (2.14)

Proof of (a). Suppose that pλh,uhq P R
` ˆVh is an eigenpair of (1.3). For vpw P P2pT q, the

test function pvpw, 0q P Vh in (1.3) shows κ´2
2 h´4

T
pupw ´ uM q “ λhupw. This is equivalent to

upw “ p1 ` δquM . The test function vh “ pvM , vM q P MpT q ˆMpT q Ă Vh in (1.3) leads to

apwpuM , vM q “ λhpupw, vM qL2pΩq “ λhpp1 ` δquM , vM qL2pΩq.

Since this holds for all vM P MpT q, pλh, uM q is a solution to (2.13). l

11
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Proof of (b). Suppose pλh, uM q P R
` ˆ MpT q is a solution to (2.13) with 0 ă λh ă κ´2

2 h´4
max

and δ in (2.14). Then upw :“ p1 ` δquM and uh :“ pupw, uM q in (2.13) lead to

ahpuh,vhq “ λhpp1 ` δquM , vM qL2pΩq ` pκ´2
2 h´4

T
δuM , vpw ´ vM qL2pΩq

for all vh “ pvpw, vM q P Vh. Recall κ
´2
2 h´4

T
δ “ λhp1 ` δq from (2.14) to verify

ahpuh,vhq “ λhpp1 ` δquM , vpwqL2pΩq “ λhbhpuh,vhq.

Hence pλh,uhq is an eigenpair of (1.3). l

Proof of (c). The combination of (a)–(b) proves the equality of the solution sets for λh in
(1.3) resp. (2.13) in the open interval p0, κ´2

2 h´4
maxq. It remains to prove equality of the

multiplicities. Let p resp. q denote the multiplicities of the eigenvalue λh in (1.3) resp.
(2.13). The point is that uM,1, . . . , uM,γ P MpT q are linear independent if and only if

`
p1 `

δquM,1, uM,1q
˘
, . . . ,

`
p1 ` δquM,γ , uM,γq

˘
are linear independent in Vh for the fixed δ from

(2.14) for λh with 0 ă λh ă κ´2
2 h´4

max. This and (a) resp. (b) imply p ď q resp. q ď p.
Consequently p “ q concludes the proof. l

2.3.2 Comparison with Morley eigenvalues

For k ď N :“ dimpMpT qq, the following Lemma 2.7 allows the placement of λhpkq from (1.3)
in GLBpkq ď λhpkq ď λM pkq between GLBpkq from (1.1) and λM pkq from (2.12).

Lemma 2.7 (comparison). For any k “ 1, . . . , N , the k-th algebraic eigenvalues λhpkq of
(2.13) and λM pkq of (2.12) satisfy λhpkq ď λM pkq. If λhpkq satisfies λhpkqκ22h4max ă 1, then
GLBpkq ď λhpkq holds. For a uniform triangulation T with hmax “ hT a.e. in Ω follows
equality GLBpkq “ λhpkq.

Proof. The first result is a straightforward modification of [CZZ20, Thm. 6.2]. Since the
Morley eigenfunctions are linearly independent, the pairs pφM p1q, φM p1qq, . . . , pφM pkq, φM pkqq
form a k-dimensional subspace of Vh. Hence the min-max principle proves the claim. The
test functions pvM , vM q P MpT q ˆ MpT q Ă Vh and pvpw, 0q P Vh in (1.3) show for the
first k eigenpairs pλh,uhq P R` ˆ Vh with uh “ pupw, uM q P P2pT q ˆ MpT q of (1.3), that
apwpuM , vM q “ λhbpupw, vM q for all vM P MpT q and uM “ p1 ´ λhκ

2
2h

4
T qupw. Hence the

arguments for the second inequality are analogue to [CZZ20, Thm. 6.4] with ε replaced by
κ22h

4
max and therefore further details are omitted. On a uniform mesh with hmax “ hT a.e. in

Ω the scaling on the right-hand side of (2.13) is constant, thus (2.13) and (2.12) are equivalent
with λhpkq “ λM pkq{p1 ` κ22λM pkqh4maxq “ GLBpkq. l

Remark 2.8 (verification of the mesh-size condition) Lemma 2.7 and λM pkq ă κ´2
2 h´4

max guar-
antee that the discrete eigenvalue λhpkq satisfies λhpkq ă κ´2

2 h´4
max. This is an a priori test

sufficient for the applicability of Proposition 2.6. l

2.3.3 An extra-stabilized Crouzeix-Raviart FEM

The arguments of this paper allow for an eigenvalue solver of the Dirichlet eigenvalue of
the Laplacian with guaranteed lower eigenvalue bound. For the Laplace eigenvalue problem

12



DirectGLB4BiLaplace

´∆u “ λu in H1
0 pΩq an extra-stabilised Crouzeix-Raviart FEM comparable to (1.3) seeks`

λh, pupw, uCRq
˘

P R` ˆ pP1pT q ˆ CR1
0pT qqzt0u, such that

p∇pwuCR,∇pwvCRqL2pΩq ` κ´2
1 ph´2

T
pupw ´ uCRq, vpw ´ vCRqL2pΩq “ λhbpupw, vpwq (2.15)

for any pvpw, vCRq P P1pT q ˆ CR1
0pT q. The eigenvalue problem (2.15) is for n “ 2 the

lowest-order skeleton method in [CZZ20]; for n ě 3 it is a completely different method.
The standard interpolation operator (see e.g. [CG14b, CP20]) for the Crouzeix-Raviart FE
CR1

0pT q Ă P1pT q [CR73] satisfies the conditions in Theorem 2.1.a–b (with the Hessian D2

replaced by the gradient ∇, V “ H2 replaced by H1, h2T by hT , and P2pT q by P1pT q). Hence
the results analogue to those of Subsection 2.2–2.3 hold for the Dirichlet eigenvalues of the
Laplacian and the discrete eigenpairs of (2.15). (A conforming companion with the properties
in Theorem 3.1 (again D2 replaced by ∇, V “ H2 by H1, h2T by hT , and P2pT q by P1pT q) is
designed in [CGS15, Prop. 2.3] for n “ 2; a generalization for n ě 3 is straight-forward.)

3 Convergence rates in 3D

This section presents a conforming companion in 3D to apply the Babuška-Osborn conver-
gence analysis [BO91] for the discrete eigenvalue problem (1.3) and the standard Morley
eigenvalue problem (2.12). For the latter the paper [YLB16] for n ě 2 follows [Ran79] for
n “ 2 and utilizes the trace inequality for second order derivatives Bαu{Bxα for |α| “ 2 under
the regularity assumption u P W 3,ppΩq for 4{3 ă p ď 2. Those terms arise in an integration
by parts in the classical a priori error analysis of the Morley FEM. The present paper cir-
cumvents this by using the companion operator JM following [CGS13, Gal15a, CN21]. This
allows results for a general u P H2`σpΩq even for small σ with 0 ă σ ď 1.

3.1 Conforming companion

The conforming companion operator JM in this paper is seen as a right-inverse of the Morley
interpolation operator IM : V Ñ MpT q from (2.3) with an additional L2 orthogonality.

Theorem 3.1 (properties of JM). There exists a constant M2 « 1 (that exclusively de-
pends on T) and a conforming companion JMvM P V :“ H2

0 pΩq for any vM P MpT q with

(a) JM is a right inverse to the interpolation IM in that IM ˝ JM “ id in MpT q,

(b) }h´2
T

p1 ´ JM qvM }L2pΩq ` ~p1 ´ JM qvM~pw ď M2 minvPV ~vM ´ v~pw,

(c) the orthogonality p1 ´ JM qpMpT qq K P2pT q holds in L2pΩq.

Outline of the proof. The design can follow the 2D discussions in [Gal15a, VZ19] in the spirit
of [CGS15]: one subtle issue is the scaling of the nodal basis functions for the WF FEM as
a generalization of [Cia78, Thm. 6.1.3] to 3D. While the technical details of the proof are
provided in the supplement, an outline of the design will follow here.

WF partition. Unlike the HCT partition of each triangle in 3 subtriangles, the subdivision in
the 3D WF finite element scheme [WF87, Sor09] depends on the triangulation T P T. Each
tetrahedron T P T is divided into 12 sub-tetrahedra with respect to a careful selection of
center points cF on each facet F P FpT q of T and cT inside the tetrahedron T P T : cT is the
midpoint of the incircle of T and cF is the intersection of F P FpΩq with the straight line
through cT` and cT´ for T˘ P T aligned to F “ BT` X BT´, while cF :“ midpF q is simply the
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center of gravity for a triangle F P FpBΩq on the boundary. Theorem A.3 of the supplement
guarantees the (uniform) shape-regularity of the resulting subtriangulation pT for T P T and
that the distance of each center point cT (resp. cF ) to the boundary BT (resp. the relative
boundary BF ) is bounded from below by some global constant times hT (resp. hF ).

WF finite element. The 28 local degrees of freedom for any K “ convtQ1, Q2, Q3, Q4u P T
are the evaluation of the function f P H2pKq and its gradient ∇f at the vertices Q1, . . . , Q4

of K and the evaluation of the gradient τE ˆ ∇fpmidpEqq at each edge midpoint midpEq for
E P EpT q with unit tangent vector τE . This determines ∇fpmidpEqq in the non-tangential
directions νE,1, νE,2 with spantτE , νE,1, νE,2u “ R

3. Those 28 degrees of freedom define a finite

element
`
K,C1pKqXP3ppT pKqq, tL1, . . . , L28u

˘
in the sense of Ciarlet. Since the explicit proof

of this is not included in [WF87], Theorem A.1 provides it in the supplement. The facet center
point cF of an interior facet F “ BT`XBT´ P FpΩq shared by the two neighbouring tetrahedra
T˘ P T belongs to the same straight line as their center points cT` and cT´ and then [WF87]

implies C1 conformity of WFpT q :“ P3ppT q X V . Theorem A.2 in the supplement provides a
comprehensive proof, that is supposed to be readable without profound a priori knowledge of
Bernstein polynomials [dB87] in multivariate C1 splines.

Scaling of the WF basis functions. Let ϕz,1, . . . ϕz,4 and ϕE,1, ϕE,2 for z P VpΩq and E P EpΩq
denote the nodalWF basis functions dual to the global degrees of freedom for z P V, j “ 1, 2, 3,
E P E , and µ “ 1, 2,

Lz,1f :“ fpzq, Lz,j`1 :“
Bf
Bxj

pzq, and LE,µf :“ Bf
BνE,µ

pmidpEqq

(such that Lz,jpϕa,kq “ δzaδjk, LE,µpϕF,κq “ δEF δµκ, and Lz,jpϕE,µq “ 0 “ LE,µpϕz,jq for
any a, z P V, E,F P E , j, k “ 1, . . . , 4, and µ, κ “ 1, 2). Theorem A.4 in the supplement
generalizes a conclusion of [Cia78, Thm. 6.1.3] to WF and asserts the expected scaling of the
nodal basis functions. For s “ 0, 1, 2

hℓ}ϕz,1}HspΩq ` }ϕz,j`1}HspΩq ` }ϕE,µ}HspΩq . h
5{2´s
ℓ (3.1)

holds with the volume h3ℓ :“ |supppϕℓq| of the nodal patch ωpzq :“ Ť
T pzq, T pzq :“ tT P

T : z P VpT qu for ϕℓ “ ϕz,1 or ϕℓ “ ϕz,j`1, and of the edge patch ωpEq :“ Ť
T pEq,

T pEq :“ tT P T : E P EpT qu for ϕℓ “ ϕE,µ. The point is that the constants in (3.1) are
uniformly bounded in terms of the uniform shape-regularity of T.

The WF allows the four-step design of JM ” J4 below. Details of the proofs are provided in
Supplement B.

Definition of J1. The enrichment operator J1 :MpT q Ñ WFpT q with homogeneous bound-
ary conditions is defined by averaging of degrees of freedom of WFpT q The scaling of the WF
basis function (3.1) is a key argument in the proof of the local approximation property

h´4
T }vM ´ J1vM}2L2pT q .

ÿ

zPVpT q

ÿ

FPFpzq

hF }rD2vM sF ˆ νF }2L2pF q (3.2)

for any T P T ; Fpzq :“ tF P F : z P BF u denotes the set of faces with vertex z P V in
(3.2) and rD2vM sF ˆ νF denotes the tangential components of the jump rD2vM sF across a
side F P Fpzq with the row-wise cross product rD2vM sF ˆ νF with the unit normal νF P R

3.

14
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The estimate (3.2) and the 2D arguments from [Gal15a, Prop. 2.3] modified with the Curl
operator in 3D as in [CBJ02] lead to

}h´2
T

p1 ´ J1qvM}L2pΩq . min
vPV

~vM ´ v~pw.

Definition of J2. For each edge E P EpΩq define below a function ξE P H2
0 ppωpEqq Ă H2

0 pΩq
with

ş́
G
ξEds “ δGE for all edges G P E , such that the support supppξEq Ă pωpEq is contained

in the edge patch pωpEq :“ int
`Ť pT pEq

˘
of E in the WF partition pT . Then

J2pvM q :“ J1vM `
ÿ

EPEpΩq

´
´
ż

E

pvM ´ J1vM qds
¯
ξE P V.

The shape-regularity of pT (from Theorem A.3) allows the choice of a ball B :“ BpmidpEq, REq
Ă pωpEq with midpoint midpEq and radius RE such that hT « RE « hE in the definition of
ξE P C1pR3q XH2

0 pBq by

ξEpxq :“ |E|
RE

´
1 ´ 3

|y|2
R2
E

` 2
|y|3
R3
E

¯
for x P B and y :“ x´ midpEq.

Definition of J3. For each side F P FpΩq define below a function ζF P H2
0 pωpF qq Ă H2

0 pΩq
with

ş́
G
∇ζF ¨νG ds “ δGF for all sides G P F and support supppζF q Ă ωpF q in the face patch

ωpF q :“ intpT` Y T´q of the neighbouring tetrahedra T˘ P T pF q with F “ BT` X BT´ and
with unit normal vectors of a fixed orientation νF “ νT` |F “ ´νT´ |F of F in T . Then

J3pvM q :“ J2vM `
ÿ

FPFpΩq

´
´
ż

F

∇pvM ´ J2vM q ¨ νF ds
¯
ζF P V.

Suppose F “ convtz1, z2, z3u P FpT˘q is the common face of T˘ “ convtz1, . . . , z˘
4 u P T

opposite the vertex z˘
4 P VpT˘q. Let λ˘

k denote the barycentric coordinate in T˘ associated
with the vertex z˘

k P VpT˘q for k “ 1, . . . , 4. Then ζF P P7pT q X C1pΩq XH2
0 pωpF qq reads

ζF |T˘
:“ ˘7!

2
distpz˘

4 , F qpλ1λ2λ3q2 λ˘
4 P P7pT˘q

in T˘ P T pF q (and vanishes outside the face patch ωpF q). The integral mean corrections
guarantee that J3vM satisfies (a).

Definition of J4. The correction J4vM P V is designed such that its L2 projection Π2pJ4vM q
onto P2pT q coincides with vM P MpT q Ă P2pT q, i.e., J4 ” JM satisfies (c). For any T P T ,
recall the barycentric coordinate λz associated with the vertex z P VpT q in T , and define the
scaled squared volume-bubble function bT :“ 48

ś
zPVpT q λ

2
z P P8pT q X H2

0 pT q Ă H2
0 pΩq with

}bT }L8pT q “ 1. Let vT P P2pT q denote the Riesz representation of the linear functional wT ÞÑş
T

pvM ´J3vM qwT dx in the Hilbert space P2pT q endowed with the weighted L2 scalar product
pbT ‚ , ‚ qL2pΩq, such that pvM ´ J3vM , wT qL2pT q “ pbT vT , wT qL2pT q for all wT P P2pT q. Set

J4vM :“ J3vM `
ÿ

TPT

vT bT .

15
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Outline of the proof of (a)–(c). Since pvT bT q|BT ” 0 ” p∇pvT bT qq|BT vanishes along the
boundary BT of T P T and ζF |BF “ 0 vanishes along the boundary BF of F P FpΩq, JM ” J4

satisfies (a) and (c). The above correction functions satisfy }ξE}L2pT q « h
3{2
T , }ζF }L2pT q « h

5{2
T ,

and }vT bT }L2pT q . }vM ´J3vM}L2pT q for any tetrahedron T P T with edge E P EpT q and face
F P FpT q. This and a combination of inverse estimates [BS08], Cauchy-Schwarz, and discrete
trace inequalities ensure }p1 ´ JM qvM }L2pT q . }p1 ´ J1qvM }L2pT q. Hence (b) follows from
the local analysis of the averaging operator J1 above. The details on the universal constant
M2 « 1 are provided in Supplement B. l

Corollary 3.2 (further properties). Any w P V and any vM P MpT q, T P T, satisfy

(a) bpvM ´ JMvM , wq “ bpvM ´ JMvM , w ´ IMwq ď }vM ´ JMvM}L2pΩq}w ´ IMw}L2pΩq

ď h4maxκ
2
2M2 min

vPV
~vM ´ v~pw min

wMPMpT q
~w ´ wM~pw;

(b) apwpvM ´ JMvM , wq “ apwpvM ´ JMvM , w ´ IMwq ď ~vM ´ JMvM~pw~w ´ IMw~pw

ď M2 min
vPV

~v ´ vM~pw min
wMPMpT q

~w ´ wM~pw.

Proof of (a). The identity follows from the orthogonality in Theorem 3.1.c and the Cauchy-
Schwarz inequality implies the first inequality. The first term is controlled by Theorem 3.1.b
and the second term by Theorem 2.1 for the Morley interpolation ((b) for ℓ “ 2). l

Proof of (b). The identity follows from the orthogonality in Theorem 2.1.a, which also allows
to bound the second term resulting from the Cauchy-Schwarz inequality. This and Theo-
rem 3.1.b conclude the proof of (b). l

Remark 3.3 (Guaranteed upper eigenvalue bounds) The companion operator JM can be em-
ployed in a postprocessing for guaranteed upper eigenvalue bounds as follows. Given m P N,
let pλhpjq,uh,jq with uh,j “ pupw,j, uM,jq P Vhzt0u denote the j-th eigenpair of (1.3) (or
alternatively pλM pjq, uM,jq the j-th eigenpair of (2.12)). If uM,1, . . . , uM,m are linearly in-
dependent, then JMuM,1, . . . , JMuM,m are linear independent vectors in V as well, because
IMJMuM,j “ uM,j from Theorem 3.1.a. For the linear independence uM,1, . . . , uM,m in (2.13)
the mesh-size condition λhpmqκ22h4max ă 1 is sufficient according to Proposition 2.6 (in (2.12)
the condition m ď dimpMpT qq is sufficient). Then an mˆm generalized algebraic eigenvalue
problem with A :“ papJMuM,j, JMuM,kq : j, k “ 1, . . . ,mq and B :“ pbpJMuM,j, JMuM,kq :

j, k “ 1, . . . ,mq leads to algebraic eigenvalues µ1 ď µ2 ď ¨ ¨ ¨ ď µm. The exact eigenvalue
λj ď µj of (1.2) has the guaranteed upper bound µj by the min-max principle [SF08, Bof10].
The same strategy applies to the CR-eigenvalue problem as well [CG14b]; cf. [LLX12] for an
alternative post-processing.

3.2 Convergence analysis for the source problem

Recall ap ‚ , ‚ q :“ pD2 ‚ ,D2 ‚ qL2pΩq and its piecewise version apwp ‚ , ‚ q :“ pD2
pw

‚ ,D2
pw

‚ qL2pΩq.
Given f P L2pΩq, let u P V ” H2

0 pΩq solve

apu, vq “ pf, vqL2pΩq for all v P V. (3.3)

Let uM P MpT q denote the discrete solution to the Morley source problem

apwpuM , vM q “ pf, vM qL2pΩq for all vM P MpT q. (3.4)

16
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Given the L2 projection Π2 onto P2pT q, the second order oscillation of f P L2pΩq reads
osc2pf,T q :“ }h2T p1 ´ Π2qf}L2pΩq. Recall 0 ă σ ď 1 from (1.5).

Lemma 3.4 (discrete error estimate in MpT q). There exist constants C1, C2 « 1 (that
exclusively depend on T) such that given any f P L2pΩq, the exact solution u P H2`σpΩq X V

to (3.3) and the discrete solution uM P MpT q to (3.4) for T P T with maximal mesh-size
hmax satisfy (a)–(b).

(a) If u P H2`spΩq for some s with σ ď s ď 1, then

~u´ uM~pw ` h´σ
max}u´ uM}L2pΩq ď C1

`
hsmax}u}H2`spΩq ` osc2pf,T q

˘
.

(b) Given any eigenvalue λ of (1.2) with eigenspace Epλq Ă H2`tpΩq X V for some t with
σ ď t ď 1, suppose f, g P Epλq. Then

|pu ´ uM , gqL2pΩq| ď C2pλ´1 ` κ2h
4
maxq2h2tmax}f}H2`tpΩq}g}H2`tpΩq.

Proof of (a). Theorem 2.1 shows that the interpolation operator IM satisfies the utilized
properties [Gal15a, Eqn. (2.3),(2.5)]. The 3D companion operator JM in Theorem 3.1 satisfies
in particular the orthogonalities Π0pvM ´ JMvM q “ 0 and Π0pD2

pwpvM ´ JvM qq “ 0 for all
vM P MpT q and the approximation property [Gal15a, Eqn. (2.7),(2.8)]. Hence the arguments
in [Gal15a, Prop. 2.9–2.10] apply verbatim to n “ 3 and further details are omitted. l

Proof of (b). Since u P V solves (3.3) with the right-hand side f P Epλq, u “ f{λ P H2`tpΩqX
V . Remark 2.4 and Corollary 2.2.a prove osc2pf,T q ď h4`t

max{π2`t }f}H2`tpΩq. This and (a)
show

~u´ uM~pw ď C1h
t
max

`
1{λ` h4max{π2`t

˘
}f}H2`tpΩq. (3.5)

Since g P Epλq is an eigenvector in (1.2), λpu ´ JMuM , gqL2pΩq “ apu ´ JMuM , gq. Corol-
lary 2.2.b implies apwpuM , gq “ apwpuM , IMgq. This shows the first equality in

λpu ´ JMuM , gqL2pΩq “ apu, gq ´ apwpuM , IMgq ` apwpuM ´ JMuM , gq
“ pf, g ´ IMgqL2pΩq ` apwpuM ´ JMuM , gq.

The second equality follows because u solves (3.3) and uM P MpT q solves (3.4) with right-
hand side f . The term pf, g ´ IMgqL2pΩq “ pf, JMIMg ´ IMgqL2pΩq ` pf, g ´ JMIMgqL2pΩq is
split into two. Corollary 3.2.a controls the first contribution

pf, JMIMg ´ IMgqL2pΩq ď M2 h
4
maxκ

2
2~f ´ IMf~pw~g ´ IMg~pw.

Corollary 3.2.b ensures

apwpuM ´ JMuM , gq ď M2~u´ uM~pw~g ´ IMg~pw.

Since f P Epλq is an eigenvector in (1.2), λpf, g ´ JM IMgqL2pΩq “ apf, g ´ JM IMgq. The
right-inverse property Theorem 3.1.a and the orthogonality in Theorem 2.1.a show apf, g ´
JMIMgq “ apwpf ´ IMf, g ´ JMIMgq. A triangle inequality and Theorem 3.1.b ensure ~g ´
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JMIMg~pw ď ~g ´ IMg~pw ` ~g ´ JMIMg~pw ď p1 `M2q~g ´ IMg~pw. This and a Cauchy-
Schwarz inequality verify

λpf,g ´ JMIMgqL2pΩq ď ~f ´ IMf~pw~g ´ JMIMg~pwďp1 `M2q~f ´ IMf~pw~g ´ IMg~pw.

The combination of the last four displayed estimates reads

λpu ´ JMuM , gqL2pΩq ď ~g ´ IMg~pwM2

ˆ̂
1 `M´1

2

λ
` h4maxκ

2
2

˙
~f ´ IMf~pw`~u´ uM~pw

˙
.

