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Abstract
For a well-posed non-selfadjoint indefinite second-order linear elliptic PDE with
general coefficientsA,b, γ in L∞ and symmetric and uniformly positive definite coef-
ficient matrix A, this paper proves that mixed finite element problems are uniquely
solvable and the discrete solutions are uniformly bounded, whenever the underlying
shape-regular triangulation is sufficiently fine. This applies to the Raviart-Thomas and
Brezzi-Douglas-Marini finite element families of any order and in any space dimen-
sion and leads to the best-approximation estimate in H(div) × L2 as well as in in
L2 × L2 up to oscillations. This generalises earlier contributions for piecewise Lips-
chitz continuous coefficients to L∞ coefficients. The compactness argument of Schatz
and Wang for the displacement-oriented problem does not apply immediately to the
mixed formulation in H(div) × L2. But it allows the uniform approximation of some
L2 contributions and can be combined with a recent L2 best-approximation result
from the medius analysis. This technique circumvents any regularity assumption and
the application of a Fortin interpolation operator.
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1 Introduction

This section introduces the non-selfadjoint indefinite second-order linear elliptic PDE
and itsmixed formulations. A brief review of earlier results is followed by the assertion
of the stability and the best-approximation results.

1.1 Non-selfadjoint indefinite second-order linear elliptic PDEs

The strong formulations for second-order elliptic problems with coefficients A, b,
γ componentwise in L∞(�) and f ∈ L2(�) read L j u j = f a.e. in a polyhedral
bounded Lipschitz domain � ⊂ R

n with homogeneous Dirichlet boundary condition
u j = 0 on ∂� for j = 1, 2 and any dimension n ≥ 2. For all v ∈ H1

0 (�), the two
differential operators (referred to as conservative resp. divergence form throughout
this paper) read

L1v := −∇ · (A∇v + v b) + γ v and L2v := −∇ · (A∇v) + b · ∇v + γ v.

(1.1)

The assumption on ellipticitymeans that the n×n coefficientmatrixA(x) is symmetric
and positive definite with eigenvalues in one universal compact interval of positive
reals for a.e. x ∈ �. This makes L1,L2 : H1

0 (�) → H−1(�) Fredholm operators
of index zero and their weak formulations a(v,w) := 〈L1v,w〉H−1(�)×H1

0 (�) =
〈L2w, v〉H−1(�)×H1

0 (�), for all v,w ∈ H1
0 (�), are dual to each other in the duality

bracket 〈•, •, 〉H−1(�) × H1
0 (�) of H−1(�), the dual of H1

0 (�).
Throughout this paper, zero eigenvalues are excluded and the kernel (of one of these

operators) L j is supposed to be trivial, so that L1 and L2 are bijections. It is known
from the theory of bilinear forms in reflexive Banach spaces [2, 3] that this implies
well-posedness and the continuous inf-sup condition (e.g., when H1

0 (�) is endowed
with the norm ‖∇ • ‖)

0 < α := inf
v∈H1

0 (�)\{0}
sup

v∈H1
0 (�)\{0}

a(v,w)

‖∇v‖ ‖∇w‖ . (1.2)

The inf-sup constant is the same for the original and the dual problem; a(v,w) could be
replaced by a(w, v) with the same α. The finite element error analysis is enormously
simplified under additional conditions on the coefficients that lead to an ellipticity
of a(•, •) and allow an application of the Lax-Milgram lemma [2–4]. The present
situation of a general non-selfadjoint indefinite second-order linear elliptic PDE avoids
any of those assumptions and examines coefficients in L∞, which satisfy the following.

Assumption (A) There exist two global constants 0 < α ď α < ∞ such that A ∈
L∞(�;Rn×n) satisfies α ď λ1(A(x)) ď · · · ď λn(A(x)) ď α for the eigenvalues
λ1(A(x)) ď · · · ď λn(A(x)) of the SPDA(x) for a.e. x ∈ �. The functionsb,b1,b2 ∈
L∞(�;Rn) and γ ∈ L∞(�) are componentwise bounded in the bounded polyhedral
Lipschitz domain � ⊂ R

n .
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Stability of mixed FEMs for non-selfadjoint indefinite... 977

Given the various applications to porous media and ground-water flow with rough
and oscillating coefficients merely bounded in a well-posed PDE, this contribution
gives an affirmative answer to the fundamental question whether the mixed finite
element method be used (and then is stable and provides best-approximation property
at least for fine triangulations).

1.2 Earlier contributions

For conforming finite element discretizations and sufficiently small mesh sizes, [17]
establishes the existence and uniqueness of conforming finite element solutions under
assumption (A). The mixed formulation for the conservation (resp. divergence) equa-
tion L1u = f (resp. L2u = f ) introduces the flux variable σ = −A∇u − u b (resp.
σ = −A∇u) and seeks the solution x = (σ, u) ∈ H to

b(x, y) = ( f , v)L2(�) for all y = (τ, v) ∈ H := H(div,�) × L2(�) (1.3)

with b1 := A−1b, b2 := 0 (resp. b1 := 0, b2 := b · A−1) and (σ, τ )A−1 :=
(A−1σ, τ)L2(�) in

b(x, y) = (σ, τ )A−1 − (u, div τ)L2(�) + (v, div σ)L2(�)

+ (u,b1 · τ)L2(�) − (v,b2 · σ)L2(�) + (γ u, v)L2(�). (1.4)

The equivalence to the boundary value problems associated with the linear differential
operators in (1.1) and their well-posedness on the continuous level can be found in
[5,Sect. 2]. This implies the continuous inf-sup conditions [2, 3]

0 < β := inf
x∈H\{0} sup

y∈H\{0}
b(x, y)

‖x‖H‖y‖H = inf
y∈H\{0} sup

x∈H\{0}
b(x, y)

‖x‖H‖y‖H . (1.5)

The existence and uniqueness of discrete solutions and optimal L2 error estimateswere
introduced in [9] for sufficiently fine triangulations in two and three space dimen-
sions under high regularity assumptions, where the pair (σh, uh) is approximated
in RTk(T ) × Pk(T ) with the Raviart-Thomas (RT) for 2D (resp. Raviart-Thomas-
Nedelec for 3D) finite elements.Global L∞ and global L2 and negative normestimates
for the conservation form were discussed in [10, 14] for smooth coefficients.

