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Abstract
This paper proposes two convergent adaptive mesh-refining algorithms for the hybrid
high-order method in convexminimization problemswith two-sided p-growth. Exam-
ples include the p-Laplacian, an optimal design problem in topology optimization, and
the convexified double-well problem. The hybrid high-order method utilizes a gradi-
ent reconstruction in the space of piecewise Raviart–Thomas finite element functions
without stabilization on triangulations into simplices or in the space of piecewise
polynomials with stabilization on polytopal meshes. The main results imply the con-
vergence of the energy and, under further convexity properties, of the approximations
of the primal resp. dual variable. Numerical experiments illustrate an efficient approx-
imation of singular minimizers and improved convergence rates for higher polynomial
degrees. Computer simulations provide striking numerical evidence that an adopted
adaptive HHO algorithm can overcome the Lavrentiev gap phenomenon even with
empirical higher convergence rates.
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1 Introduction

Adaptive mesh-refining is vital in the computational sciences and engineering with
optimal rates known in many linear problems [19, 21, 29, 54]. Besides eigenvalue
problems [6, 23, 24, 33] much less is known for stationary nonlinear PDEs. The few
positive results in the literature concern mainly conforming FEM with plain conver-
gence results [4, 12, 22, 41, 56]. An important exception is the p-Laplacian in [5],
where the notion of a quasi-norm enables two-sided error control. The next larger class
of convex minimization problems from [27] emerged in the relaxation of non-convex
minimization problems with enforced microstructures and this is in the focus of this
paper. This class is characterized by a two-sided growth condition on a C1 energy
density W with an additional convexity control that enables a unique stress DW (Du)

independent of the multiple minimizers u on the continuous level. In fact, there is no
further control of the convex closed set of minimizers in beyond a priori boundedness.
This leads to the reliability-efficiency gap [14] in the a posteriori error control: If the
mesh-size tends to zero, the known guaranteed lower and upper error bounds converge
with a different convergence rate. In other words, the efficiency index tends to infinity.
This dramatic loss of sharp error control does not prevent convergence of an adaptive
algorithm in general, but it makes the analysis of plain convergence much harder and
seemingly disables any proof of optimal rates.

The numerical experiments in [28, 38] motivate this paper on the adaptive HHO.
The only nonconforming scheme known to converge for general convex minimization
problems is [52] for the first-order Crouzeix–Raviart schemes and, according to the
knowledge of the authors, there is no contribution for the convergence of an adaptive
higher-order nonconforming scheme for nonlinear PDEs in the literature. In fact, this
paper is the first one to guarantee plain convergence even for linear PDEs for the HHO
schemes at all. The reason is a negative power of the mesh-size in the stabilization
terms that is overcome in dG schemes for linear PDEs by over-penalization in [7]
to be close to conforming approximations (and then enable arguments for optimal
convergence rates) and recently by generalized Galerkin solutions in a limit space in
[47] for plain convergence. One advantage of the HHO methodology is the absence
of a stabilization parameter and, hence, this argument is not employed in this paper.

The main contributions of this paper are adaptive HHO methods with and without
stabilization with guaranteed plain convergence for the class of convex minimization
problems from [27]. Three types of results are available for those schemes.

(a) IfW isC1 and convexwith two-sided p-growth, then theminimal discrete energies
converge to the exact minimal energy.

(b) If furthermore W satisfies the convexity control in the class of degenerate convex
minimization problems of [27], then the discrete stress approximations converge
to the (unique) exact stress σ .

(c) If W is even strongly convex, then the discrete approximations of the gradients
converge to the gradient Du of the (unique) exact minimizer u.

The two-sided growth condition excludes problems that exhibit the Lavrentiev gap
phenomenon [48] and sowe only comment on the lowest-order schemes that overcome
the Lavrentiev gap owing to the Jensen inequality.
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Convergent adaptive hybrid higher-order schemes for convex… 331

Numerical experiments are carried out on simplicial meshes, but the design of
the stabilized HHO method allows for polytopal meshes for a fairly flexible mesh-
design, e.g., in 3D. The mesh-refinement of those schemes is less elaborated (e.g., in
comparison with [55] on simplicial meshes) and remains as an important aspect for
future research.

The remaining parts of this paper are organized as follows. Section 2 introduces the
continuous minimization problem, the adaptive mesh-refining algorithm, and themain
results of this paper. Section 3 reviews the discretization with the HHO methodology
on simplicial triangulations without stabilization. Section 4 departs from discrete com-
pactness, proves the plain convergence of an adaptive scheme, and concludes with an
application to the Lavrentiev gap. Section 5 treats HHOmethods on general polytopal
meshes with stabilization and proves the results of Sect. 4.2. Numerical results for
three model examples from Sect. 2.4 below are presented in Sect. 6 with conclusions
drawn from the numerical experiments.

2 Mathematical setting andmain results

This paper analyzes the convergence of an adaptive mesh-refining algorithm based on
the hybrid high-order methodology [35, 37, 39] for convex minimization problems
with a two-sided p-growth.

2.1 Continuous problem

Given a bounded polyhedral Lipschitz domain � ⊂ R
n and 1 < p < ∞, let W ∈

C1(M) withM:=R
m×n satisfy

(A1) (convexity) W is convex;
(A2) (two-sided growth) c1|A|p − c2 ≤ W (A) ≤ c3|A|p + c4 for all A ∈ M.

The constants c1, c3 > 0 and c2, c4 ≥ 0 are universal in this paper and independent of
the argument A ∈ M; the same universality applies to c5, c6 in (2.5)–(2.6). Throughout
this paper, the boundary ∂� of the domain � is divided into a compact Dirichlet part
�D with positive surfacemeasure and a relatively open (and possibly empty) Neumann
part �N = ∂�\�D. Given f ∈ L p′

(�;Rm), g ∈ L p′
(�N;Rm) with 1/p+1/p′ = 1,

and uD ∈ V :=W 1,p(�;Rm), minimize the energy functional

E(v):=
∫

�

(W (Dv) − f · v) dx −
∫

�N

g · v ds (2.1)

among admissible functions v ∈ A:=uD + VD subject to the Dirichlet boundary
condition v|�D = uD|�D and VD:={v ∈ V : v|�D ≡ 0}.

2.2 Adaptive hybrid high-order method (AHHO)

The adaptive algorithm computes a sequence of discrete approximations of the mini-
mal energy min E(A) in the affine space A = uD + VD of admissible functions in a
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successive loop over the steps outlined below. The first version of the adaptive algo-
rithm focuses on the newest-vertex-bisection (NVB) [55] and the first HHO method
without stabilization on triangulations into simplices. It will be generalized to poly-
topal meshes in Sect. 5.

1. INPUT. The input is a regular initial triangulation T0 of � into simplices, a
polynomial degree k ≥ 0, a positive parameter 0 < ε ≤ k + 1, and a bulk
parameter 0 < θ < 1.

2. SOLVE. Let T� denote the triangulation associated to the level � ∈ N0 with
the set of all sides F�. The hybrid high-order method utilizes the discrete ansatz
space V (T�):=Pk(T�;Rm) × Pk(F�;Rm) with a split of the discrete variables
v� = (vT�

, vF�
) into a volume variable vT�

∈ Pk(T�;Rm) and a skeleton vari-
able vF�

∈ Pk(F�;Rm) of polynomial degree at most k ≥ 0 with respect to the
simplices (T�) and the sides (F�) in the triangulation T�. The proposed numeri-
cal scheme replaces Dv in (2.1) by a gradient reconstruction G� in the space of
piecewise Raviart–Thomas finite element functions 	(T�) = RTpw

k (T�;M) for
a shape-regular triangulation T� of � into simplices. The details on the gradient
reconstruction G� are postponed to Sect. 3.4. The discrete problem computes a
discrete minimizer u� of

E�(v�):=
∫

�

(W (Gv�) − f · vT�
) dx −

∫
�N

g · vF�
ds (2.2)

among v� = (vT�
, vF�

) ∈ A(T�) with the discrete analog A(T�) of A so that
vF�

|F = 
k
FuD for anyDirichlet side F ∈ F�(�D), where
k

F is the L2 projection
onto the polynomials Pk(F) of degree at most k. Let σ�:=
	(T�)DW (Gu�) ∈
	(T�) be the L2 projection of DW (Gu�) onto	(T�). Further details on the hybrid
high-order method follow in Sect. 3 below.

3. REFINEMENT INDICATORS. The computation of the refinement indicator η�

utilizes an elliptic potential reconstruction R�u� ∈ Pk+1(T�;Rm) of the discrete
minimizer u� = (uT�

, uF�
) ∈ A(T�) computed in SOLVE. The definition of

R�u� follows in (3.4)–(3.5) below. Any interior side F ∈ F�(�) is shared by
two simplices T+, T− ∈ T� with F = T+ ∩ T−. The jump [R�u�]F along F is
defined by [R�u�]F :=(R�u�)|T+ − (R�u�)|T− ∈ Pk+1(F;Rm). Given a positive
parameter 0 < ε ≤ k + 1, compute the local refinement indicator

η
(ε)
� (T ):=|T |(εp−p)/n‖
k

T (R�u� − uT )‖p
L p(T ) + |T |εp′/n‖σ� − DW (Gu�)‖p′

L p′ (T )

+ |T |p′/n‖(1 − 
k
T ) f ‖p′

L p′ (T )
+ |T |1/n

∑
F∈F�(T )∩F�(�N)

‖(1 − 
k
F )g‖p′

L p′ (F)

+ |T |(εp+1−p)/n
( ∑

F∈F�(T )∩F�(�D)

‖R�u� − uD‖p
L p(F)

+
∑

F∈F�(T )∩F�(�)

‖[R�u�]F‖p
L p(F) +

∑
F∈F�(T )

‖
k
F ((R�u�)|T − uF )‖p

L p(F)

)

(2.3)
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Convergent adaptive hybrid higher-order schemes for convex… 333

for all T ∈ T� of volume |T | and sides F�(T ) with the abbreviation uT :=uT�
|T

and uF :=uF�
|F . Let η(ε)

� := ∑
T∈T�

η
(ε)
� (T ). The refinement indicator is motivated

by the discrete compactness from Theorem 4.1 below. In fact, if lim�→∞ η
(ε)
� = 0,

then there exists a v ∈ A such that, up to a subsequence, G�u�⇀∇v weakly in
L p(�;M) and uT�

⇀v weakly in L p(�;Rm) as � → ∞. It turns out that v is a
minimizer of the continuous energy E from (2.1).

4. MARK and REFINE. Given a positive bulk parameter 0 < θ < 1, select a subset
M� ⊂ T� of minimal cardinality such that

θη
(ε)
� ≤ η

(ε)
� (M�):=

∑
T∈M�

η
(ε)
� (T ). (2.4)

This marking strategy is known as Dörfler marking. The marked simplices are
refined by the newest-vertex bisection [55] to define T�+1.

5. OUTPUT. The output is a sequence of shape-regular triangulations (T�)�∈N0 , the
corresponding discrete minimizers (u�)�∈N0 , the discrete stresses (σ�)�∈N0 , and

the refinement indicators (η
(ε)
� )�∈N0 . On each level � ≥ 0, let J�u� ∈ V denote

the conforming post-processing of u� from Lemma 3.4 below.

2.3 Main results

The main results establish the convergence of the sequence (E�(u�))�∈N0 of minimal
discrete energies computed by AHHO towards the exact minimal energy.

Theorem 2.1 (plain convergence) Given the input T0, k ∈ N0, 0 < ε ≤ k + 1,
0 < θ < 1, let (T�)�∈N0 , (u�)�∈N0 , and (σ�)�∈N0 be the output of the adaptive algorithm
AHHO from Sect. 2.2. Assume that W satisfies (A1)–(A2), then (a)–(d) hold.

(a) lim�→∞ E�(u�) = min E(A).
(b) The sequence of the post-processing (J�u�)�∈N0 is bounded in V = W 1,p(�;Rn)

and any weak accumulation point of (J�u�)�∈N0 in V minimizes E in A.
(b) Suppose there exists c5 > 0 such that W satisfies, for all A, B ∈ M,

|A − B|r ≤ c5(1 + |A|s + |B|s)(W (A) − W (B) − DW (B) : (A − B)) (2.5)

with parameters r , s from Table 1. Then the minimizer u of E inA is unique and
lim�→∞ G�u� = Du (strongly) in L p(�;M) holds for the entire sequence.