This, Corollary 2.2.a, and (3.5) verify that

λpu´ JMuM , gqL2pΩq ďh2tmax}f}H2`tpΩq}g}H2`tpΩq
M2

πt

ˆ
1 `M´1

2

λπt
` h4maxκ2

πt
` C1

ˆ
1

λ
` h4max

π2`t

˙̇
.

For the term pJMuM ´uM , gqL2pΩq, Corollary 3.2.a followed by Corollary 2.2.a and (3.5) show

pJMuM ´ uM , gqL2pΩq ď M2κ2h
4
max~g ´ IMg~pw~u´ uM~pw

ď h2tmax}f}H2`tpΩq}g}H2`tpΩq
C1M2κ2h

4
max

πt

ˆ
1

λ
` h4max

π2`t

˙
.

The combination of the last two displayed inequalities proves that pu´uM , gqL2pΩq “ pJMuM´
uM , gqL2pΩq ` pu ´ JMuM , gqL2pΩq . h2tmax}f}H2`tpΩq}g}H2`tpΩq. The bookkeeping of the mul-
tiplicative constants concludes the proof. l

Given any right-hand side f P L2pΩq, let uh “ pupw, uM q P Vh denote the discrete solution
to the extra-stabilised source problem

ahpuh,vhq “ pf, vpwqL2pΩq for all vh “ pvpw, vM q P Vh. (3.6)

The analysis of (3.6) reduces to that of Lemma 3.4 plus perturbation terms.

Lemma 3.5 (discrete error estimate in Vh). There exists a constant Cpw ą 0 (that ex-
clusively depends on T), such that given any f P L2pΩq, the exact solution u P H2`σpΩq X V

to (3.3) and the discrete solution uh “ pupw, uM q P Vh to (3.6) for T P T with maximal
mesh-size hmax satisfy (a)–(b).

(a) If u P H2`spΩq for some s with σ ď s ď 1, then

~u´ upw~pw ` h´σ
max}u´ upw}L2pΩq ď Cpw

`
hsmax}u}H2`spΩq ` osc2pf,T q

˘
.

(b) Given any eigenvalue λ of (1.2) with eigenspace Epλq Ă H2`tpΩq X V for some t with
σ ď t ď 1, suppose f, g P Epλq and C2 from Lemma 3.4. Then

|pu ´ upw, gqL2pΩq| ď
`
C2pλ´1 ` κ2h

4
maxq2 ` κ22h

2
max

˘
h2tmax}f}H2`tpΩq}g}H2`tpΩq.

Proof of (a). For vpw P P2pT q, the test-function pvpw, 0q P Vh in (3.6) leads to κ´2
2 h´4

T
pupw ´

uM q “ Π2f . Thus upw “ uM ` κ22h
4
T Π2f and a triangle inequality shows

~u´ upw~pw ` h´σ
max}u´ upw}L2pΩq
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ď
`
~u´ uM~pw ` h´σ

max}u´ uM}L2pΩq

˘
` κ22

`
~h4T Π2f~pw ` h´σ

max}h4T Π2f}L2pΩq

˘
. (3.7)

The test-function pvM , vM q P MpT q ˆ MpT q Ă Vh shows apwpuM , vM q “ pf, vM qL2pΩq. In
other words, the solution component uM P MpT q solves the Morley source problem (3.4).
Lemma 3.4.a controls the first term in (3.7),

~u´ uM~pw ` h´σ
max}u´ uM}L2pΩq ď C1

`
hsmax}u}H2`spΩq ` osc2pf,T q

˘
.

An inverse estimate for P2pT q with constant cinv ą 0 and the boundedness of Π2 show

~h4T Π2f~pw ` h´σ
max}h4T Π2f}L2pΩq ď pcinv ` h2´σ

maxq}h2T Π2f}L2pΩq ď pcinv ` h2´σ
maxq}h2T f}L2pΩq.

The efficiency estimate }h2T f}L2pΩq . ~u ´ uM~pw ` osc2pf,T q follows from the bubble-
function methodology due to [Ver13], cf. [BdVNS07, Thm. 2]. The combination with
Lemma 3.4.a shows

}h2T f}L2pΩq . hsmax}u}H2`spΩq ` osc2pf,T q.
The last two displayed inequalities bound the second term in (3.7) and that concludes the
proof of (a). l

Proof of (b). The substitution of upw “ uM ` κ22h
4
T Π2f from part (a) leads to

pu ´ upw, gqL2pΩq “ pu ´ uM , gqL2pΩq ´ κ22ph4T Π2f, gqL2pΩq.

Since uM solves the Morley source problem (3.4), Lemma 3.4.b controls pu ´ uM , gqL2pΩq.
This and pΠ2f, gqL2pΩq ď }f}L2pΩq}g}L2pΩq conclude the proof. l

3.3 Convergence rates for the eigenvalue problem

The preparations in Subsection 3.1–3.2 allow the proof of the optimal a priori convergence
rates in Theorem 1.2 with fundamental arguments from [BO91].

Proof of Theorem 1.2. Given any right-hand side f P L2pΩq let Spfq :“ u P V denote the
continuous solution to (3.3) and let Shpfq :“ upw P P2pT q denote the first component of the
solution uh “ pupw, uM q P Vh to (3.4). This defines solution operators S : L2pΩq Ñ L2pΩq
and Sh : L2pΩq Ñ L2pΩq. Lemma 3.5.a implies the convergence Sh Ñ S in the operator
norm of LpL2pΩqq as hmax Ñ 0. Suppose pλ, φq P R

` ˆ V denotes an eigenpair of (1.2)
and pλh,uhq P R

` ˆ Vh with uh “ pupw, uM q denotes an eigenpair of (1.3), then p1{λ, φq is
an eigenpair of S and p1{λh, upwq is an eigenpair of Sh. Hence, the Babuška-Osborn theory
[BO91] (see also [Bof10, Sec. 9] or [SZ17, Sec. 1.4.2]) implies for any non-zero eigenvalue 1{λ
of S with eigenspace Epλq “ kerpλ´1 ´ Sq of dimension µ “ dimpEpλqq P N, that there exist
exactly µ eigenvalues 1{λh,1, . . . , 1{λh,µ of Sh, which converge to 1{λ as hmax Ñ 0. The error
estimates for the selfadjoint operator S in [BO91, Rem. 7.5] read (with a generic constant
which depends on λ) }u´ upw,k}L2pΩq . }pS ´ Shq|Epλq}LpEpλq;L2pΩqq and

max
1ďkďµ

ˇ̌
λ ´ λh,k

ˇ̌
. max

1ďkďµ

ˇ̌
λ´1 ´ λh,k

´1
ˇ̌

. sup
φ,ψPEpλqzt0u

|ppS ´ Shqφ,ψqL2pΩq|
}φ}L2pΩq}ψ}L2pΩq

` }pS ´ Shq|Epλq}2LpEpλq;L2pΩqq.
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For the finite-dimensional eigenspace Epλq Ă H2`tpΩq there exists Ct :“ supφPEpλq

}φ}
H2`tpΩq

}φ}
L2pΩq

ă 8 so that }φ}H2`tpΩq ď Ct}φ}L2pΩq for all φ P Epλq. The combination of Lemma 3.5.a with
Remark 2.4 and Corollary 2.2.a shows (as an analog to (3.5)) that

}pS ´ Shq|Epλq}LpEpλq;L2pΩqq ď ht`σmaxCtCpw

`
1{λ ` h4max{π2`t

˘
.

Lemma 3.5.b bounds the remaining term

sup
φ,ψPEpλqzt0u

|ppS ´ Shqφ,ψqL2pΩq|
}φ}L2pΩq}ψ}L2pΩq

ď h2tmaxC
2
t

`
C2pλ´1 ` κ2h

4
maxq2 ` κ22h

2
max

˘
.

This concludes the proof. l

Unlike [Ran79, YLB16], the following Theorem 3.6 specifies the convergence rates for (2.12)
directly in terms of σ “ mint1, σregu for the index of elliptic regularity σreg from (1.5) and
the Sobolev regularity t of Epλq.

Theorem 3.6 (a priori convergence for (2.12)). Given a non-zero eigenvalue λ of (1.2)
of multiplicity µ, suppose that Epλq Ă H2`tpΩq X V holds for some t with σ ď t ď 1.
Then there exist δ, C ą 0 such that any T P Tpδq and the discrete space MpT q lead in
(2.12) to exactly µ algebraic eigenvalues λM,1, . . . , λM,µ that converge to λ as hmax Ñ 0.
Let EM :“ spantuM P EM pλM,kq : k “ 1, . . . , µu denote the union of the discrete eigenspaces
EM pλM,kq Ă MpT q for λM,1, . . . , λM,µ. Then the convergence results in Theorem 1.2 hold with
λh,k replaced by λM,k, and uh “ pupw, uM q P Eh with }upw}L2pΩq “ 1 replaced by φM P EM
with }φM }L2pΩq “ 1.

Proof. Define the solution operator SM : L2pΩq Ñ L2pΩq with SM pfq :“ uM P MpT q the
Morley finite element solution of (3.4) for right-hand side f P L2pΩq. The proof is verbatim
to the proof of Theorem 1.2 with the results in Lemma 3.4 instead of Lemma 3.5 and so the
details are omitted here. l

4 Numerical experiments in 2D

This section presents numerical evidence for the superiority of the new GLB in Theorem 1.1
over (1.1) and the asymptotic convergence rates from Theorem 1.2 in 2D.

´1 0 1 2 3 4 5

´1

0

1

(a)

´1 0 1

´1

0

1

(b)

´1 0 1

´1

0

1

(c)

Figure 4.1: Initial triangulation T0 of dumbbell-slit (a), L-shaped (b), and four-slit domain (c).
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4.1 Implementation

The implementation in this paper is realized in MATLAB based on the data structure and
assembling from [CB18, Sec. 7.8]. Fig. 4.1 displays the initial triangulations T0 for the nu-
merical experiments below. The k-th eigenpair pλhpkq,uhpkqq P R

` ˆ Vh of (1.3) with
uhpkq “ pupw, uM pkqq P P2pT q ˆMpT q and for comparison the post-processed Morley bound
GLBpkq in (1.1) from [CG14b] are computed with the MATLAB routine eigs exactly; the
termination and round-off errors are small and neglected for simplicity. Under the condition
κ22h

4
maxλhpkq ď 1, Theorem 1.1 guarantees λhpkq ď λk for the k-th eigenvalue λk of (1.2).

Otherwise (if 1 ă κ22h
4
maxλhpkq on a coarser mesh) the value λhpkq is set zero, but the point

is that this never occurs in all the examples displayed in this paper. The adaptive algorithm
[Dör96, MNS02, CFPP14, CR17] is based on the refinement indicator ηpT q defined in (4.1)
below for any triangle T P T . Given the discrete solution

`
λh,uh

˘
P R

` ˆVh of (1.3) of num-
ber k, λh :“ λhpkq, the local contribution η2pT q “ pηpT qq2 for any T P T with area |T | and set
of edges FpT q solely depends on the Morley component uM P MpT q of uh “ pupw, uM q P Vh

and reads

η2pT q “ |T |2}λhuM }2L2pT q ` |T |1{2
ÿ

FPFpT q

}rD2uM sF ˆ νF }2L2pF q (4.1)

with the tangential components rD2vsF ˆ νF of the jump rD2vsF along any edge F P F and
the (piecewise) Hessian D2. The respective convergence history plots in Fig. 1.1 and Fig. 4.2
display the difference λk ´λhpkq and λk ´GLBpkq of the exact eigenvalue λk and guaranteed
lower bounds λhpkq and GLBpkq for uniform red-mesh-refinement θ “ 1 (solid line and filled
markers) and adaptive mesh-refinement with a bulk parameter θ “ 0.5 in the Dörfler marking
algorithm and newest vertex bisection (dashed line and striped markers) plotted against the
number of triangles |T |. The computational bound κ2 “ 0.07353 from [LSL19] improves the
analytical bound from [CG14a] and the effect is investigated in Fig. 4.2.a with a comparison
between the bounds computed with κ2 “ 0.07353 from [LSL19] (line color orange/blue) and
κ2 “ 0.25746 from [CG14a] (line color red/green). On uniform meshes GLBpkq (line color
blue) and λhpkq (line color orange) coincide by Lemma 2.7 and are visible in orange only in
Fig. 1.1 in the introduction and in Fig. 4.2 below.

4.2 Dumbbell-slit domain

The principal and fourth eigenvalue λ1 “ 80.93261350 and λ4 “ 386.80177939 on the non-
convex dumbbell domain with a slit Ω :“ p´1, 1q ˆ p´1, 5qzpr0, 1q ˆ t0u Y r1, 3s ˆ r´0.75, 1sq of
Fig. 4.1.a are approximated with Bogner-Fox-Schmidt and Aitken extrapolation as in [CG14a].
Fig. 1.1 has been discussed in the introduction as an example where uniform mesh-refining
leads to a better GLB from (1.1) than adaptive refinement. The complex geometry suggests
a large computational pre-asymptotic regime, but the new method converges systematically
even for course triangulations. The example provides striking numerical evidence for the
superiority of the adaptive version of the extra-stabilized Morley eigensolver.

4.3 L-shaped domain

The principal eigenvalue λ1 “ 418.97504246688220 on the non-convex L-shaped domain Ω :“
p´1, 1q2zr0, 1qˆp´1, 0s of Fig. 4.1.b is approximated in [CG14a]. The associated eigenfunction
in H2

0 pΩqzH3pΩq results in the reduced empirical convergence rate 0.66 for uniform mesh-
refinement in Fig. 4.2.a. The adaptive mesh-refinement with (4.1) allows to recover the
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optimal convergence rate one (with respect to the number of triangles |T | in the triangulation
T ) for λhp1q. The choice of κ2 “ 0.07353 (line color blue) instead of κ2 “ 0.25746 (line color
green) improves the guaranteed lower bound GLBpkq significantly. The bound computed with
κ2 “ 0.25746 suffers from the involvement of hmax visible in form of steps, while the choice
κ2 “ 0.07353 leads to a straight line in the convergence history plot. Undisplayed experiments
on graded meshes [CB18] of the L-shaped domain, e.g., with grading parameter β “ 10{7,
recover the optimal convergence rates and confirm Lemma 2.7 as well.
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λk ´ λhpkq
with κ2 “ 0.07353

λk ´ GLBpkq
with κ2 “ 0.07353

θ “ 1 θ “ 0.5 k “ 1 k “ 3 k “ 4

λk ´ λhpkq
with κ2 “ 0.25746

λk ´ GLBpkq
with κ2 “ 0.25746

Figure 4.2: Comparison of the distance between λk and λhpkq (resp. GLBpkq) computed on uniform
(θ “ 1, solid) and adaptive (θ “ 0.5, dashed) meshes of the L-shaped domain for k “ 1 in (a) and the
four-slit domain for k “ 1, 3, 4 in (b).

4.4 Four-slit domain

The principal eigenvalue λp1q “ 830.21478777 and the double eigenvalue λp3q “ 1125.1279 “
λp4q on the four-slit domain Ω :“ p´1, 1q2z

`
r0, 0.5q ˆ t0u Y r0,´0.5q ˆ t0u Y t0u ˆ r0, 0.5q Y

t0u ˆ r0,´0.5q
˘
of Fig. 4.1.c are approximated as in [CG14a]. The associated eigenfunctions

on the non-convex domain seem to belong to H2
0 pΩqzH3pΩq because uniform mesh-refinement

leads to the reduced convergence rates 0.5 for the first and 0.55 for the third and fourth in
Fig. 4.2.b. The AFEM algorithm with bulk parameter θ “ 0.5 driven by the estimator (4.1)
allows to recover the optimal convergence rate one. The GLB in Fig. 4.2.b are computed with
κ2 “ 0.07353. Undisplayed comparison with κ2 “ 0.25746 lead to worse GLB. A clustering
adaptive algorithm as in [Gal15b] was not necessary for the double eigenvalue λ3 “ λ4.

4.5 Comments and Conclusions

The empirical observations of the numerical experiments in Subsection 4.3–4.4 show:

(i) All experiments confirm the a priori convergence rates of Theorem 1.2. The empirical
convergence rate depends only on the smoothness of the approximated eigenfunction. For
instance Fig. 1.1 displays for uniform refinement the optimal convergence rate one for the
principal eigenvalue despite the reduced empirical convergence rate for the fourth eigenvalue.
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(ii) Theorem 1.2 predicts a convergence for a sufficiently fine initial mesh. In all examples
the convergence rate is visible even for moderately fine triangulations, so this restriction does
not affect the numerical examples much.

(iii) If the condition on the mesh-size is satisfied, the method (1.3) provides indeed guaranteed
lower eigenvalue bounds in all numerical experiments and so confirms Theorem 1.1.

(iv) The constant κ2 “ 0.07353 from [LSL19] leads to a significant improvement of the known
bound (1.1) in examples with adaptive mesh-refinement.

(v) The (undisplayed) improvement factor q :“ pλk ´ λhpkqq{pλk ´ GLBpkqq was computed
with κ2 “ 0.07353 on the adaptive triangulations. For the principal eigenvalue of the L-
shaped and four-slit domain the improvement with the new method is marginal and the ratio
q oscillates between 0.6 and 1. In the remaining examples the improvement is more significant.
For the fourth eigenvalue of the four-slit domain the ratio q oscillates between 0.05 and 0.25
for triangulations with more than 4500 triangles. For the first (resp. fourth) eigenvalue of
the dumbbell-slit domain the ratio q decreases from 0.16 (resp. 0.15) to 0.0008 (resp. 0.005)
for triangulations with more than 600 (resp. 3800) triangles.

(vi) The new method increases the number of degrees of freedom by a factor four in the 2D
numerical benchmarks. The equivalent rational problem (2.13) from Proposition 2.6 could be
efficiently addressed by a Newton scheme, so the final comparison is beyond this paper. As
it stands, the new method is favourable at least for the examples in Subsection 4.2 and the
fourth eigenvalue in Subsection 4.4.

(vii) The adaptive algorithm driven by the estimator (4.1) recovers the optimal empirical
convergence rates in all examples for the extra stabilised method. The analysis of optimal
convergence rates and further details of the proposed adaptive algorithm shall appear in
[CP22].

(viii) The overall conclusion of the numerical experiments is that there exist examples, where
the post-processed GLB (1.1) may fail completely for localized triangulations. In contrast,
the new scheme is compatible with adaptive mesh-refining and leads to GLB that cannot be
reached with (1.1).
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A Primer in the Worsey-Farin 3D FEM and a

conforming companion for Morley FEM in 3D

Supplement material to the paper ‘Direct guaranteed lower eigenvalue bounds

with optimal a priori convergence rates for the bi-Laplacian’ by Carsten

Carstensen and Sophie Puttkammer

A. The Worsey-Farin FEM in 3D

This section aims at an elementary self-contained introduction to the Worsey-Farin (WF)
FEM and the analysis of the associated nodal basis functions to generalize [Cia78, Thm. 6.1.3].
The Clough-Tocher finite element has been proposed for any space dimension n ě 3 in [WF87].
More than two decades later, [Sor09] observed additional constraints on the choice of the
subtriangulation of the macro element for n ě 4 necessary for C1 conformity, i.e., [WF87] is
wrong for n ě 4. It appears still an open problem, whether all conditions for n “ 4 can be
satisfied simultaneously [Sor09, p.42, l.40ff]. This underlines that the details are technical and
explains the restriction to n “ 3 in this paper. This supplement summarizes the necessities
on Bernstein polynomials [dB87] and the Algorithm 1 from [WF87] for n “ 3 for a general
audience.

A.1. Bernstein polynomials in a simplex

Given m P t1, 2, 3, 4u points P1, P2, . . . , Pm P R
3 with linearly independent differences P2 ´

P1, . . . , Pm ´ P1, their convex hull T “ convtP1, . . . , Pmu is an pm ´ 1q-simplex (of positive
pm ´ 1q-dimensional Hausdorff measure). The set of vertices VpT q “ tP1, . . . , Pmu of T is
the set of extremal points and so uniquely defined. We fix an ordering and so identify the
pm ´ 1q-simplex T with an ordered list pP1, . . . , Pmq of vertices. We will encounter a finite
union of simplices and decouplings of pm´1q-simplices and need to keep track of the vertex set.
Below pP1, . . . , Pmq will be replaced by pPσp1q, . . . , Pσpmqq for global numbers σp1q, . . . , σpmq
in a finite list of all vertices V in a regular triangulation T of Ω Ă R

3 into tetrahedra in the
sense of Ciarlet. Let xT y :“ P1 ` spantP2 ´ P1, . . . , Pm ´ P1u denote the unique pm ´ 1q-
dimensional affine subspace xT y of R

3 that contains T ” pP1, . . . , Pmq. The barycentric
coordinates pλ1, . . . , λmq of a point x P xT y solve the 4 ˆm linear system of equations

˜
1 1 . . . 1
P1 P2 . . . Pm

¸
¨
˚̊
˝

λ1
...
λm

˛
‹‹‚“

˜
1
x

¸
. (A.1)

1
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The dependence on x in λjpxq “ λj from (A.1) is typically not written out explicitly for
brevity. It holds x P T if and only if x P R

3 satisfies (A.1) with λ1, . . . , λm ě 0. The relative
interior of T reads

relintpT q :“
#

mÿ

µ“1

λµPµ

ˇ̌
ˇ
mÿ

µ“1

λµ “ 1 and λ1, . . . , λm ą 0

+
.

Hence T “ relintpT q and the relative boundary relbdypT q “ BT :“ T zrelintpT q of T reads

BT “
#

mÿ

µ“1

λµPµ

ˇ̌
ˇ
mÿ

µ“1

λµ “ 1, λ1, . . . , λm ě 0, and λj “ 0 for at least one 1 ď j ď m

+
.

The space PkpT q of algebraic polynomials of total degree at most k P N0 is seen as a subspace
of C8pT q and allows many representations. The Bernstein polynomials form a natural basis
of PkpT q with standard multi-index notation for α “ pα1, . . . , αmq P N

m
0 with length |α| “

α1 ` ¨ ¨ ¨ ` αm and

λα

α!
:“ λα1

1 λα2

2 ¨ ¨ ¨λαm
m

α1!α2! ¨ ¨ ¨αm!
at x “

mÿ

µ“1

λµPµ P T. (A.2)

(We follow the convention λα{α! ” 0 if at least one of the indices α1, . . . , αm of α is negative.)
If the length m P t1, 2, 3, 4u is fixed, abbreviate Ak :“ tα P N

m
0 | |α| “ ku Ă N

m
0 . The

Bernstein polynomials of degree k P N0 are all λα{α! from (A.2) for α P Ak. In fact, any
(real) polynomial f P PkpT q has unique (real) coefficients pcpαq|α P Akq called ordinates such
that

f “ k!
ÿ

αPAk

cpαqλ
α

α!
at x “

mÿ

µ“1

λµPµ P T. (A.3)

The definition (A.3) makes sense also in the entire affine subspace xT y :“ P1 ` spantP2 ´
P1, . . . , Pm ´ P1u Q x and immediately extends any f P PkpT q to f P PkpxT yq. The ordinates
of f form a family pcpαq|α P Akq and can be arranged in an m-dimensional array. Any
ordinate cpαq for α P Ak is associated with the position x “ řm

µ“1
αµ

k
Pµ P T as illustrated in

Fig. A.1 for m “ 3 and k “ 2, 3. If the length of m is fixed (and there is no need to highlight
the length m of the multi-indices from the context), then ej :“ p0, . . . , 0, 1, 0, . . . , 0q P N

m
0

denotes the j-th canonical unit vector with the coefficients ejpℓq “ δjℓ for j, ℓ P t1, . . . ,mu. It
cannot be overemphasized that the ordinates pcpαq|α P Akq of the polynomial f in (A.3) are
neither coefficients of a monomic tensor basis xα1

1 xα2

2 . . . xαn
n nor the values of the polynomial

in general. However, at the m vertices, the ordinates are the values of the polynomial f : For
any j “ 1, . . . ,m, the vertex Pj is identified with the multi-index kej and cpkejq “ fpPjq
follows from (A.3) and the barycentric coordinates pλ1, . . . , λmq “ ej of Pj.