Provided the coefficientsA and b are Lipschitz continuous, γ is piecewise Lipschitz
continuous and H2 regularity of the adjoint system, an interesting convergence phe-
nomenon for the BDMfinite element family is clarified in the fairly general framework
of [8].

Let Mk(T ) be any RT or BDMfinite element space of degree k ∈ N0 and define the
discrete space V (T ) := Mk(T )× Pk(T ) ⊂ H based on a shape-regular triangulation
T with mesh-sizes ď δ, written T ∈ T(δ).

In case A and b are globally Lipschitz continuous and γ is piecewise Lipschitz
continuous, the convergence results in [8] also establish stability in the sense
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978 C. Carstensen et al.

0 < β0 ď inf
T ∈T(δ)

inf
xh∈V (T )\{0}

sup
yh∈V (T )\{0}

b(xh, yh)

‖xh‖H‖yh‖H (=: βh) (1.6)

for some positive δ and β0. With extra work and refined arguments along the lines
of [8], but with reduced elliptic regularity and solution u j ∈ H1

0 (�) ∩ H1+s(�) to
L j u j = f for some s > 0. Those arguments are not valid under Assumption (A).

Modern trends in the mathematics of mixed finite element schemes include local
stable projections with commuting properties [11–13]; those techniques do not seem
to allow the proof of discrete stability and best-approximation under assumption (A).

Piecewise Lipschitz continuous coefficients with regularity in H1+s (for some pos-
itive s) lead in [5] to stability for the lowest-order RT FEM. The equivalence to
nonconforming Crouzex-Raviart finite elements holds more generally [1] and the
combination with the arguments from [17] and [5] might lead to stability results under
the assumption (A) for more examples. In comparison, the methodology of this paper
provides stability for any degree k and any dimension n (RT and BDM merely serve
as popular model examples).

1.3 Contribution of this paper

Under the Assumption (A) and for any RT or BDM finite element space V (T ) :=
Mk(T ) × Pk(T ) ⊂ H := H(div,�) × L2(�) of degree k ∈ N0 [2–4], the discrete
stability (1.6) is established for small mesh-sizes, where either b1 := A−1b and
b2 := 0 or b1 := 0 and b2 := b · A−1 in (1.4).

Theorem 1.1 (discrete stability) For each (positive) β0 < β with β from (1.5), there
exists δ > 0 such that (1.6) holds.

This theorem implies [2, 3] that the mixed finite element problems for the RT and
the BDM finite element families of any degree k and in any space dimension n are
(i) uniquely solvable, (ii) uniformly bounded in H , and (iii) fullfil quasi-optimal error
estimates in the norm of H , whenever the underlying shape-regular triangulation is
sufficiently fine.

Theorem 1.1 and the tools of this paper lead to L2 best-approximation up to oscil-
lations.

Theorem 1.2 (L2 best approximation) Suppose δ > 0 satisfies (1.6) with b(•, •)

defined for general b1,b2 ∈ L∞(�;Rn) under Assumption (A). Assume T ∈ T(δ)

and that x := (σ, u) ∈ H (resp. xh ≡ (σh, uh) ∈ Vh := V (T ) := Mk(T ) × Pk(T ))
satisfy b(x − xh, yh) = 0 for all yh ∈ Vh. Then the following results (a) and (b) hold.
(a) There exists a positive constant C1, which exclusively depends on β0 > 0, the L∞
norms of (all the components of) A1/2b1, A1/2b2, and γ , as well as on the shape-
regularity of T, such that the piecewise mesh size hT in T and the L2 projection �k

onto Pk(T ) satisfy

C−1
1

(‖σ − σh‖A−1 + ‖u − uh‖
) ď min

τh∈Mk (T )
‖σ − τh‖A−1

+‖u − �ku‖ + ‖hT (1 − �k) div σ‖.
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Stability of mixed FEMs for non-selfadjoint indefinite... 979

(b) Suppose b1 = 0 and that the scalar γ (x) is Lipschitz continuous in x ∈ int(T ),
the interior of T ∈ T , with a Lipschitz constant smaller than or equal toLip(γ ). Then
there exists a positive constant C2, which depends exclusively depends on β0 > 0,
‖A1/2b2‖L∞(�), Lip(γ ), and the shape-regularity of T, such that

C−1
2 ‖σ − σh‖A−1 ď min

τh∈Mk (T )
‖σ −τh‖A−1+‖hT (u − �ku)‖+‖hT (1 − �k) div σ‖.

The additional oscillations ‖hT (u−�ku)‖ and ‖hT (1−�k)(div σ)‖ can be higher-
order contributions and then these terms explain the improved convergence of one
variant for the BDM finite element family in [8] under Assumption (A).