(d) Suppose there exists c6 > 0 such that W satisfies, for all A, B ∈ M,

|DW (A) − DW (B)|̃r ≤ c6(1 + |A|̃s + |B |̃s)
× (W (A) − W (B) − DW (B) : (A − B))

(2.6)

with parameters r̃ , s̃ from Table 1. Then the stress σ :=DW (Du) ∈ L p′
(�;M)

is unique (independent of the choice of a (possibly nonunique) minimizer u)
and lim�→∞ DW (G�u�) = σ (strongly) in L p′

(�;M) and σ�⇀σ (weakly) in
L p′

(�;M) hold for the entire sequence.
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334 C. Carstensen, N. T. Tran

Table 1 Parameters r , s, r̃ , s̃ in
Theorem 2.1 and t, t̃ in Sect. 4.2

Case r s t r̃ s̃ t̃

2 ≤ p < ∞ p 0 1 2 p − 2 2/p′
1 < p < 2 2 2 − p 2/p p′ 0 1

A second focus is on the classical HHO method [34, 35, 37] on general polytopal
meshes M� with a stabilization s�(•, •) defined in (5.1) below. The convergence of
AHHO for the stabilized HHO method on polytopal meshes is established under two
assumptions (M1)–(M2). Further details on (M1)–(M2) and on the stabilized HHO
method follow in Sect. 5.

Theorem 2.2 (plain convergence for stabilized HHO) Given the input M0, k ∈ N0,
0 < ε ≤ min{k+1, (k+1)/(p−1)}, 0 < θ < 1, let (M�)�∈N0 , (u�)�∈N0 , and (σ�)�∈N0

be the output of the adaptive algorithm from Sect. 2.2. Suppose that (M1)–(M2) hold,
then (a)–(d) from Theorem 2.1 hold verbatim and lim�→∞ s�(u�; u�) = 0.

Notice that an additional restriction on the parameter ε is imposed in Theorem 2.2
to control the stabilization s�. The proofs of Theorems 2.1 and 2.2 are postponed to
Sects. 4 and 5.

2.4 Examples

Theorem 2.1 applies to the following scalar examples with m = 1.

2.4.1 p-Laplace

The minimization of the energy E : A → R with the energy density W ∈ C1(Rn),

W (a):=|a|p/p for any a ∈ R
n with 1 < p < ∞,

is related to the nonlinear PDE −divσ = f ∈ L p′
(�) with σ :=∇W (∇u) =

|∇u|p−2∇u ∈ L p′
(�;Rn) subject to the boundary conditions σν = g on �N and

u = uD on �D. The energy density W satisfies (A1)–(A2) and (2.5)–(2.6) [15, 44]. It
is worth noticing that the convergence results of this paper are new even for a linear
model problem with p = 2 for the two HHO algorithms.

2.4.2 Optimal design problem

The optimal design problem seeks the optimal distribution of two materials with
fixed amounts to fill a given domain for maximal torsion stiffness [4, 46]. For fixed
parameters 0 < ξ1 < ξ2 and 0 < μ1 < μ2 with ξ1μ2 = ξ2μ1, the energy density
W (a):=ψ(ξ), a ∈ R

n , ξ :=|a| ≥ 0 with
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Convergent adaptive hybrid higher-order schemes for convex… 335

ψ(ξ):=

⎧⎪⎨
⎪⎩

μ2ξ
2/2 if 0 ≤ ξ ≤ ξ1,

ξ1μ2(ξ − ξ1/2) if ξ1 ≤ ξ ≤ ξ2,

μ1ξ
2/2 − ξ1μ2(ξ1/2 − ξ2/2) if ξ2 ≤ ξ

satisfies (A1)–(A2) and (2.6) [4,Prop. 4.2].

2.4.3 Relaxed two-well problem

Given distinct F1, F2 ∈ R
n in the two-well problem of [30], the convex envelope W

of |F − F1|2|F − F2|2 for F ∈ R
n reads

W (F) = max{0, |F − B|2 − |A|2}2 + 4
(|A|2|F − B|2 − (A · (F − B))2

)

with A = (F2 − F1)/2, B = (F1 + F2)/2, and satisfies (A1)–(A2) and (2.6) [22, 27].

2.5 Notation

Standard notation for Sobolev and Lebesgue functions applies throughout this paper
with the abbreviations V :=W 1,p(�;Rm) = W 1,p(�)m and VD:=W 1,p

D (�;Rm) =
{v ∈ V : v|�D = 0}. In particular, (•, •)L2(�) denotes the scalar product of L

2(�) and

W p′
(div,�;M):=W p′

(div,�)m is the matrix-valued version of

W p′
(div,�):={τ ∈ L p′

(�;Rn) : divτ ∈ L p′
(�)}. (2.7)

For any A, B ∈ M:=R
m×n , A : B denotes the Euclidean scalar product of A and

B, which induces the Frobenius norm |A|:=(A : A)1/2 inM. The context-depending
notation | • | denotes the length of a vector, the Frobenius norm of a matrix, the
Lebesgue measure of a subset of Rn , or the counting measure of a discrete set. For
1 < p < ∞, p′ = p/(p−1) denotes the Hölder conjugate of p with 1/p+1/p′ = 1.
The notation A � B abbreviates A ≤ CB for a generic constant C independent of the
mesh-size and A ≈ B abbreviates A � B � A.

3 Hybrid high-order method without stabilization

This section recalls the discrete ansatz space and reconstruction operators from the
HHO methodology [35, 37, 39] for convenient reading.

3.1 Triangulation

A regular triangulation T� of� in the sense of Ciarlet is a finite set of closed simplices
T of positive volume |T | > 0 with boundary ∂T and outer unit normal νT such
that ∪T∈T�

T = � and two distinct simplices are either disjoint or share one common
(lower-dimensional) subsimplex (vertex or edge in 2D and vertex, edge, or face in 3D).
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336 C. Carstensen, N. T. Tran

LetF�(T ) denote the set of the n+1 hyperfaces of T , called sides of T . Define the set of
all sidesF�:=∪T∈T�

F�(T ), the set of interior sidesF�(�):=F�\{F ∈ F� : F ⊂ ∂�},
the set of Dirichlet sidesF�(�D):={F ∈ F� : F ⊂ �D}, and the set of Neumann sides
F�(�N):={F ∈ F� : F ⊂ �N} of T�.

For any interior side F ∈ F�(�), there exist exactly two simplexes T+, T− ∈ T�

such that ∂T+ ∩ ∂T− = F . The orientation of the outer normal unit νF =
νT+|F = −νT−|F along F is fixed beforehand. Define the side patch ωF :=int(T+ ∪
T−) of F . Let [v]F :=(v|T+)|F − (v|T−)|F ∈ L1(F) denote the jump of v ∈
L1(ωF ) with v ∈ W 1,1(T+) and v ∈ W 1,1(T−) across F (with the abbreviations
W 1,1(T+):=W 1,1(int(T+)) and W 1,1(T−):=W 1,1(int(T−))). For any boundary side
F ∈ F�(∂�):=F� \ F�(�), there is a unique T ∈ T� with F ∈ F�(T ). Then
ωF = int(T ), νF :=νT , and [v]F :=(v|T )|F . The differential operators divpw and Dpw
depend on the triangulation T� and denote the piecewise application of div and D
without explicit reference to T�.

The shape regularity of a triangulation T is the minimumminT∈T �(T ) of all ratios
�(T ):=ri/rc ≤ 1 of the maximal radius ri of an inscribed ball and the minimal radius
rc of a circumscribed ball for a simplex T ∈ T .

3.2 Discrete spaces

The discrete ansatz space of the HHO methods consists of piecewise polynomials on
the triangulation T� and on the skeleton ∂T�:= ∪F�. For a simplex or a side M ⊂ R

n

of diameter hM , let Pk(M) denote the space of polynomials of degree at most k ∈ N0
regarded as functions defined in M . The L2 projection 
k

Mv ∈ Pk(M) of v ∈ L1(M)

is defined by 
k
Mv ∈ Pk(M) with

∫
M

ϕk(1 − 
k
M )v dx = 0 for any ϕk ∈ Pk(M).

The gradient reconstruction in T ∈ T� maps in the space of Raviart–Thomas finite
element functions

RTk(T ):=Pk(T ;Rn) + x Pk(T ) ⊂ Pk+1(T ;Rn).

Let Pk(T�), Pk(F�), and RTpw
k (T�) denote the space of piecewise functions with

respect to the mesh T� or F� and with restrictions to T or F in Pk(T ), Pk(F),
and RTk(T ). The L2 projections 
k

T�
and 
k

F�
onto the discrete spaces Pk(T�)

and Pk(F�) are the global versions of 
k
T and 
k

F , e.g., (
k
T�

v)|T :=
k
T (v|T ) for

v ∈ L1(�). For vector-valued functions v ∈ L1(�;Rm), the L2 projection 
k
T�

onto Pk(T�;Rm):=Pk(T�)
m applies componentwise. This convention extends to the

L2 projections onto Pk(M;Rm):=Pk(M)m and Pk(F�;Rm):=Pk(F�)
m . The space of

lowest-order Crouzeix–Raviart finite element functions reads
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CR1(T�):={vCR ∈ P1(T�) : vCR is continuous

at midpoints of F for all F ∈ F�(�)}. (3.1)

Define the mesh-size function h� ∈ P0(T�) with h�|T ≡ |T |1/n for all T ∈ T�,

the (volume data) oscillation osc( f , T�)
p′ := ∑

T∈T�
hT ‖(1 − 
k

T ) f ‖p′
L p′ (�)

, and the

(Neumann data) oscillation oscN(g,F�(�N))p
′ := ∑

F∈F�(�N) hF‖(1 − 
k
F )g‖p′

L p′ (F)

with the diameter hF = diam(F) of F ∈ F�. (Notice that the shape regularity of T�

implies the equivalence hF ≈ hT ≈ |T |1/n for all T ∈ T�, F ∈ F�(T ).)

3.3 HHO ansatz space

For fixed k ∈ N0, let V (T�):=Pk(T�;Rm) × Pk(F�;Rm) denote the discrete
ansatz space for V in HHO methods [35, 37]. The notation v� ∈ V (T�) means
that v� = (vT�

, vF�
) = ((vT )T∈T�

, (vF )F∈F�
) for some vT�

∈ Pk(T�;Rm) and
vF�

∈ Pk(F�;Rm)with the identification vT :=vT�
|T ∈ Pk(T ;Rm) and vF :=vF�

|F ∈
Pk(F;Rm) for all T ∈ T�, F ∈ F�. The discrete space V (T�) is endowed with the
seminorm

‖v�‖p
� :=‖DpwvT�

‖p
L p(�) +

∑
T∈T�

∑
F∈F�(T )

h1−p
F ‖vT − vF‖p

L p(F) (3.2)

for any v� = (vT�
, vF�

) ∈ V (T�). The setF�\F�(�D) of non-Dirichlet sides gives rise
to the space Pk(F� \F�(�D);Rm) of piecewise polynomials vF�

∈ Pk(F�;Rm) with
the convention vF�

|F ≡ 0 on F ∈ F�(�D) to model homogenous Dirichlet boundary
conditions along the side F ⊂ �D. The discrete linear space VD(T�):=Pk(T�;Rm) ×
Pk(F� \ F�(�D);Rm) ⊂ V (T�), equipped with the norm ‖ • ‖� from (3.2), is the
discrete analogue to VD = W 1,p

D (�;Rm). The interpolation

I� : V → V (T�), v �→ (
k
T�

v,
k
F�

v) (3.3)

gives rise to the discrete space A(T�):=I�uD + VD(T�) of admissible functions.

3.4 Reconstruction operators

The reconstruction operators defined in this section link the two components of v� ∈
V (T�) and provide discrete approximationsR�v� and G�v� of the displacement v ∈ V
and its derivative Dv ∈ L2(�;M).