Remark A.1 (gradient ∇f). The derivative of f from (A.3) reads at x “ řm
µ“1 λµPµ P T

∇f “ k!
ÿ

αPAk

mÿ

µ“1

cjpαq λpα´eµq

pα ´ eµq!∇λµ “ k!
ÿ

βPAk´1

λβ

β!

mÿ

µ“1

cpβ ` eµq∇λµ. (A.4)

2
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cp2, 0, 0q cp1, 1, 0q cp0, 2, 0q

cp0, 1, 1q

cp0, 0, 2q

cp1, 0, 1q

(a) k “ 2

cp3, 0, 0q cp2, 1, 0q cp1, 2, 0q cp0, 3, 0q

cp0, 2, 1q

cp0, 1, 2q

cp0, 0, 3q

cp2, 0, 1q

cp1, 0, 2q

cp1, 1, 1q

(b) k “ 3

Figure A.1.: Illustration of the position associated with the ordinates cpαq for α P Ak with m “ 3 and
k “ 2 (a) and k “ 3 (b).

Some examples on the evaluation of f and ∇f on the boundary BT of a triangle (m “ 3) and
tetrahedron (m “ 4) conclude this subsection for the sake of an illustration as well as future
reference. The reader may skip the proof at first reading, but requires details in the analysis
of Algorithm 1 later in Subsection A.4.

Example A.1 (triangle, k “ 2, m “ 3). For m “ 3 consider a triangle T identified with
its vertices pP1, P2,P3q. The first edge E1 “ convtP2, P3u of the triangle T lies opposite to the
first vertex P1 and has midpoint midpE1q :“ P23 :“ pP2`P3q{2. In the two-dimensional affine
space xT y “ P1 ` spantP2 ´ P1, P3 ´ P1u, the edge E1 belongs to the zero set tλ1 “ 0u Ą E1

of the first barycentric coordinate λ1, where λ2 ` λ3 “ 1 for λ2, λ3 ě 0. The polynomial λα

vanishes at x “ λ2P2 ` λ3P3 P E1, if α1 ě 1 and so (A.3) reduces to

f “ k!
ÿ

αPAk
α1“0

cpαqλα{α! at x “ λ2P2 ` λ3P3 P E1. (A.5)

For k “ 2 and with cp0, 2, 0q “ fpP2q and cp0, 0, 2q “ fpP3q, the formula (A.5) shows at
P23 “ midpE1q that

4fpP23q “ fpP2q ` 2cp0, 1, 1q ` fpP3q.

The derivative ∇f of f along the edge E1 Ă tλ1 “ 0u follows from (A.4),

∇f “ k!
ÿ

αPAk´1

α1“0

˜
3ÿ

µ“1

cpα ` eµq∇λµ
¸
λα

α!
at x “ λ2P2 ` λ3P3 P E1. (A.6)

Since k “ 2, there are solely two summands in the sum of the formula (A.6) for pα2, α3q “
p1, 0q and pα2, α3q “ p0, 1q. Hence

∇f “2
`
cp1, 1, 0q∇λ1 ` cp0, 2, 0q∇λ2 ` cp0, 1, 1q∇λ3

˘
λ2

` 2
`
cp1, 0, 1q∇λ1 ` cp0, 1, 1q∇λ2 ` cp0, 0, 2q∇λ3

˘
λ3 at x P E1.

This defines an affine vector function along E1. In conclusion, the data f |E1
and ∇f |E1

determine the ordinates cp0, 0, 2q, cp0, 2, 0q, cp1, 1, 0q, cp1, 0, 1q, cp0, 1, 1q and vice versa.

3
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Example A.2 (tetrahedron, k “ 2, m “ 4). For m “ 4 consider a tetrahedron T identi-
fied with its vertices pP1, P2,P3,P4q in R

3 with edge midpoints Pkℓ “ pPk ` Pℓq{2 for k, ℓ “
1, . . . , 4 and k “ ℓ. The ordinates pcpαq|α P A2q define the quadratic polynomial f “
2
ř
αPA2

cpαqλα{α! P P2pT q, which assumes, for all j, k, ℓ “ 1, . . . , 4 and k “ ℓ, the following
values.

(a) fpPjq “ cp2ejq,
(b) 4fpPkℓq “ cp2ekq ` 2cpek ` eℓq ` cp2eℓq “ fpPkq ` 2cpek ` eℓq ` fpPℓq.

Proof of (a). The first formula (a) follows with pλ1, . . . , λ4q “ ej at x “ Pj and the evaluation
of the non-zero λα{α! for α “ 2ej . l

Proof of (b). At the edge midpoint x “ Pkℓ in (b), we have pλ1, . . . , λ4q “ pek ` eℓq{2 and
λα{α! is possibly non-zero only for α “ 2ek, ek ` eℓ, and 2eℓ. The polynomial λα{α! assumes
the respective values λα{α! “ 1{8, 1{4, 1{8. This leads to the formulas in (b). l

Example A.3 (tetrahedron, k “ 3, m “ 4). In the notation of Example A.3, the ordi-
nates pcpαq|α P A3q define the cubic polynomial f “ 6

ř
αPA3

cpαqλα{α! P P3pT q and its
gradient ∇f P P2pT ;R3q. For all tj, k, ℓ,mu “ t1, 2, 3, 4u it follows

(a) fpPjq “ cp3ejq,
(b) 8fpPkℓq “ fpPkq ` 3cp2ek ` eℓq ` 3cpek ` 2eℓq ` fpPℓq,

(c) pPj ´ Pkq ¨ ∇fpPjq “ 3
`
cp3ejq ´ cp2ej ` ekq

˘
,

(d)
4

3
pPj ´ Pkℓq ¨ ∇fpPkℓq “ cp2eℓ ` ejq ` 2cpeℓ ` ek ` ejq ` cp2ek ` ejq ´ 4fpPkℓq,

(e)
8

3
pPk ´ Pkℓq ¨ ∇fpPkℓq “ fpPkq ` cp2ek ` eℓq ´ cp2eℓ ` ekq ´ fpPℓq.

Proof of (a)–(b). The formulas (a)–(b) follow with pλ1, . . . , λ4q “ ej at x “ Pj and the
only possible α “ 3ej and pλ1, . . . , λ4q “ pek ` eℓq{2 at the midpoint x “ Pkℓ with possible
α “ 3ek, 2ek ` eℓ, 2eℓ ` ek, 3eℓ and respective values λα{α! “ 1{48, 1{16, 1{16, 1{48. l

Proof of (c). The polynomial λβ{β! vanishes at x “ Pj for all β “ 2ej , while λ
2ej{p2ejq! “ 1{2

at x “ Pj . Consequently,

∇fpPjq “ 3
4ÿ

µ“1

cp2ej ` eµq∇λµ. (A.7)

The barycentric coordinates satisfy pPj ´Pkq ¨∇λµ “ λµpPjq ´λµpPkq “ δjµ ´ δkµ and so (c)
follows from (A.7). l

Proof of (d). At the edge midpoint x “ Pkℓ, Example A.2 shows λβ{β! “ 1{8, 1{4, 1{8 for
β “ 2ek, ek ` eℓ, 2eℓ. Hence

∇fpPkℓq “ 3

4

4ÿ

µ“1

`
cp2eℓ ` eµq ` 2cpeℓ ` ek ` eµq ` cp2ek ` eµq

˘
∇λµ. (A.8)

Since pPj ´ Pkℓq ¨ ∇λµ “ δjµ ´ 1
2
pδkµ ` δℓµq is one for µ “ j, ´1{2 for µ “ k, ℓ, and vanishes

otherwise, (d) follows from (b). l

Proof of (e). Since pPk ´Pkℓq ¨ ∇λµ “ δkµ ´ 1
2
pδkµ ` δℓµq is 1{2 for µ “ k and ´1{2 for µ “ ℓ

and vanishes otherwise, (A.8) leads to (e). l

4
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P4 P1

P3 P5

P2
FT1

T2

P2

Figure A.2.: Illustration of two neighbouring tetrahedra T1 “ convtP1, P2, P3, P4u in red and T2 “
convtP1, P2, P3, P5u in blue with common face F “ convtP1, P2, P3u in violet.

A.2. Smoothness across an interface

This subsection characterizes the function space C1pT1YT2qXPkptT1, T2uq for two tetrahedra
T1, T2 with a common face F “ BT1 X BT2. Fig. A.2 illustrates the following situation.
Suppose T1 “ convtP1, P2, P3, P4u and T2 “ convtP1, P2, P3, P5u share the face F “ BT1 X
BT2 “ convtP1, P2, P3u with unit normal νF . Recall Ak :“ tα P N

4
0| |α| “ ku Ă N

4
0 and set

Bk :“ tα P N
3
0| |α| “ ku Ă N

3
0. In this context the notation cjpβ; 0q in (A.10)–(A.11) below

abbreviates cjpβ; 0q :“ cjppβ1, β2, β3, 0qq for some β P Bk or β P Bk´1 and j “ 1, 2. Identify
T1 with pP1, P2, P3, P4q and T2 with pP1, P2, P3, P5q. The function g P PkptT1, T2uq is given in
T1 resp. T2 as the polynomial (A.3) and with ordinates pc1pαq|α P Akq resp. pc2pαq|α P Akq,

gj “ g|Tj “ k!
ÿ

αPAk

cjpαqλ
α

α!
at x “ λ1P1 ` λ2P2 ` λ3P3 ` λ4Pℓ P Tj (A.9)

for j “ 1, 2 with ℓ “ ℓp1q “ 4 for j “ 1 and ℓ “ ℓp2q “ 5 for j “ 2.

Lemma A.1. The polynomials gj P PkpTjq with (A.9) for j “ 1, 2 form a function g P
PkptT1, T2uq by g|Tj “ gj for j “ 1, 2. Then

(a) g P C0pT1 Y T2q if and only if

c1pβ; 0q “ c2pβ; 0q for all β P Bk; (A.10)

(b) g P C1pT1 Y T2q if and only if (A.10) and

4ÿ

µ“1

c1ppβ; 0q ` eµqpνF ¨ ∇λµ|T1q “
4ÿ

µ“1

c2ppβ; 0q ` eµqpνF ¨ ∇λµ|T2q for all β P Bk´1. (A.11)

Proof of (a). Recall that the common face F “ BT1 X BT2 satisfies F Ă tλ4 “ 0u. Hence
(A.9) implies

gj |F “ k!
ÿ

βPBk

cjpβ; 0qλ
β

β!
at x “ λ1P1 ` λ2P2 ` λ3P3 P F and j “ 1, 2

5
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with the abbreviation cjpβ; 0q :“ cjppβ1, β2, β3, 0qq and λβ{β! “ λ
β1
1 λ

β2
2 λ

β3
3

β1!β2!β3!
. Therefore, g1|F “

g2|F for g P C0pT1 Y T2q is equivalent to

0 “
ÿ

βPBk

`
c1pβ; 0q ´ c2pβ; 0q

˘
λβ{β! at x “ λ1P1 ` λ2P2 ` λ3P3 P F.

Since the Bernstein polynomials
`
λβ{β!|β P Bk

˘
form a basis of PkpF q the last statement is

equivalent to (A.10). This proves (a). l

Proof of (b). Since g P C1pT1YT2q includes g P C0pT1YT2q, (A.10) has to hold. Additionally
we need continuity of the gradient at F . The gradient ∇gj|F from (A.4) reads

∇gj |F “ k!
ÿ

βPAk´1

λβ

β!

ˇ̌
ˇ̌
F

4ÿ

µ“1

cjpβ ` eµq∇λµ|Tj “ k!
ÿ

βPBk´1

λβ

β!

4ÿ

µ“1

cjppβ; 0q ` eµq∇λµ|Tj

at x “ λ1P1 ` λ2P2 ` λ3P3 P F . Hence the continuity of the gradients ∇g1|F “ ∇g2|F is
equivalent to

0 “
ÿ

βPBk´1

λβ

β!

4ÿ

µ“1

´
c1
`
pβ; 0q ` eµ

˘
∇λµ|T1 ´ c2

`
pβ; 0q ` eµ

˘
∇λµ|T2

¯
at x “

3ÿ

µ“1

λµPµ P F.

Since the Bernstein polynomials
`
λβ{β!|β P Bk´1

˘
form a basis of Pk´1pF q the last statement

is equivalent to

0 “
4ÿ

µ“1

´
c1
`
pβ; 0q ` eµ

˘
∇λµ|T1 ´ c2

`
pβ; 0q ` eµ

˘
∇λµ|T2

¯
P R

3 for all β P Bk´1. (A.12)

It remains to show, that (A.12) is equivalent to (A.11). In other words, to verify that solely
the normal derivatives νF ¨∇λµ|Tj for j “ 1, 2 and µ “ 1, 2, 3 are of interest. Fix two tangential
directions τ1, τ2 of unit length parallel to xF y, such that τ1, τ2, νF form an orthonormal basis
of R3. Then

∇λµ|Tj “ p∇λµ|Tj ¨ τ1qτ1 ` p∇λµ|Tj ¨ τ2qτ2 ` p∇λµ|Tj ¨ νF qνF .

The components of the difference ∇λµ|T1 ´ ∇λµ|T2 for µ “ 1, 2, 3 in R
3 in the direction

τ1, τ2 P spantP2 ´P1, P3 ´P1u parallel to xF y vanish owing to the Hadamard jump condition:
The piecewise gradient ∇g of g P C0pT1 Y T2q X PkptT1, T2uq jumps across the interface F
and the jump r∇gsF ‖ νF exclusively points in the normal direction. For µ “ 1, 2, 3 and the
tangential direction τj P spantP2 ´ P1, P3 ´ P1u for j “ 1, 2, we have

τj ¨ ∇λµ|T1 “ B
Bsλµpx0 ` sτq

ˇ̌
s“0

“ τj ¨ ∇λµ|T2 “: τj ¨ ∇λµ at any x0 P relintpF q.

For µ “ 4, notice that Pr ´P1 K νF ‖ ∇λ4|Tj for r “ 2, 3 and j “ 1, 2. In fact, suppose ̺ℓ ą 0
denotes the height of Pℓ over the plane xF y, then ̺ℓ∇λ4|Tj “ p´1qjνF for ℓ “ 4, 5, j “ 1, 2
provided the orientation of νF is fixed from P4 to P5 in that νF is the outer unit normal in
F Ă BT1. In particular this means τj ¨ ∇λ4|T1 “ 0 “ τj ¨ ∇λ4|T2 for j “ 1, 2. Hence, (A.12) is
recast for all β P Bk´1 as the first identity in

´νF
4ÿ

µ“1

´
c1
`
pβ; 0q ` eµ

˘
p∇λµ|T1 ¨ νF q ´ c2

`
pβ; 0q ` eµ

˘
p∇λµ|T2 ¨ νF q

¯

6
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“
2ÿ

j“1

τj

3ÿ

µ“1

´
c1
`
pβ; 0q ` eµ

˘
´ c2

`
pβ; 0q ` eµ

˘¯
∇λµ ¨ τj

¯
“ 0

with the equality of ordinates from (A.10) in the last step. The last identity is equivalent to
(A.11). l

The coefficient relations (A.10)–(A.11) concern the factors one in (A.10) or geometric factors
νF ¨ ∇λ|Tj for j “ 1, 2 in (A.11). However they do not explicitly display k and this gives rise
to a factorization (cf. [dB87, §14] in terms of B-forms). Suppose pcjpαq|α P Akq defines gj in
(A.9) for F “ BT1 X BT2 “ convtP1, P2, P3u and j “ 1, 2. Define for a fixed index ξ P t1, 2, 3u
suppressed in the notation

g1|Tj :“ g1
j :“ pk ´ 1q!

ÿ

βPAk´1

cjpeξ ` βqλβ{β! for j “ 1, 2. (A.13)

Then the composition g1 P Pk´1ptT1, T2uq from (A.13) is a piecewise polynomial of degree at
most k ´ 1.

Example A.4 (g1 for k “ 0, . . . , 3). Abbreviate
ř
µďℓ :“

ř4
µ,ℓ“1
µďℓ

.

(a) If k “ 0 and gj “ cjpp0, 0, 0, 0qq, then g1
j “ 0 by definition.

(b) If k “ 1 and gj “ ř4
µ“1 cjpeµqλeµ, then g1

j “ cjpeξq.

(c) If k “ 2 and gj “ 2
ř
µďℓ cjpeµ ` eℓq λeµ`eℓ

peµ`eℓq! , then g1
j “ ř4

µ“1 cjpeξ ` eµqλµ; e.g.,

g1 “ cjpp2, 0, 0, 0qqλ1 ` cjpp1, 1, 0, 0qqλ2 ` cjpp1, 0, 1, 0qqλ3 ` cjpp1, 0, 0, 1qqλ4 holds for
ξ “ 1.

(d) If k “ 3 and gj “ 6
ř
αPA3

cjpαqλα
α!
, then g1

j “ 2
ř
µďℓ cjpeξ ` eµ ` eℓq λeµ`eℓ

peµ`eℓq! ; e.g.,

g1
j “2λ1

`
cjpp2, 1, 0, 0qqλ2 ` cjpp2, 0, 1, 0qqλ3 ` cjpp2, 0, 0, 1qqλ4

˘

` 2
`
cjp1, 1, 1, 0qλ2λ3 ` cjp1, 1, 0, 1qλ2λ4 ` cjp1, 0, 1, 1qλ3λ4

˘

` cjpp3, 0, 0, 0qqλ21 ` cjpp1, 2, 0, 0qqλ22 ` cjpp1, 0, 2, 0qqλ23 ` cjpp1, 0, 0, 2qqλ24
holds for ξ “ 1.

Recall that the two tetrahedra T1 and T2 in Fig. A.2 share the face F “ BT1 X BT2 “
convtP1, P2, P3u with fixed unit normal νF . Suppose g|Tj :“ gj in (A.9) for j “ 1, 2 and
define g1 in (A.13) with respect to a fixed index ξ P t1, 2, 3u. Let ℓ,m denote the two distinct
indices with tξ, ℓ,mu “ t1, 2, 3u and E :“ convtPℓ, Pmu.

Lemma A.2. Under the present notation g P C1pT1YT2q is equivalent to the three conditions

g1 P C1pT1 Y T2q as well as g and
Bg

BνF
are continuous at E.

Proof. Without loss of generality fix ξ “ 1 and E “ convtP2, P3u throughout this proof.
Lemma A.1 characterizes g P C1pT1 Y T2q in (A.10)–(A.11); but it also applies to g1 P
Pk´1ptT1, T2uq and shows that g1 P C1pT1 Y T2q is equivalent to (A.14)–(A.15),

c1
`
e1 ` pβ; 0q

˘
“ c2

`
e1 ` pβ; 0q

˘
for all β P Bk´1 :“ tα P N

3
0| |α| “ k ´ 1u, (A.14)

7
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4ÿ

µ“1

c1pe1 ` pβ; 0q ` eµqνF ¨ ∇λµ|T1 “
4ÿ

µ“1

c2pe1 ` pβ; 0q ` eµqνF ¨ ∇λµ|T2 for all β P Bk´2.

(A.15)

Observe that the conditions (A.14)–(A.15) concern e1 ` pβ; 0q for β P Bk´1 and β P Bk´2 and
are included in (A.10)–(A.11). In other words (A.10)–(A.11) imply (A.14)–(A.15).

”
ñ“ The first implication assumes g P C1pT1 YT2q and Lemma A.1 guarantees (A.10)–(A.11)

and so (A.14)–(A.15). Recall from the very beginning of this proof that (A.14)–(A.15) imply
g1 P C1pT1 YT2q. Finally g P C1pT1 YT2q and ∇g P C0pT1 YT2;R

3q imply that g and Bg
BνF

are
continuous along E “ convtP2, P3u.

”
ð“ The converse implication that assumes g1 P C1pT1YT2q, whence (A.14)–(A.15), and that
g and Bg

BνF
are continuous along E Ă tλ1 “ 0 “ λ4u. First (A.14) implies some conditions of

(A.10) and the remaining conditions read

c1p0, β2, β3, 0q “ c2p0, β2, β3, 0q for all β2, β3 P N0 with β2 ` β3 “ k.

The remaining conditions concern β P Bk with β1 “ 0. On the other hand, the continuity of
g along E implies g1|E “ g2|E . In terms of (A.9), this reads

0 “ g1|E ´ g2|E “ k!
ÿ

βPBk
β1“0

´
c1
`
pβ; 0q

˘
´ c2

`
pβ; 0q

˘¯λβ
β!

at x “ λ2P2 ` λ3P3 P E. (A.16)

Since the Bernstein polynomials
`
λβ{β!|β P Bk, β1 “ 0q form a basis of PkpEq, (A.16) implies

the remaining condition in (A.10). Consequently, (A.14) and g|E P C0pEq prove g P C0pT1 Y
T2q. Second, (A.15) implies the conditions of (A.11) except those for β P Bk´1 with β1 “ 0.
Recall that (A.9) and Remark A.1 show

νF ¨ ∇gj |E “ k!
ÿ

βPBk´1

β1“0

λβ

β!

4ÿ

µ“1

cj
`
pβ; 0q ` eµ

˘
pνF ¨ ∇λµ|Tj q at x “ λ2P2 ` λ3P3 P E

for j “ 1, 2. Deduce that Bpg1´g2q
BνF

“ νF ¨ ∇pg1 ´ g2q “ 0 in E implies c1
`
pβ; 0q

˘
“ c2

`
pβ; 0q

˘

for all β P Bk´1 with β1 “ 0. Consequently, (A.14)–(A.15) and g|E , Bg
BνF

ˇ̌
ˇ
E

P C0pEq imply

(A.10)–(A.11). l

A.3. Piecewise quadratic polynomials in a WF partition of a tetrahedron

Given a tetrahedron K “ convtQ1, Q2, Q3, Q4u Ă R
3 of a positive volume, select five center

points cK , c1, c2, c3, c4 in K as follows

(a) cK P intpKq (i.e. distpcK , BKq ą 0)

(b) cm P relintpFmq (i.e. cm “ ř4
µ“1 λµQµ for λ1 ` ¨ ¨ ¨ ` λ4 “ 1 and λm “ 0 and all other

λj ą 0) for the face Fm of K that is opposite to the vertex Qm for m “ 1, 2, 3, 4.

8
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Q1 Q2

Q3

Q4cK

Q12

Q13

Q14

Q23

Q24

Q34

F1

T p1q

Q2

Q3

Q4cK

c1

T F

(a) (b)

Figure A.3.: Illustration of the division of K “ convtQ1, . . . , Q4u with center cK P intpKq into
T p1q, . . . , T p4q in (a) with T p1q “ convpcK , F1q marked in red. Further subdivision of T p1q with center
c1 P intpF1q of face F1 in the WF partition in (b) with one subsimplex T “ convpck, F q P WF3DpKq
with face F “ convtc1, Q2, Q4u Ă F1 marked in red.

Definition A.1 (WF partition in 3D). Given cK , c1, c2, c3, c4 with (a)–(b) in the tetra-
hedron K “ convtQ1,Q2,Q3,Q4u, let the regular triangulation WF3DpKq “ pT be the set of
12 subtetrahedra obtained as the convex hull convtQj , Qk, cK , cmu of two distinct vertices Qj
and Qk, 1 ď j ă k ď 4, the center point cK of the tetrahedron, and the center cm P relintpFmq
of the face Fm of K opposite to the vertex Qm for m P t1, 2, 3, 4uztj, ku.

Each face Fm P FpKq is a triangle partitioned in WF3DpKq by connecting the center cm P
relintpFmq with its vertices VpFmq as in the 2D HCT partition of the triangle Fm. In fact
there are two steps in the partition illustrated in Fig. A.3. First, the four tetrahedra T pmq :“
convpcK , Fmq for m “ 1, 2, 3, 4 partition K as displayed in Fig. A.3.a. Second, pT pcmq :“
tT P pT pKq | cm vertex of T u partitions each of the tetrahedra T p1q, T p2q, T p3q, T p4q in three
subtetrahedra; Fig. A.3.b illustrates the partition of T p1q. The following Lemma A.3 adopts
the notation of a WF triangulation pT “ WF3DpKq and considers each T pmq “ convpcK , Fmq
for m P t1, . . . , 4u with its decomposition pT pT pmqq “ tT P pT |T Ă T pmqu “: pT pcmq into
three subtetrahedra.