This article, thus, generalises earlier contributions [5, 8–10, 12–14] for smooth
or piecewise Lipschitz continuous coefficients to L∞ coefficients without any fur-
ther assumptions. The compactness argument of Schatz and Wang [17] for the
displacement-oriented problem does not apply immediately to the mixed formula-
tion in H(div) × L2. Remark 12 below explains that no uniform L2 approximation
of the divergence component holds. This paper therefore compensates the lack of
compactness by the computation and analysis of an optimal test function (the dual
solution y in (1.7) of Sect. 1.4 below). Recent best-approximation for the flux in L2

from the medius analysis [6, 15] combines with the compactness for the (dual) PDE.
This and a careful shift of the discrete divergence circumvents the aforementioned
lack of compactness in the divergence variable. In fact, this new methodology avoids
any regularity argument and any Fortin interpolation at all.

1.4 Motivation

This subsection outlines the proof of the discrete inf-sup stability (1.6) in an abstract
framework to guide the reader through the arguments. Suppose Xh × Yh is a finite
dimensional subspace of H × H with dual X∗

h × Y ∗
h and let xh ∈ S(Xh), i.e., xh

belongs to Xh and has norm ‖xh‖H = 1. Recall (1.5) and the well-posedness of the
problem (1.3). Then, the dual problem is well-posed as well and 〈xh, •〉H = b(•, y)
has a unique dual solution y in the Hilbert space (H , 〈•, •〉H ). The continuous inf-sup
condition (1.5) shows

β ‖y‖H ď ‖b(•, y)‖H∗ = ‖xh‖H = 1, whence ‖y‖H ď 1/β (1.7)

is bounded. Suppose that yh ∈ Yh is a close approximation to y with ‖y − yh‖H ď ε

for some positive ε < 1/‖b‖, where ‖b‖ is the operator norm of the bilinear form
b(•, •). Since

1 = b(xh, y) = b(xh, yh) + b(xh, y − yh) ď ‖b(xh, •)‖Y ∗
h
‖yh‖H + ε‖b‖,

it remains to bound ‖yh‖H , e.g., with the triangle inequality

‖yh‖H ď ‖y‖H + ‖y − yh‖H ď 1/β + ε.
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The combination of the previous two displayed formulas gives a lower bound for
‖b(xh, •)‖Y ∗

h
. Under the assumption that ε is independent of y and so of xh , this

estimate reads

β
1 − ε‖b‖
1 + εβ

ď βh := inf
xh∈Xh\{0}

sup
yh∈Yh\{0}

b(xh, yh)

‖xh‖H‖yh‖H . (1.8)

This provesβ0 ď β(1−ε‖b‖)/(1+εβ) provided the approximation error ‖y−yh‖H is
small independently of Xh ×Yh and xh ∈ S(Xh). A detailed investigation in Sect. 3.3
below reveals that the above strong form of a uniform approximation appears neither
available in the norm of H = H(div,�) × L2(�) (cf. Remark 3.4) nor necessary for
the stability under assumption (A). Recent results from a medius analysis [6, 15] and
a careful shift of the discrete divergence variable successfully circumvent a uniform
approximation in H .

1.5 Structure of the paper

Section 2 starts with the pre-compactness for uniform approximation and the pre-
cise assumptions on the set of admissible triangulations T. The other two preliminary
subsections concern the L2 best-approximation of the fluxes and some discrete approx-
imation result for the RT finite element family.

The stability analysis in Sect. 3 is based on the dual solution y in the conservative
formulation characterised in Sect. 3.1. One contribution of y involves the PDEL2φ =
g and allows for some pre-compacness and uniform approximation in Sect. 3.2. The
proof of Theorem 1.1 concludes Sect. 3. A combination of the stability result (1.6)
with the approximation arguments leads in Sect. 4 to Theorem 1.2, which generalises
[6, 15] to non-selfadjoint indefinite second-order linear elliptic problems.

2 Preliminaries

This section introduces notations used in the paper, fixes the assumptions on the
admissible triangulation T, discusses an abstract version of compactness argument in
[17], and then recalls some L2 best-approximation property and concludes with an
observation for the RT finite element family.

2.1 Notation

Standard notation on Lebesgue and Sobolev spaces L2(�), L∞(�), H1
0 (�),

H−1(�) ≡ H1
0 (�)∗, and H(div,�) apply throughout this paper. The L2 scalar prod-

uct (•, •)L2(�) induces the norm ‖ • ‖ := ‖ • ‖L2(�) and the orthogonality relation ⊥.
Whereas ‖ • ‖ denotes the norm in L2(�) with the exception of the abbreviation

‖b‖ for the bound of the bilinear form b(•, •), the vector space L2(�;Rn) is endowed
with the weighted scalar product (•, •)A−1 := (A−1•, •)L2(�) and induced norm
‖ • ‖A−1 := ‖A−1/2 • ‖ and so, for any τ ∈ L2(�;Rn), is its distance dist(τ, Mh) :=
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Stability of mixed FEMs for non-selfadjoint indefinite... 981

minτh∈Mh ‖τ − τh‖A−1 to any subspace Mh of L2(�;Rn). The norm ‖(τ, v)‖H in the
Hilbert space H(div,�) is weighted with A−1 in L2(�;Rn) for the flux variable so
the Hilbert space H ≡ H(div,�) × L2(�) has the weighted scalar product 〈•, •, 〉H
with the induced norm ‖(τ, v)‖H ,

‖(τ, v)‖2H := ‖τ‖2A−1 + ‖ div τ‖2 + ‖v‖2 for all (τ, v) ∈ H . (2.1)

Duality brackets have the dual pairing as an index as in 〈•, •, 〉H−1(�) × H1
0 (�)

above. To abbreviate the definition of inf-sup constants throughout this paper, let
S(V ) := {v ∈ V : ‖v‖V = 1} for any normed linear space (V , ‖ • ‖V ).

All emerging generic positive constantsC1, . . . ,C8 in this paper exclusively depend
on α, α, ‖b‖L∞ , ‖b1‖L∞ , ‖b2‖L∞ , and ‖γ ‖L∞ as well as on α in (1.2) and β in (1.5)
and on the class of admissible triangulations T specified in Subsection 2.2.