Potential reconstruction Given T ∈ T� and v� = (vT�
, vF�

) ∈ V (T�) with the
convention vT = vT�

|T and vF = vF�
|F for all F ∈ F�(T ) from Sect. 3.3, the local

potential reconstruction RT v� ∈ Pk+1(T ;Rm) satisfies
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338 C. Carstensen, N. T. Tran

∫
T
DRT v� : Dϕk+1 dx

= −
∫
T

�ϕk+1 · vT dx +
∑

F∈F(T )

∫
F

vF · (Dϕk+1νT )|F ds
(3.4)

for all ϕk+1 ∈ Pk+1(T ;Rm). The bilinear form (D•,D•)L2(T ) on the left-hand side
of (3.4) defines a scalar product in the quotient space Pk+1(T ;Rm)/Rm and the right-
hand side of (3.4) is a linear functional in Pk+1(T ;Rm)/Rm . The Riesz representation
RT v� ∈ Pk+1(T ;Rm) of this linear functional in Pk+1(T ;Rm)/Rm equipped with
the energy scalar product is selected by

∫
T
RT v� dx =

∫
T

vT dx . (3.5)

The unique solution RT v� ∈ Pk+1(T ;Rm) to (3.4)–(3.5) gives rise to the
potential reconstruction operator R� : V (T�) → Pk+1(T�;Rm) with restriction
(R�v�)|T :=RT v� on each simplex T ∈ T� for any v� ∈ V (T�).

Gradient reconstruction The gradient is reconstructed in the space 	(T�) =
RTpw

k (T�;M) of piecewise Raviart–Thomas finite element functions [1, 28]. Given
v� = (vT�

, vF�
) ∈ V (T�), its gradient reconstruction G�v� ∈ 	(T�) solves

∫
�

G�v� : τ� dx = −
∫

�

vT�
· divpwτ� dx +

∑
F∈F�

∫
F

vF · [τ�νF ]F ds (3.6)

for all τ� ∈ 	(T�). In other words, G�v� is the Riesz representation of the linear
functional on the right-hand side of (3.6) in the Hilbert space 	(T�) endowed with the
L2 scalar product. Since DpwPk+1(T�;Rm) ⊂ 	(T�), it follows that DpwR�v� is the
L2 projection of G�v� onto DpwPk+1(T�;Rm).

Lemma 3.1 (properties of G) Any v ∈ V and v� ∈ V (T�) satisfy (a) ‖v�‖� ≈
‖G�v�‖L p(�) and (b) 
	(T�)Dv = G�I�v. There exist positive constants CdF and
Cdtr that only depend on �, the shape regularity of T�, k, and p such that (c)
‖vT�

‖L p(�) ≤ CdF‖G�v�‖L p(�) and (d) ‖vF�
‖L p(�N) ≤ Cdtr‖G�v�‖L p(�) hold for

all v� = (vT�
, vF�

) ∈ VD(T�).

Proof The proofs of (a)–(b) are outlined in [1, 28]. The discrete Sobolev embedding
‖vT�

‖L p(�) � ‖v�‖� follows as in [11, 34, 36]. Theorem 4.4 in [11] and (c) lead to
‖vT�

‖L p(�N) � ‖v�‖�. This and the triangle inequality ‖vF�
‖L p(�N) ≤ ‖vT�

‖L p(�N) +
‖vT�

− vF�
‖L p(�N) imply ‖vF�

‖L p(�N) � ‖v�‖� +‖vT�
− vF�

‖L p(�N). The latter term
is controlled by diam(�)1/p

′ ‖v�‖�. This concludes the proof of (d).

3.5 Discrete problem

Lemma 3.1 implies the coercivity of E� inA(T�)with respect to the discrete seminorm
‖G� • ‖L p(�) and the existence and the boundedness of discrete minimizers u� below.
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Theorem 3.2 (Discrete minimizers) The minimal discrete energy inf E�(A(T�)) is
attained. There exists a positive constant C1 > 0 that depends only on c1, c2,�, �D,
uD, f , g, the shape regularity of T�, k, and p with ‖G�u�‖L p(�) ≤ C1 for all discrete
minimizers u� ∈ argmin E�(A(T�)). Any discrete stress σ�:=
	(T�)DW (G�u�) ∈
L p′

(�;M) satisfies the discrete Euler–Lagrange equations

∫
�

σ� : G�v� dx =
∫

�

f · vT�
dx +

∫
�N

g · vF�
ds (3.7)

for all v� = (vT�
, vF�

) ∈ VD(T�). If W satisfies (2.5), then u� = argmin E�(A(T�))

is unique. If W satisfies (2.6), then DW (G�u�) ∈ L p′
(�;M) is unique (independent

of the choice of a (possibly non-unique) discrete minimizer u�).

Proof The boundedness inf E�(A(T�)) > −∞ of E� in A(T�) follows from the
lower p-growth of W , the discrete Friedrichs, and the discrete trace inequality from
Lemma 3.1, cf., e.g., [27, 28, 32]. The direct method in the calculus of variations
[32] implies the existence of discrete minimizers u� ∈ argmin E�(A(T�)). The bound
‖G�u�‖L p(�) ≤ C1 is a consequence of the coercivity of E� in A(T�) with respect
to ‖ • ‖� as in [28]. If W satisfies (2.5), then W is strictly convex and the discrete
minimizer u� ∈ argmin E�(A(T�)) is unique. IfW satisfies (2.6), then the uniqueness
of DW (G�u�) follows as in [16, 27, 28].

Remark 3.3 (H(div) conformity) The discrete Euler–Lagrange equations (3.7) imply
the continuity of the normal jumps [σ�νF ]F of σ� = 
	(T�)DW (G�u�) along all inte-
rior side F ∈ F�(�) [28,Theorem 3.2]. In other words, σ� ∈ 	(T�)∩W p′

(div,�;M)

with divσ� = −
k
T�

f and σ�νF = 
k
F g for all F ∈ F�(�N).

3.6 Conforming companion

The companion operator J� : V (T�) → V is a right-inverse of the interpolation
I� : V → V (T�) in spirit of [18, 23, 26, 42]. In particular, J� preserves the moments


k
T�
J�v� = vT�

and 
k
F�
J�v� = vF�

for any v� = (vT�
, vF�

) ∈ V (T�). (3.8)

An explicit construction of J�v� on simplicial meshes is presented in [42,Section 4.3]
for simplicial triangulations with the following properties.

Lemma 3.4 (right-inverse) There exists a linear operator J� : V (T�) → V with (3.8)
such that any v� = (vT�

, vF�
) ∈ V (T�) satisfies, for all T ∈ T�,

‖G�v� − DJ�v�‖p
L p(T ) �

∑
E∈F�(�),E∩T �=∅

h1−p
E ‖[R�v�]E‖p

L p(E)

+
∑

F∈F�(T )

h1−p
F ‖
k

F ((R�v�)T − vF )‖p
L p(F) + h−p

T ‖
k
T (R�v� − vT )‖p

L p(T ).

(3.9)
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In particular, J� is stable in the sense that ‖DJ�v�‖L p(�) ≤ �0‖v�‖� holds with the
constant �0 that exclusively depends on k, p, and the shape regularity of T�.

Proof For p = 2, the right-hand side of (3.9) is an upper bound for ‖D(R�v� −
J�v�)‖2L2(T )

, cf. [42,Proof of Proposition 4.7], and scaling arguments confirm this for

1 < p < ∞. The L p stability of the L2 projection [34,Lemma 3.2] and the orthog-
onality G�v� − DJ�v� ⊥ RTk(T ;M) in L2(T ;M) imply ‖G�v� − DJ�v�‖L p(T ) �
‖D(R�v�−J�v�)‖L p(T ). This proves (3.9). The right-hand side of (3.9) can be bounded
by

∑
E∈F�(�),E∩T �=∅

h1−p
E ‖[R�v�]E‖p

L p(E) +
∑

F∈F�(T )

h1−p
F ‖
k

F ((R�v�)T − vF )‖p
L p(F)

+ h−p
T ‖
k

T (R�v� − vT )‖p
L p(T ) �

∑
K∈T�,K∩T �=∅

∑
E∈F�(K )

h1−p
E ‖vK − vF‖p

L p(E)

(3.10)

with a hidden constant that only depends on the shape regularity of T�, k, and p
[42,Proof of Proposition 4.7]. The sum of this over all simplices T ∈ T�, a triangle
inequality, and the shape regularity of T� imply ‖G�v� −DJ�v�‖L p(�) � ‖v�‖�. This,
a reverse triangle inequality, and the norm equivalence from Lemma 3.1a conclude
the stability ‖DJ�v�‖L p(�) � ‖v�‖�.

4 Proof of Theorem 2.1

This section is devoted to the proof of the convergence results in Theorem 2.1.

4.1 Discrete compactness

The proof of Theorem 2.1 departs from a discrete compactness in spirit of [11, 34, 36]
and generalizes [34]. Recall the mesh-size function h� ∈ P0(T�) from Sect. 3.2 with
h�|T = |T |1/n for T ∈ T� and the seminorm ‖ • ‖� in V (T�) from (3.2).

Theorem 4.1 (discrete compactness) Given a uniformly shape-regular sequence
(T�)�∈N0 of triangulations and (v�)�∈N0 with v� = (vT�

, vF�
) ∈ A(T�) for all

� ∈ N0. Suppose that the sequence (‖v�‖�)�∈N0 is bounded and suppose that
lim�→∞ μ�(v�) = 0 with

μ�(v�):=‖hk+1
� (G�v� − DJ�v�)‖p

L p(�) +
∑

F∈F�(�D)

hkp+1
F ‖J�v� − uD‖p

L p(F). (4.1)

Then there exist a subsequence (v� j ) j∈N0 of (v�)�∈N0 and a weak limit v ∈ A such
that J� j v� j ⇀v weakly in V and G� j v� j ⇀Dv weakly in L p(�;M) as j → ∞.
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Proof The first part of the proof proves the uniform boundedness

‖J�v�‖W 1,p(�) � ‖v�‖� + ‖uD‖W 1,p(�) � 1 (4.2)

of the sequenceJ�v� inW 1,p(�;Rm). Since ‖DJ�v�‖L p(�) � ‖v‖� from the stability
ofJ� in Lemma 3.4, it remains to show ‖J�v�‖L p(�) � ‖v�‖�+‖uD‖W 1,p(�) to obtain
(4.2). The triangle inequality implies

‖J�v�‖L p(�) ≤ ‖J�v� − vT�
‖L p(�) + ‖vT�

− 
k
T�
uD‖L p(�) + ‖
k

T�
uD‖L p(�).

(4.3)

The right-inverse J� of the interpolation I� from Lemma 3.4 satisfies the L2 orthog-
onality J�v� − vT�

⊥ Pk(T�;Rm). This, a piecewise application of the Poincaré
inequality, a triangle inequality, and ‖h�‖L∞(�) ≤ diam(�) lead to

‖J�v� − vT�
‖L p(�) � ‖h�Dpw(J�v� − vT�

)‖L p(�)

� ‖DJ�v�‖L p(�) + ‖DpwvT�
‖L p(�). (4.4)

Since v� − I�uD ∈ VD(T�), the Sobolev embedding from Lemma 3.1c and a triangle
inequality show ‖vT�

− 
k
T�
uD‖L p(�) � ‖G�(v� − I�uD)‖L p(�) ≤ ‖G�v�‖L p(�) +

‖G�I�uD‖L p(�). This, the equivalence ‖G�v�‖L p(�) ≈ ‖v�‖� from Lemma 3.1a, the
commutativity G�I�uD = 
	(T�)DuD from Lemma 3.1b, and the L p stability of the
L2 projection 
	(T�) [34,Lemma 3.2] provide

‖vT�
− 
k

T�
uD‖L p(�) � ‖v�‖� + ‖DuD‖L p(�). (4.5)

Lemma 3.4 and the definition of the discrete norm ‖v�‖� in (3.2) prove that the
right-hand side of (4.4) is controlled by ‖v�‖�. Hence, the combination of (4.3)–(4.5)
concludes (4.2).

The Banach–Alaoglu theorem [10,Theorem 3.18] ensures the existence of a (not
relabelled) subsequence of (J�v�)�∈N0 and a weak limit v ∈ V such that J�v�⇀v

weakly in V as � → ∞. Lemma3.1a assures that the sequence (G�v�)�∈N0 is uniformly
bounded in L p(�;M). Hence there exist a (not relabelled) subsequence of (v�)�∈N0

and its weak limitG ∈ L p(�;M) such thatG�v�⇀G weakly in L p(�;M) as � → ∞.
The second part of the proof verifies Dv = G in � and v = uD on �D (and so v ∈ A).
Since I�J�v� = v�, the commutativityG�v� = 
	(T�)DJ�v� fromLemma3.1b proves
the L2 orthogonality G�v� −DJ�v� ⊥ 	(T�). This and an integration by parts verify,
for all � ∈ C∞(�;M) with � ≡ 0 on �N, that

∫
�

G�v� : � dx =
∫

�

(G�v� − DJ�v�) : � dx +
∫

�

DJ�v� : � dx

=
∫

�

(G�v� − DJ�v�) : (1 − 
	(T�))� dx −
∫

�

J�v� · div� dx

+
∫

�D

(J�v� − uD) · �ν ds +
∫

�D

uD · �ν ds. (4.6)
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The approximation property of piecewise polynomials, also known under the name
Bramble–Hilbert lemma [9,Lemma 4.3.8], leads to

‖h−(k+1)
� (1 − 
	(T�))�‖L p′ (�)

� |�|Wk+1,p′ (�)
. (4.7)

This and a Hölder inequality imply

∫
�

(G�v� − DJ�v�) : (1 − 
	(T�))� dx

� ‖hk+1
� (G�v� − DJ�v�)‖L p(�)|�|Wk+1,p′ (�)

.