Lemma A.3. Any f P PkppT pcmqq for k “ 0, 1, 2 and m “ 1, 2, 3, 4 satisfies f P C1pT pmqq if
and only if f P PkpT pmqq is a global polynomial in T pmq.

Proof. Without loss of generality let m “ 1 and T p1q “ convtcK , Q2, Q3, Q4u as displayed in
Fig. A.3.b. The assertion is trivial for k “ 0 and immediate for k “ 1 (because continuity
means ∇fpc1q “ ∇f |T pc1q for all T P pT pc1q and leads to a global constant vector ∇f).
Suppose k “ 2 and f P C1pT p1qq X P2ppT pc1qq. The function values fpzq at the vertices
z P tcK , Q2, Q3, Q4u of T p1q and at the edge midpoints z P tQjk :“ pQj ` Qkq{2 : 2 ď j ă
k ď 4u Y tpcK `Qjq{2 : 2 ď j ď 4u of T p1q define the quadratic Lagrange interpolation I2f P
P2pT p1qq in the tetrahedron T p1q. Subtract this (global) quadratic Lagrange interpolation
I2f P P2pT p1qq from f . The difference pf ´ I2fqpzq “ 0 vanishes for each vertex and each
edge midpoint of T p1q. Since the assertion f P P2pT p1qq is equivalent to f ´ I2f ” 0, we may

9
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and will assume without loss of generality that f vanishes at these 10 distinct points on the
boundary BT p1q and conclude f ” 0 below.
Identify any subtetrahedron T “ convtc1, cK , Qj, Qku P pT pc1q for distinct 2 ď j ă k ď 4 with
pc1, cK , Qj , Qkq. The Bernstein basis of f |T P P2pT q leads to ordinates pcT pαq|α P A2q in

f |T “ 2
ÿ

αPA2

cT pαqλα{α! at x “ λ1c1 ` λ2cK ` λ3Qj ` λ4Qk P T P pT pc1q.

Since f |T is a quadratic function in each T P pT pc1q, it is in particular a quadratic function
on each face Fjk :“ convtcK , Qj, Qku for 2 ď j ă k ď 4 in T opposite to c1. The quadratic
function f |Fjk

P P2pFjkq vanishes at the vertices cK , Qj , Qk and at the midpoints Qjk, pcK `
Qjq{2, and pcK `Qkq{2 of the edges of the triangle Fjk. Hence

pf |T q
ˇ̌
Fjk

“ 2
ÿ

αPA2
α1“0

cT pαqλα{α! “ 0 at x “ λ2cK ` λ3Qj ` λ4Qk P Fjk

vanishes and cT p0;βq “ 0 for all β P N
3
0 with |β| “ 2 and T P pT pc1q. This leads to

f |T “ 2λ1
ÿ

βPA1

cT pe1 ` βq
p1 ` β1q

λβ

β!
at x “ λ1c1 ` λ2cK ` λ3Qj ` λ4Qk P T P pT pc1q. (A.17)

The continuity conditions in Lemma A.2 with ξ “ 1 in (A.13) motivate the piecewise affine
function

f 1|T : “
ÿ

βPA1

cT pe1 ` βqλ
β

β!
“

4ÿ

µ“1

cT pe1 ` eµqλµ at x P T P pT pc1q (A.18)

with ordinates
`
cT pe1 ` eµq : µ “ 1, . . . , 4

˘
of f |T for each T P pT pc1q. Since f P C1pT p1qq

and any two tetrahedra T`, T´ P pT pc1q share a face F “ BT` X BT´ “ convtc1, cK , Qju for
some 2 ď j ď 4 with common vertex c1, Lemma A.2 shows f 1 P C1pT` Y T´q. The repeated
application of Lemma A.2 leads to f 1 P C1pT p1qq. Since f 1 P P1ppT pc1qq is piecewise affine, the
already proven assertion of this lemma for k “ 1 implies that f 1 P C1pT p1qq X P1ppT pc1qq “
P1pT p1qq is one global affine function in R

3. Let ϕ1 P S1ppT pc1qq :“ P1ppT pc1qq X CpT p1qq
denote the first-order nodal basis function with ϕ1pc1q “ 1 and ϕ1pcKq “ 0 “ ϕ1pQjq for any

2 ď j ď 4. In other words ϕ1|T “ λ1 restricted to any T P pT pc1q is the first barycentric
coordinate λ1 in T . A comparison of f in (A.17) with f 1 in (A.18) reveals

f “ 2f 1ϕ1 ´ γϕ2
1 in C1pT p1qq,

where γ|T :“ cT p2e1q for any T P pT pc1q defines the piecewise constant function γ P P0ppT pc1qq.
The piecewise quadratic f in C1 and the piecewise affine ∇f “ 2pf 1 ´ γϕ1q∇ϕ1 ` 2ϕ1∇f

1

are continuous in T p1q. In particular ∇f is continuous at the boundary BT p1qzBK :“Ť
1ďjăkď4 Fjk Ă tϕ1 “ 0u for Fjk :“ convtcK , Qj , Qku without the face F1 P FpKq, where

ϕ1 “ 0 vanishes. Hence f 1∇ϕ1 is continuous there as well. Since ∇ϕ1 jumps at cK and
Qj P BT p1q, this implies f 1pQjq “ 0 “ f 1pcKq for any 2 ď j ď 4. Thus the affine function
f 1 P P1pT p1qq vanishes and f “ γϕ2

1 P C1pKq leads to γ “ 0 as well. This shows that

f P C1pT p1qq X P2ppT pc1qq with f |Fjk
“ 0 for all 1 ď j ă k ď 4 implies f ” 0. l

10
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Lemma A.4. Let pT “ WF3DpKq be a WF partition of K and k “ 0, 1, 2. Then f P PkppT q
satisfies f P C1pKq if and only if f P PkpKq is a global polynomial in K.

Proof. The proof is similar to that of Lemma A.3. The assertion is trivial for k “ 0 and
immediate for k “ 1. Suppose k “ 2 and f P C1pKq X P2ppT q. In particular f |T pmq P
C1pT pmqq X P2ppT pcmqq for any m “ 1, 2, 3, 4 and Lemma A.3 shows f |T pmq P P2pT pmqq.
Hence f P P2prT q holds for rT :“ tT p1q, . . . , T p4qu. The 5 vertices in the triangulation rT are
cK , Q1, Q2, Q3, Q4 and each subtetrahedra T pmq “ convtcK , Qj, Qk, Qℓu P rT for 1 ď j ă
k ă ℓ ď 4 and tj, k, ℓ,mu “ t1, 2, 3, 4u will be identified with pcK , Qj , Qk, Qℓq. The Bernstein
basis of f |T pmq P P2pT pmqq leads to ordinates pcmpαq|α P A2q in

f |T pmq “ 2
ÿ

αPA2

cmpαqλα{α! at x “ λ1cK ` λ2Qj ` λ3Qk ` λ4Qℓ P T pmq P rT

for m “ 1, . . . , 4. The subtraction of the global quadratic Lagrange interpolation on K

shows that, without loss of generality, f vanishes at the vertices Q1, . . . , Q4 and the edge
midpoints Qjk :“ pQj ` Qkq{2 for 1 ď j ă k ď 4. Since f is a quadratic function on
BK “ F1 Y ¨ ¨ ¨ Y F4 “ tλ1 “ 0u,

f |Fm “ 2
ÿ

αPA2
α1“0

cmpαqλα{α! “ 0 at x “ λ2Qj ` λ3Qk ` λ4Qℓ P Fm

vanishes. Hence cmp0;βq “ 0 for all β P N3
0 with |β| “ 2 and ℓ “ 1, . . . , 4. Consequently,

f |T pmq “ 2λ1
ÿ

βPA1

cmpe1 ` βq
p1 ` β1q

λβ

β!
at x “ λ1cK ` λ2Qj ` λ3Qk ` λ4Qℓ P T pmq P rT .

Since all T pmq P rT are face connected with common vertex cK , define f
1 for ξ “ 1 as in (A.13).

Repeated applications of Lemma A.2 show f 1 P C1pKq X P1ppT q and therefore f 1 P P1pKq by
the proven assertion of this lemma. The comparison of f and f 1 concludes the proof as that
of Lemma A.3. Since the arguments apply verbatim, further details are omitted. l

A.4. The WF finite element

Given a tetrahedron K and its WF partition pT “ WF3DpKq from Definition A.1, this section
characterizes

WFpKq :“ P3ppT q XC1pKq
as a 28-dimensional vector space such that the 28 degrees of freedom (dof) L1, . . . , L28 in
Table A.1 are linear independent and the triple

`
K,WFpKq, pL1, . . . , L28q

˘
forms a finite

element in the sense of Ciarlet. To describe the degrees of freedom from Table A.1 for the
tetrahedron K “ convtQ1, . . . , Q4u, determine, for each edge Ejk “ convtQj , Qku of K with
1 ď j ă k ď 4 and with midpoint Qjk “ pQj ` Qkq{2 a unit tangential vector τjk ‖ Qj ´Qk
and two additional unit vectors νjk,1, νjk,2 P R

3 such that spantτjk, νjk,1, νjk,2u “ R
3. Without

loss of generality, assume that pτjk, νjk,1, νjk,2q is an orthonormal basis of R3. The degrees of
freedom with the enumeration in Table A.1 are the evaluation of a function f P C1pKq and its
gradient ∇f at the vertices Q1, . . . , Q4 of K and the evaluation of the gradient ∇fpQjkq ¨ s in
the direction s “ νjk,1 and s “ νjk,2 at each edge midpoint Qjk. Throughout this section, the

11
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Lµpfq “ fpQµq for µ “ 1, . . . , 4
L4ℓ`µpfq “ ∇fpQµq ¨ eℓ for µ “ 1, . . . , 4, ℓ “ 1, 2, 3
L20´24´j`2k`mpfq “ ∇fpQjkq ¨ νjk,m for j “ 1, 2, 3, k “ j ` 1, . . . , 4, m “ 1, 2

Table A.1.: The 28 degrees of freedom L1, . . . , L28 of WFpKq for any f P C1pKq.

four vertices Q1, . . . , Q4 P V of the tetrahedron K are opposite to the faces F1, . . . , F4 P F .
The Algorithm 1 below with input x1, . . . , x28 P R for the 28 degrees of freedom computes
f P P3ppT q in terms of ordinates pcT pαq|α P A3, T P pT q in

f |T “ 6
ÿ

αPA3

cT pαqλ
α

α!
at x “

4ÿ

µ“1

λµPσpT,µq P T P pT (A.19)

with the global enumeration P1, . . . , P9 of all the vertices in pT with P1 “ cK . For each T P pT
let PσpT,1q “ P1 “ cK , PσpT,2q “ cm for the unique m P t1, 2, 3, 4u with BT X BK Ă Fm, and
the remaining vertices PσpT,3q, PσpT,4q P tQ1, . . . , Q4uztQmu. The algorithm is contained in
[WF87].

Algorithm 1 Worsey-Farin-CT3D

Input: x1, . . . , x28 P R, a tetrahedron K “ convtQ1, Q2, Q3, Q4u with WF partition pT “
WF3DpKq and a local enumeration so that T ” pPσpT,1q, . . . , PσpT,4qq with PσpT,1q “ cK ,

PσpT,2q “ cm, and PσpT,3q, PσpT,4q P tQ1, . . . , Q4uztQmu for each T P pT pcmq withm P t1, . . . , 4u

(a) A preprocessing computes fpQjkq and ∇fpQjkq with Qjk :“ pQj `Qkq{2 for any j, k “
1, . . . , 4, note Qjj ” Qj , from the data x1, . . . , x28 representing L1pfq, . . . , L28pfq (cf.
Remark A.2 below for further details).

(b) For all ℓ “ 1, . . . , 4 and 1 ď j ă k ď 4,

gpQℓq :“ fpQℓq ´ 1

3
pQℓ ´ cKq ¨ ∇fpQℓq,

gpQjkq :“ 1

3
pcK ´Qjkq ¨ ∇fpQjkq ` fpQjkq.

Let g P P2pKq denote the quadratic Lagrange interpolation of this data at the vertices
pQ1, . . . , Q4q and edge midpoints pQjk : 1 ď j ă k ď 4q of K and compute the ordinates

pcT pαq|α P A3, α1 ě 1, T P pT q of

g|T “ 2
ÿ

βPA2

cT pe1 ` βqλ
β

β!
at x “

4ÿ

µ“1

λµPσpT,µq P T P pT .

(c) For all m “ 1, . . . , 4 let fm P HCT pFmq :“ P3p pFpFmqq X C1pFmq denote the 2D HCT

finite element interpolation of the input data (resp. data from (a)) on the face Fm of
K with unit normal νFm . The degrees for freedom of HCT pFmq are the evaluation of

12
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f and the tangential derivatives ∇f ˆ νFm at the vertices of the triangle Fm as well as
for each edge E P EpFmq with unit tangent vector τE of Fm the directional derivative
in xFmy perpendicular to the edge E (∇f ¨ pτE ˆ νFmq) evaluated in the edge midpoint.
Compute coefficients pcT pαq|α P A3, α1 “ 0, T P pT q such that

fm|FmXBT “ 6
ÿ

αPA3
α1“0

cT pαqλ
α

α!
at x “

4ÿ

µ“2

λµPσpT,µq P Fm X BT for T P pT .

Output: pcT pαq|α P A3, T P pT q and f P P3ppT q with f |T “ 6
ř
αPA3

cT pαqλα{α! at x “ř4
µ“1 λµPσpT,µq P T P pT .

Remark A.2 (preprocessing in Algorithm 1.a). Algorithm 1 aims at the computation of some
global C1 function f with prescribed values Lµpfq “ xµ for µ “ 1, . . . , 28. The step (a)
provides fpQjkq and ∇fpQjkq for any Qjk as follows.
Step a.1 for j “ k. Then Qjj “ Qj is a vertex and xj directly represents fpQjq “ xj and

x4ℓ`j represents
Bf
Bxℓ

pQjq “ x4ℓ`j for ℓ “ 1, 2, 3.
Step a.2 for j ă k. Then Qjk is the midpoint of the edge E “ convtQj, Qku from Qj
to Qk with unit tangent vector τjk in the tetrahedron K. We consider f |E P P3pEq as a
one-dimensional cubic polynomial that satisfies the following interpolation conditions. The
function values fpQℓq “ xℓ and the one-dimensional derivative f 1pQℓq “ ∇fpQℓq ¨ τjk at
the vertices Qj and Qk (for ℓ “ j, k) are prescribed in Step a.1. The four one-dimensional
Hermite interpolation conditions determine a unique cubic polynomial f |E P P3pEq along the
edge E. This polynomial provides the values fpQjkq and f 1pQjkq “ ∇fpQjkq ¨ τjk. The final
components of ∇fpQjkq are prescribed by x20´24´j`2k`m “ ∇fpQjkq ¨ νjk,m for m “ 1, 2 and
the fixed vectors νjk,m with spantτjk, νjk,1, νjk,2u “ R

3.

Remark A.3 (feasability of Algorithm 1). The data in Algorithm 1.b define a unique g P
P2pKq, which has a unique representation in the Bernstein basis of each T P pT . Since
the 2D HCT finite element is a finite element in the sense of Ciarlet [Cia78, Thm. 6.1.2],
Fm X BT “: F P pFpFmq and fm|F P P3pF q allow for unique ordinates in Algorithm 1.c (cf.
[Mey12] for details on the implementation of a reduced HCT element in 2D).

Remark A.4 (parameter dependence of Algorithm 1). Suppose the input x1, . . . , x28 P R of
Algorithm 1 is fixed, while the center points cK P intpKq and cm P relintpFmq for m “ 1, 2, 3, 4
may vary, i.e., the WF partition pT “ WF3DpKq differs. The point is that the output
f P P3ppT q X C1pΩq depends continuously on these five parameters cK , c1, . . . , c4 P R

3. The
preprocessing in Algorithm 1.a depends only on the edges of K (see Remark A.2) and is
independent of the subtriangulation pT . The values of g P P2pKq in the vertices and edge
midpoints in Algorithm 1.b depend directly on the choice of cK . This dependence in g is
affine, whence continuous. The 2D HCT function fm on the face Fm of K for m “ 1, . . . , 4
in Algorithm 1.c depends on the choice of the face center cm. The coefficients of the function
fm P P3ppT q for a given cm are obtained through the solution of a linear system with an
invertible matrix [Cia78, p.345, l.26ff]; this is already exploited in [Cia78, p.346, l.1ff]. Hence
the dependence of the ordinates

`
cT pαq : α P A3, T P pT

˘
on the points cK , c1, . . . , c4 that

define the subtriangulation pT is continuous. l
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The WF finite element is a finite element in the sense of Ciarlet as announced in [NW19],
Since [WF87, NW19] do not contain the proofs, this is carried out here for convenient reading.

Theorem A.1 (WF finite element). (a) For any input x1, . . . , x28 P R, the output f P
C1pKq X P3ppT q of Algorithm 1 is continuously differentiable and

Lµf “ xµ for µ “ 1, . . . , 28. (A.20)

(b) There exist at most one function f P C1pKq X P3ppT q with (A.20).

(c) The triple pK,C1pKq XP3ppT q, pL1, . . . , L28qq is a finite element in the sense of Ciarlet.

Proof of (a). This proof is divided in two steps.

Step 1 (Lµf “ xµ for µ “ 1, . . . , 28). The output f P P3ppT q is a piecewise cubic polynomial.
To prove (A.20) fix one T P T , abbreviate fT :“ f |T , and check LµfT “ xµ for any degree of
freedom Lµ, which can be evaluated for fT .

Suppose T :“ convtcK , cm, Qj , Qku P pT for 1 ď j ă k ď 4 and m P t1, . . . , 4uztj, ku and

identify T with pcK , cm, Qj , Qkq. The output f on T P pT reads

fT :“ f |T “ 6
ÿ

αPA3

cT pαqλα{α! at x “ λ1cK ` λ2cm ` λ3Qj ` λ4Qk P T.

We can evaluate 10 degrees of freedom from Table A.1 in T :“ convtcK , cm, Qj , Qku, namely
Lµ, L4`µ, L8`µ, L12`µ for µ “ j and µ “ k, as well as L20´24´j`2k`1 and L20´24´j`2k`2.

Proof of (A.20) for µ “ j, k. Since the 2D HCT finite element in Algorithm 1.c interpolates
the nodal values exactly, Example A.3.a shows

LjpfT q “ fT pQjq “ cT p3e3q “ fm|T pQjq “ xj.

The proof of LkpfT q “ xk follows by symmetry of j and k. Since LjpfT q “ xj for any T P pT ,

the output function f P P3ppT q is single valued and continuous at every vertex Qj P V of K
for j “ 1, . . . , 4 with fpQjq “ xj. l

Proof of continuity at Qjk. Remark A.2 explains that the data x1, . . . , x28 allow the compu-
tation of a value xjk in the edge midpoint in Algorithm 1.a. Algorithm 1.c interpolates xjk
such that fm|FmpQjkq “ xjk. For any T P pT pT pmqq identified with pcK , cm, Qj , Qkq as above,
Example A.3.b shows

fT pQjkq “ 1

8

`
fT pQkq ` 3cT p0, 0, 2, 1q ` 3cT p0, 0, 1, 2q ` fT pQjq

˘

“ 1

8

`
xk ` 3cT p0, 0, 2, 1q ` 3cT p0, 0, 1, 2q ` xj

˘
“ fm|FmpQjkq “ xjk. (A.21)

The result fT pQjkq “ xjk is independent of m P t1, 2, 3, 4uztj, ku and T P pT pT pmqq. Hence

the output function f P P3ppT q is single valued and continuous at every edge midpoint Qjk “
pQj `Qkq{2 of K for 1 ď j ă k ď 4 with fpQjkq “ xjk. l

14
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Proof of (A.20) for µ “ 4 ` j, 8 ` j, 12 ` j, 4 ` k, 8 ` k, 12 ` k. Abbreviate Xj :“
px4`j , x8`j , x12`jqJ, recall T P pT pT pmqq is identified with pcK , cm, Qj , Qkq. Observe that
the gradient ∇fT pQjq P R

3 is uniquely determined by its scalar product with Qj ´ Qk,
Qj ´ cm, and Qj ´ cK . The 2D HCT interpolation in Algorithm 1.c interpolates the tangen-
tial derivatives correctly. In other words ∇fm|FmpQjq ˆ νFm “ Xj ˆ νFm for the unit normal
νFm of Fm. The first two directions Qj ´Qk and Qj ´ cm are parallel to the plane xFmy and
Example A.3.c shows

pQj ´Qkq ¨ ∇fT pQjq “ 3
`
fT pQjq ´ cT p2e3 ` e4q

˘
“ 3

`
xj ´ cT p2e3 ` e4q

˘

“ pQj ´Qkq ¨ ∇fm|FmpQjq “ pQj ´Qkq ¨ Xj ,

pQj ´ cmq ¨ ∇fT pQjq “ 3
`
fT pQjq ´ cT p2e3 ` e2q

˘
“ 3

`
xj ´ cT p2e3 ` e2q

˘

“ pQj ´ cmq ¨ ∇fm|FmpQjq “ pQj ´ cmq ¨ Xj.

The third direction Qj ´cK is not parallel to the plane xFmy. Example A.3.c and A.2.a imply

pQj ´ cKq ¨ ∇fT pQjq “ 3
`
fT pQjq ´ cT p2e3 ` e1q

˘
“ 3

`
xj ´ gpQjq

˘
.

The choice of the nodal value gpQjq ” xj ´ 1
3

pQj ´ cKq ¨Xj in Algorithm 1.b implies

pQj ´ cKq ¨ ∇fT pQjq “ pQj ´ cKq ¨Xj .

This concludes the proof of ∇fT pQjq “ Xj “ px4`j , x8`j , x12`jqJ. The proof of ∇fT pQkq “
px4`k, x8`k, x12`kqJ follows by symmetry of j and k. Hence the gradient of the output
function f P P3ppT q is single valued and continuous at every vertex Qj P V ofK for j “ 1, . . . , 4
with ∇fpQjq “ Xj . l

Proof of (A.20) for µ “ 20´24´j`2k`1, 20´24´j`2k`2. The remaining degrees of freedom
L20´24´j`2k`1 and L20´24´j`2k`2 concern the gradient ∇fT pQjkq in the edge midpoint Qjk.
Remark A.2 explains how x1, . . . , x28 determine a unique value Xjk in Algorithm 1.a that
represents ∇fpQjkq in Algorithm 1.b–c. Recall fpQjkq “ xjk from (A.21) above. We want to

verify that ∇fT pQjkq “ Xjk for T P pT pT pmqq identified with pcK , cm, Qj , Qkq. The gradient
∇fT pQjkq of the output of Algorithm 1 is uniquely determined by its scalar product with
cm ´Qjk, Qj ´Qjk, and cK ´Qjk. In the directions cm ´Qjk and Qj ´Qjk, parallel to the
plane xFmy, the gradient is determined by fm in Algorithm 1.c. Example A.3.d–e lead to

pcm ´Qjkq ¨ ∇fT pQjkq “ 3

4

`
cT p0, 1, 2, 0q ` 2cT p0, 1, 1, 1q ` cT p0, 1, 0, 2q

˘
´ 3xjk

“ pcm ´Qjkq ¨ ∇fm|FmpQjkq “ pcm ´Qjkq ¨Xjk.

pQj ´Qjkq ¨ ∇fpQjkq|T “ 3

8

`
xj ` cT p2eγ ` eκq ´ cT p2eκ ` eγq ´ xkq

“ pQj ´Qjkq ¨ ∇fm|FmpQjkq “ pQj ´Qjkq ¨Xjk.