2.2 Assumptions on the discretization

The finite element spaces are based on admissible triangulations, the set T of all
of those has certainly infinite cardinality; the point is that the constants in standard
interpolation error estimates become universal through uniform shape regularity.

Definition 2.1 (admissible triangulations) The set of admissible triangulations T is
a set of shape-regular triangulations of the polyhedral bounded Lipschitz domain
� ⊂ R

n into simplices with uniform shape regularity and arbitrary small mesh sizes.
Let hmax(T ) := max hT for the piecewise constant mesh-size hT for T ∈ T, defined
by hT |T := diam(T ) in T ∈ T , and abbreviate T (δ) := {T ∈ T : hmax(T ) ď δ}.

Given T ∈ T, let Pk(T ) denote the polynomials of total degree at most k ∈ N0
seen as functions on T ∈ T ∈ T and set Pk(T ) := {vk ∈ L∞(�) : ∀T ∈ T , vk |T ∈
Pk(T )}. Let �k : L2(�) → L2(�) be the L2 projection onto Pk(T ) with respect to
T ∈ T.

Definition 2.2 (discrete spaces) Any T ∈ T is associated to the finite-dimensional
subspace V (T ) = Mk(T ) × Pk(T ) of V := L2(�;Rn) × L2(�) with Mk(T ) :=
RTk(T ) or Mk(T ) := BDMk(T ) of order k ∈ N0 from [2].

The best-approximation error reads dist(v, V (T )) := inf{‖v − vh‖ : vh ∈ V (T )}
with the weighted L2 norm, ‖v‖2 = ‖τ‖2A−1 +‖w‖2 for v = (τ, w) ∈ V . The density
of smooth functions and standard approximation results for smooth functions proves
the well-known pointwise convergence in the sense that each v ∈ V satisfies [2]

lim
δ→0+ sup

T ∈T(δ)

dist(v, V (T )) = 0. (2.2)

2.3 Pre-compactness

This subsection adopts the key argument of [17].
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982 C. Carstensen et al.

Lemma 2.3 (uniform approximation on compact sets) Suppose that K is a non-empty
pre-compact subset of V := L2(�;Rn) × L2(�) with (2.2) for each v ∈ K. Then

lim
δ→0+ sup

v∈K
sup

T ∈T(δ)

dist(v, V (T )) = 0. (2.3)

Proof Given any ε > 0 and v ∈ K , let B(v, ε/2) be the open ball inV with center v and
radius ε/2. The open cover {B(v, ε/2) : v ∈ K } of the compact set K contains a finite
sub-cover and so there exist k1, . . . , kJ ∈ K with K ⊂ ⋃

j=1,...,J B(k j , ε/2). For each
k j ∈ K , (2.2) leads to δ j > 0 such that T ∈ T (δ j ) implies dist(k j , V (T )) < ε/2.
Then δ := min{δ1, . . . , δJ } implies T(δ) ⊂ ⋂

j=1,...,J T(δ j ). Given any T ∈ T(δ)

and any v ∈ K ⊂ ⋃
j=1,...,J B(k j , ε/2), there exists j ∈ {1, . . . , J } with ‖v − k j‖ <

ε/2. Since T ∈ T(δ j ), dist(k j , V (T )) < ε/2. This and a triangle inequality show
dist(v, V (T )) ď ‖v − k j‖ + dist(k j , V (T )) < ε/2 + ε/2 = ε. ��

The application of the previous lemma to the finite element approximation of the
solution of the PDE reads as follows.

Lemma 2.4 (uniform approximation of solutions) For any ε > 0 there exists some
δ > 0 such that, given any g ∈ L2(�) and the weak solution φ ∈ H1

0 (�) to
L2φ = g (with L2 from (1.1)), the vector v := (A∇φ,b · ∇φ + γφ) ∈ V satis-
fies supT ∈T(δ) dist(v, V (T )) ď ε ‖g‖.
Proof The linear and bounded bijective differential operator L2 : H1

0 (�) → H−1(�)

has a bounded inverse. The embedding ι : L2(�) ↪→ H−1(�) is compact and so
is the composition L−1

2 ◦ ι : L2(�) → H1
0 (�). Define the operator T : L2(�) →

L2(�;Rn) × L2(�) for any g ∈ L2(�) by

T (g) := (A∇φ,b · ∇φ + γφ) with φ := L−1
2 g.

Since L−1
2 ◦ ι is compact, K := T (S(L2(�)) is pre-compact in V = L2(�;Rn) ×

L2(�). Given any ε > 0 the approximation result (2.2) and Lemma 2.3 lead to a
positive δ with (2.3). Consequently, the assertion supT ∈T(δ) dist(v, V (T )) ď ε ‖g‖
holds for all g ∈ S(L2(�)) and corresponding v := (A∇φ,b · ∇φ + γφ) ∈ V . A
rescaling proves the result for all g ∈ L2(�).

2.4 L2 best-approximation of the fluxes

Themedius analysis ofmixed finite elementmethods employs arguments from a priori
and a posteriori error analysis [6, 15] to prove new L2 best-approximation results.
Recall that �k is the L2 projection onto Pk(T ) and hT is the mesh-size associated to
T .