(4.8)

The L2 orthogonality (J�u� − uD)|F ⊥ Pk(F;Rm) for each side F ∈ F�(�D) on the
Dirichlet boundary, a piecewise application of the trace inequality, and (4.7) imply

∫
�D

(J�v� − uD) · �ν ds �
( ∑

F∈F�(�D)

hkp+1
F ‖J�v� − uD‖p

L p(F)

)1/p|�|Wk+1,p′ (�)
.

(4.9)

The right-hand sides of (4.8)–(4.9) vanish in the limit as � → ∞ by assumption (4.1).
This, (4.6), G�v�⇀G in L p(�;M), and J�v�⇀v in V prove

∫
�

(G : � + v · div�) dx −
∫

�D

uD · �ν ds = 0

for all � ∈ C∞(�;M) with � ≡ 0 on �N. This implies Dv = G a.e. in � with
v = uD on �D and concludes the proof.

Since J�v� cannot attain the exact value uD on �D in general, a (Dirichlet boundary
data) oscillation arises in (4.1), but is controlled by the contributions of η

(ε)
� .

Lemma 4.2 (Dirichlet boundary data oscillation) Given F ∈ F�(�D), let T ∈ T� be
the unique simplex with F ∈ F�(T )∩F�(�D). Then it holds, for all v� = (vT�

, vF�
) ∈

V (T�), that

‖J�v� − uD‖p
L p(F) �

∑
E∈F�(�),E∩F �=∅

‖[R�v�]E‖p
L p(E)

+ ‖
k
F (R�v� − vF )‖p

L p(F) + ‖R�v� − uD‖p
L p(F).

Proof The proof of Lemma 4.2 utilizes standard averaging and bubble-function tech-
niques, cf., e.g, [20, 42, 57, 58]; further details are therefore omitted.

4.2 Plain convergence

Before the remaining parts of this subsection prove Theorem 2.1, the following lemma
establishes the reduction of the mesh-size function h� with h�|T ≡ |T |1/n for all
T ∈ T�.
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Lemma 4.3 (Mesh-size reduction)Given the output (T�)�∈N0 of AHHO from Sect. 2.2,
let ��:=int(∪(T� \ T�+1)) for all level � ∈ N0. Then it holds

lim
�→∞ ‖h�‖L∞(��) = 0. (4.10)

Proof The proof is omitted for two reasons. First this is known from [50,Lemma 9]
and second it is a particular case of Lemma 5.2 below.

Proof of Theorem 2.1 This proof is motivated by [4, 13, 22, 49, 50, 52] and is divided
into five steps.

Step 1 establishes lim�→∞ η
(ε)
� (T� \ T�+1) = 0. Since no suitable residual-based

a posteriori control is available in the general setting (A1)–(A2), standard arguments,
e.g., reliability, efficiency, or estimator reduction [22, 41, 49] fail. The proof of Step
1 rather relies on a positive power of the mesh-size that arises from the smoothness
of test functions in Theorem 4.1. This is done in [52] for a similar setting and in [11,
34, 36] for uniform mesh-refinements. Let μ

(ε)
� (T ) abbreviate some contributions of

η
(ε)
� (T ) from (2.3) related to μ�(u�) in (4.1), namely

μ
(ε)
� (T ):=|T |(εp−p)/n‖
k

T (R�u� − uT )‖p
L p(T )

+ |T |(εp+1−p)/n
( ∑

F∈F�(T )∩F�(�D)

‖R�u� − uD‖p
L p(F)

+
∑

F∈F�(T )∩F�(�)

‖[R�u�]F‖p
L p(F) +

∑
F∈F�(T )

‖
k
F ((R�u�)|T − uF )‖p

L p(F)

)
.

(4.11)

Denote μ
(ε)
� (T� \ T�+1):= ∑

T∈T�\T�+1
μ

(ε)
� (T ). Given any T ∈ T� and F ∈

F�(�N), the L p′
stability of the L2 projection 
RTk (T ;M) resp. 
k

T or 
k
F

[34,Lemma 3.2] implies ‖σ� − DW (G�u�)‖L p′ (T )
� ‖DW (G�u�)‖L p′ (T )

resp. ‖(1 −

k

T ) f ‖L p′ (T )
� ‖ f ‖L p′ (T )

or ‖(1 − 
k
F )g‖L p′ (F)

� ‖g‖L p′ (F)
. Since μ

(ε)
� (T� \

T�+1) ≤ ‖h�‖εp
L∞(��)

μ
(0)
� (T� \ T�+1) with ‖h�‖L∞(��) = supT∈T�\T�+1

|T |1/n and
�� = int(∪(T� \ T�+1)) from Lemma 4.3, this leads to

η
(ε)
� (T� \ T�+1) � ‖h�‖εp

L∞(��)
μ

(0)
� (T� \ T�+1) + ‖h�‖εp′

L∞(��)
‖DW (Gu�)‖p′

L p′ (�)

+ ‖h�‖p′
L∞(��)

‖ f ‖p′
L p′ (�)

+ ‖h�‖L∞(��)‖g‖p′
L p′ (�N)

. (4.12)

The two-sided growth |A|p − 1 � W (A) � |A|p + 1 implies |DW (A)|p′ � |A|p + 1

[28,Lemma 2.1] and so Theorem 3.2 provides ‖DW (G�u�)‖p′
L p′ (�)

� ‖G�u�‖p
L p(�) +
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|�| � 1. This and (4.10) prove

lim
�→∞

(
‖h�‖εp′

L∞(��)
‖DW (Gu�)‖p′

L p′ (�)

+ ‖h�‖p′
L∞(��)

‖ f ‖p′
L p′ (�)

+ ‖h�‖L∞(��)‖g‖p′
L p′ (�N)

)
= 0,

(4.13)

whence, in order to obtain lim�→∞ η
(ε)
� (T� \ T�+1) = 0, it suffices to prove that

μ
(0)
� (T� \ T�+1) is uniformly bounded. The estimate (3.10) provides control over all

but only one contribution of μ
(0)
� (T ) in (4.11); that is ‖h−1/p′

F (R�u� − uD)‖L p(F) for
any F ∈ F�(�D). Triangle inequalities and uF = 
k

FuD imply

‖h−1/p′
F (R�u� − uD)‖L p(F) ≤ ‖h−1/p′

F (1 − 
k
F )R�u�‖L p(F)

+ ‖h−1/p′
F 
k

F (R�u� − uF )‖L p(F) + ‖h−1/p′
F (1 − 
k

F )uD‖L p(F).
(4.14)

Given any F ∈ F�(�D), let T ∈ T� be the unique simplex with F ∈ F�(T ) ∩
F�(�D). The L p stability of the L2 projection 
k

F [34,Lemma 3.2] and a trace

inequality show ‖h−1/p′
F (1 − 
k

F )uD‖L p(F) � ‖DuD‖L p(T ) and ‖h−1/p′
F (1 −


k
F )(R�u�)|F‖L p(F) � ‖DR�u�‖L p(T ). Recall that DR�u� is the L2 projection of

G�u� onto DpwPk+1(T ), whence the L p stability of L2 projections [34,Lemma 3.2]
proves ‖DR�u�‖L p(T ) � ‖G�u�‖L p(T ). Hence, the right-hand side of (4.14) is con-

trolled by ‖G�u�‖L p(T ) +‖DuD‖L p(T ) +‖h−1/p′
F 
k

F (R�u� −uF )‖L p(F). This, (3.10),
and ‖u�‖� ≈ ‖G�u�‖L p(�) ≤ C1 from Lemma 3.1a and Theorem 3.2 lead to

μ
(0)
� (T� \ T�+1) ≤ μ

(0)
� :=

∑
T∈T�

μ
(0)
� (T ) � ‖u�‖p

� + ‖DuD‖p
L p(�) � 1.

Hence, the combination of (4.12)–(4.13) with lim�→∞ ‖h�‖L∞(��) = 0 in (4.10)

confirms lim�→∞ η
(ε)
� (T� \ T�+1) = 0.

Step 2 establishes lim�→∞ η
(ε)
� = 0. Recall the set M� of marked simplices on

level � ∈ N0 from Sect. 2.2. Since all simplices in M� ⊂ T� \ T�+1 are refined and
the Dörfler marking enforces η

(ε)
� ≤ θ−1η

(ε)
� (M�) ≤ θ−1η

(ε)
� (T� \ T�+1) in (2.4), the

convergence lim�→∞ η
(ε)
� (T� \ T�+1) = 0 in Step 1 implies lim�→∞ η

(ε)
� = 0.

Step 3 provides the lower energy bound (LEB)

LEB�:=E�(u�) +
∫

�

(1 − 
	(T�))DW (G�u�) : Du dx
− C3

(
osc( f , T�) + oscN(g,F�(�N))

) ≤ E(u).

(4.15)
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The convexity ofW ∈ C1(M) impliesDW (G�u�) : (Du−G�u�) ≤ W (Du)−W (G�u�)

a.e. in �. The integral of this inequality with σ�:=
	(T�)DW (G�u�) reads

0 ≤
∫

�

(
W (Du) − W (G�u�) − (1 − 
	(T�))DW (G�u�) : Du)

dx

−
∫

�

σ� : (Du − G�u�) dx . (4.16)

The commutativity 
	(T�)Du = G�I�u from Lemma 3.1b and the discrete Euler–
Lagrange equations (3.7) lead to

∫
�

σ� : (Du − G�u�) dx =
∫

�

f · (
k
T�
u − uT�

) dx +
∫

�N

g · (
k
F�
u − uF�

) dx .

The substitution of this in (4.16), the definition of E in (2.1), and the definition of Eh

in (2.2) result in

0 ≤ E(u) − E�(u�) −
∫

�

(1 − 
	(T�))DW (G�u�) : Du dx

+
∫

�

(u − 
k
T�
u) · ( f − 
k

T�
f ) ds +

∫
�N

(u − 
k
F�
u) · (g − 
k

F�
g) ds.

(4.17)

The final two integrals on the right-hand side of (4.17) give rise to the data oscillations
osc( f , T�) and oscN(g,F�(�N)) defined in Sect. 3.2. In fact, a Hölder inequality and
a piecewise application of the Poincaré inequality show

∫
�

(u − 
k
T�
u) · ( f − 
k

T�
f ) dx � ‖Du‖L p(�)osc( f , T�).

A trace inequality and the Bramble–Hilbert lemma [9,Lemma 4.3.8] lead, for all

F ∈ F�(�N) and the unique T ∈ T� with F ∈ F�(T ) ∩ F�(�N), to ‖h−1/p′
F (u −


k
Fu)‖L p(F) � ‖Du‖L p(T ). Consequently,

∫
�N

(u − 
k
F�
u) · (g − 
k

F�
g) ds � ‖Du‖L p(�)oscN(g,F�(�N)).

The lower p-growth c1|A|p −c2 ≤ W (A) for all A ∈ M implies the coercivity of E in
the seminorm ‖D•‖L p(�) and so the bound ‖Du‖L p(�) ≤ C2 with a positive constant
C2, that exclusively depends on c1, c2,�, �D, f , g, and uD, cf., e.g, [32,Theorem
4.1]. Thus there exists a positive constant C3 independent of the mesh-size with

∫
�

(u − 
k
T�
u) · ( f − 
k

T�
f ) ds +

∫
�N

(u − 
k
F�
u) · (g − 
k

F�
g) ds

≤ C3
(
osc( f , T�) + oscN(g,F�(�N))

)
.