For the remaining direction cK ´Qjk, Example A.3.d and A.2.b show

pcK ´Qjkq ¨ ∇fT pQjkq “ 3

4

`
cT pe1 ` 2e3q ` 2cT pe1 ` e3 ` e4q ` cT pe1 ` 2e4q

˘
´ 3fT pQjkq

“ 3gpQjkq ´ 3xjk.
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Since the quadratic polynomial g P P2pKq in Algorithm 1.b assumes the value gpQjkq ”
1
3
pcK ´ Qjkq ¨ Xjk ` xjk at Qjk, it follows pcK ´ Qjkq ¨ ∇fT pQjkq “ pcK ´ Qjkq ¨ Xjk. The

last three displayed identities ensure ∇fT pQjkq “ Xjk for any T P pT pQjkq. Hence the

gradient of the output function f P P3ppT q is indeed single valued and continuous at every
edge midpoint Qjk “ pQj ` Qkq{2 of K for 1 ď j ă k ď 4 with ∇fpQjkq “ Xjk. In
particular, L20´24´j`2k`1pfT q “ ∇fT pQjkq ¨ νjk,1 “ x20´24´j`2k`1 and L20´24´j`2k`2pfT q “
∇fT pQjkq ¨ νjk,2 “ x20´24´j`2k`2. This concludes the proof of (A.20). l

Step 2 (f P C1pKq). It suffices to show f |T1YT2 P C1pT1 Y T2q for any two tetrahedra
T1, T2 P pT with common face F :“ BT1 X BT2. There are two types of common faces in pT .

Case 1. Assume T1, T2 P pT pcmq for m “ 1, . . . , 4. In other words, let F “ convtcK , cm, Qju
and identify T1 with pcK , cm, Qj , Qkq and T2 with pcK , cm, Qj , Qℓq for tj, k, ℓ,mu “ t1, 2, 3, 4u.
The definition of g P P2pKq Ă C1pKq in Algorithm 1.b ensures g|T1YT2 “ f 1|T1YT2 for ξ “ 1
in (A.13). Hence by Lemma A.2, f |T1YT2 P C1pT1 Y T2q is equivalent to the continuity of f
and νF ¨ ∇f along E :“ convtcm, Qju. It remains to verify (i) continuity of f along E and
(ii) continuity of νF ¨ ∇f along E.
Proof of (i). Abbreviate cµpαq :“ cTµpαq for µ “ 1, 2. For α P A3 with α1 “ 0 “ α4, the
continuity of fm from Algorithm 1.c shows c1pαq “ c2pαq. For α1 “ 0 “ α4, the continuity of g
from Algorithm 1.b shows c1pαq “ c2pαq. In particular, (A.10) implies that f |E is continuous
at E. l

Proof of (ii). Note, since the ordinates c1pe2 ` αq “ c1pe2 ` αq are equal for all α P A2 with
α4 “ 0, Lemma A.1 proves the continuity of the piecewise quadratic function g2 P P2ptT1, T2uq
defined by

g2|T :“ 2
ÿ

βPA2

cT pe2 ` βqλβ{β! in T P tT1, T2u; (A.22)

g2 P CpT1 Y T2q. In order to prove the continuity of νF ¨ ∇f along E, recall that f |Fm “
fm P C1pFmq on the face Fm :“ convtQℓ, Qj , Qku Ą E of K from Algorithm 1.c. Hence the
tangential derivative νFm ˆ∇f is continuous along Fm and in particular along E. It remains
to prove the continuity for one fixed direction τ :“ cm ´ cK P R

3zt0u oblique to xFmy. In
T P tT1, T2u, Remark A.1 shows

τ ¨ ∇f |T “ 6
ÿ

βPA2

4ÿ

κ“1

cT pβ ` eκqλ
β

β!
pτ ¨ ∇λκq.

Since τ ¨ ∇λκ “ λκpcmq ´ λκpcKq “ δ2κ ´ δ1κ, this is

τ ¨ ∇f |T “ 6
ÿ

βPA2

`
cT pβ ` e2q ´ cT pβ ` e1q

˘λβ
β!

“ 3g2|T ´ 3g|T

with g2 from (A.22) and g from Algorithm 1.b . Since g2 and g are continuous in T1 Y T2,
∇f |Fm is continuous in particular along E. l

Case 2. Assume T1, T2 P pT share a face F “ convtcK , Qj , Qku and identify T1 with pcK ,
Qj, Qk, cmq and T2 with pcK , Qj , Qk, cℓq for tj, k, ℓ,mu “ t1, 2, 3, 4u. The definition of g P
P2pKq Ă C1pKq in Algorithm 1.b ensures g|T1YT2 “ f 1|T1YT2 for ξ “ 1 in (A.13). Hence by
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Lemma A.2, f |T1YT2 P C1pT1 Y T2q is equivalent to the continuity of f and νF ¨ ∇f along
E :“ convtQj , Qku. It remains to verify (i) continuity of f along E and (ii) continuity of
νF ¨ ∇f along E.
Proof of (i). Since f |E is uniquely determined in Algorithm 1.a, the equality of fmpxq “ fℓpxq
at x “ λ2Qj ` λ3Qk P E proves c1pαq “ c2pαq for α P A3 with α1 “ 0 “ α4. The equality of
the ordinates shows the continuity of f along E. l

Proof of (ii). Since (each component of) ∇f |T1 and ∇f |T2 is a quadratic polynomial along E,
which coincides at the three points Qj, Qjk, Qk, it follows ∇f |T1 “ ∇f |T2 on E. In particular
νF ¨ ∇f is continuous along along E. l

Proof of (b). Suppose two functions f1, f2 P P3ppT q X C1pKq satisfy Lµpfjq “ xµ for µ “
1, . . . , 28 and j “ 1, 2. Their difference f :“ f2 ´ f1 satisfies Lµpfq “ 0 for all µ “ 1, . . . , 28.

Identify T :“ convtcK , cm, Qj , Qku P pT with pcK , cm, Qj , Qkq for 1 ď j ă k ď 4 and m P
t1, 2, 3, 4uztj, ku. Let pcT pαq|α P A3, T P pT q denote the coefficients of f P C1pKq in

f |T “ 6
ÿ

αPA3

cT pαqλα{α! at x “ λ1cK ` λ2cm ` λ3Qj ` λ4Qk P T.

Since L1pfq “ ¨ ¨ ¨ “ L28pfq “ 0, Remark A.3 implies fpQℓq “ fpQjkq “ 0 and ∇fpQℓq “
∇fpQjkq “ 0 for all ℓ “ 1, . . . , 4 and 1 ď j ă k ď 4. The restriction f |F of f to a face F of
K is a 2D HCT finite element function with vanishing associated degrees of freedom. Hence
f |F ” 0. Consequently,

0 “ fT |BK “
ÿ

αPA3
α1“0

cT pαqλ
α

α!
at x “ λ2cm ` λ3Qj ` λ4Qk P T X BK

vanishes. This implies cT pαq “ 0 for all α P A3 with α1 “ 0. For α1 ě 0, cT pαq is related to
f 1 P P2ppT q with

f 1|T :“ 2
ÿ

βPA2

cT pe1 ` βqλβ{β! at x “ λ1cK ` λ2cm ` λ3Qj ` λ4Qk P T. (A.23)

Lemma A.2 applies to any two T`, T´ P pT that share a face T` X T´ “ F P pF . Hence (A.23)
defines f 1 P C1pKq X P2ppT q and Lemma A.4 shows f 1 P P2pKq. For any T P T with vertex
Qℓ P VpT q and pλ1, . . . , λ4q “ eκ for κ P t3, 4u, (A.7) in Example A.3 reads

0 “ ∇fpQℓq “ 3
4ÿ

µ“1

cT p2eκ ` eµq∇λµ “ 3cT p2eκ ` e1q∇λ1

with cT pαq “ 0 for α1 “ 0 in the last equality. It follows with Example A.2.a that 0 “
cT pe1 ` 2eκq “ f 1pQℓq for any 1 ď ℓ ď 4. Since for any T P pT with vertices Qj and
Qk the edge midpoint Qjk has barycentric coordinates pλ1, . . . , λ4q “ e3{2 ` e4{2, (A.8) in
Example A.3 implies

0 “ ∇fpQjkq “ 3

4

4ÿ

µ“1

`
cT p2e3 ` eµq ` 2cT pe3 ` e4 ` eµq ` cT p2e4 ` eµq

˘
∇λµ

17



Supplement2DirectGLB4BiLaplace

“ 3

4

`
cT p2e3 ` e1q ` 2cT pe3 ` e4 ` e1q ` cT p2e4 ` e1q

˘
∇λ1

with cT pαq “ 0 for α1 “ 0 in the last equality. From Example A.2.b follows

0 “ cT p2e3 ` e1q ` 2cT pe3 ` e4 ` e1q ` cT p2e4 ` e1q “ 4f 1pQjkq|T

for any T P pT with vertices Qj and Qk for 1 ď j ă k ď 4. This shows that f 1 P P2pKq
vanishes at all Lagrange points for a quadratic polynomial in K, whence f 1 ” 0. It follows
cT pαq “ 0 for all T P pT and α P A3; in other words f ” 0. l

Proof of (c). This follows directly from (a), which proves that Algorithm 1 allows the con-
struction of f P P3ppT q X C1pKq for all input data x1, . . . , x28, and (b), which proves the
uniqueness of the function with the values x1, . . . , x28 in the degrees of freedom L1, . . . , L28

in Table A.1. l

A.5. The WF on adjacent tetrahedra

This section is devoted to the compatibility of WF for two tetrahedra with a common face.
The point of departure is a first Lemma on one tetrahedron. Let pT denote the WF partition of
a simplex K with vertices Q1, . . . , Q4 and opposite faces F1, . . . , F4. Recall, cm P relintpFmq
and cK P relintpKq from the WF partition in Definition A.1, T pmq “ convpcK , Fmq, and
abbreviate τ :“ cm ´ cK P R

3zt0u as well as pT pcmq :“ pT pT pmqq for one fixed m P t1, . . . , 4u.

Lemma A.5. Let f P P3ppT pcmqq and g :“ Bf{Bτ P P2ppT pcmqq. Then f P C1pT pmqq if and
only if f |Fm P C1pFmq and g P P2pT pmqq.

Proof. Without loss of generality let m “ 4, τ :“ c4 ´ cK , and T p4q “ convpcK , F4q.

”
ñ“ The continuity of f P C1pT p4qq and its derivatives imply f |F4

P C1pF4q. Lemma A.3
leads to P2ppT pc4qqXC1pT p4qq “ P2pT p4qq. Since g P P2ppT pc4qqXC0pT p4qq, it suffices to show
g P C1pT p4qq. Fix the common side F “ convtcK , c4, Qju “ BT1 X BT2 of two neighbouring

tetrahedra T1, T2 P pT pc4q identified with T1 “ pcK , c4, Qj , Qkq and T2 “ pcK , c4, Qj, Qℓq for
tj, k, ℓu “ t1, 2, 3u. Since f |Tj “ 6

ř
αPA3

cjpαqλα{α! for j “ 1, 2 defines f P C1pT pmqq in

Tj , Lemma A.2 shows that f 1
ξ|Tj :“ 2

ř
βPAk´1

cjpeξ ` βqλβ{β! for j “ 1, 2 in (A.13) forms

f 1
ξ P C1pT1YT2q for any ξ P t1, 2, 3u. Notice that (A.4) implies τ ¨∇f |Tj “ 6

ř
βPA2

ř4
µ“1 cjpβ`

eµqpτ ¨ ∇λµqλβ{β! with τ ¨ ∇λµ “ λµpc4q ´ λµpcKq “ δ2µ ´ δ1µ. Hence a.e. in Tj it holds

g|Tj “ τ ¨ ∇f |Tj “ 6
ÿ

βPA2

`
cjpβ ` e2q ´ cjpβ ` e1q

˘
λβ{β! “ 3f 1

2|Tj ´ 3f 1
1|Tj for j “ 1, 2.

This and f 1
1, f

1
2 P C1pT1 Y T2q show g P C1pT1 Y T2q. Since pT pc4q is side-connected, it follows

successively g P C1pT p4qq X P2ppT pc4qq. Lemma A.3 implies g P P2pT p4qq. l

”
ð“ Suppose g P P2pT p4qq and f |F4

P C1pF4q. A one-dimensional integration shows for all
x P Fm and t P R with x` tτ P T p4q that

fpx` tτq “ fpxq `
ż t

0

gpx ` sτqds. (A.24)
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(Notice that 0 ă s ă t and x P F4 with x ` tτ P T for some tetrahedron T P pT imply hat
x ` sτ belongs to the same tetrahedron by definition of τ .) The assumptions g P P2pT p4qq
and f |F4

P C1pF4q show in combination with (A.24) that f P CpT p4qq and that σ ¨ ∇f is
continuous for all σ P spantτ,Q2 ´ Q1, Q3 ´ Q1u P R

3 (in any direction parallel to the plane
xF4y and in the oblique direction τ R spantQ2 ´ Q1, Q3 ´ Q1u ‖ xF4y). This implies ∇f in
C0pT p4q;R3q and concludes the proof. l

The main result of this section requires some notation on two tetrahedra with a common
side. Suppose that K`,K´ P T are two neighbouring tetrahedra in a regular triangulation
T that share a common face F “ BK` X BK´. Suppose that the center points cF , cK` , and

cK´ in the WF partition pT pK˘q of Definition A.1 belong to one straight line. In other words
cK` ´ cF ‖ cK´ ´ cF . Suppose the degrees of freedom for some piecewise WF (finite element)

function f P WFptK`,K´uq with f˘ :“ f |K˘ P WFpK˘q :“ C1pK˘q X P3ppT pK˘qq coincide
at F “ convtQ1, Q2, Q3u. The latter means that

f`pQℓq “ f´pQℓq, ∇f`pQℓq “ ∇f´pQℓq, and ∇f`pQjkq ˆ τjk “ ∇f´pQjkq ˆ τjk (A.25)

for all 1 ď ℓ ď 3, 1 ď j ă k ď 3. (Recall Qjk :“ pQj ` Qkq{2 is the midpoint of
the edge Ejk :“ convtQj , Qku with unit tangent vector τjk of fixed orientation, e.g., τjk “
pQk ´Qjq{|Ejk|, in the triangle F .)

Theorem A.2. Under the present notation of 18 coinciding degrees of freedom (A.25), f˘

form a C1 function f P C1pK` YK´q on the patch ωpF q :“ intpK` YK´q of F .

Proof. Recall that the 2D HCT function fm|Fm P HCT pFmq in Algorithm 1.c is computed
from twelve degrees of freedom at Fm. For f` and f´ these twelve degrees of freedom coincide
along Fm ” F owing to the assumption (A.25). Hence the interpolating 2D HCT function
fm˘ in Algorithm 1.c is the same for each of the two tetrahedraK˘, i.e., fm`|K` “ fm´|K´ “:

fm|F P HCT pF q. Algorithm 1.c guarantees that fm|F defines the WF function f˘|F “ f |Fm

at F . It follows f`|F “ f´|F “ fm|F and so f P C0pωpF qq. This and f˘ P C1pK˘q also imply
that the tangential derivatives νF ˆ ∇f`pxq “ νF ˆ ∇f´pxq coincide at any x P F (owing to
the Hadamard jump condition with unit normal vector νF of F ). To conclude the proof of
f P C1pωpF qq, it remains to verify τ ¨ ∇f`pxq “ τ ¨ ∇f´pxq for the direction

τ :“ cK` ´ cF

|cK` ´ cF | “ ´ cK´ ´ cF

|cK´ ´ cF | P R
3zt0u (A.26)

oblique to xF y. The equality in (A.26) results from the assumption cK` ´ cF ‖ cK´ ´ cF .
Since f˘ P C1pK˘q, Lemma A.5 implies that g` :“ τ ¨ ∇f` P P2pK`pmqq and g´ :“ τ ¨
∇f´ P P2pK´pmqq are quadratic polynomials on K˘pmq :“ convpF, c˘q, in particular g˘|F “
τ ¨ ∇f˘|F P P2pF q. The continuity of f˘ at F and the equality (A.25) of the 18 degrees of
freedom at F imply that the quadratic polynomials g` P P2pK`pmqq and g´ P P2pK´pmqq
coincide at Q1, Q2, Q3, Q12, Q13, and Q23 P F (see Remark A.2 for the edge midpoints).
The latter are the six Lagrange points of P2pF q in the triangle F and uniquely determine
g˘|F P P2pF q. Consequently, g`|F “ g´|F P P2pF q. This shows that τ ¨ ∇f is continuous at
F and concludes the proof. l
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m

Bpm,̺q

τE

m1

m2

αpEq
αpEq{2

νF1

xF1y

νF2

xF2y

¨

¨

¨

¨

dpEq

dpEq
̺

F

F 1

(a) (b)

Figure A.4.: Notation in the profile of the intersection xF1y X xF2y of two planes through the faces
F1, F2 P FpT q with common edge E indicated by τE as d perpendicular to the plane depicted in (a)
and of F 1 from (A.28) (in red) in (b).

A.6. The shape-regularity of the WF partition

Let T denote the set of uniformly shape-regular triangulation T of a bounded polyhedral
Lipschitz domain Ω Ă R

3 into tetrahedra: There exists a global constant Csr ą 0 with
|T |1{3 ď hT ď Csr|T |1{3 for any tetrahedra T P T P T with diameter hT and volume |T |.
Throughout this section, let V denote set of vertices, F the set of faces, and E the set of
edges in the triangulation T P T. For any E P E fix one unit tangent vector τE ‖ E and
νE,1, νE,2 P R

3 such that pτE , νE,1, νE,2q form an orthonormal basis of R3.

Definition A.2 (global WF partition). For any T P T , let cT denote the midpoint of
the incircle; for any interior face F :“ BT` X BT´ P FpΩq, let cF be the intersection of F
with the straight line through cT` and cT´ of the neighbouring tetrahedra T˘ P T ; for any

boundary face F P FpBΩq, let cF :“ midpF q denote the center of gravity. Let pT denote the
subtriangulation of T , where any tetrahedron T P T is partitioned in pT pT q “ WF3DpT q
according to Definition A.1.

The center points cT and cF from Definition A.2 satisfy the conditions (a)–(b) in Section A.3
according to the following Theorem A.3. In particular, the global WF partition in Defini-
tion A.2 is well-defined.

Theorem A.3 (shape regularity of pT ). There exists a constant ε ą 0 (that exclusively
depends on T), such that the points selected in Definition A.2 satisfy distpcT , BT q ě εhT for
all T P T P T and distpcF , BF q ě εhF for all F P F . In particular, the global WF partition pT
in Definition A.2 is uniformly shape-regular with a shape-regularity constant that is bounded
in terms of Csr in the definition of T.
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Proof. Step 1 – Preparation. First consider one tetrahedron T P T with largest ball
Bpm,̺q Ă T contained in T with midpoint m and radius ̺ and a common edge E “
BF1 X BF2 P EpT q of two of its faces F1, F2 P FpT q, F1 “ F2.

Fig. A.4.a illustrates the following notation. Let αpEq denote the dihedral angle of the
distinct planes xF1y and xF2y through the faces F1, F2 P FpT q with common edge E. The two
intersecting planes touch the ball Bpm,̺q at the two points mj “ xFjy X BBpm,̺q P intpFjq
for j “ 1, 2. The plane xm,m1,m2y through the points m, m1, and m2 is perpendicular to
the unit tangent vector τE of the edge E. The distance dpEq of mj to the straight line xEy
through E coincides for j “ 1 and j “ 2, dpEq :“ distpm1, xEyq “ distpm2, xEyq, according
to elementary geometry in a deltoid. The shape regularity of a tetrahedron allows many
equivalent characterizations e.g. in terms of angles as discussed in [BKK08]. The lower and
upper bounds of αpEq from [BKK08, Eq.(4)] lead in ̺ “ dpEq tan

`
αpEq{2

˘
to the equivalence

dpEq « ̺ « hT « hF for all E P EpT q. (A.27)

(Recall that the equivalence constants in the notation « depend exclusively on Csr.) This
means that the point mF P BBpm,̺q X F for the interior side F belongs to the subtriangle

F 1 :“ tx P F |distpE, xq ě dpEq for all E P EpF qu Q mF (A.28)

depicted in Fig. A.4.b. This and (A.27) will be employed in the sequel.

Step 2 – Distance conditions. Suppose that F “ BT1 X BT2 is a common side of two distinct
neighbouring tetrahedra T1, T2 P T . Then each Tj has a maximal incircle Bpmj, ̺jq Ă Tj
with midpoint mj and radius ̺j and the touching point mF,j P F 1

j from (A.28). The shape
regularity [BKK08] means hT1 « ̺1 « hF « ̺2 « hT2 . Hence the choice mj “ cTj in
Definition A.2 guarantees εhTj ď distpcTj , BT q “ ̺j « hTj for j “ 1, 2 with a constant ε « 1.

Let djpEq replaces the distance dpEq for T replaced by Tj for j “ 1, 2 in (A.28) to define F 1
j .

Then F 1
1 Ď F 1

2 or F 1
2 Ď F 1

1 holds. Let

F 1 :“ F 1
1 Y F 1

2 “
 
x P F |distpE, xq ě mintd1pEq, d2pEqu for all E P EpF q

(

denote the bigger set. The face center cF in Definition A.2 lies in the convex hull of the
two touching points mF,1 “

`
BBpm1, ̺1q X F

˘
P F 1

1 Ď F 1 and mF,2 “
`
BBpm2, ̺2q X F

˘
P

F 1
2 Ď F 1. Since the triangle F 1 depicted in Fig. A.4.b is convex, cF P F 1. This and (A.27)

(with hF « |F |1{2 « ̺1 « ̺2 from shape regularity [BKK08]) prove that distpcF , BF q ě
minEPEpF q minj“1,2 djpEq « hF . This leads to ε « 1 and εhF ď distpcF , BF q.

Step 3 – Shape regularity of pT . Any tetrahedron pT “ convtcT , cF , Qj, Qku P pT is contained
in one T P T with center point cT of the maximal incircle BpcT , ̺q Ă T in T and face F P FpT q
such that cF P relintpF q is the point cF P F 1 from Definition A.2 and E “ convtQj , Qku P
EpF q is an edge of F . Then

h pT :“ diamppT q “ maxt|cT ´ cF |, |cT ´Qj|, |cT ´Qk|, |cF ´Qj|, |cF ´Qk|, |Qj ´Qk|u ď hT .

By construction and shape regularity of T with (A.27)–(A.28) it follows hT « ̺ ď mint|cT ´
cF |, |cT ´Qj|, |cT ´Qk|u, hT « dpEq ď mint|cF ´Qj|, |cF ´Qk|u, and hT « hE “ |Qj ´Qk|.
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In other words h pT « hT . The equivalence h pT « hT « ̺ « |F |1{2 and the observation
pT “ convpF, cT q imply

| pT | “ |F |̺
3

« h3T « h3pT .

This guarantees the shape regularity of pT [BKK08, Eq.(1)] and the shape regularity constant
solely depends on T. l

A.7. The scaling of the WF basis functions

Throughout this section, pT is the WF partition of a triangulation T P T as in Definition A.2
with set of vertices V, set of faces F , and set of edges E . For any edge E P E fix the orientation
of a unit tangent vector τE along E as well as νE,1, νE,2 P R

3 such that pτE, νE,1, νE,2q form
an orthonormal basis of R3. Set

WFpT q :“ P3ppT q XH2
0 pΩq. (A.29)

Definition A.3 (global degrees of freedom). The global M “ 4|VpΩq| ` 2|EpΩq| degrees
of freedom are

`
Lz,µ| z P VpΩq, µ “ 1, . . . , 4

˘
and

`
LE,µ|E P EpΩq, µ “ 1, 2

˘
defined, for all

f P C1pΩq, by

Lz,1f :“ fpzq, Lz,κ`1 :“
Bf
Bxκ

pzq for κ “ 1, 2, 3;

LE,µf :“ Bf
BνE,µ

pmidpEqq for µ “ 1, 2.
(A.30)

These M degrees of freedom are also enumerated as L1, . . . , LM . Note, that each degree of
freedom Lℓ for ℓ “ 1, . . . ,M is a directional derivative of order µℓ “ 0 or µℓ “ 1 at an interior
node zℓ P N pΩq :“ VpΩq Y tmidpEq : E P EpΩqu.