Lemma 2.5 (flux L2 best-approximation) There exists a constant C3, which depends
on the shape-regularity in T , on � and on α, α, such for any p ∈ H(div,�) and any
T ∈ T, there exists ph ∈ Mk(T ) such that div ph = �k div p and

C−1
3 ‖p − ph‖A−1 ď dist(p, Mk(T )) + ‖hT (1 − �k) div p‖.
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Stability of mixed FEMs for non-selfadjoint indefinite... 983

This is the L2 best-approximation result from [15,Lemma 5.1] for mixed finite
element approximations for the unit matrix A. Although with a different focus, the
paper [6] introduces a general frameworkwith amesh-dependent norm ‖•‖h in Pk(T );
while [11,Eq (3.6)] presents a localized refinement of this lemma.

Proof Given p ∈ H(div,�), the right-hand sides F(w) := (w, div p)L2(�) and
G(q) := (p,q) lead in the elliptic mixed formulation (for the Laplacian)

(σ,q) − (u, div q)L2(�) + (w, div p)L2(�) = G(q) + F(w) for all (q, w) ∈ H

to the unique solution (σ, u) ≡ (p, 0) ∈ H . Its straight-forward mixed finite element
discretisation substitutes H by Vh := Mk(T ) × Pk(T ) and leads to a unique discrete
solution (ph, vh) ∈ Vh with div ph = �k div p. This and [6,Thm 2.2] lead to the
asserted best-approximation result (in terms of (non-weighted) L2 norms)

C−1
4 ‖p − ph‖ ď inf

qh∈Mk (T )
‖p − qh‖ + ‖hT (1 − �k) div p‖.

The constant C4 from [6, 15] does not depend on the coefficients A, b, γ but depends
on the shape-regularity in T and on �. The equivalence of norms concludes the proof
and leads to the asserted constant C3, which depends on C4 and α, α. ��

2.5 A discrete approximation result for Raviart-Thomas functions

In any space-dimension n and degree k, the RT functions satisfy a rather particular
approximation estimate with the componentwise L2 projection �k onto Pk(T ).

Lemma 2.6 Any τRT ∈ RTk(T ) satisfies ‖τRT −�kτRT ‖ ď n
(n+1)(n+k)‖hT div τRT ‖.

The proof will be postponed to the appendix because of its focus on the RT finite
element shape functions. The statement of the above lemma fails for the BDM finite
element family.

3 Stability analysis

This section deals with approximation of fluxes and stability result. The design of a
test function in the proof of a discrete inf-sup condition is based on the characterisation
and approximation of a dual solution.

3.1 Dual solution and conservative formulation

The inner structure of the dual solution y exploits the elliptic PDE and generates
some compactness argument in the subsequent subsection. Recall that the operator
L2 : H1

0 (�) → H−1(�) from (1.1) is bijective.

123



984 C. Carstensen et al.

Theorem 3.1 (dual solution in conservative formulation) Suppose b1 := A−1b and
b2 ≡ 0 a.e. in � in (1.4). Then x = (σ, u) ∈ H and y = (ζ, z) ∈ H satisfy
〈x, •〉H = b(•, y) in H if and only if

ζ = σ − A∇φ and z = div σ − φ a.e. in �

for theweak solutionφ ∈ H1
0 (�) toL2φ = g := b·A−1σ+(γ −1) div σ−u ∈ L2(�).

The function φ originates from a known L2 orthogonal decomposition

L2(�;Rn) = ∇H1
0 (�) ⊕ H(div=0,�) (3.1)

with H(div=0,�) := {τ ∈ H(div,�) : div τ = 0 a.e. in �}. The decomposition
(3.1) is also useful in the proof of equivalence of the displacement formulation with
the differential operators in (1.1) to the mixed formulations with (1.3).

Proof of Theorem 3.1 For the general version of the bilinear form b(•, •), the equation
〈x, •〉H = b(•, y) is equivalent to u = b1 · ζ + γ z − div ζ a.e. in � and

(τ,A−1(ζ − σ) − zb2)L2(�) + (z − div σ, div τ)L2(�) = 0 for all τ ∈ H(div,�).

(3.2)

The test with τ ∈ H(div=0,�) proves that A−1(σ − ζ ) + zb2 ⊥ H(div=0,�) and
so (3.1) leads to φ ∈ H1

0 (�) with

A∇φ = σ − ζ + zAb2 a.e. in �.

This identity allows the substitution of A−1(ζ − σ) − zb2 in the above formula (3.2)
with general τ ∈ H(div,�). Then, an integration by parts shows the resulting identity
(φ + z − div σ, div τ) = 0. The surjectivity of div : H(div,�) → L2(�) proves

div σ = φ + z a.e. in �.

The combination of the three preceding identities leads to the PDE

− div(A∇φ) + b1 · A∇φ + γφ = − div(zAb2) + (b1 · Ab2) z
+b1 · σ + (γ − 1) div σ − u

in the sense of distributions. Since b2 = 0, the right-hand side g belongs to L2. This
proves one direction of the assertion; the direct proof of the converse is omitted. ��
Remark 3.2 (nodivergence formulation)Theproof shows the extra term− div(zAb2) ∈
H−1(�) in case (1.4) is considered for non-zero b2 ∈ L∞(�;Rn). This term does
not belong to L2(�) under Assumption (A) and is, therefore, excluded.
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3.2 Approximation of the fluxes

The subsequent lemma describes the uniform approximation of the flux variable by a
combination of the compactness argument and the L2 best-approximation of Subsec-
tions 2.3 and 2.4.

Lemma 3.3 (flux approximation) Given any ε > 0, there exists δ > 0 such that the
following holds for all T ∈ T(δ) and g ∈ L2(�). There exists some ph ∈ Mk(T ) that
approximates p := A∇φ ∈ H(div,�) for the weak solution φ ∈ H1

0 (�) to L2φ = g
with

div ph = �k div p and ‖p − ph‖A−1 ď ε‖g‖.