(4.18)

The combination of this with (4.17) concludes the proof of (4.15).
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Step 4 establishes lim�→∞ E�(u�) = E(u). On the one hand, the discrete compact-
ness from Theorem 4.1 and the weak lower semicontinuity of the energy functional
imply E(u) ≤ lim inf�→∞ LEB�. On the other hand, LEB� ≤ E(u) from (4.15). This
proves lim�→∞ E�(u�) = E(u) as follows. Given any � ∈ C∞(�;M), the definition
σ�:=
	(T�)DW (G�u�), a Hölder inequality, and (4.7) show

∣∣∣
∫

�

(σ� − DW (G�u�)) : � dx
∣∣∣ =

∣∣∣
∫

�

(σ� − DW (G�u�)) : (1 − 
	(T�))� dx
∣∣∣

� ‖hk+1
� (σ� − DW (G�u�))‖L p′ (�)

|�|Wk+1,p(�).

(4.19)

Since ‖hk+1
� (σ� − DW (G�u�))‖p′

L p′ (�)
≤ η

(k+1)
� � η

(ε)
� → 0 as � → ∞ from Step

2, the right-hand side of (4.19) vanishes in the limit as � → ∞. This, the density
of C∞(�;M) in L p(�;M), and the uniform boundedness of the sequence (σ� −
DW (G�u�))�∈N0 in L p′

(�;M) prove σ� − DW (G�u�)⇀0 (weakly) in L p′
(�;M) as

� → ∞. In particular,

lim
�→∞

∫
�

(σ� − DW (G�u�)) : Du dx = 0. (4.20)

Recall μ�(u�) from (4.1) and μ
(ε)
� from (4.11). The combination of (3.9) with the

bound of the Dirichlet data oscillation from Lemma 4.2 and the equivalence hF ≈
hT ≈ |T |1/n for all T ∈ T�, F ∈ F�(T ) from the shape regularity of T� result in

μ�(u�) � μ
(k+1)
� ≤ diam(�)(k+1−ε)pμ

(ε)
� � η

(ε)
� .

This and lim�→∞ η
(ε)
� = 0 from Step 2 imply lim�→∞ μ�(u�) = 0. Since ‖u�‖� ≈

‖G�u�‖L p(�) ≤ C1 from Lemma 3.1a and Theorem 3.2, the discrete compactness
from Theorem 4.1 leads to a (not relabelled) subsequence of (u�)�∈N0 and a weak
limit v ∈ A such that J�u�⇀v weakly in V and G�u�⇀Dv weakly in L p(�;M)

as � → ∞. The boundedness of the linear trace operator γ : V → L p(∂�;Rm)

[10,Chapter 9] implies (J�u�)|∂�⇀v|∂� (weakly) in L p(∂�;Rm). Hence

lim
�→∞

∫
�N

g · J�u� ds =
∫

�N

g · v ds.

This, J�u�⇀v (weakly) in V , G�u�⇀Dv (weakly) in L p(�;M), the sequential weak
lower semicontinuity of the functional

∫
�
W (•) dx in L p(�;M), and (3.8) verify

E(v) ≤ lim inf
�→∞

( ∫
�

(W (G�u�) − f · J�u�) dx −
∫

�N

g · J�u� ds
)

= lim inf
�→∞

(
E�(u�) −

∫
�

J�u� · (1 − 
k
T�

) f dx −
∫

�N

J�u� · (1 − 
k
F�

)g ds
)
.

(4.21)
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As in (4.18), a piecewise application of the Poincaré inequality, the trace inequality, the
approximation property of polynomials, and the uniform bound ‖DJ�u�‖L p(�) � 1
from (4.2) confirm

∣∣∣
∫

�

J�u� · (1 − 
k
T�

) f dx
∣∣∣ +

∣∣∣
∫

�N

J�u� · (1 − 
k
F�

)g ds
∣∣∣

� osc( f , T�) + oscN(g,F�(�N)).

(4.22)

Since osc( f , T�)
p′ + oscN(g,F�(�N))p

′ � η
(ε)
� and lim�→∞ η

(ε)
� = 0 from Step 2,

the LEB from (4.15) and (4.20)–(4.22) lead to

E(u) ≤ E(v) ≤ lim inf
�→∞ E�(u�) = lim inf

�→∞ LEB� ≤ E(u).

Hence lim�→∞ E�(u�) = lim�→∞ LEB� = E(u) for a (not relabelled) subsequence
of (u�)�∈N0 . Since the above arguments from Step 4 apply to all subsequences of
(u�)�∈N0 and the limit E(u) is unique, this holds for the entire sequence.

Step 5 is the finish of the proof. Suppose that W satisfies (2.5). Then the arguments
from [27, 28] show, for all �, ξ ∈ L p(�;M) and r , t from Table 1, that

‖� − ξ‖rL p(�) ≤ 3c5(|�| + ‖�‖p
L p(�) + ‖ξ‖p

L p(�))
t/t ′

×
∫

�

(W (�) − W (ξ) − DW (ξ) : (� − ξ)) dx .
(4.23)

The choice �:=Du and ξ :=G�u� in (4.23) and the bounds ‖Du‖L p(�) ≤ C2 and
‖G�u�‖L p(�) ≤ C1 lead, with the constant C4:=3c5(|�| + C p

1 + C p
2 )t/t

′
, to

C−1
4 ‖Du − G�u�‖rL p(�)

≤
∫

�

(W (Du) − W (G�u�) − DW (G�u�) : (Du − G�u�)) dx .
(4.24)

The right-hand side of (4.24) coincides with the right-hand side of (4.16). The latter
is bounded by the right-hand side of (4.15) in Step 3. This implies

C−1
4 ‖Du − G�u�‖rL p(�) ≤ E(u) − LEB�. (4.25)

Step 4 proves that E(u) − LEB� vanishes in the limit as � → ∞. Thus,

lim
�→∞G�u� = Du (strongly) in L p(�;M).
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If W satisfies (2.6), then [28,Lemma 4.2] implies, for all �, ξ ∈ L p(�;M) and r̃ , t̃
from Table 1, that

‖DW (�) − DW (ξ)‖̃rL p(�) ≤ 3c6(|�| + ‖�‖p
L p(�) + ‖ξ‖p

L p(�))̃
t /̃t ′

×
∫

�

(W (�) − W (ξ) − DW (ξ) : (� − ξ)) dx,
(4.26)

whence the left-hand side of (4.25) can be replaced by C−1
5 ‖σ − DW (G�u�)‖̃rL p′ (�)

with C5:=3c6(|�| + C p
1 + C p

2 )̃t /̃t
′
. This and Step 4 conclude the proof of

lim
�→∞DW (G�u�) = σ (strongly) in L p′

(�;M).

Remark 4.4 (necessity of ε > 0) The counter example in [52,Subsection 3.4] shows
that the restriction ε > 0 is necessary. Indeed, for k = 0, the data W , �, �D, �N, f ,
g, uD, and (T�)�∈N0 from [52,Subsection 3.4], there exists a sequence of discrete min-
imizers (u�)�∈N0 such that J�u�⇀0 weakly in V and G�u�⇀0 weakly in L p(�;M)

as � → ∞, but lim�→∞ η
(ε)
� �= 0.

4.3 The Lavrentiev gap

A particular challenge in the computational calculus of variations is the Lavrentiev
phenomenon inf E(A) < inf E(A ∩ W 1,∞(�)) [48]. Its presence is equivalent to
the failure of standard conforming FEMs [17,Theorem 2.1] in the sense that a wrong
minimal energy is approximated. As a remedy, the nonconforming Crouzeix–Raviart
FEM in [3, 51, 52] can overcome the Lavrentiev gap under fairly general assumptions
onW : Throughout the remaining parts of this section, letW ∈ C1(M) be convex with
the one-sided lower growth

c1|A|p − c2 ≤ W (A) for all A ∈ M and some 1 < p < ∞.

(A two-sided growth ofW excludes a Lavrentiev gap.) Since there is no upper growth
ofW , the dual variable σ :=DW (Du) is not guaranteed to be in L p′

(�;M). This denies
an access to the Euler–Lagrange equations and, therefore, the convergence analysis of
[51, 52] solely relies on the Jensen inequality. For k = 0, HHOmethods can overcome
the Lavrentiev gap because the Crouzeix–Raviart FEM can.

Lemma 4.5 (Lower-energy bound for k = 0) Let k = 0. There exists a positive
constant C6 such that, for all level � ∈ N0,

min E�(A(T�)) − C6
(‖h� f ‖L p′ (�)

− oscN(g,F�(�N))
) ≤ min E(A).

Proof Recall the discrete space CR1(T�;Rm) of Crouzeix–Raviart finite element func-
tions from (3.1). Define

CR1
D(T�;Rm):={vCR ∈ CR1(T�;Rm) : vCR(mid(F)) = 0 for all F ∈ F�(�D)}
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and the nonconforming interpolation ICR : V → CR1(T�;Rm) [31] with

ICRv(mid(F)):=
∫
F

v ds/|F | for all F ∈ F�, v ∈ V .

The discrete CR-FEM minimizes the non-conforming energy

ENC(vCR):=
∫

�

(W (DpwvCR) − 
0
T�

f · vCR) dx −
∫

�N


0
F�

g · vCR ds

among vCR ∈ ANC:=INCuD + CR1
D(T�;Rm). A straight-forward modification of the

proof of [52,Lemma 4] shows, for a positive constant C6 > 0, that

min ENC(ANC) − C6
(‖h� f ‖L p′ (�)

− oscN(g,F�(�N))
) ≤ min E(A). (4.27)

Notice that ICR does not provide the L2 orthogonality ICRv − v ⊥ P0(T�;Rm) in
L2(�;Rm), but (ICRv − v)|F ⊥ P0(F;Rm) in L2(F;Rm) for all F ∈ F�(�N)

and v ∈ V . Hence the Neumann boundary data oscillations oscN(g,F�(�N))

arise in (4.27), but ‖h� f ‖L p′ (�)
cannot be replaced by osc( f , T�). For any vCR ∈

ANC, v�:=(
0
T�

vCR,
0
F�

vCR) ∈ A(T�) satisfies G�v� = DpwvCR and hence,
min E�(A(T�)) ≤ min ENC(ANC). This and (4.27) conclude the proof.

The discrete compactness from Theorem 4.1, the LEB in (4.27), and straightforward
modifications of the proof of Theorem 2.1 lead to lim�→∞ E�(u�) = min E(A) for
the output (u�)�∈N0 of the adaptive algorithm in Sect. 2.2 with the refinement indicator,
for all T ∈ T�,

η
(ε)
� (T ):=μ

(ε)
� (T ) + |T |p′/n‖ f ‖p′

L p′ (T )
+ |T |1/n

∑
F∈F�(T )∩F�(�N)

‖(1 − 
0
F )g‖p′

L p′ (F)
.

For k ≥ 1, the consistency error σ� −DW (G�u�) arises in (4.15), but is not guaranteed
to be bounded in L p′

(�;M) in the limit as � → ∞ in general. Thus, in the absence of
further conditions, the convergence lim�→∞ E�(u�) = min E(A) cannot be proven
for k ≥ 1 with this methodology.

5 Stabilized HHOmethod on polytopal meshes

The classical HHO methodology [35, 37] allows even polytopal partitions of the
domain �. The assumption (M1) on the mesh follows the works [35, 37, 40].

5.1 Polytopal meshes

Let M� be a finite collection of closed polytopes of positive volume with overlap of
volume measure zero that cover � = ∪K∈M�

K . A side S of the mesh M� is the (in
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general disconnected) closed subset of a hyperplane HS ⊂ � with positive ((n − 1)-
dimensional) surface measure such that either (a) there exist K1, K2 ∈ M� with
S = ∂K1∩∂K2∩HS (interior side) or (b) there exists K ∈ M� with S = ∂K∩∂�∩HS

(boundary side). Let	� denote the set of all sides ofM� and adapt the notation	�(K ),
	�(�), 	�(�D), and 	�(�N) from Sect. 3.1. The convergence results of this section
are established under the assumptions (M1)–(M2) below.

(M1) Assume that there exists a universal constant � > 0 such that, for all level
� ∈ N0, M� admits a shape-regular simplicial subtriangulation T� with the
shape regularity ≥ � defined in Sect. 3.1 and, for each simplex T ∈ T�, there
exists a unique cell K ∈ M� with T ⊆ K and �hK ≤ hT .

(M2) Assume the existence of a universal constant 0 < γ < 1 such that |K̂ | ≤ γ |K |
holds for all K ∈ M� \M�+1, K̂ ∈ M�+1 with K̂ ⊂ K and level � ∈ N0, i.e.,
the volume measure of all children K̂ of a refined cell K is at most γ |K |.