For each node zℓ P N pΩq let T pzℓq :“ tT P T | zℓ P BT u denote the set of adjacent simplices
and let ωℓ :“ intpŤ T pzℓqq denote the nodal patch with volume h3ℓ :“ |ωℓ|.
Theorem A.4 below extends the analysis for a quasi-affine family of finite elements in [Cia78,
§6.1] to 3D and implies the correct scaling of the dual basis functions for WFpT q. The point
is that Theorem A.3 lead to uniform bounds in (b). Recall that a . b abbreviates a ď Cb

with a generic constant C that only depends the shape-regularity constant Csr of T P T. (The
constants below depend on ε ą 0 from Theorem A.3 which depends solely on T.)

Theorem A.4 (scaling of WF basis functions). (a) There exists a unique nodal basis
pϕ1, . . . , ϕM q of WFpT q which satisfies Lkpϕℓq “ δkℓ for k, ℓ “ 1, . . . ,M .

Notation. If Lℓ “ Lz,µ for z P V, µ “ 1, . . . , 4, relabel ϕz,µ :“ ϕℓ. If Lℓ “ LE,µ for E P E , µ “
1, 2, relabel ϕE,µ :“ ϕℓ.

(b) Suppose the degree of freedom Lℓ for ℓ “ 1, . . . ,M is a directional derivative of order
µℓ P t0, 1u at the node zℓ P N pΩq with nodal patch ωℓ of volume h3ℓ :“ |ωℓ|. Then

}ϕℓ}HspΩq . h
3{2`µℓ´s
ℓ for all s “ 0, 1, 2.
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Proof of (a). Consider one global degree of freedom Lℓ with ℓ “ 1, . . . ,M from Definition A.3
associated with the node zℓ P N pΩq. For any K P T pzℓq the duality translates in input
data px1, . . . , x28q P R

28 for Algorithm 1 as follows: Suppose Lℓ “ LE,µ for some edge
E “ convtQj , Qku P EpKq in K and µ P t1, 2u, i.e., zℓ “ midpEq. Recall pτE, νE,1, νE,2q is
an orthonormal basis of R3 and pτjk, νjk,1, νjk,2q for E “ Ejk denotes another basis of R3

in Subsection A.4. Since τjk ‖ τE , it holds νE,µ “ ř2
m“1 αmνjk,m for some α1, α2 P R. Let

x20´24´j`2k`m “ αm form “ 1, 2 (for the enumeration of Table A.1) . Algorithm 1 with input

data p0, . . . , 0, x20´24´j`2k`1, x20´24´j`2k`2, 0, . . . , 0q P R
28 (and pT pKq) computes a function

ϕℓ,K P WFpKq :“ P3ppT pKqq X C1pKq with

Lℓpϕℓ,Kq “ νE,µ ¨ ∇ϕℓ,KpmidpEqq “ α1νjk,1 ¨ ∇ϕℓ,KpQjkq ` α2νjk,2 ¨ ∇ϕℓ,KpQjkq
“ α1x20´24´j`2k`1 ` α2x20´24´j`2k`2 “ α2

1 ` α2
2 “ |νE,µ|2 “ 1

which vanishes Lkpϕℓ,kq “ 0 in all other degrees of freedom k “ 1, . . . ,M with k “ ℓ.
(For the second normal vector νE,κ “

ř
m“1,2 βmνjk,m for some β1, β2 P R, κ P t1, 2uztµu

holds 0 “ νE,κ ¨ νE,µ “ α1β1 ` α2β2 and whence LE,κpϕℓ,Kq “ ř2
m“1 β1x20´24´j`2k`m “ 0.)

Similarly suppose Lℓ “ Lz,µ for some vertex z “ Qj P VpKq in K and µ P t1, . . . , 4u. Set

x4pµ´1q`j “ 1. Algorithm 1 with input data p0, . . . , 0, x4pµ´1q`j , 0, . . . , 0q P R
28 (and pT pKq)

computes a function ϕℓ,K P WFpKq :“ P3ppT pKqq X C1pKq with

Lℓpϕℓ,Kq “ ϕℓ,KpQjq “ xj “ 1 for µ “ 1,

Lℓpϕℓ,Kq “ eµ´1 ¨ ϕℓ,KpQjq “ x4pµ´1q`j “ 1 for µ “ 2, 3, 4,

which vanishes Lkpϕℓ,kq “ 0 in all other degrees of freedom k “ 1, . . . ,M with k “ ℓ. Let

ϕℓ P P3ppT q denote the global function locally defined as ϕℓ|K :“ ϕℓ,K for any K P T pzℓq
(and ϕℓ|K “ 0 otherwise). In summary the functions ϕ1, . . . , ϕM P P3ppT q satisfy the duality
property in (a). For any two tetrahedra K˘ with common side F “ BK` X BK´ P FpΩq the
respective center points cK` P intpK`q, cK´ P intpK´q, and cF P relintpF q in Definition A.2 lie
on a straight line and the values in the degrees of freedom in (A.25) along F coincide. Hence
Theorem A.2 guarantees C1 conformity of ϕℓ|K`YK´ on the side patch ωpF q “ K` Y K´.
Successive application of this argument leads to ϕℓ P C1pΩq with support supppϕℓq “ ωℓ in the
nodal patch of zℓ P N pΩq. In particular this implies vanishing boundary conditions. Hence
ϕℓ P P3ppT qXH2

0 pΩq “ WFpT q is a WF function. For any f P WFpT q holds f |K P WFpKq and
along any interior face the values in the degrees of freedom (cf. (A.25)) coincide. Hence the
definition of ϕℓ|K “ ϕℓ,K for any K P T and Theorem A.1 imply f P spantϕℓ : ℓ “ 1, . . . ,Mu.
This concludes the proof of (a). l

The proof of Theorem A.4.b follows the methodology of [Cia78, Thm. 6.1.3] with an affine
equivalent alternative finite element. Consider a tetrahedron K “ convtQ1, Q2, Q3, Q4u with
vertices Q1, . . . , Q4 P VpKq and edges Ejk :“ convtQj , Qku P EpKq with midpoints Qjk :“
pQj `Qkq{2 for 1 ď j ă k ď 4.

Definition A.4 (alternative set of linear functionals). Define 28 “ 16`12 linear func-
tionals LpKq :“

`
Ljk| j, k “ 1, . . . , 4

˘
Y

`
Labc| ta, b, c, du “ t1, 2, 3, 4u, a ă b

˘
on K “

convtQ1, Q2, Q3, Q4u, for j, k “ 1, . . . , 4 and all pairwise distinct a, b, c P t1, 2, 3, 4u with
a ă b, by

Ljk :“
#
δQj

if j “ k

pQk ´Qjq ¨ δQj
∇ if j “ k

and Labc :“ pQc ´Qabq ¨ δQab
∇. (A.31)
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(Recall the point evaluation δP pfq “ fpP q and δP∇pfq “ ∇fpP q for any P P Ω and f P
C1pΩq.)

Lemma A.6 (local basis). There exits a constant Ca ą 0 (that exclusively depends on T),
such that for any tetrahedron K P T P T with WF partition pT pKq, there exists a basis`
ϕjk : j, k “ 1, . . . , 4

˘
Y
`
ϕabc : ta, b, c, du “ t1, 2, 3, 4u, a ă b

˘
of WFpKq that satisfies the

following. The 28 functions are dual to the linear functionals in LpKq from (A.31), in that

Ljkpϕℓmq “ δjℓδℓm, Labcpϕdef q “ δadδbeδcf , and Ljkpϕabcq “ 0 “ Labcpϕjkq (A.32)

for all j, k, ℓ,m “ 1, . . . , 4, all pairwise distinct a, b, c P t1, 2, 3, 4u with a ă b, and all pairwise
distinct d, e, f P t1, 2, 3, 4u with d ă e, and satisfy, for any s “ 0, 1, 2, that

4ÿ

j,k“1

}ϕjk}HspKq `
ÿ

ta,b,c,du“t1,2,3,4u
aăb

}ϕabc}HspKq ď Cah
3{2´s
K . (A.33)

Proof. Step 1 – linear independence. For each K :“ convtQ1, Q2, Q3, Q4u P T P T the
linear functionals in LpKq from Definition A.4 are linearly independent. The proof concerns
f P WFpKq :“ P3ppT pKqq X C1pKq with Ljkf “ 0 “ Labcf for all indices j, k and a, b, c.
Hence (A.31) implies that f vanishes at the vertices Q1, . . . , Q4 P VpKq of K. Since for fixed
j P t1, 2, 3, 4u the three vectors Qj ´Qk P R

3 for k P t1, 2, 3, 4uztju are linearly independent,
(A.31) implies that ∇f vanishes at the vertices Q1, . . . , Q4 P VpKq of K as well. Moreover
the tangential derivative τab ¨ ∇f vanishes along each edge Eab :“ convtQa, Qbu P EpKq of K
with unit tangent vector τab for 1 ď a ă b ď 4. Since spantτab, Qc ´ Qab, Qd ´ Qabu “ R

3

for all ta, b, c, du “ t1, 2, 3, 4u, (A.31) implies that ∇fpQabq vanishes in all midpoints Qab :“
pQa ` Qbq{2 of edges Eab P EpKq of K as well. We conclude that L1f “ ¨ ¨ ¨ “ L28f “ 0
for the WF degrees of freedom from Table A.1 and so f ” 0 by Theorem A.1. Hence
pK,WFpKq,LpKqq is a finite element in the sense of Ciarlet. Consequently, there exist nodal
basis functions ϕjk P WFpKq and ϕabc P WFpKq with the required duality properties (A.33).

Step 2 – nodal basis in the reference tetrahedron pT . Let Φ : pT Ñ K denote an affine
diffeomorphism from the reference tetrahedron pT :“ convt0, e1, e2, e3u onto K. The center
points in the WF partition pT in Definition A.2 are input parameter in Algorithm 1. For
each K P T the center points cK P intpKq and cm P relintpFmq for m “ 1, . . . , 4 of the faces
F1, . . . , F4 P FpKq of K are mapped to five points in pT . Namely the point pc0 :“ Φ´1pcKq and
pcm :“ Φ´1pcmq P pFm “ Φ´1pFmq form “ 1, . . . , 4. For each set of points S :“ ppc0,pc1, . . . ,pc4q P
R
15 suppressed in the notation, there exists a set of nodal basis functions pϕjk and pϕabc for

j, k “ 1, . . . , 4 and for all ta, b, c, du “ t1, 2, 3, 4u with a ă b associated with pL :“ LppT q
in (A.31). Theorem A.3 shows that the parameters S :“ ppc0,pc1, . . . ,pc4q P R

15 belong to a
compact set C of points in R

15 such that the distance to the respective relative boundaries
is positive. Note that for each fixed parameter S P C the algorithm Algorithm 1 (with
adapted preprocessing in step (a)) maps input data xjk and xabc onto a function f P WFpT q
with Ljkpfq “ xjk and Labcpfq “ xabc from pL :“

`
Ljk| j, k “ 1, . . . , 4

˘
Y
`
Labc| ta, b, c, du “

t1, 2, 3, 4u, a ă b
˘
. Remark A.4 points out that the evaluation of this interpolation operator

depends continuously on the parameters in the compact set C. Hence the norms of the nodal
basis functions pϕjk and pϕabc for any j, k “ 1, . . . , 4 and for all ta, b, c, du “ t1, 2, 3, 4u with
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a ă b for the resulting WF partition of the reference tetrahedron pT remain bounded by a
universal constant C1 ą 0 as in [Cia78, Eq. (6.1.30)] for 2D,

4ÿ

j,k“1

}pϕjk}
Hsp pT q

`
ÿ

ta,b,c,du“t1,2,3,4u
aăb

}pϕabc}Hsp pT q
ď C1. (A.34)

Note that the constant C1 depends exclusively on C and so on ε ą 0 from Theorem A.3.

Step 3 – affine equivalence. Recall the affine diffeomorphism Φ : pT Ñ K from the reference
tetrahedron pT :“ convt0, e1, e2, e3u onto K from Step 2. The point is that the alternative
finite element pK,WFpKq,LpKqq is affine equivalent to ppT ,WFpT q, pLq in that pL “ LpKq ˝Φ;
cf. [Cia78, BS08] for the concept of affine equivalence. In particular the local nodal basis
ϕjk P WFpKq and ϕabc P WFpKq associated with (A.31) and the local nodal basis functions

pϕjk P WFpT q and pϕabc P WFpT q on the reference tetrahedron pT satisfy

ϕjk “ pϕjk ˝ Φ´1 and ϕabc “ pϕabc ˝ Φ´1

for any j, k “ 1, . . . , 4 and all pairwise distinct a, b, c P t1, 2, 3, 4u with a ă b. Standard scaling
properties in [Cia78, Thm. 3.1.2–3.1.3] lead to a universal constant C2 (that depends only on
the reference tetrahedron pT ) such that for any s “ 0, 1, 2

}ϕabc}HspKq ď C2|K|1{2̺´s
K }pϕabc}Hsp pT q

and }ϕjk}HspKq ď C2|K|1{2̺´s
K }pϕjk}

Hsp pT q

with the radius ̺K of the biggest incircle in K. The shape regularity of K P T P T guarantees
̺K « hK « |K|1{3 and so

|K|1{2̺´s
K ď C3h

3{2´s
K .

The combination of the last two displayed estimates with (A.34) concludes the proof of (A.33)
with Ca “ C1C2C3. l

The point in the proof of Theorem A.4.b below is that each (global) nodal basis function ϕℓ
for ℓ “ 1, . . . ,M restricted to one tetrahedron K Ă supppϕℓq is identical with its interpolation
in the local basis from Lemma A.6, i.e.,

ϕℓ|K “
4ÿ

j,k“1

Ljkpϕℓqϕjk `
ÿ

ta,b,c,du“t1,2,3,4u
aăb

Labcpϕℓqϕabc. (A.35)

The interpolation (A.35) and a triangle inequality show

}ϕℓ}L2pKq ď
4ÿ

j,k“1

|Ljkpϕℓq|}ϕjk}L2pKq `
ÿ

ta,b,c,du“t1,2,3,4u
aăb

|Labcpϕℓq|}ϕabc}L2pKq. (A.36)

A careful analysis of the contributions |Ljkpϕℓq| and |Labcpϕℓq| on the right-hand side of
(A.36) for each of the three types of global nodal basis functions from Definition A.3 and the
application of the scaling in (A.33) conclude the proof.
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Proof of Theorem A.4.b for ϕℓ “ ϕE,µ for E P EpΩq. We discuss the scaling first for the basis
function related to the global degree of freedom

LE,µ :“ νE,µ ¨ δmidpEq∇ for µ “ 1, 2 and E P E .

Consider one tetrahedron K :“ convtQ1, . . . , Q4u P T pEq with WF partition pT pKq. Suppose,
without loss of generality, E “ convtQ1, Q2u “ E12. Note ϕℓ|K P WFpKq satisfies LE,µϕℓ “ 1
and all the other degrees of freedom of ϕℓ in Definition A.3 vanish. In particular, ϕℓ and ∇ϕℓ
vanish at Q1, . . . , Q4. This implies in (A.36), that

Ljkpϕℓq “ 0 for all j, k “ 1, . . . , 4.

Along any edge Ejk P EpKq with unit tangent vector τjk for 1 ď j ă k ď 4 we consider ϕℓ|Ejk
P

P3pEjkq as a one-dimensional cubic polynomial with four vanishing degrees of freedom. Hence
the one-dimensional derivative ϕ1

ℓ “ τjk ¨ ∇ϕℓ “ 0 vanishes. For any edge Ejk P EpKqztE12u
in K besides E12 the gradient ∇ϕℓ in the midpoint Qjk vanishes in the direction νjk,1 and
νjk,2. In other words ∇ϕℓpQjkq “ 0 for all pj, kq “ p1, 2q with 1 ď j ă k ď 4. This implies

Labcpϕℓq “ 0 for all pa, b, cq “ p1, 2, 3q or pa, b, cq “ p1, 2, 4q.

Consequently, (A.35) reads

ϕℓ “ L123pϕℓqϕ123 ` L124pϕℓqϕ124 “ pQ3 ´Q12q ¨ ∇ϕℓpQ12qϕ123 ` pQ4 ´Q12q ¨ ∇ϕℓpQ12qϕ124.

Recall τ12 ¨ ∇ϕℓpQ12q ” 0 for the unit tangent vector τ12 ” τE of the edge E12 ” E and
LE,κpϕℓq “ νE,κ ¨ ∇ϕℓpQ12q “ 0 for the normal νE,κ with κ P t1, 2uztµu. Since Lℓpϕℓq “
νE,µ ¨ ∇ϕℓpQ12q “ 1, this implies for k “ 3, 4

|L12kpϕℓq| “
ˇ̌
pQk ´Q12q ¨

`
pνE,µ ¨ ∇ϕℓpQ12qqνE,µ ` pνE,κ ¨ ∇ϕℓpQ12qqνE,κ ` pτE ¨ ∇ϕℓpQ12qqτE

˘ˇ̌

“
ˇ̌
pQk ´Q12q ¨ νE,µ| ď hK .

For (A.36) this implies that

}ϕℓ}HspKq “ }ϕE,κ}HspKq ď hK
ÿ

k“3,4

}ϕ12ℓ}HspKq ď Cah
5{2´s
K

with the upper bound from Lemma A.6 in the last step. The shape regularity of T P T implies
|K| « h3K and the boundedness of the number of tetrahedra |T pEq| in the support of ϕE,κ.
This concludes the proof. l

Proof of Theorem A.4.b for ϕℓ “ ϕz,1 for z P VpΩq. Consider the basis function associated
with

Lz,1 :“ δz for z P V

and K :“ convtQ1, . . . , Q4u P T pzq with WF partition pT pKq. Suppose, without of loss of
generality, z “ Q1. Note ϕℓ|K P WFpKq satisfies Lz,1pϕℓq “ ϕℓpQ1q “ 1 “ L11pϕℓq and all
the other degrees of freedom in Definition A.3 of ϕℓ vanish. Since ϕℓ vanishes at Q2, Q3, Q4

and ∇ϕℓ vanish at Q1, Q2, Q3, Q4, (A.31) implies

Lkkpϕℓq “ 0 and Ljkpϕℓq “ 0 for 1 ď j ă k ď 4.
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For any edge E P E with midpoint midpEq holds LE,1pϕℓq “ νE,1 ¨ ∇fpmidpEqq “ 0 “
νE,2 ¨ ∇ϕℓpmidpEqq “ LE,2pϕℓq. This implies for all pairwise distinct a, b, c P t1, 2, 3, 4u with
a ă b and edges Eab P EpKq with unit tangent vector τab and midpoint Qab, that

Labcpϕℓq “ pQc ´Qabq ¨ ∇ϕℓpQabq “ pQc ´Qabq ¨ pτab ¨ ∇ϕℓpQabqqτab.

Along any Ejk P EpKq for 2 ď j ă k ď 4 in K without the vertex Q1 with unit tangent
vector τjk, consider ϕℓ|Ejk

P P3pEjkq as a one-dimensional cubic polynomial with vanishing
degrees of freedom. Hence the one-dimensional derivative ϕ1

ℓ “ τjk ¨ ∇ϕℓ “ 0 vanishes. In
other words,

Labcpϕℓq “ pQc ´Qabq ¨ pτab ¨ ∇ϕℓpQabqqτab “ 0 for 2 ď a ă b ď 4

and (A.35) reads

ϕℓ “ L11pfqϕ11 `
ÿ

2ďb,cď4
b“c

L1bcϕ1bc “ ϕ11 `
ÿ

2ďb,cď4
b“c

pQc ´Q1bq ¨
`
pτ1b ¨ ∇ϕℓpQ1bqqτ1b

˘
ϕ1bc.

Along any edge E “ E1b P EpKq for b “ 2, 3, 4 with unit tangent vector τE ” τ1b consider
ϕℓ|E P P3pEq as one-dimensional function uniquely determined by the given values of ϕℓ and
the tangential derivative τE ¨ ∇ϕℓ in the endpoints Q1 and Qb of E. The parametrisation
fτ psq for s P p0, hq of ϕℓ|E with fτ p0q “ ϕℓpQ1q “ 1, fτ phq “ ϕℓpQbq “ 0, and f 1

τ “ τE ¨ ∇ϕℓ
vanishing in both endpoints, reads

fτ psq “ h´3ps´ hq2p2s ` hq.

Hence, |τE ¨ ∇ϕℓpQ1bq| “ |f 1
τ ph{2q| “ 1.5h´1 ď C4h

´1
K . In other words, for all b “ 2, 3, 4,

|L1bcpϕℓq| “ |pQc ´Q1bq ¨ pτ1b ¨ ∇ϕℓpQ1bqqτ1b| ď |pQc ´Q1bq ¨ τ1b|C4h
´1
K ď C4.

For (A.36) this implies that

}ϕℓ}HspKq “ }ϕz,1}HspKq “ }ϕ11}HspKq ` C4

ÿ

2ďb,cď4
b“c

}ϕ1bc}HspKq ď maxt1, C4uCah3{2´s
K

with the upper bound from Lemma A.6 in the last step. The shape regularity of T P T

implies |K| « h3K and the boundedness of the number of tetrahedra |T pzq| in the support of
ϕz,1. This concludes concludes the proof. l

Proof of Theorem A.4.b for ϕℓ “ ϕz,κ`1 for z P VpΩq. Finally, regard the basis function
associated with

Lz,κ`1 :“ eκ ¨ δz∇ for κ “ 1, 2, 3, and z P V

and consider K :“ convtQ1, . . . , Q4u P T pzq with WF partition pT pKq. Suppose, without of
loss of generality, z “ Q1. Note ϕℓ|K P WFpKq satisfies Lz,κ`1ϕℓ “ Bϕℓ{Bxκ “ 1 and all the
other degrees of freedom of ϕℓ vanish. Since ϕℓ vanishes at Q1, Q2, Q3, Q4 and ∇ϕℓ vanish at
Q2, Q3, Q4, the definition in (A.31) shows

Ljjpϕℓq “ 0 for j “ 1, . . . , 4 and Ljkpϕℓq “ 0 for 2 ď j ă k ď 4.
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For any edge E P E with midpoint midpEq holds LE,1pϕℓq “ νE,1 ¨ ∇ϕℓpmidpEqq “ 0 “
νE,2 ¨ ∇ϕℓpmidpEqq “ LE,2pϕℓq. This implies all pairwise distinct a, b, c P t1, 2, 3, 4u with
a ă b and edges Eab P EpKq with unit tangent vector τab and midpoint Qab, that

Labcpfq “ pQc ´Qabq ¨ ∇ϕℓpQabq “ pQc ´Qabq ¨ pτab ¨ ∇ϕℓpQabqqτab.

Along any Ejk P EpKq for 2 ď j ă k ď 4 in K without the vertex Q1 with unit tangent
vector τjk, consider ϕℓ|Ejk

P P3pEjkq as a one-dimensional cubic polynomial with vanishing
degrees of freedom. Hence the one-dimensional derivative ϕ1

ℓ “ τjk ¨ ∇ϕℓ “ 0 vanishes. In
other words,

Labcpϕℓq “ pQc ´Qabq ¨ pτab ¨ ∇ϕℓpQabqqτab “ 0 for 2 ď a ă b ď 4

and (A.35) reads

ϕℓ “
4ÿ

k“2

L1kpϕℓqϕ1k `
ÿ

2ďb,cď4
b“c

L1bcpϕℓqϕ1bc

“
4ÿ

k“2

pQk ´Q1q ¨ ∇ϕℓpQ1qϕ1k `
ÿ

2ďb,cď4
b“c

pQc ´Q1bq ¨
`
pτ1b ¨ ∇ϕℓpQ1bqqτ1b

˘
ϕ1bc.