Proof Given any ε > 0 and the constant C3 from Lemma 2.5, Lemma 2.4 leads to a
positive δ ď min{1, 2−1ε/C3} with

sup
T ∈T(δ)

dist ((A∇φ,b · ∇φ + γφ), V (T )) ď 2−3/2ε/C3 ‖g‖

(the distance is with respect to the weighted norm ‖ • ‖A−1 in L2(�;Rn) and ‖ • ‖ in
L2(�)). Lemma 2.5 applies to p := A∇φ with div p = b ·∇φ+γφ−g ∈ L2(�) and,
for any T ∈ T(δ), leads to some approximation ph ∈ Mk(T ) with div ph = �k div p
and

C−1
3 ‖p − ph‖A−1 ď dist(p, Mk(T )) + δ‖(1 − �k)(b · ∇φ + γφ − g)‖

ď dist(p, Mk(T )) + dist(b · ∇φ + γφ, Pk(T )) + δ ‖g‖
ď 21/2 dist((p,b · ∇φ + γφ), V (T )) + δ ‖g‖ ď C−1

3 ε ‖g‖.

This concludes the proof. ��
Remark 3.4 (no uniformapproximation in H(div)) Lemma3.3 does not state a uniform
approximation estimate for the divergence and, in fact, an estimate of the form‖ div(p−
ph)‖ ď ε‖g‖ cannot hold in general. To see this, adopt the notation of the proof of
Lemma 3.3 and a reverse triangle inequality for

‖g − �kg‖ − ‖ div(p − ph)‖ ď ‖(1 − �k)(b · ∇φ + γφ)‖ ď ε/(2C3) ‖g‖.

The flux p = A∇L−1
2 g depends on g ∈ S(L2(�)) and so does the crucial term

‖ div(p − ph)‖ = ‖(1 − �k) div p‖. Hence, sup{‖g − �kg‖ : g ∈ S(L2(�))} = 1
implies

1 − ε/(2C3) ď sup{‖(1 − �k) div(A∇L−1
2 g)‖ : g ∈ S(L2(�))}.

Therefore, the approximation error ‖ div(p− ph)‖ will not tend to zero uniformly for
all g ∈ S(L2(�)) as ε and δ tend to zero. ��
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Example 3.5 (RT approximation in H(div) for particular g) The stability analysis in
Subsection 1.4 concerns a discrete xh := (σh, uh) with norm ‖(σh, uh)‖H = 1 and
leads in Theorem3.1 to the particular right-hand side g := b·A−1σh+(γ −1) div σh−
uh with ‖g‖ ď C5 < ∞ for the essential supremum C2

5 of |A−1/2b|2 + |γ − 1|2 + 1
in �. This g allows for a uniform approximation of p by ph in H(div,�) for the RT
finite element family.

For instance, in the extreme case of piecewise constant coefficients, g − �kg =
b ·A−1(1−�k)σh . WithC6 := ‖A−1b‖L∞(�), Lemma 2.6 shows ‖g−�kg‖ ď δC6.
The combination with Lemma 3.3 lead to ph with ‖p − ph‖H(div,�) ď ε C5 + δ C6.

This and the arguments of Subsection 1.4 lead to the discrete stability (1.6).

3.3 Proof of theorem 1.1

Given any 0 < ε < β/‖b‖, choose δ > 0 as in Lemma 3.3. Suppose T ∈ T(δ)

and let xh = (σh, uh) ∈ Vh := Mk(T ) × Pk(T ) have norm ‖xh‖H = 1 and define
g := b · A−1σh + (γ − 1) div σh − uh . Replace x by xh in Theorem 3.1 and let
φ ∈ H1

0 (�) solve L2φ = g to define ζ = σh − A∇φ and z = div σh − φ. Then
y = (ζ, z) ∈ H is the dual solution and solves 〈xh, •〉H = b(•, y) in H for the
bilinear form (1.4) (with b1 := A−1b and b2 ≡ 0 a.e. in �). Lemma 3.3 applies to
p := A∇φ and leads to ph with div ph = �k div p and ‖p − ph‖A−1 ď εC5. Hence,
ζh := σh − ph and zh := �k z define yh := (ζh, zh) ∈ Vh with

‖yh‖H ď ‖y‖H + ‖ζ − ζh‖A−1 ď ‖y‖H + εC5 (3.3)

as ‖ div ζh‖ = ‖�k div ζ‖ ď ‖ div ζ‖, ‖zh‖ = ‖�k z‖ ď ‖z‖ and div σh ∈ Pk(T ).
Moreover,

‖ζ − ζh‖2A−1 + ‖z − zh‖2 ď ε2 C2
5 + ‖φ − �kφ‖2.

Piecewise Poincaré inequalities (with the Payne-Weinberger constant 1/π for con-
vex domains [16]) show ‖φ − �kφ‖ ď δ/π‖∇φ‖. Recall that H1

0 (�) is endowed
with the seminorm ‖∇ • ‖ and let CF denote the constant in the Friedrichs inequality
‖ • ‖ ď CF‖∇ • ‖ in H1

0 (�). Note that (1.2) leads to α ‖∇φ‖ ď sup{a(ψ, φ) :
ψ ∈ H1

0 (�), ‖∇ψ‖ = 1}. Hence a(ψ, φ) = 〈L2φ,ψ〉H−1(�)×H1
0 (�) =

〈g, ψ〉H−1(�)×H1
0 (�) ď CF‖g‖ implies α ‖∇φ‖ ď CF C5. The combination with

Poincaré inequalities shows ‖φ − �kφ‖ ď δCF C5/(α π) and so

‖ζ − ζh‖2A−1 + ‖z − zh‖2 ď ε2 C2
5 + δ2C2

F C2
5/(α

2 π2) =: (ε′)2.