The assumption (M1) is typical for the error analysis of HHO methods on polytopal
meshes, cf., e.g., [34, 35, 37, 40, 42]. The assumption (M2) holds for the newest-vertex
bisection on simplicial triangulations with γ = 1/2.

Remark 5.1 (equivalence of side lengths) The assumption (M1) ensures that hS ≈
hK ≈ |K |1/n holds for all K ∈ M� and S ∈ 	�(K ) with equivalence constants that
exclusively depend on the universal constant � in (M1) [40,Lemma 1.42].

Lemma 5.2 (mesh-size reduction)Suppose that the sequence (M�)�∈N0 satisfies (M2),
then the mesh-size function h� ∈ P0(M�)with h�|K :=|K |1/n for all K ∈ M� satisfies
lim�→∞ ‖h�‖L∞(��) = 0 for ��:=int(∪(M� \ M�+1)).

Proof Given any j ∈ N0 and α j :=γ j |�|, define the set M( j) ⊂ ∪�∈N0M� of all
polytopes K with volume measure α j+1 < |K | ≤ α j . Since the volume measure of
any refined polytope is at least reduced by the factor γ , the polytopes ofM( j) are not
children of each other and so |K ∩T | = 0 holds for any two distinct polytopes K , T ∈
M( j). This implies that the cardinality |M( j)| ofM( j) satisfies |M( j)| < γ −( j+1).
For any level � ∈ N0, select some K� ∈ M� \ M�+1 with |K�| = ‖h�‖nL∞(��)

. Since
K� /∈ M j for all j > �, the polytopes K0, K1, K2, . . . are pairwise distinct. Given
N ∈ N0, the number |{� ∈ N0 : |K�| > αN+1}| of all indices � ∈ N0 with |K�| >

αN+1 is bounded by |M(0)| + |M(1)| + · · · + |M(N )| ≤ (γ −(N+1) − 1)/(1 − γ ).
Hence there exists a maximal index L such that ‖h�‖nL∞(��)

= |K�| ≤ αN+1 for all
� ≥ L . Notice that Lemma 4.3 follows for simplicial triangulations with γ = 1/2.

5.2 Stabilization

The classical HHO method [1, 34] utilizes a gradient reconstruction G� : V (M�) →
	(M�) in the space 	(M�):=Pk(M�;M) of matrix-valued piecewise polynomials
of total degree at most k. The discrete seminorm ‖•‖� of V (M�) and the operators I�,
R�, G� of this section are defined by the formulas (3.2)–(3.6) in Sect. 3.3 with adapted
notation, i.e., T� (resp. F�) is replaced by M� (resp. 	�).

Remark 5.3 (need of stabilization) The kernel of the gradient reconstruction G�

restricted to VD(M�) is not trivial. For instance, any v� = (vM�
, 0) ∈ VD(M�)
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with vM�
∈ Pk(M�;Rm) and vM�

⊥ Pk−1(M�;Rm) (with the convention
P−1(M0;Rm):={0}) satisfies G�v� = 0 and the norm equivalence in Lemma 3.1a
fails. On simplicial meshes, a gradient reconstruction in any discrete space 	(M�)

with RTk(M�;M) ⊂ 	(M�) is stable, but the commutativity from Lemma 3.1b may
fail if 	(M�) is too large, e.g., 	(M�) = Pk+1(M�;M) [1].

The stabilization function s� : V (M�) × V (M�) → R in the HHO methodology is
defined, for any u�, v� = (vM�

, v	�
) ∈ V (M�) and any side S ∈ 	�(K ) of K ∈ M�

with diameter hS = diam(S), by s�(u�; v�):= ∑
K∈M�

sK (u�; v�) and

SK ,Sv�:=
k
S(vS − vK − (1 − 
k

K )(R�v�)|K ) ∈ Pk(S;Rm),

sK (u�; v�):=
∑

S∈	�(K )

h1−p
S

∫
S
|SK ,Su�|p−2SK ,Su� · SK ,Sv� ds.

(5.1)

Notice that s�(•; •) is linear in the second component, but not in the first unless p = 2.
The relevant properties of s�(•; •) are summarized below.

Lemma 5.4 (stabilization) Any u�, v� = (vM�
, v	�

) ∈ V (M�), v ∈ V , and K ∈ M�

satisfy (a)–(e) with parameters p, r , s, t from Table 1.

(a) ‖v�‖p
� ≈ ‖G�v�‖p

L p(�) + s�(v�; v�).

(b) sK (I�v; I�v)1/p � minϕh∈Pk+1(K ;Rm ) ‖D(v − ϕh)‖L p(K ). In particular, if v ∈
Wk+2,p(K ;Rm), then sK (I�v; I�v)1/p � hk+1

K |v|Wk+2,p(K ).
(c)

sK (v�; v�) � h−p
K ‖
k

K (R�v� − vK )‖p
L p(K )

+
∑

S∈	�(K )

h1−p
S ‖
k

S((R�v�)K − vS)‖p
L p(S).

(d) sK (u�; v�) ≤ sK (u�; u�)
1/p′

sK (v�; v�)
1/p.

(e)

∑
K∈M�

∑
S∈	�(K )

‖h−1/p′
S SK ,S(u� − v�)‖rL p(S)

�
(
1 + s�(u�; u�) + s�(v�; v�)

)t/t ′
(s�(v�; v�)/p − s�(u�; v�) + s�(u�; u�)/p

′).

Proof The norm equivalence in (a) is established in [37,Lemma 4] for p = 2 and
extended to 1 ≤ p < ∞ in [34,Lemma 5.2]; the approximation property (b) is
[42,Lemma 3.2]. The upper bound (c) follows immediately from a triangle and a
discrete trace inequality. The proof of (d) concerns K ∈ M� and S ∈ 	�(K ). A
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Hölder inequality with the exponents p, p′ and 1 − p + 1/p′ = (1 − p)/p′ show

h1−p
S

∫
S
|SK ,Su�|p−2SK ,Su� · SK ,Sv� ds

≤ ‖h(1−p)/p′
S |SK ,Su�|p−2SK ,Su�‖L p′ (S)

‖h−1/p′
S SK ,Sv�‖L p(S)

= ‖h−1/p′
S SK ,Su�‖p/p′

L p(S)‖h−1/p′
S SK ,Sv�‖L p(S).

The sum of this over all S ∈ 	�(K ) and a Cauchy inequality prove (d). The proof of
(e) departs from the function W (a):=|a|p/p for a ∈ R

m with the convexity control
(2.5). The integral of (2.5) over the side S leads to (4.23) for all �, ξ ∈ L p(S;Rm)

and � (resp. M) replaced by S (resp. R
m). The choice �:=h−1/p′

S SK ,Sv� and

ξ :=h−1/p′
S SK ,Su� in (4.23) leads to

(3c5)
−1(|S| + ‖h−1/p′

S SK ,Su�‖p
L p(S) + ‖h−1/p′

S SK ,Sv�‖p
L p(S))

−t/t ′

× ‖h−1/p′
S SK ,S(u� − v�)‖rL p(S) ≤ ‖h−1/p′

S SK ,Sv�‖p
L p(S)/p

−
∫
S
h1−p
S |SK ,Su�|p−2SK ,Su� · SK ,Sv� ds + ‖h−1/p′

S SK ,Su�‖p
L p(S)/p

′. (5.2)

The sum of this over all S ∈ 	�(K ) and K ∈ M� concludes the proof of (e).

5.3 Stabilized HHOmethod on a polytopal mesh

The discrete problem minimizes the discrete energy

E�(v�):=
∫

�

(W (G�v�) − f · vM�
) dx −

∫
�N

g · v	�
ds + s�(v�; v�)/p (5.3)

among v� = (vM�
, v	�

) ∈ A(M�).

Theorem 5.5 (discrete minimizers) The minimal discrete energy inf E�(A(M�)) is
attained. There exists a positive constant C7 > 0 that merely depends on c1, c2,�,
�D, uD, f , g, � in (M1), k, and p with ‖G�u�‖p

L p(�) + s�(u�; u�) ≤ C p
7 for any dis-

crete minimizer u� ∈ argmin E�(A(M�)). Any discrete stress σ�:=
k
M�

DW (G�u�)

satisfies the discrete Euler–Lagrange equations

∫
�

σ� : G�v� dx =
∫

�

f · vM�
dx +

∫
�N

g · v	�
ds − s�(u�; v�) (5.4)

for allv� = (vM�
, v	�

) ∈ VD(M�). IfW satisfies (2.5), thenu� = argmin E�(A(M�))

is unique. If W satisfies (2.6), then DW (G�u�) ∈ L p′
(�;M) is unique (independent

of the choice of a (possibly non-unique) discrete minimizer u�).

Proof The proof follows that of Theorem 3.2. The norm equivalence in Lemma 5.4a
and the lower growth of W lead to the coercivity of E� in A(M�) with respect to
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the seminorm ‖ • ‖p
� ≈ ‖G� • ‖p

L p(�) + s�(•; •) from Lemma 5.4a. This implies the

existence of discrete minimizers and the bound ‖G�u�‖p
L p(�) +s�(u�; u�) ≤ C p

7 for all
u� ∈ argmin E�(A(M�)). If W satisfies (2.5), then the strict convexity of W and of
s� in Lemma 5.4c leads to the uniqueness of u� = argmin E�(A(M�)). IfW satisfies
(2.6), then the uniqueness of DW (G�u�) follows as in [16, 27, 28].

The following lemma extends Lemma 3.4 to polytopal meshes.

Lemma 5.6 There exists a linear operator J� : V (M�) → V such that any v� =
(vM�

, v	�
) ∈ V (M�) satisfies


k
M�

J�v� = vM�
and 
k

	�
J�v� = v	�

(5.5)

and, for any K ∈ M�, the estimate

‖G�v� − DJ�v�‖p
L p(K ) �

∑
S∈	�(�),S∩K �=∅

h1−p
S ‖[R�v�]S‖p

L p(S)

+
∑

S∈	�(K )

h1−p
S ‖(R�v�)|K − vS‖p

L p(S) + h−p
K ‖R�v� − vK ‖p

L p(K ).
(5.6)

In particular, J� is stable in the sense that ‖DJ�v�‖L p(�) ≤ �1‖v�‖� holds with the
constant �1 that exclusively depends on k, p, and � in (M1).

Proof The construction of the conforming operator J� on polytopal meshes in
[42,Section 5] utilizes averaging and bubble-function techniques on the subtriangula-
tion T� and give rise an upper bound of ‖G�v� − DJ�v�‖p

L p(K ), namely

∑
S∈	�(�),S∩K �=∅

h1−p
S ‖[R�v�]S‖p

L p(S) +
∑

T∈T�,T⊂K

h−p
T ‖
k

T (R�v� − vK )‖p
L p(T )

+
∑

S∈	�(K )

∑
F∈F�,F⊂S

h1−p
F ‖
F ((R�v�)|K − vS)‖p

L p(F). (5.7)

Since the L2 projection 
k
T (resp. 
k

F ) is stable in L p(T ;Rm) (resp. L p(F;Rm))
[34,Lemma 3.2], it can be omitted in (5.7). This, the equivalence hT ≈ hK for all
K ∈ M�, T ∈ T� with T ⊂ K from (M1), and hF ≈ hS for all S ∈ 	�, F ∈
F� with F ⊂ S from (M1) and Remark 5.1 show (5.6). This implies the stability
‖DJ�v�‖L p(�) � ‖v�‖�, cf., e.g., [42,Subsection 4.3] for more details. Notice that the
computation of the right-hand side of (5.6) does not require explicit information on
the subtriangulation T�.

Remark 5.7 (discrete compactness) The discrete compactness fromTheorem 4.1 holds
verbatim with T� (resp. F�) replaced byM� (resp. 	�). Notice that G� from Sect. 5.2
andJ� from Lemma 5.6 in this section are different objects. With adapted notation, all
arguments from the proof of Theorem 4.1 apply verbatim. Indeed, the commutativity

	(M�)Dv = G�I�v for all v ∈ V from Lemma 3.1b remains valid [1, 34]. This and
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(5.5) imply the L2 orthogonality G�v� −DJ�v� ⊥ 	(M�) for any v� ∈ V (M�). This
is the key argument in the proof of Theorem 4.1 and provides a positive power of the
mesh-size in (4.1).