Since Bϕℓ{BxℓpQ1q “ 0 for ℓ P t1, 2, 3uztκu and Bϕℓ{BxκpQ1q “ Lz,κ`1pϕℓq “ 1, it holds for
k “ 2, 3, 4

|L1kpϕℓq| “ |pQk ´Q1q ¨ ∇ϕℓpQ1q| “ |pQk ´Q1q ¨ eκBϕℓ{BxκpQ1q| “ |pQk ´Q1q ¨ eκ| ď hK .

Along any edge E “ E1b P EpKq for b “ 2, 3, 4 with unit tangent vector τE “ τ1b consider
ϕℓ|E P P3pEq as one-dimensional function uniquely determined by the given values of ϕℓ and
the tangential derivative τE ¨∇ϕℓ in the endpoints Q1 and Qb of E. Let c :“ eκ ¨ τE ď 1. The
parametrisation fτ psq for s P p0, hq of f |E with fτ p0q “ ϕℓpQ1q “ 0, fτ phq “ ϕℓpQbq “ 0, and
f 1
τ “ τ ¨ ∇ϕℓ with f 1p0q “ c and f 1phq “ 0, reads

fτ psq “ cps´ hq2s{h2.

Hence |τ1b ¨ ∇ϕℓpQ1bq| “ |f 1
τ ph{2q| “ c{4 ď 1 and

|L1bcpfq| “ |pQc ´Q1bq ¨ pτ1b ¨ ∇ϕℓpQ1bqqτ1b| ď |pQc ´Q1bq ¨ τ1b| ď hK .

For (A.36) this implies that

}ϕℓ}HspKq “ }ϕz,κ`1}HspKq ď hK

4ÿ

k“2

}ϕ1k}HspKq ` hK
ÿ

2ďb,cď4
b“c

}ϕ1bc}HspKq ď Cah
5{2´s
K

with the upper bound from Lemma A.6 in the last step. The shape regularity of T P T implies
|K| « h3K and the boundedness of the number of tetrahedra |T pzq| in the support of ϕz,κ`1.
This concludes the proof. l
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B. Conforming companion

B.1. Overview

Given a regular triangulation T P T and the Morley finite element space MpT q, this sections
contains the details of the definition of the conforming companion operator JM : MpT q Ñ
V :“ H2

0 pΩq in 3D and the proof of Theorem 3.1.

Theorem 3.1 (properties of JM). There exists a constant M2 « 1 (that exclusively de-
pends on T) and a conforming companion JMvM P V :“ H2

0 pΩq for any vM P MpT q with

(a) JM is a right inverse to the interpolation IM in that IM ˝ JM “ id in MpT q,

(b) }h´2
T

p1 ´ JM qvM }L2pΩq ` ~p1 ´ JM qvM~pw ď M2 minvPV ~vM ´ v~pw,

(c) the orthogonality p1 ´ JM qpMpT qq K P2pT q holds in L2pΩq.
For the triangulation T P T with set edges E fix one unit tangent vector τE ‖ E and choose two
unit vectors νE,1, νE,2 P R

3 for any edge E P E such that pτE , νE,1, νE,2q form an orthonormal

basis of R3, and define the WF partition pT as in Definition A.2. Consider the conforming
subspace with homogeneous boundary conditions as in (A.29)

WFpT q :“ P3ppT q XH2
0 pΩq.

The design in Sections B.2–B.5 below contains four steps. Given any Morley function vM P
MpT q, first the enrichment J1vM P WFpT q is computed via averaging of nodes. The global
degrees of freedom for the Morley finite element read

LEpfq :“ ´
ż

E

f ds and LF pfq :“ ´
ż

F

∇f ¨ νF dσ for any E P E , F P F , and f P H2pΩq. (B.1)

Note, for a Morley function vM P MpT q the integral means in (B.1) are single valued, in that
for any edge E P E and any adjacent tetrahedron T P T pEq holds

ş́
E
vM |T ds “ LEpvM q and

for any face F P F and any adjacent tetrahedron T P T pF q holds
ş́
F
∇vM |T ¨νF dσ “ LF pvM q.

Two separate corrections are necessary to guarantee LEpvM q “
ş́
E
vM ds “ LEpJMvM q for

any E P E and LF pvM q “
ş́
F
∇vM ¨ νF dσ “ LF pJMvM q for any F P F in 3D. The integral

means over the edges are corrected in J2. The integral means of the normal derivatives
along the faces are corrected in J3. This guarantees that J3 is a right inverse of IM in that
IMJ3vM “ vM . Finally the correction J4vM is designed such that its L2 projection in P2pT q
equals vM P MpT q, Π2JMvM “ vM . Note that in an abstract point of view Subsection B.2
concerns nodal values for vertices z P V and midpoints midpEq of edges E P E (0-simplices),
Subsection B.3 concerns the integral mean for each edge E P E (1-simplex), Subsection B.4
concerns one integral mean for each face F P F (2-simplex), and finally Subsection B.5
concerns the volume contribution for each tetrahedron T P T (3-simplex). The corrections
in the last three steps are independent of the choice of the conforming space WFpT q and
possible in any space dimension; cf. [Gal15, VZ19] for n “ 2 and Theorem 3.1.a–b.

B.2. Design of J1

Determine the values for the degrees of freedom of WFpT q by averaging the respective values
of the Morley function on all adjacent simplices T P T and assure homogeneous boundary
conditions to define J1 :MpT q Ñ WFpT q Ă V as follows.
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Definition B.1 (enrichment J1). For any vertex z P V with nodal patch ωpzq “ intpŤ T pzqq,
T pzq :“ tT P T | z P VpT qu, of |T pzq| many tetrahedra with the vertex z and for any multi-
index α P N

3
0 with 0 ď |α| ď 1, set

pDαJ1vM qpzq :“ 1

|T pzq|
ÿ

TPT pzq

pDαvM |T qpzq for z P VpΩq (B.2)

`
and “ 0 for z P VpBΩq owing to the homogeneous boundary conditions in V

˘
. For any edge

E P E with midpoint midpEq, edge patch ωpEq “ intp
Ť

T pEqq, T pEq :“ tT P T |E P EpT qu,
of |T pEq| many tetrahedra with common edge E, and unit tangential vector τE with a fixed
orientation, set

τE ˆ ∇J1vM pmidpEqq :“ 1

|T pEq|
ÿ

TPT pEq

τE ˆ p∇vM |T qpmidpEqq for E P EpΩq (B.3)

`
and “ 0 for E P EpBΩq owing to the homogeneous boundary conditions in V

˘
. That means

equality in the directions tνE,1, νE,2u perpendicular to the tangential unit vector τE .

The enrichment operator J1 satisfies the approximation condition as shown in Lemma B.2
below. We aim to provide explicit constants whenever possible. To this end we need in
the proof of Lemma B.2 the following Lemma B.1 as addition to the related observations in
[CP20, Lem. B–C], which may be of independent interest. Similar results are contained in
[CH17, Lem 4.2].

Lemma B.1 (inequality). Any x “ px1, . . . , xmq P R
m, m P N satisfies

2
´
1 ´ cos

´ π

2m` 1

¯¯
|x|2 ď

m´1ÿ

j“1

pxj`1 ´ xjq2 ` mintx21, . . . , x2mu. (B.4)

The factor 2
´
1 ´ cos

´
π

2m`1

¯¯
in (B.4) is sharp in that there exists some x P R

mzt0u with

equality in (B.4).

Proof. Abbreviate ̺pxq2 :“ řm´1
j“1 pxj`1 ´ xjq2 ` mintx21, . . . , x2mu for any x “ px1, . . . , xmq P

R
mzt0u, let S :“ tx P R

m| |x| “ 1u denote the unit sphere in R
m, and S` :“ tx P S| 0 ď

xj for all j “ 1, . . . ,mu its positive half. Then ̺pp|x1|, . . . , |xm|qq ď ̺pxq follows from p|xj`1|´
|xj |q2 ď |xj`1 ´ xj|2 for j “ 1, . . . ,m ´ 1. This implies the equality after the definition of

Λ :“ min
xPS

̺pxq2 “ min
xPS`

̺pxq2.

Lemma B in the appendix of [CP20] shows that a minimum of the sum
řm´1
j“1 pxj`1 ´ xjq2 is

attained for ordered coefficients in the vector x P S`, hence

Λ “ min
xPS`

0ďx1ďx2ď¨¨¨ďxm

̺pxq2 “ x ¨ Bx

with the tridiagonal matrix

B :“

¨
˚̊
˚̊
˚̊
˚̋

2 ´1 0 ¨ ¨ ¨ 0

´1 2 ´1
. . .

...

0
. . .

. . .
. . . 0

...
. . . ´1 2 ´1

0 ¨ ¨ ¨ 0 ´1 1

˛
‹‹‹‹‹‹‹‚

.
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The positive eigenvalues 0 ă λk “ 2
`
1 ´ cospp2k ´ 1qπ{p2m ` 1qq

˘
for k “ 1, . . . ,m of the

B are computed in [YSC08, Thm.3.2.viii], hence from the Rayleigh quotient follows λ1|x|2 ď
x ¨ Bx for any x P R

m and Λ “ λ1 “ 2
`
1 ´ cos

`
π{p2m ` 1q

˘˘
. The eigenspace Epλ1q is

spanned by x “
`
sinpπ{p2m ` 1qq, sinp2π{p2m ` 1qq, . . . , sinpmπ{p2m ` 1qq

˘
P R

mzt0u. Since
0 ď sinpkπ{p2m`1qq ď sinppk`1qπ{p2m`1qq for any k “ 1, . . . ,m´1, the normed eigenvector
v :“ x{|x| P Epλ1q XS` has ordered coefficients and leads to the equality Λ “ ̺pvq2; in other
words Λ “ λ1 is the optimal constant. l

Lemma B.2 (properties of J1). There exists a constant C1 « 1 (that exclusively depends
on T) such that the enrichment operator J1vM P WFpT q for any vM P MpT q, T P T, satisfies

}h´2
T

p1 ´ J1qvM }L2pΩq ` ~p1 ´ J1qvM~pw ď C1min
vPV

~vM ´ v~pw.

Proof. This proof consist of three steps. For Step 1–Step 2 fix one tetrahedron K P T .

Step 1. Proof of h´4
K }vM ´J1vM}2

L2pKq .
ř
zPVpKq

ř
FPFpzq hF }rD2vM sF ˆνF }2

L2pF q. The WF

interpolation on K preserves the enrichment J1vM P WFpKq and quadratic polynomials like
the Morley function vM |K P P2pKq Ă WFpKq. Recall the nodal basis functions ϕz,1|K ,
ϕz,κ`1|K , and ϕE,µ|K for any z P VpKq, E P EpKq, κ “ 1, 2, 3, µ “ 1, 2, and the degrees of
freedom of WFpKq from Definition A.3. Then the WF interpolation reads

pvM ´ J1vM q|K “
ÿ

zPVpKq

´
pvM ´ J1vM qpzqϕz,1 `

3ÿ

κ“1

eκ ¨ ∇pvM ´ JvM qpzqϕz,κ`1

¯

`
ÿ

EPEpKq

2ÿ

µ“1

νE,µ ¨ ∇pvM ´ J1vM qpmidpEqqϕE,µ.

The triangle inequality and the scaling of the basis functions }ϕz,1}L2pKq . h
3{2
K , }ϕz,κ`1}L2pKq .

h
5{2
K , and }ϕE,µ}L2pKq . h

5{2
K in Theorem A.4 reveal for a constant c1 . 1

c´1
1 }vM ´ J1vM}2L2pKq ďh3K

ÿ

zPVpKq

´
|pvM |K ´ J1vM qpzq|2 ` h2K

3ÿ

κ“1

|eκ ¨ ∇pvM |K ´ J1vM qpzq|2
¯

` h5K

ÿ

EPEpKq

2ÿ

µ“1

|νE,µ ¨ ∇pvM |K ´ J1vM qpmidpEqq|2. (B.5)

In Definition B.1 the given local values LjpvM |T q of vM for every WF degree of freedom
Lj for j “ 1, . . . , 28 and every tetrahedron T P T are averaged (and homogeneous boundary
conditions ensured). This in mind, suppose z P VpKq and analyse the term |vM pzq´J1vM pzq|
first. There are three cases of interest that lead to the constant Cz . 1 in (B.9) below. The
vertex z P VpKq could be

Case 1. a boundary vertex z P VpBΩq, but K has no boundary side that contains z in that
FpKq X Fpzq X FpBΩq “ H,

Case 2. a boundary vertex z P VpBΩqXF that belongs to a boundary side F P FpBΩqXFpKq
of K, or

Case 3. an interior vertex z P VpΩq.
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In case 1 holds J1vM pzq “ 0 due to the homogeneous boundary conditions in V . Then
Lemma B.1 applies and contains the optimal constant. Choose a face-connected subset
tT1, . . . , Tku Ă T pzq with 2 ď k ď |T pzq| “: Jz . 1, Tk “ K, z P Fj :“ Tj X Tj`1 P F
for any j “ 1, . . . , k ´ 1, and boundary simplex T1 such that z P F0 P FpT1q X FpBΩq. Set
xj :“ vM |Tj pzq ´ J1vM pzq “ vM |Tj pzq P R for j “ 1, . . . , k and x :“ px1, . . . , xkq P R

k. If

x P R
kzt0u, Lemma B.1 shows

2p1 ´ cospπ{p2k ` 1qqq|x|2 ď
kÿ

j“1

pxj`1 ´ xjq2 ` mintx21, . . . , x2ku ď
kÿ

j“1

pxj`1 ´ xjq2 ` x21.

The jump rvsF P L1pF q of a piecewise Lipschitz continuous function v across F P F reads
rvsF :“ v|T` ´ v|T´ for an interior side F “ BT` X BT´ P FpΩq that belongs to the
neighbouring simplicies T`, T´ P T , which are labelled such that the unit outward nor-
mal along the boundary of T` (resp. T´) satisfies νT` |F “ νF (resp. νT´|F “ ´νF ), while
rvsF :“ v along F P FpBΩq. Hence the side-connectivity of tT1, . . . , Tku Ă T pzq implies,
for any j “ 1, . . . , k ´ 1, that

|xj`1 ´ xj | “
ˇ̌
vM |Tj pzq ´ vM |Tj`1

pzq
ˇ̌

“
ˇ̌
rvM sFj

pzqs
ˇ̌
and |x1| “

ˇ̌
vM |T1pzq

ˇ̌
“
ˇ̌
rvM sF0

pzq
ˇ̌
.

We conclude (with the Euclidean norm | ‚ | of x P R
k) in case 1,

ˇ̌
vM |Kpzq ´ J1vM pzq

ˇ̌2 ď |x|2 ď 1

2p1 ´ cospπ{p2k ` 1qq

kÿ

j“0

|rvM sFj
pzq|2. (B.6)

In case 2, for the boundary node z P VpBΩq X F that belongs to a boundary side F P
FpBΩq X FpKq of K, holds J1vM pzq “ 0 and the jump definition with rvsF :“ v along any
boundary side, in particular along F P FpBΩq X FpKq, shows

ˇ̌
vM |Kpzq ´ J1vM pzq

ˇ̌
“
ˇ̌
vM |Kpzq

ˇ̌
“
ˇ̌
rvM sF pzq

ˇ̌
. (B.7)

In case 3, for the interior vertex z P VpΩq, holds J1vM pzq “ J´1
z

ř
TPT pzq vM |T pzq with the

abbreviation Jz :“ |T pzq| . 1. This is the standard averaging and an analogue argumen-
tation with explicit constant is provided Step 3 in the proof of Theorem 6.1 in [CP20]. For
convenience we repeat the main arguments in the present notation. Choose an enumeration
tT1, . . . , TJzu of T pzq such that the values xj :“ vM |Tj pzq ´ J1vM pzq P R for j “ 1, . . . , Jz are

ordered in the sense that x1 ď x2 ď ¨ ¨ ¨ ď xJz . The sum
řJz
j“1 xj “ 0 vanishes by definition

of J1vM pzq. Since
ˇ̌
vM |Kpzq ´ J1vM pzq

ˇ̌
ď maxTPT pzq

ˇ̌
vM |T ´ J1vM pzq

ˇ̌
“ maxj“1,...,Jz |xj |,

Lemma C in [CP20] implies (in the same abstract notation as Lemma B.1 above) that

ˇ̌
vM |Kpzq ´ J1vM pzq

ˇ̌2 ď pJz ´ 1qp2Jz ´ 1q
6Jz

Jz´1ÿ

j“1

|xj`1 ´ xj|2.

It remains a reordering to arrange for jump contributions on the right-hand side. To this
end let J :“

 
tα, βu : Tα, Tβ P T pzq and BTα X BTβ P Fpzqu denote unordered index pairs

of all tetrahedra in T pzq which share a side in Fpzq :“ tF P F | z P Vpzqu. Since T pzq is
side-connected, J is connected, in the sense that for all α, β P t1, . . . , Jzu and α “ β there
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are k P N pairs tα1, α2u, tα2, α3u, . . . , tαk, αk`1u P J with α1 “ α and αk`1 “ β. Therefore
some arguments in the language of graph theory in Lemma B in [CP20] imply that

Jz´1ÿ

j“1

|xj`1 ´ xj|2 ď
ÿ

tα,βuPJ

|xα ´ xβ|2 “
ÿ

tα,βuPJ

ˇ̌
pvM |Tαqpzq ´ pvM |Tβ qpzq

ˇ̌2
.

The combination of the last two displayed estimates with the jump definition shows in case 3
that

ˇ̌
vM |Kpzq ´ J1vM pzq

ˇ̌
ď pJz ´ 1qp2Jz ´ 1q

6Jz

ÿ

FPFpzq

|rvM sF pzq|2. (B.8)

Abbreviate

Cz :“ max

"
1,

pJz ´ 1qp2Jz ´ 1q
6Jz

,
1

2p1 ´ cosp π
2Jz`1

qq

*
. 1.

The combination of (B.6)–(B.8) implies for any vertex z P VpKq of K P T that

ˇ̌
vM pzq|K ´ J1vM pzq

ˇ̌
ď Cz

ÿ

FPFpzq

|rvM sF pzq|2. (B.9)

Since J1 is defined by nodal averaging for all degrees of freedom L1, . . . , L28 of WF (with
homogeneous boundary conditions), the argumentation for |vM |Kpzq ´J1vM pzq| with case 1–
case 3 applies verbatim for |eκ ¨∇pvM |K´J1vM qpzq| and |νE,µ ¨∇pvM |K´J1vM qpmidpEqq|. Let
N :“ V YtmidpEq|E P Eu denote the set of all vertices and edge midpoints. Let T pzq :“ tT P
T | z P BT u denote the set of all tetrahedra with node z P N and Fpzq :“ tF P F | z P BF u set
of all faces with node z P N . In abstract notation let JA denote a general averaging operator;
for any k P N0, a piecewise polynomial v P PkpT q of degree at most k, the tetrahedron K P T ,
and the node z P N pKq set JAvpzq :“ |T pzq|´1

ř
TPT pzq v|T pzq for each interior node z P N pΩq

and JAvpzq :“ 0 else. Given this notation, pDαJ1vM qpzq “ JApDαvM qpzq holds for z P V,
α P N

3
0 with 0 ď |α| ď 1, as well as, τE ˆ ∇J1vM pmidpEqq “ JApτE ˆ ∇vM qpmidpEqq for

E P E . In the argumentation above we could replace J1 by JA and z P V by z P N to obtain
(B.9) in the general setting. Hence,

ˇ̌
eκ ¨ ∇pvM |K ´ J1vM qpzq

ˇ̌
ď Cz

ÿ

FPFpzq

|reκ ¨ ∇vM sF pzq|2,

ˇ̌
νE,µ ¨ ∇pvM |K ´ J1vM qpmidpEqq

ˇ̌
ď CE

ÿ

FPFpEq

|rνE,µ ¨ ∇vM sF pmidpEqq|2

with

CE :“ max

"
1,

pJE ´ 1qp2JE ´ 1q
6JE

,
1

2p1 ´ cosp π
2JE`1

qq

*
. 1

for any edge E P E with set of adjacent faces FpEq :“ tF P F : E P EpF qu “ FpmidpEqq of
cardinality JE “ |FpEq| . 1.

Hence (B.5) simplifies to

c´1
1 }vM ´ J1vM}2L2pKq ď h3K

ÿ

zPVpKq

Cz
ÿ

FPFpzq

´
|rvM sF pzq|2 ` h2K |r∇vM sF pzq|2

¯
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` h5K

ÿ

EPEpKq

CE
ÿ

FPFpEq

|r∇vM sF pmidpEqq|2 (B.10)

(The shape regularity of T P T guarantees that the number of tetrahedra Jz and JE in the
patches, i.e., Cz and CE , are uniformly bounded for any z P V and E P E .) Let S denote
either the set of vertices S “ V or the set of edge midpoints S “ tmidpEq|E P Eu “: M. For a
fixed polynomial degree k P N0 and any z P N “ V YM, there exists a constant Cpk, Sq ą 0,
such that the following inverse estimate holds

|F |
ˇ̌
rvsF pzq

ˇ̌2 ď Cpk, Sq}rvsF }2L2pF q for any v P PkpT q and F P Fpzq. (B.11)

In the cases of interest the optimal constant Cpk, Sq ą 0 can be computed as in [CP20,
Lem. D]. The inverse mass matrix for the basis functions dual to the Lagrange interpolation
points and a Cauchy-Schwarz inequality prove Cp1,Vq “ n2 “ 9 and Cp2,Vq “ 36 for any
vertex z P V as well as Cp1,Mq “ npn ´ 1q{2 “ 3 and Cp2,Mq “ 39{4 for any edge
midpoint z “ midpEq P M. Moreover, an inverse estimate for rvM sF P P2pF q ensures
c´1
inv}rvM sF }L2pF q ď hF }r∇vM sF }L2pF q ď hK}r∇vM sF }L2pF q. In combination with (B.11) this
recasts (B.10) as

c´1
1 }vM ´ J1vM}2L2pKq ď h5K

ÿ

zPVpKq

Cz
ÿ

FPFpzq

´
c2inv36}r∇vM sF }2L2pF q{|F | ` 9}r∇vM sF }2L2pF q{|F |

¯

` h5K

ÿ

EPEpKq

CE
ÿ

FPFpEq

3}r∇vM sF }2L2pF q{|F |

Since for any edge E “ convtPj , Pku P E with vertices Pj, Pk P VpEq, it holds FpEq Ă
FpPjq Y FpPkq, this simplifies to

h´5
K }vM ´ J1vM}2L2pKq .

ÿ

zPVpKq

ÿ

FPFpzq

}r∇vM sF }2L2pF q{|F |.

Recall that the integral mean of the gradient
ş́
F

r∇vM sF dσ vanishes for any side F P F
from [MX06, Lem. 4] as utilized in [CP21, Thm. 2.1.b]. Hence the Poincaré inequality with
Payne-Weinberger constant [PW60, Beb03] shows

}r∇vM sF }L2pF q ď hFπ
´1}rD2vM sF ˆ νF }L2pF q

with the tangential components rD2vM sF ˆ νF of the jump rD2vM sF along any edge F P F
and the (piecewise) Hessian D2. This concludes the first step, since hF « hK « |F |1{2 holds
for any K P T and F P FpKq.

Step 2. Proof of hF }rD2vM sF ˆ νF }2
L2pF q . minvPH2pωpF qq }D2

pwpvM ´ vq}2
L2pωpF qq. This step

is comparable to the 2D analysis in [Gal15, Prop. 2.3] but demands the observations on the
Curl operator in 3D from [CBJ02, Thm 3.2]. For Ψ “ pΨ1,Ψ2,Ψ2qJ P H1pΩq3ˆ3 the Curl is
applied row-wise,

CurlpΨq :“ p∇ ˆ Ψ1,∇ ˆ Ψ2,∇ ˆ Ψ3qJ.