Since uh ⊥ div(ζ − ζh) and z − zh ⊥ div σh (⊥ denotes orthogonality in L2(�)),

b(xh, y − yh) = (σh + buh, ζ − ζh)A−1 + (γ uh, z − zh)

ď ε′ (‖σh + buh‖2A−1 + ‖(1 − �k)(γ uh)‖2
)1/2
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ď ε′ (2‖σh‖2A−1 + 2‖A−1/2b‖2L∞(�)‖uh‖2 + ‖γ ‖2L∞(�)‖uh‖2
)1/2

ď ε′ C7

with the constant C2
7 := max{2, 2‖A−1/2b‖2L∞(�) + ‖γ ‖2L∞(�)}. The arguments of

Sect. 1.4 lead to

1=‖xh‖2H =b(xh, y)=b(xh, yh) + b(xh, y − yh) ď ‖b(xh, •)‖V ∗
h
‖yh‖H + ε′ C7.

(3.4)

Since β‖y‖H ď ‖b(•, y)‖H∗ = ‖xh‖H = 1 implies ‖y‖H ď 1/β, (3.3) reads
‖yh‖H ď 1/β + εC5. This and (3.4) verify

1 − ε′ C7 ď ‖b(xh, •)‖V ∗
h
‖yh‖H ď ‖b(xh, •)‖V ∗

h
(1/β + εC5).

Since xh was arbitrary in S(Vh) (with Vh endowed with the norm in H ),

β
1 − ε′ C7

1 + ε β C5
ď βh := inf

xh∈S(Vh)
sup

yh∈S(Vh)
b(xh, yh).

Relabelling ε and δ proves the assertion: For any 0 < β0 < β, there exists δ > 0 with
(1.6). This establishes the theorem for the conservative version of the mixed finite
element discretisation with b1 := A−1b and b2 ≡ 0 a.e. in �.

To deduce the same inf-sup constant for the other variant, define b1(•, •) (resp.
b2(•, •)) by (1.6) for b1 := A−1b and b2 ≡ 0 (resp. b1 := 0 and b2 := b · A−1) a.e.
in �. The above proof shows 0 < β0 ď βh and it is elementary to see that

βh = inf
(τh ,vh)∈S(Vh)

sup
(σh ,uh)∈S(Vh)

b1((τh,−vh), (σh,−uh)).

A direct calculation shows b1((τ,−v), (σ,−u)) = b2((σ, u), (τ, v)) for all (σ, u),

(τ, v) ∈ H . This and a duality argument (singular values of a square matrix coincide
with those of its transposed) in the last equality show

βh = inf
(τh ,vh)∈S(Vh)

sup
(σh ,uh)∈S(Vh)

b2((σh, uh), (τh, vh)) = inf
xh∈S(Vh)

sup
yh∈S(Vh)

b2(xh, yh).

Hence, the divergence formulation has the same discrete inf-sup constant βh . ��
Remark 3.6 (δ dependence) The size of δ in (1.6) is hidden behind a compactness argu-
ment of Lemma 3.3. Besides the norms and parameters mentioned in Assumption (A),
the mapping properties of L−1

2 are of relevance as well. A review of the proofs of this
paper shows that there is a finite sub-cover of S(L2(�)) with small balls in H−1(�)

that leads to a finite number of (without loss of generality) smooth functions k1, . . . , kJ
as in the proof of Lemma 2.3. The size of δ is related to the approximation properties
of the weak solutions� j toL2� j = k j a.e. The regularity properties of� j ∈ H1

0 (�)
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are not characterised for Assumption (A): In fact, it is unknown whether � j belongs
to any H1+s(�) for any s > 0. Under Assumption (B) and reduced elliptic regularity,
however, the afore mentioned approximation properties could be quantified more and
reveal further information on δ.

4 L2 best-approximation

The notation of Theorem 1.2 applies throughout this section with continuous and
discrete solutions x = (σ, u) and xh = (σh, uh).

4.1 Proof of theorem 1.2.a

Given p := σ ∈ H(div,�) and T ∈ T(δ), choose σ ∗
h := ph ∈ Mk(T ) as in

Lemma 2.5, and define eh := (σh − σ ∗
h , uh −�ku) ∈ Vh . Given β0 > 0 in (1.6) there

exists some yh = (τh, vh) ∈ Vh with ‖yh‖H = 1 and

β0 ‖eh‖H ď b(eh, yh) = b((σh − σ ∗
h , uh − �ku), yh) = b((σ − σ ∗

h , u − �ku), yh).

Since u − �ku ⊥ div τh and vh ⊥ div(σ − σ ∗
h ), the last term is equal to

(σ − σ ∗
h , τh − vh Ab2)A−1 + (u − �ku,b1 · τh + γ vh)L2(�)

ď C8 ‖(σ − σ ∗
h , u − �ku)‖L

in terms of the weighted L2 norm ‖•‖L ď ‖•‖H in H with ‖(τh, vh)‖2L := ‖τh‖2A−1 +
‖vh‖2 ď 1 and with C2

8 = 1 + ‖A1/2b1‖2L∞(�) + ‖A1/2b2‖2L∞(�) + ‖γ ‖2L∞(�).

Consequently, ‖eh‖H ď
(
C8/β0

)
‖(σ − σ ∗

h , u − �ku)‖L . Lemma 2.5 shows

C−1
3 ‖σ − σ ∗

h ‖A−1 ď dist(σ, Mk(T )) + ‖hT (1 − �k) div σ‖. (4.1)

This and the distance distL (measured in the norm ‖ • ‖L ) lead to

‖eh‖H ď C8 max{1,C3}/β0 (distL((σ, u), Vh) + ‖hT (1 − �k) div σ‖) .