5.4 Proof of Theorem 2.2

Given any K ∈ M�, Lemma 5.6 motivates the refinement indicator

η
(ε)
� (K ):=μ

(ε)
� (K ) + |K |εp′/n‖σ� − DW (G�u�)‖p′

L p′ (K )

+ |K |p′/n‖(1 − 
k
K ) f ‖p′

L p′ (K )
+ |K |1/n

∑
S∈	�(K )∩	�(�N)

‖(1 − 
k
S)g‖p′

L p′ (S)

with

μ
(ε)
� (K ):=|K |(εp−p)/n‖R�u� − uK ‖p

L p(K )

+ |K |(εp+1−p)/n
( ∑
S∈	�(K )∩	�(�D)

‖R�u� − uD‖p
L p(S)

+
∑

S∈	�(K )∩	�(�)

‖[R�u�]S‖p
L p(S) +

∑
S∈	�(K )

‖(R�u�)|K − uS‖p
L p(S)

)
.

The remaining parts of this section are devoted to the proof of the convergence results
in Theorem 2.2.

Proof of Theorem 2.2 The proof follows that of Theorem 2.1.
Step 1 establishes lim�→∞ η

(ε)
� = 0. The key argument from Step 1 of the proof of

Theorem 2.1 is the positive power of the mesh size in η
(ε)
� in the sense that

η
(ε)
� (M� \ M�+1) � ‖h�‖εp

L∞(��)
(‖u�‖p

� + ‖DuD‖p
L p(�))

+ ‖h�‖εp′
L∞(��)

‖DW (G�u�)‖p′
L p′ (�)

+ ‖h�‖p′
L∞(��)

‖ f ‖p′
L p′ (�)

+ ‖h�‖L∞(��)‖g‖p′
L p′ (�N)

.

Hence lim�→∞ ‖h�‖L∞(��) = 0 from Lemma 5.2 implies lim�→∞ η
(ε)
� (M� \

M�+1) = 0. This and the Dörfler marking in (2.4) conclude lim�→∞ η
(ε)
� = 0.

Step 2 provides a LEB with the extra stabilization term s�(u�; I�u), namely

LEB�:=E�(u�) +
∫

�

(1 − 
k
M�

)DW (G�u�) : Du dx − s�(u�; I�u)

− C3
(
osc( f ,M�) + oscN(g, 	�(�N))

) ≤ E(u) − s�(u�; u�)/p
′ ≤ E(u).

(5.8)
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The commutativity 
	(M�)Du = G�I�u from Lemma 3.1b and the discrete Euler–
Lagrange equations (5.4) show that

∫
�

σ� : (Du − G�u�) dx =
∫

�

f · (
k
M�

u − uM�
) dx

∫
�N

g · (
k
	�
u − u	�

) dx − s�(u�; I�u − u�).

(5.9)

This, (4.16), and (4.18) (with adapted notation) conclude the proof of (5.8).
Step 3 establishes lim�→∞ E�(u�) = E(u). Notice from (5.6) that η(ε)

� is an upper
bound for μ�(u�) in (4.1). Hence the discrete compactness (from Remark 5.7) implies
the existence of a (not relabelled) subsequence of (u�)�∈N0 and a weak limit v ∈ A
such that J�u�⇀v weakly in V and G�u�⇀Dv weakly in L p(�;M) as � → ∞. The
only difference between the LEB in (5.8) and that in (4.15) for simplicial meshes is
the additional term s�(u�; Iu) in this proof.

Lemma 5.8 (convergence of s�(u�; Iu))Given a sequence (u�)�∈N0 with u� ∈ V (M�)

for all � ∈ N0, suppose that s�(u�; u�) ≤ C8 for a universal constant C8 independent
of the level � and lim�→∞ η

(ε)
� = 0 with ε ≤ min{k + 1, (k + 1)/(p − 1)}. Then

lim
�→∞ s�(u�; Iu) = 0. (5.10)

Proof of Lemma 5.8 The proof of (5.10) first establishes this for smooth functions.
Given any ϕ ∈ C∞(�;Rm), the Hölder inequality from Lemma 5.4d, hK ≈ |K |1/n
from Remark 5.1, and the interpolation error from Lemma 5.4b prove

|s�(u�; I�ϕ)| ≤
∑

K∈M�

sK (u�; u�)
1/p′

sK (I�ϕ; I�ϕ)1/p

�
( ∑
K∈M�

|K |(k+1)p′/nsK (u�; u�)
)1/p′

|ϕ|Wk+2,p(�).

(5.11)

Lemma 5.4c implies that η(ε)
� controls the stabilization in the sense that

∑
K∈M�

|K |(k+1)p′/nsK (u�; u�) � ‖h�‖((k+1)p′−εp)/n
L∞(�) η

(ε)
� . (5.12)

The restriction ε ≤ (k+1)/(p−1) provides (k+1)p′−εp > 0.Hence lim�→∞ η
(ε)
� =

0 implies that the right-hand side of (5.12) vanishes in the limit as � → ∞. This and
(5.11)–(5.12) lead to lim�→∞ s�(u�; I�ϕ) = 0 for all ϕ ∈ C∞(�;Rm). Given any
δ > 0, let ϕ ∈ C∞(�;Rm) such that ‖D(u − ϕ)‖L p(�) ≤ δ. The interpolation error
from Lemma 5.4b proves s�(I�(u−ϕ); I�(u−ϕ)) ≤ C9L p‖D(u − ϕ)‖p

L p(�) ≤ C p
9 δ p

with a universal constant C9 > 0. The convergence lim�→∞ s�(u�; I�ϕ) = 0 implies
the existence of N ∈ N0 with |s�(u�; I�ϕ)| ≤ δ for all � ≥ N . This, a triangle
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inequality, a Hölder inequality, and the bound s�(u�; u�) ≤ C8 (by assumption) verify

|s�(u�; I�u)| ≤ |s�(u�; I�ϕ)| + |s�(u�; I�(u − ϕ))| ≤ |s�(u�; I�ϕ)|
+ s�(u�; u�)

1/p′
s�(I�(u − ϕ); I�(u − ϕ))1/p ≤ (1 + C1/p′

8 C9)δ.

This concludes the proof of lim�→∞ s�(u�; Iu) = 0 in (5.10).

We return to proof of Theorem 2.2 and recall s�(u�; u�) ≤ C p
7 from Theorem 5.5 and

lim�→∞ η
(ε)
� = 0 from Step 1. Hence Lemma 5.8 applies and (5.10) follows. With

this additional argument (5.10) and the remaining conclusions, that lead to (4.21)
in the proof of Theorem 2.1, E(u) ≤ E(v) ≤ lim inf�→∞ LEB� ≤ E(u) follows
for the weak limit v. This implies lim�→∞ E�(u�) = lim�→∞ LEB� = E(u). Since
s�(u�; u�)/p′ ≤ E(u) −LEB� from (5.8), s�(u�; u�) vanishes in the limit as � → ∞.
If W satisfies (2.5), then the choice �:=Du and ξ :=G�u� in (4.23), (5.9) and the data
oscillations from (4.18) imply

C−1
10 ‖Du − G�u�‖rL p(�) + s�(u�; u�)/p

′ ≤ E(u) − LEB� (5.13)

with the constant C10:=3c5(|�| + C p
2 + C p

7 )t/t
′
and r , t from Table 1. This shows

lim�→∞ G�u� = Du (strongly) in L p(�;M). If W satisfies (2.6), then (4.26) holds
andC−1

10 ‖Du−G�u�‖rL p(�) on the left-hand side of (5.13) can be replaced byC
−1
11 ‖σ −

DW (G�u�)‖̃rL p′ (�)
with C11:=3c6(|�| + C p

2 + C p
7 )̃t /̃t

′
and r̃ , t̃ from Table 1. Hence

lim�→∞ DW (G�u�) = σ (strongly) in L p′
(�;M).

6 Numerical examples

Some remarks on the implementation precede the numerical benchmarks for the three
examples of Sect. 2.4 and the experiments in the Foss–Hrusa–Mizel example with the
Lavrentiev gap in Sect. 6.5.

6.1 Implementation

The realization in MATLAB follows that of [28,Subsubsetion 5.1.1] with the parame-
ters FunctionTolerance = OptimalityTolerance = StepTolerance
= 10−15 and MaxIterations = Inf for improved accuracy.

The class of minimization problems at hand allows, in general, for multiple exact
and discrete solutions. The numerical experiments select one (of those) by the approx-
imation in fminunc with the initial value computed as follows. On the coarse initial
triangulations T0, the initial value v0 = (vT0 , vF0) ∈ V (T0) is defined by vT0 ≡ 1,
vF0 |F ≡ 1 on any F ∈ F0(�), and vF0 |F = 
k

FuD for all F ∈ F0(�D). On each
refinement T�+1 of some triangulation T�, the initial approximation is defined by a
prolongation of the output u� of the call fminunc on the coarse triangulation T�. The
prolongation maps u� onto v�+1:=I�+1J�u� ∈ V (T�+1).
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k = 0 k = 1 k = 2 k = 3 k = 4

Fig. 1 Polynomial degrees k = 0, . . . , 4 in the numerical benchmarks of Sect. 6
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Fig. 2 Initial triangulation T0 (left) of the L-shaped domain and convergence history plot (right) of |E(u)−
E�(u�)|with k fromFig. 1 on uniform (dashed line) and adaptive (solid line) triangulations for the p-Laplace
benchmark in Sect. 6.2

The numerical integration of polynomials is exact with the quadrature formula in
[45]: For non-polynomial functions such asW (G�v�) with v� ∈ V (T�), the number of
chosen quadrature points allows for exact integration of polynomials of order p(k+1)
with the growth p of W and the polynomial order k of the discretization; the same
quadrature formula also applies to the integration of the dual energy density W ∗
in (6.2). The implementation is based on the in-house AFEM software package in
MATLAB[2, 8].Adaptive computations are carried outwith θ = 0.5, ε = (k+1)/100,
and the polynomial degrees k from Fig. 1. Undisplayed computer experiments suggest
only marginal influence of the choice of ε on the convergence rates of the errors.

The uniform or adaptive mesh-refinement leads to convergence history plots of the
energy error |E(u)−E�(u�)| or the stress error ‖σ −∇W (G�u�)‖2L p′ (�)

plotted against

the number of degrees of freedom (ndof) in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11. (Recall
the scaling ndof ∝ h−2

max in 2D for uniform mesh refinements with maximal mesh size
hmax in a log-log plot.) In the numerical experiments without a priori knowledge of
u, the reference value displayed for min E(A) stems from an Aitken extrapolation of
the numerical results for a sequence of uniformly refined triangulations.

6.2 The p-Laplace equation

The third numerical benchmark from [15,Section 6] for the p-Laplace problem in
Sect. 2.4.1 considers p = 4, the right-hand side

f (r , ϕ):=343/2048r−11/8 sin(7ϕ/8),

on the L-shaped domain �:=(−1, 1)2 \ ([0, 1) × (−1, 0]) with the initial triangula-
tion T0 displayed in Fig. 2a, the Dirichlet boundary data uD(r , ϕ):=r7/8 sin(7ϕ/8)
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Fig. 3 Adaptive triangulations of the L-shaped domain into 492 triangles (1238 dofs) for k = 0 (left) and
490 triangles (7824 dofs) for k = 3 (right) for the p-Laplace benchmark in Sect. 6.2
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Fig. 4 Convergence history plot of ‖∇u − G�u�‖2L4(�)
(left) and ‖σ − ∇W (G�u�)‖2L4/3(�)

(right) with k

from Fig. 1 on uniform (dashed line) and adaptive (solid line) triangulations for the p-Laplace benchmark
in Sect. 6.2
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Fig. 5 Material distribution of the L-shaped domain (left) and convergence history plot (right) of RHS� in
(6.1) with k from Fig. 1 on uniform (dashed line) and adaptive (solid line) triangulations for the optimal
design problem in Sect. 6.3
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Fig. 6 Adaptive triangulation of the L-shaped domain into 1510 triangles (3721 dofs) for k = 0 (left) and
1351 triangles (21,450 dofs) for k = 3 (right) for the optimal design problem in Sect. 6.3

�D:=(0 × [−1, 0]) ∪ ([0, 1] × 0), and the Neumann boundary data

g(r , ϕ):=343/512r−3/8(− sin(ϕ/8), cos(ϕ/8)) · ν

in polar coordinates with the outer normal unit vector ν on�N:=∂�\�D. Theminimal
energy min E(A) = −1.4423089582447 is attained at the unique minimizer

u(r , ϕ):=r7/8 sin(7ϕ/8).