First, suppose F P FpΩq “ BT` X BT´ is an interior side and for any vertex z P VpT q let
φz P S1pFq :“ P1pT q X CpΩq denote the hat-function with φzpP q “ δzP for any P P V.
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Define the face bubble bF :“ 60
ś
zPVpF q φz P H1

0 pωpF qq that vanishes on the boundary of

the face patch ωpF q :“ intpT` Y T´q. Then
ş
F
bF dσ “ |F | and }bF }L8pωpEqq “ 20{3. Given

rD2vM sF P R
3ˆ3, set ΨF :“ bF prD2vM sF ˆ νF q P H1

0 pωpF q;R3ˆ3q. Since rD2vM sF P R
3ˆ3 is

constant,

}rD2vM sF ˆ νF }2L2pF q “ }b1{2
F rD2vM sF ˆ νF }2L2pF q.

For any v P H2pωpEqq the tangential jump rD2vsF ˆ νF vanishes. Hence an integration by
parts shows

}b1{2
F rD2vM sF ˆ νF }2L2pF q “

ż

F

`
rD2vM sF ˆ νF

˘
Ψdσ “

ÿ

TPωpF q

ż

BT

`
pD2vM ´ vq ˆ νF

˘
: Ψ dσ

“
`
CurlΨF ,D

2
pwpvM ´ vq

˘
L2pωpF qq

.

The Cauchy-Schwarz inequality, an inverse estimate, and the boundedness of }bF }L8pωpEqq

prove that the last term is bounded by

}CurlΨF }L2pωpF qq}D2
pwpvM ´ vq}L2pωpF qq . h

´1{2
F }rD2vM sF ˆ νF }L2pF q}D2

pwpvM ´ vq}L2pωpF qq.

This implies for any interior side F P FpΩq that

hF }rD2vM sF ˆ νF }2L2pF q . min
vPH2pωpF qq

}D2
pwpvM ´ vq}2L2pωpF qq. (B.12)

Second, suppose F P FpBΩq is a boundary face with face patch ωpF q “ T`. The face bubble
bF :“ 60

ś
zPVpF q φz P H1

0 pωpF qq vanishes on all faces G P FpT`qztF u of T` besides F . Hence
the argumentation above holds verbatim and shows (B.12) for F P FpBΩq.

Step 3. Conclusion of the proof. The combination of Step 1–Step 2 implies for any K P T

h´4
K }vM ´ J1vM }2L2pKq .

ÿ

FPFpzq

min
vPH2pωpF qq

}D2
pwpvM ´ vq}2L2pωpF qq.

The sum over all tetrahedra K P T with the finite overlap of the face patches pωpF q : F P Fq
concludes the proof of the approximation property

}h´2
T

p1 ´ J1qvM}L2pΩq . min
vPH2

0 pΩq
~v ´ vM~pw.

The combination with the inverse estimate ~p1 ´ J1qvM~pw . }h´2
T

p1 ´ J1qvM}L2pΩq for the

piecewise polynomials in WFpT q Ă P3ppT q concludes the proof of Lemma B.2. l

B.3. Design of J2

This step corrects the integral mean over each internal edge E P E such that
ş́
E
J2vM ds “ş́

E
vM ds. For any edge E P EpΩq define the ball B :“ BpmidpEq, REq Ă pωpEq of radius

RE ą 0 with midpoint midpEq. The radius RE is chosen maximal such that

(i) B belongs to the edge patch pωpEq :“ int
`Ť

TP pT pEq
T
˘
of E in the WF triangulation pT

and
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P1

cF

P2

P3

mid(E)

B X F

P1

P3

P2

B

cK
pB

cF

(a) (b)

Figure B.1.: Subtetrahedron T p4q “ convpcK , F4q ofK P T with face F “ F4 “ convtP1, P2, P3u P FpKq
and edge E “ convtP1, P2u P EpKq and dashed WF triangulation pT pKq with T “ convpcK , cF , Eq P pT
marked in red, the support supppξEq “ B of ξE from (B.13) in blue and the disjoint ball pB Ă T in
green.

(ii) in any adjacent WF-subtetrahedra T P pT pEq exists a point pcT P T such that pB :“
BppcT , REq Ă intpT q is a disjunct ball B X pB “ H of the same size as B and lies in the
interior of T .

Fig. B.1.b illustrates the disjoint balls B and pB. The shape regularity of T P T and pT in
Theorem A.3 guarantees hT « RE « hE . Set for any E P EpΩq

ξEpxq :“

$
&
%

|E|
RE

´
1 ´ 3 |y|2

R2
E

` 2 |y|3

R3
E

¯
for x P B and y :“ x´ midpEq,

0 for x R B.
(B.13)

By construction holds ξE P C1pR3q X H2
0 pBq with

ş́
E
ξD ds “ δED for any E,D P E and the

support supppξEq “ B Ă pωpEq.

Definition B.2 (J2). For any vM P MpT q set

J2pvM q :“ J1vM `
ÿ

EPEpΩq

´
´
ż

E

pvM ´ J1vM qds
¯
ξE P V. (B.14)

Lemma B.3 (properties of J2). There exists a constant C2 « 1 (that exclusively depends
on T) such that the companion J2vM P V for any vM P MpT q satisfies

(a) LEpJ2vM q “ LEpvM q for any E P EpΩq,

(b) }h´2
T

p1 ´ J2qvM}L2pΩq ` ~p1 ´ J2qvM~pw ď C2minvPV ~vM ´ v~pw.

Proof of (a). This holds by construction, since for any vM P MpT q and E P EpΩq

LEpJ2vM q “ ´
ż

E

J2vM ds “ ´
ż

E

J1vM ds`
ÿ

DPEpΩq

˜
´
ż

D

pvM ´ J1vM qds
¸

´
ż

D

ξEds

“ ´
ż

E

J1vM ds` ´
ż

E

pvM ´ J1vM qds “ ´
ż

E

vM ds “ LEpvM q. l

36



Supplement2DirectGLB4BiLaplace

Proof of (b). Recall the discrete trace inequality }v}2
L2pF q ď |F |{|T |}v}L2pT qp}v}L2pT q `

2hT {m}∇v}L2pT qq for any v P H1pT q and any m-simplex T with pm ´ 1q-subsimplex F ,
m ě 2. (This is a direct consequence from the discrete trace identity [CP21, Eq. (2.5)] (see
[CGR12, CH17]).) For any g P WFpT q and any edge E P E of a side F P FpEq, the trace
inequality and a Cauchy-Schwarz inequality show

´
ż

E

g ds ď |E|´1{2}g}L2pEq ď |E|´1{2

d
|E|
|F | }g}L2pF qp}g}L2pF q ` hF }∇g}L2pF qq

ď |F |´1{2
?
1 ` cinv}g}L2pF q

with an inverse estimate }∇g}L2pF q ď cinvh
´1
F }g}L2pF q in the last step. The trace inequality

for any side F P F of a tetrahedron K P T pF q reveals, for any g P WFpT q, that

|K|
|F | }g}2L2pF q ď }g}L2pKqp}v}L2pKq ` 2hK{3}∇v}L2pKqq ď p1 ` 3Cinv{2q}v}L2pKq (B.15)

with an inverse estimate }∇g}L2pKq ď Cinvh
´1
K }g}L2pKq in the last step. The combination of

the two displayed inequalities shows, for g “ vM ´ J1vM P WFpT q and any edge E P E of a
tetrahedron K P T pEq, that

´
ż

E

pvM ´ J1vM qds ď
?
1 ` cinv

a
1 ` 3Cinv{2|K|´1{2}vM ´ J1vM}L2pKq.

Since straightforward computations reveal }ξE}L2pKq “ |E|
a

38πRE{315 « h
3{2
K for any E P

EpKq and ξE in (B.13), the last displayed estimate and a triangle inequality prove

}vM ´ J2vM}L2pKq ´ }vM ´ J1vM}L2pKq ď
ÿ

EPEpKqXEpΩq

ˇ̌
ˇ´
ż

E

pvM ´ J1vM qds
ˇ̌
ˇ}ξE}L2pKq

ď 6
|E|

?
38πRE?
315

?
1 ` cinv

a
1 ` 3Cinv{2

|K|1{2
}vM ´ J1vM}L2pKq . }vM ´ J1vM}L2pKq

for any K P T with the shape-regularity hK « |E| « RE « |K|1{3 in the last step. The
inverse estimate |vM ´ J2vM |H2pKq ď }h´2

K pvM ´ J2vM q}L2pKq, a summation over all K P T ,
and Lemma B.2 conclude the proof. l

The following Lemma B.4 provides more insight into the inverse estimates for functions of the
type ξE in (B.13). In particular standard inverse estimates hold for the operator JM ” J4 in
Definition B.4 below.

Lemma B.4 (inverse estimates). There exists a constant C « 1 (that exclusively depends
on T), such that for any tetrahedron G P T P T or triangle G P F ,

|vM ´ JMvM |H1pGq ď CdiampGq´1}vM ´ JMvM}L2pGq.

Notice that the H1-seminorm concerns the tangential gradient νF ˆ∇vM for a face G “ F P F
with unit normal νF of fixed orientation and the full gradient ∇vM for a tetrahedra G “ T P T .
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Proof. The difference vM ´ JMvM can be rewritten locally for any G P T or G P F as

pvM ´ JMvM q|G “ p2 ` gWF ` p7 ` p10 `
ÿ

EPEpGq

αEξE

with polynomials p2 P P2pGq, p7 P P7pGq, p10 P P10pGq, a WF function gWF P P3ppT q, αE P R,
and ξE in (B.13) with supppξEq “ BpmidpEq, REq “: B for any edge E P EpGq.

Case 1. Suppose G “ F P FpT q is a face and without loss of generality regard F Ă R
2. The

key argument is that the support supppξEq Ă pωpEq of ξE lies in the edge patch of E P E in pT .
In other words the WF function gWF|ω P P3pωq is a cubic polynomial in ω :“ supppξEq X G

and the intersection ω “ B X F Ă R
2 is the half ball in R

2 illustrated in Fig. B.1.a. Hence,
it remains to show, for all p10 P P10pωq and αE P R, that

|p10 ` αEξE |H1pωq . h´1
E }p10 ` αEξE}L2pωq.

Let H` :“ R ˆ p0,8q and consider the re-scaling ϕ : Bp0, REq Ñ Bp0, 1q, x ÞÑ ϕpxq “
x{RE :“ ϑ with |detDϕ| “ R´2

E and abbreviate f̂pxq :“ fpxREq for |x| ă 1, such that

fpxq “ f̂px{REq “ f̂pϑq and ∇ϑf̂pϑq “ RE∇xfpxq. A substitution shows

}f̂}2L2pBp0,1qXH`q “ R´2
E }f}2L2pBp0,REqXH`q,

|f̂ |2H1pBp0,1qXH`q “
ż

Bp0,1qXH`

|∇y f̂pyq|2 dy “
ż

Bp0,REqXH`

|∇ϑf̂pϑq|2|detDϕ|dx

“
ż

Bp0,REqXH`

R2
E|∇xfpxq|2|detDϕ|dx “ |f |2H1pBp0,REqqXH`q.

For radius one there exists a constant C1 ą 0, such that for all p10 P P10 and αE P R,

|p10 ` αEξE|H1pBp0,1qXH`q ď C1}p10 ` αEξE}L2pBp0,1qXH`q, (B.16)

since }p10 `αEξE}L2pBp0,1qXH`q “ 0 on the right-hand side of (B.16) implies on the left-hand
side |p10 ` αEξE|H1pBp0,1qXH`q “ 0. The substitution shows for ω “ Bp0, REq XH`,

|p10 ` αEξE|H1pωq ď C1R
´1
E }p10 ` αEξE}L2pωq

and RE « hE « hF « hT concludes the proof since C1 is independent of any mesh-size factor.

Case 2. For a tetrahedron, the shape regularity of the WF triangulation pT as well as T P T

allow the restriction to G “ T P pT . Hence, it remains to show for all p10 P P10pT q and
αE P R,

|p10 ` αEξE|H1pT q . h´1
T }p10 ` αEξE}L2pT q.

The key argument in this case is the existence of pB “ BppcT , REq with pBXB “ H. A triangle
inequality, the inverse estimate for p10 P P10pT q with constant c10 ą 0 and for ξE in (B.13)
with directly calculated constant show

|p10 ` αEξE |H1pT q ď 6
?
6?

19RE
}αEξE}L2pT q ` h´1

T ck}p10}L2pT q.
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Since the shape regularity ensures RE « hT , a triangle inequality leads to

|p10 ` αEξE|H1pT q . h´1
T

`
}αEξE}L2pT q ` }p10}L2pT q

˘
ď h´1

T

`
}αEξE ` p10}L2pT q ` 2}p10}L2pT q

˘
.

The shape regularity guarantees further that there exists a ball rB :“ BppcT , rRq with radius
rR « hT « RE that contains T , pB Ă T Ă rB. Standard scaling arguments for polynomials
show for the polynomial extension p10 P P10p rBq (not-relabelled), that

}p10}L2pT q ď }p10}
L2p rBq . }p10}

L2p pBq.

The constant in the last step is bounded because the radius quotient rR{RE . 1 is bounded.
Since the support of ξE satisfies supppξEq X pB “ H, the estimate }p10}

L2p pBq
“ }p10 `

αEξE}
L2p pBq ď }p10 ` αEξE}L2pT q concludes the proof. l

B.4. Design of J3

This step corrects the integral mean of the normal derivative over each internal face F P FpΩq
such that ´

ş
F
νF ¨ ∇J3vM ds “ ´

ş
F
νF ¨ ∇vM ds. Suppose T “ convtz1, . . . , z4u P T denotes a

tetrahedron with face F “ convtz1, z2, z3u P FpT q opposite to the vertex z4 P VpT q. Recall
the barycentric coordinate λk P P1pT q in T associated with zk P VpT q for k “ 1, . . . , 4 and set

ζF |T :“ 7!

2
pνT ¨ νF qdistpz4, F qpλ1λ2λ3q2 λ4 P P7pT q

for T P T pF q. This defines ζF P P7pT pF qq X W
2,8
0 pωpF qq with

ş́
G
∇ζF ¨ νG ds “ δGF for all

sides F,G P F in the face patch ωF :“ int
`Ť

TPT pF q T
˘
; cf. [Gal15, Prop.2.6] for 2D.

Definition B.3 (J3). For any vM P MpT q set

J3pvM q :“ J2vM `
ÿ

FPFpΩq

´
´
ż

F

∇pvM ´ J2vM q ¨ νF ds
¯
ζF P V. (B.17)

Lemma B.5 (properties of J3). There exists a constant C3 « 1 (that exclusively depends
on T) such that the companion J3vM P V for any vM P MpT q satisfies

(a) J3 is a right inverse to the interpolation IM in that IM ˝ J3 “ id in MpT q,

(b) }h´2
T

p1 ´ J3qvM}L2pΩq ` ~p1 ´ J3qvM~pw ď C3minvPV ~vM ´ v~pw.

Proof of (a). Since ζF |BT ” 0, it holds LEpJ3vM q “ LEpJ2vM q for any E P E . Hence
Lemma B.3.a implies LEpJ3vM q “ LEpvM q and by construction holds LF pJ3vM q “ LF pvM q
for any F P FpΩq. This proves that J3 satisfies the right-inverse property (a), since

IM pvq :“
ÿ

FPFpΩq

´
ż

F

∇v ¨ νF dσ φF `
ÿ

EPEpΩq

´
ż

E

v ds φE for any v P V.
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Proof of (b). The inverse estimate in Lemma B.4 guarantees in particular for g :“ vM´J2vM ,
}∇g}L2pF q ď h´1

F c̃inv}g}L2pF q. Moreover the discrete trace inequality (B.15) holds with a

constant C̃inv from Lemma B.4. For any F P F , K P T pF q, and vM P MpT q, this and a
Cauchy-Schwarz inequality imply

´
ż

F

∇pvM ´ J2vM q ¨ νF ds ď |F |´1{2}∇pvM ´ J2vM q}L2pF q ď |F |´1{2h´1
F c̃inv}vM ´ J2vM}L2pF q

ď |K|´1{2h´1
F c̃inv

b
1 ` 2C̃inv{3}vM ´ J2vM}L2pKq.

Straightforward computations reveal that }ζF }L2pKq “ 6hK |K|1{2{
?
12155 « h

5{2
K holds for

any side F P F of K P T pF q. In combination with the last displayed estimate and a triangle
inequality, this proves

}vM ´ J3vM}L2pKq ´ }vM ´ J2vM}L2pKq ď
ÿ

FPFpKqXFpΩq

ˇ̌
ˇ´
ż

F

pvM ´ J2vM qds
ˇ̌
ˇ}ζF }L2pKq

ď 4
6hK?
12155

c̃inv

b
1 ` 2C̃inv{3
hF

}vM ´ J2vM}L2pKq . }vM ´ J2vM}L2pKq

for any K P T with the shape-regularity hK « hF in the last step. The inverse estimate
|vM ´ J3vM |H2pKq . }h2KpvM ´ J3vM q}L2pKq from Lemma B.4, a summation over all K P T ,
and Lemma B.3.b conclude the proof. l

B.5. Design of J4 “: JM

In order to assure the L2 orthogonality of vM´JMvM onto P2pT q, we propose a local correction
for each tetrahedron T P T with the product of a squared volume bubble-function and a
Riesz representation in P2pT q. For any T :“ convtz1, z2, z3, z4u P T , let λk P P1pT q denote
the barycentric coordinate in T for k “ 1, . . . , 4 associated with the vertex zk P VpT q. Let

bT :“ 48
4ź

k“1

λ2k P P8pT q XH2
0 pT q Ă V (B.18)

denote the squared volume bubble that satisfies }bT }L8pT q “ 1. Let vT P P2pT q denote the
Riesz representation of the linear functional

ℓT : P2pT q Ñ R, wT ÞÑ
ż

T

pvM ´ J3vM qwT dx

in the Hilbert space P2pT q endowed with the weighted L2 scalar product pbT ‚ , ‚ qL2pT q. The
Riesz representation vT P P2pT q satisfies for any vM P MpT q

pvM ´ J3vM , wT qL2pT q “ pbT vT , wT qL2pT q for all wT P P2pT q. (B.19)

It can be computed as vT “ ř10
ℓ“1

´ ş
T

pvM ´J3vM qΦT,ℓ dx
¯
ΦT,ℓbT with a basis ΦT,1, . . . , ΦT,10

of P2pT q that satisfies
ş
T
ΦT,ℓΦT,kbT dx “ δℓ,k for any ℓ, k “ 1, . . . , 10.

Definition B.4 (J4 ” JM). Define J4vM P V for any vM P MpT q by

JMvM :“ J4vM :“ J3vM `
ÿ

TPT

vT bT . (B.20)
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Lemma B.6 (properties of J4 ” JM). For any vM P MpT q the conforming companion
J4vM “ JMvM satisfies Theorem 3.1.

Proof of Theorem 3.1.a. Since pvT bT q|BT ” 0 ” pDpvT bT qq|BT vanishes along the boundary
of any T P T , LEpJMvM q “ LEpJ3vM q and LF pJMvM q “ LF pJ3vM q holds for any E P E and
F P F . Hence JM ” J4 satisfies the right inverse property according to Lemma B.5.a. l

Proof of Theorem 3.1.b. For wT “ vT P P2pT q, (B.19) and a Cauchy-Schwarz inequality
imply

pbT vT , vT qL2pT q “ pvM ´ J3vM , vT qL2pT q ď }vM ´ J3vM}L2pT q}vT }L2pT q. (B.21)

The volume bubble bT in (B.18) generates an inverse estimate (cf. [Ver13, §3.6])

Cinv}wT }L2pT q ď }b1{2
T wT }L2pT q ď }wT }L2pT q for all wT P P2pT q (B.22)

with a universal constant Cinv « 1 and the bound }b2T }L8pT q “ 1 in the last step. The
combination of (B.21)–(B.22) proves

C2
inv}vT }2L2pT q ď }b1{2

T vT }L2pT q ď }vM ´ J3vM}L2pT q}vT }L2pT q.

Hence C2
inv}vT }L2pT q ď }vM ´ J3vM}L2pT q. The definition (B.20) and }b2T }L8pT q “ 1 imply

}JMvM ´ J3vM}L2pT q “ }vT bT }L2pT q ď }vT }L2pT q ď C´2
inv}vM ´ J3vM }L2pT q.

This holds for all T P T and so a triangle inequality implies

}h´2
T

pvM ´ JMvM q}L2pΩq “ }h´2
T

pvM ´ J3vM q}L2pΩq ` }h´2
T

pJMvM ´ J3vM q}L2pΩq

ď p1 ` C´2
invq}h´2

T
pvM ´ J3vM q}L2pΩq.

The combination with Lemma B.5.b concludes the proof of

}h´2
T

pvM ´ JMvM q}L2pΩq ď p1 ` C´2
invqC3 min

vPV
~vM ´ v~pw.

This and the inverse estimate ~vM ´ JMvM~pw ď }h´2
T

pvM ´ JMvM q}L2pΩq from Lemma B.4
conclude the proof of (b). l

Proof of Theorem 3.1.c. The definition (B.20) and the identity (B.19) imply

pvM ´ JMvM , wT qL2pT q “ pvM ´ J3vM , wT qL2pT q ´ pbT vT , wT qL2pT q “ 0 for all wT P P2pT q.

This proves the claim. l

Remark B.1 (general boundary conditions). The construction in Subsections B.2–B.5 works
for more general boundary conditions ofMpT q. In (B.2)–(B.3) the vanishing boundary values
can be replaced by the same averaging formula as in the interior degrees of freedom. This
simplifies the proof of Lemma B.2 in that (B.8) holds directly for any z P V etc. The
corrections in (B.14)–(B.17) are possible for boundary edges and sides as well and guarantee
the right inverse property. Subsection B.5 is independent of boundary conditions. l
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Rational Mech. Anal., 5:286–292 (1960), 1960.

[Sor09] T. Sorokina. A C1 multivariate Clough-Tocher interpolant. Constr. Approx., 29(1):41–59, 2009.

[Ver13] R. Verfürth. A posteriori error estimation techniques for finite element methods. Numerical Mathe-
matics and Scientific Computation. Oxford University Press, Oxford, 2013.

[VZ19] A. Veeser and P. Zanotti. Quasi-optimal nonconforming methods for symmetric elliptic problems.
II—Overconsistency and classical nonconforming elements. SIAM J. Numer. Anal., 57(1):266–292,
2019.

[WF87] A. J. Worsey and G. Farin. An n-dimensional Clough-Tocher interpolant. Constr. Approx., 3(2):99–
110, 1987.

[YSC08] W.-C. Yueh and S. Sun Cheng. Explicit eigenvalues and inverses of tridiagonal Toeplitz matrices
with four perturbed corners. ANZIAM Journal, 49(3):361–387, 2008.

42


	1 Introduction
	1.1 Motivation
	1.2 Eigenvalue problems and main results
	1.3 Outline
	1.4 Notation

	2 Eigensolver for guaranteed lower bounds in any dimension
	2.1 The Morley finite element
	2.2 Guaranteed lower bounds
	2.3 Comments
	2.3.1 Reduced eigenvalue problem
	2.3.2 Comparison with Morley eigenvalues
	2.3.3 An extra-stabilized Crouzeix-Raviart FEM


	3 Convergence rates in 3D
	3.1 Conforming companion
	3.2 Convergence analysis for the source problem
	3.3 Convergence rates for the eigenvalue problem

	4 Numerical experiments in 2D
	4.1 Implementation
	4.2 Dumbbell-slit domain
	4.3 L-shaped domain
	4.4 Four-slit domain
	4.5 Comments and Conclusions

	A The Worsey-Farin FEM in 3D
	A.1 Bernstein polynomials in a simplex
	A.2 Smoothness across an interface
	A.3 Piecewise quadratic polynomials in a WF partition of a tetrahedron
	A.4 The WF finite element
	A.5 The WF on adjacent tetrahedra
	A.6 The shape-regularity of the WF partition
	A.7 The scaling of the WF basis functions

	B Conforming companion
	B.1 Overview
	B.2 Design of J1
	B.3 Design of J2
	B.4 Design of J3
	B.5 Design of J4=:JM