This, (4.1), and a triangle inequality conclude the proof. ��

4.2 Proof of theorem 1.2.b

Throughout this subsection, let b1 ≡ 0 and b2 := A−1b a.e. in � in (1.4) and
let f ∈ L2(�) be a fixed right-hand side for the continuous and discrete problem
L2u = f .
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Return to the proof of the previous subsection with eh and follow the first lines
until

β0 ‖eh‖H ď b(eh, yh) = (σ − σ ∗
h , τh − vh Ab2)A−1 + (u − �ku, γ vh)L2(�).

Abbreviate γ := �0γ and utilize the Lipschitz continuity of the coefficients γ on
each simplex

‖�k(γ (u − �ku))‖ = ‖�k((γ − γ )(u − �ku))‖ ď Lip(γ )‖hT (u − �ku)‖.

This controls the above term (u − �ku, γ vh)L2(�) ď ‖�k(γ (u − �ku))‖ ‖vh‖ and
leads to

‖σ ∗
h − σh‖A−1/2 ď ‖eh‖L ď ‖eh‖H ď C8/β0 ‖σ − σ ∗

h ‖A−1

+Lip(γ )/β0 ‖hT (u − �ku)‖.

A triangle inequality in L2(�;Rn) is followed by (4.1) in the proof of

‖σ − σh‖A−1/2 ď C3(1 + C8/β0)
(
dist(σ, Mh) + ‖hT (1 − �k) div σ‖

)

+ Lip(γ )/β0 ‖hT (u − �ku)‖.

This completes the rest of the proof. ��

4.3 Conservative formulation

Theorem 2.a includes an error estimate for the conservative formulation with b1 :=
A−1b and b2 := 0 in (1.4) and σ = −A∇u − u b with div σ = f − γ u. The
refined analog of Theorem 2.b is not expected because of an extra term exemplified
in the extreme case of piecewise constant coefficients b1 and γ . The arguments of
Subsection 4.1 lead to

β0 ‖eh‖H ď b((σ − σ ∗
h , u − �ku), yh)

= (σ − σ ∗
h , τh)A−1 + ((u − �ku)b1, τh − �kτh)L2(�).

The last term is not of higher order for the BDMfinite element family as pointed out in
[8] through numerical evidence. For the RT finite element family, however, Lemma 2.6
shows ‖τh −�kτh‖�‖hT div τh‖ and then leads to a higher-order contribution in the
asserted inequality of Theorem 1.2.b as the final result. ��

The arguments could be generalised, but those result are of limited relevance as
the convergence order is not generally improved in comparison with Theorem 2.a.
An exception is the example of [7,Sect 3.5] (with b = 0 = γ on the unit ball) when
Theorem 1.2.b guarantees O(δ2) for the L2 flux error for k = 0.
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Appendix: proof of Lemma 2.6

For any simplex T ⊂ R
n , let Pk(T ;Rn) be the linear space of vector-valued poly-

nomials qk of degree at most k in any component and let ‖ • ‖ abbreviate the L2

norm ‖ • ‖L2(T ) on T . The particular structure of the RT function τRT leads to some
polynomial g ∈ Pk(T ) and

τRT = g(x) x + pk for all x ∈ T and some pk ∈ Pk(T ;Rn).

The argument x (will always belong to T ) is often neglected as in τRT := τRT (x) or
pk = pk(x), while (with a small inconsistency, but the right emphasis) written out
in the leading term g(x) x . The latter polynomial is either identically zero or of exact
degree k+1 in the sense that g is a sum ofmonomials of exact degree k. Adopt a multi-
index notation with α = (α1, . . . , αn) ∈ N

n
0 and the monomial xα := xα1

1 xα2
2 · · · xαn

n
of degree k = |α| := α1 + · · · + αn for any x = (x1, . . . , xn) ∈ T . With real
coefficients cα for any α ∈ N

n
0 of degree |α| = k,

g(x) =
∑

|α|=k

cαx
α for all x ∈ T .

(The symbol |α| = k under the sum sign abbreviates the set of all multi-indices
α = (α1, . . . , αn) ∈ N

n
0 of degree k). The divergence

div(g(x) x) = n g(x) + x · ∇g(x)

of the vector-valued polynomial g(x) x of degree k + 1 with respect to x is computed
with the observation that, for any α ∈ N

n
0 with |α| = k,

x · ∇(xα) =
n∑

j=1

x j∂(xα)/∂x j =
n∑

j=1

α j x
α = k xα.
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Consequently, x · ∇g(x) = k g(x) and

div(g(x) x) = (n + k) g(x) for all x ∈ T .

This proves div τRT = div(g(x) x) + qk−1 = (n + k) g(x) + qk−1 for some
qk−1 ∈ Pk−1(T ). The comparison with τRT = g(x) x + pk leads to some polynomial
remainder rk ∈ Pk(T ;Rn) in

τRT = (n + k)−1 (div τRT ) x + rk for all x ∈ T .

In other words, since div τRT ∈ Pk(T ),

(n + k)(1 − �k)τRT = (1 − �k) ((div τRT ) x) = (1 − �k) ((div τRT ) (x − c))

for any constant vector c. For instance, the center of inertia c = mid(T ) of T with
diameter hT satisfies |x − mid(T )| ď (n/(n + 1)) hT for all x ∈ T . This leads to

(n + k)‖τRT − �kτRT ‖ = ‖(1 − �k) ((div τRT )(x − mid(T ))) ‖
ď ‖(div τRT )(x − mid(T ))‖ ď (n/(n + 1)) hT ‖ div τRT ‖.

This proves ‖τRT − �kτRT ‖L2(T ) ď n hT
(n+1)(n+k)‖ div τRT ‖L2(T ). ��
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