Since u is singular at the origin, reduced convergence rates are expected for uniform
mesh-refining. Figure 2b displays the suboptimal convergence rates 0.75 for the energy
error |E(u) − E�(u�)| and all polynomial degrees k = 0, . . . , 4. The adaptive mesh-
refining algorithm refines towards the origin as depicted in Fig. 3 and we observed
a stronger local refinement for larger polynomial degree k. Since W satisfies (2.5)–
(2.6), the interest is on the displacement error ‖∇u − G�u�‖L4(�) and the stress error
‖σ −∇W (G�u�)‖L4/3(�). On uniformly refined meshes, ‖∇u−G�u�‖2L4(�)

converges
with the suboptimal convergence rate 0.375 and adaptive computation improves the
convergence rate to 0.8 for k = 0 and 2.5 for k = 4 as depicted in Fig. 4a, b displays
the convergence rate 1 for the stress error ‖σ − ∇W (G�u�)‖2L4/3(�)

on uniform tri-
angulations for all k = 0, . . . , 4. This is optimal for k = 0, but not for k ≥ 1. The
adaptive mesh-refining algorithm recovers the optimal convergence rates k + 1 for
k ≥ 1.

6.3 The optimal design problem

ConsiderW fromSect. 2.4.2 forμ1 = 1,μ2 = 2, ξ1 = √
2λμ1/μ2, and ξ2 = μ2ξ1/μ1

with the fixed parameter λ = 0.0145 on the L-shaped domain�:=(−1, 1)2 \ ([0, 1)×
(−1, 0]) from [4,Figure 1.1]. Let f ≡ 1 in � and uD ≡ 0 on �D = ∂� with the
reference value min E(A) = −0.0745512.
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Fig. 7 Initial triangulation (left) of the rectangular domain� and convergence history plot (right) of |E(u)−
E�(u�)|with k from Fig. 1 on uniform (dashed line) and adaptive (solid line) triangulations for the two-well
benchmark in Sect. 6.4

The material distribution in Fig. 5a consists of two homogenous phases, an interior
(red) and a boundary (yellow) layer, and a transition layer, also called microstructure
zone with a finemixture of the twomaterials [4, 16, 25, 28]. The approximated volume
fractions �(|
0

T�
G�u�|) for a discrete minimizer u� with �(ξ) = 0 if 0 ≤ ξ ≤ ξ1,

�(ξ) = (ξ − ξ1)/(ξ2 − ξ1) if ξ1 ≤ ξ ≤ ξ2, and �(ξ) = 1 if ξ ≥ ξ2, define the colour
map of the fraction plot of Fig. 5. Since W satisfies (2.6), Theorem 2.1 implies the
convergence of |E(u)− E�(u�)| and ‖σ −∇W (G�u�)‖L2(�). Since the exact solution
is unknown, the numerical experiment computes RHS� in

‖σ − ∇W (G�u�)‖2L2(�)
+ |E(u) − E�(u�)|

� RHS�:=E�(u�) − E∗(σ�) + osc( f , T�) + ‖G�u� − ∇J�u�‖2L2(�)

(6.1)

from [28,Theorem 4.6] with the convex conjugate W ∗ ∈ C(M) [53,Corollary 12.2.2]
and the dual energy

E∗(σ�):= −
∫

�

W ∗(σ�) dx . (6.2)

Figure 5b displays the suboptimal convergence rate 0.4 for RHS� on uniform triangu-
lations. The adaptive algorithm refines towards the reentrant corner and the boundaries
of the microstructure zone as displayed in Fig. 6. This improves the convergence rates
up to 1.2 for k = 4. Undisplayed computer experiments show significant improvement
for the convergence rates of RHS� for examples with small microstructure zones in
agreement with the related empirical observations in [25].

6.4 The relaxed two-well benchmark

Let �:=(0, 1) × (0, 3/2) with pure Dirichlet boundary �D:=∂�. The computational
benchmark from [15] considers the two distinct wells F1 = −(3, 2)/

√
13 = −F2
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Fig. 8 Adaptive triangulation (left) of the rectangular domain � into 1192 triangles (7104 dofs) for k = 1
and convergence history plot (right) of ‖u − uT�

‖2
L2(�)

with k from Fig. 1 on uniform (dashed line) and

adaptive (solid line) triangulations for the two-well benchmark in Sect. 6.4

in the definition of W from Sect. 2.4.3 and introduces an additional quadratic term
‖ζ − v‖2

L2(�)
in the energy

E(v):=
∫

�

(W (∇v) − f v) dx + ‖ζ − v‖2L2(�)
/2

for all v ∈ A:=uD+W 1,4
0 (�)with f (x, y):=−3�5/128−�3/3, ζ(x, y):=�3/24+�,

u(x, y):=uD(x, y):=
{
f (x, y) if − 1/2 ≤ � ≤ 0,

ζ(x, y) if 0 ≤ � ≤ 1/2

at (x, y) ∈ R
2 and �:=(3(x −1)+2y)/

√
13. Since E is strictly convex inA, the min-

imal energy min E(A) = E(u) = 0.1078147674 is attained at the unique minimizer
u. The discrete minimizer u� = (uT�

, uF�
) of the discrete energy

E�(v�):=
∫

�

(W (G�v�) − f vT�
) dx + ‖ζ − vT�

‖2L2(�)
/2

among v� = (vT�
, vF�

) ∈ A(T�) is unique in the volume component uT�
only. The

convergence analysis can be extended to the situation at hand with the refinement
indicator η̃

(ε)
� (T ):=η

(ε)
� (T ) + |T |‖(1 − 
k

T )ζ‖2
L2(T )

and leads to lim�→∞ E�(u�) =
E(u), lim�→∞ ∇W (G�u�) = σ (strongly) in L4/3(�;R2), and lim�→∞ uT�

= u
(strongly) in L4(�).

The exact solution u is piecewise smooth and the derivative ∇u jumps across the
interface � = conv{(1, 0), (0, 3/2)}. For an aligned initial triangulation, where �

coincides with the sides of the triangulation, the numerical results from [28] display
optimal convergence rates k+1 for |E(u)− E�(u�)|, ‖σ −σ�‖2L4/3(�)

‖u−uT�
‖2
L2(�)

,

and ‖∇u − G�u�‖2L4(�)
on uniformly refined meshes. Since a priori information on
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Fig. 9 Convergence history plot of ‖∇u − G�u�‖2L4(�)
(left) and ‖σ − ∇W (G�u�)‖2L4/3(�)

(right) with

k from Fig. 1 on uniform (dashed line) and adaptive (right) triangulations for the two-well benchmark in
Sect. 6.4

u is not available in general, this numerical benchmark considers the non-aligned
initial triangulation T0 in Fig. 7a, where � cannot be resolved exactly (even not with
adaptively refined triangulations of T0). In this case, Carstensen and Jochimsen [14]
predicted

‖(1 − 
0
T�

)u‖L4(�) + ‖(1 − 
0
T�

)σ‖L4/3(�) � H�, ‖(1 − 
0
T�

)∇u‖L4(�) � H1/4
�

for H�:=‖h�‖L∞(�). These expected (optimal) convergence rates on uniform meshes
are indeed observed empirically for the lowest-order HHO scheme. Figures 7b, 8b and
9 display the convergence rate 1, 1, 1/4, and 1 for |E(u) − E�(u�)|, ‖u − uT�

‖2
L2(�)

,

‖∇u − G�u�‖2L4(�)
, and ‖σ − ∇W (G�u�)‖2L4/3(�)

, respectively. This improves the
convergence rate 3/4 of the stress error from the lowest-order Courant FEM in [14].
The adaptive algorithmgenerates adaptivemesheswith a strong localmesh-refinement
near the interface � and improve the convergence rate of |E(u) − E�(u�)| to 2.2 in
Fig. 7b, of ‖u − uT�

‖2
L2(�)

to 2 in Fig. 8b, and of ‖σ − ∇W (G�u�)‖2L4/3(�)
to 2.5 in

Fig. 9b for polynomial degrees k ≥ 2. For k = 1, adaptive mesh refinements only
leads to marginal improvements. Since optimal convergence rates are obtained for
‖u − uT�

‖L2(�) and ‖σ − ∇W (G�u�)‖L4/3(�) with k = 0 on uniform meshes, there is
not much gain from adaptive computation.

6.5 Modified Foss–Hrusa–Mizel benchmark

The final example considers a modified Foss–Hrusa–Mizel [43] benchmark in [52],
extended to the domain �:=(−1, 1) × (0, 1) with �1:=[−1, 0] × {0}, �2:=[0, 1] ×
{0}, �3:={x = (x1, x2) ∈ ∂� : x1 = −1 or x1 = 1 or x2 = 1}, and the initial
triangulation T0 of Fig. 10a. Define the energy density W (A):=(|A|2 − 2 det A)4 +
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Fig. 10 Initial triangulation T0 (left) of � and empirical verification of the Lavrentiev gap (right) for the
modified Foss–Hrusa–Mizel benchmark in Sect. 6.5: convergence history plot of |E(u) − E�(u�)| for the
Courant FEM (dotted line) and the lowest-order HHO method on uniform (dashed line) and adaptive (solid
line) triangulations

|A|2/2 for all A ∈ M:=R
2×2, the set

A:={v = (v1, v2) ∈ W 1,2(�;R2) : v1 ≡ 0 on �1, v2 ≡ 0 on �2, v = uD on �3}

of admissible functions inW 1,2(�;R2)with uD:=(cos(ϕ/2), sin(ϕ/2)) in polar coor-
dinates, and the vanishing right-hand side f ≡ 0. The minimal energy E(u) =
min E(A) = 0.88137023556 of

E(v):=
∫

�

W (Dv) dx among v ∈ A

is attained at u:=r1/2(cos(ϕ/2), sin(ϕ/2)) in polar coordinates. The energy density
W ∈ C1(M) is convex and satisfies the lower growthW (A) ≥ |A|2/2 of order p = 2,
but no upper growth of order 2.

The application of the discrete compactness to this model example with free bound-
ary requires the modified refinement indicator

η
(ε)
� (T ):=|T |ε−1‖
k

T ((R�u�)|T − uT )‖2L2(T )
+ |T |ε−1/2

×
( ∑

F∈F�(T )∩F�(�1)

‖(R�u�)|F · e1‖2L2(F)
+

∑
F∈F�(T )∩F�(�2)

‖(R�u�)|F · e2‖2L2(F)

+
∑

F∈F�(T )∩F�(�3)

‖(R�u�)|F − uD‖2L2(F)
+

∑
E∈F�(T )∩F�(�)

‖[R�u�]F‖2L2(F)

+
∑

F∈F�(T )

‖
F ((R�u�)T − uF )‖2L2(F)

)

with the j-th canonical unit vector e j ∈ R
2. Since the presence of the Lavrentiev gap

is equivalent to the failure of conforming FEMs [17,Theorem 2.1], the lowest-order
HHO can be utilized to detect the Lavrentiev gap, cf. Sect. 4.3. Figure 10b provides
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Fig. 11 Adaptive triangulation of � (left) into 614 triangles (7336 dofs) for k = 1 and convergence history
plot (right) of |E(u) − E�(u�)| with k from Fig. 1 on uniform (dashed line) and adaptive (solid line)
triangulations for the modified Foss–Hrusa–Mizel benchmark in Sect. 6.5

empirical evidence that there is a Lavrentiev gap: |E(u)− E�(u�)| converges with the
suboptimal convergence rate 0.5 on uniformly refined meshes, but the Courant FEM
seems to approximate a wrong energy. The adaptive mesh-refining algorithm refines
towards the origin as depicted in Fig. 11a. It is outlined in Sect. 4.3 that a convergence
proof of AHHO for minimization problems with the Lavrentiev gap is impossible
with the known mathematical methodology for k ≥ 1. It comes as a welcome surprise
that optimal convergence rates k + 1 are obtained for any polynomial degrees k on
adaptively refined meshes in Fig. 11b.

6.6 Conclusions

The numerical results from Sect. 6 confirm the theoretical findings in Theorem 2.1.
In particular, the convergence of the energy lim�→∞ min E�(A(T�)) = min E(A) is
observed in all examples. The introduced adaptivemesh-refining algorithmof Sect. 2.2
provides efficient approximations of singular solutions and even leads to improved
empirical convergence rates. The choice of the parameter ε only hasmarginal influence
on the convergence rates and convergence is observed for ε = 0 in undisplayed
computer experiments. Better convergence rates are obtained for larger polynomial
degrees k. The computer experiments provide empirical evidence that theHHOmethod
can overcome the Lavrentiev gap for any polynomial degree k.
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