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Abstract

The nonconforming virtual element method (NCVEM) for the approximation of the
weak solution to a general linear second-order non-selfadjoint indefinite elliptic PDE
in a polygonal domain €2 is analyzed under reduced elliptic regularity. The main tool
in the a priori error analysis is the connection between the nonconforming virtual
element space and the Sobolev space HO1 (f2) by a right-inverse J of the interpolation
operator 7. The stability of the discrete solution allows for the proof of existence of a
unique discrete solution, of a discrete inf-sup estimate and, consequently, for optimal
error estimates in the H'! and L? norms. The explicit residual-based a posteriori error
estimate for the NCVEM is reliable and efficient up to the oscillation terms. Numerical
experiments on different types of polygonal meshes illustrate the robustness of an error
estimator and support the improved convergence rate of an adaptive mesh-refinement
in comparison to the uniform mesh-refinement.

Mathematics Subject Classification 65N12 - 65N15 - 65N30 - 65N50
1 Introduction

The nonconforming virtual element method approximates the weak solution u €
Hé (£2) to the second-order linear elliptic boundary value problem
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Lu = —div(AVu +bu) + yu = f in Q (1.1)

for a given f € L?(S2) in a bounded polygonal Lipschitz domain  C R? subject to
homogeneous Dirichlet boundary conditions.

1.1 General introduction

The virtual element method (VEM) introduced in [4] is one of the well-received
polygonal methods for approximating the solutions to partial differential equations
(PDEs) in the continuation of the mimetic finite difference method [7]. This method
is becoming increasingly popular [1, 3, 5, 6, 16, 17] for its ability to deal with fairly
general polygonal/polyhedral meshes. On the account of its versatility in shape of
polygonal domains, the local finite-dimensional space (the space of shape functions)
comprises non-polynomial functions. The novelty of this approach lies in the fact that
it does not demand for the explicit construction of non-polynomial functions and the
knowledge of degrees of freedom along with suitable projections onto polynomials is
sufficient to implement the method.

Recently, Beirdo da Veiga et al. discuss a conforming VEM for the indefinite
problem (1.1) in [6]. Cangiani et al. [17] develop a nonconforming VEM under the
additional condition

1
0.<y — Sdivib). (1.2)

which makes the bilinear form coercive and significantly simplifies the analysis. The
two papers [6, 17] prove a priori error estimates for a solution u € H?(2) N HO1 ()
in a convex domain 2. The a priori error analysis for the nonconforming VEM in
[17] can be extended to the case when the exact solution u € H'* ()N Hé (2) with
o > 1/2 asitis based on traces. This paper shows it for all o > 0 and circumvents any
trace inequality. Huang et al. [31] discuss a priori error analysis of the nonconforming
VEM applied to Poisson and Biharmonic problems for & > 0. An a posteriori error
estimate in [16] explores the conforming VEM for (1.1) under the assumption (1.2).
There are a few contributions [9, 16, 34] on residual-based a posteriori error control for
the conforming VEM. This paper presents a priori and a posteriori error estimates for
the nonconforming VEM without (1.2), but under the assumption that the Fredholm
operator L is injective.

1.2 Assumptions on (1.1)

This paper solely imposes the following assumptions (A1)—(A3) on the coefficients
A, b, y and the operator £ in (1.1) with f € L?(Q).

(A1) The coefficients A, b,y for j,k = 1,2 are piecewise Lipschitz continu-
ous functions. For any decomposition 7 (admissible in the sense of Sect. 2.1)
and any polygonal domain P € 7, the coefficients A, b,y are bounded
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pointwise a.e. by ||A]lco, [Iblloo, ||V llcc and their piecewise first derivatives by

[Al1,00, IBl1,00, [V11,00-
(A2) There exist positive constants ap and a; such that, for a.e. x € @, A(x) is SPD
and

2
aolé)* < D Ajp(0)Ej& < ailgl* forall & € R, (1.3)
J.k=1

(A3) The linear operator L : HO1 Q) - H (D) is injective, i.e., zero is not an
eigenvalue of L .

Since the bounded linear operator £ is a Fredholm operator [30,p. 321], (A3) implies
that £ is bijective with bounded inverse £~' : H~1(Q) — H} (). The Fredholm
theory also entails the existence of a unique solution to the adjoint problem, that is,
for every g € L2(), there exists a unique solution ® € HO1 (2) to

LYD = —div(AVD) +b- VO +yd = g. (1.4)
The bounded polygonal Lipschitz domain €2, the homogeneous Dirichlet boundary

conditions, and (A1)-(A2) lead to some 0 < o < 1 and positive constants Creg
and C;“eg (depending only on o, 2 and coefficients of £) such that, for any f, g €

L3(), the unique solution u to (1.1) and the unique solution ® to (1.4) belong to
H'™(Q) N H} () and satisfy

lulli4o,0 < Creg||f”L2(§2) and ||®ll140.0 < C:;g”g”Lz(Q)- (1.5)

(The restriction o < 1 is for convenience owing to the limitation to first-order con-
vergence of the scheme.)

1.3 Weak formulation

Given the coefficients A, b, y with (A1)-(A2), define, for all u, v € V := HO1 (2),

a(u,v) := (AVu, Vu)12q), bu,v) = u,b-Vv)2q), cu,v) = (yu,v)2gq
(1.6)

and
B(u,v) :=a(u,v) + b(u,v) + c(u, v) (1.7)

(with piecewise versions dpw, bpw, Cpw and Bpy for V replaced by the piecewise gradi-
ent Vpy and local contributions a”, b7, ¢” defined in Sect. 3.1 throughout this paper).
The weak formulation of the problem (1.1) seeks # € V such that

B(u,v) = (f, v)Lz(Q) forallv e V. (1.8)
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Assumptions (A1)—(A3) imply that the bilinear form B (-, -) is continuous and satisfies
an inf-sup condition [11]

. B(v, w)
0 < Bo:= inf

e (1.9
0#4veV oxpev VlLllwliq

1.4 Main results and outline

Section 2 introduces the VEM and guides the reader to the first-order nonconforming
VEM on polygonal meshes. It explains the continuity of the interpolation operator and
related error estimates in detail. Section 3 starts with the discrete bilinear forms and
their properties, followed by some preliminary estimates for the consistency error and
the nonconformity error. The nonconformity error uses a new conforming companion
operator resulting in the well-posedness of the discrete problem for sufficiently fine
meshes. Section 4 proves the discrete inf-sup estimate and optimal a priori error esti-
mates. Section 5 discusses both reliability and efficiency of an explicit residual-based
a posteriori error estimator. Numerical experiments in Sect. 6 for three computational
benchmarks illustrate the performance of an error estimator and show the improved
convergence rate in adaptive mesh-refinement.

1.5 Notation

Throughout this paper, standard notation applies to Lebesgue and Sobolev spaces H™
with norm || - ||, p (resp. seminorm | - |, p) for m > 0, while (-, ) .2(py and || - [| 2(p)
denote the L? scalar product and L? norm on a domain D. The space CY(D) consists
of all continuous functions vanishing on the boundary of a domain D. The dual space
of Hol(SZ) is denoted by H~!(Q) with dual norm || - ||_;. An inequality A < B
abbreviates A < C B for a generic constant C, that may depend on the coefficients of
L, the universal constants o, p (from (M2) below), but that is independent of the mesh-
size. Let Pi (D) denote the set of polynomials of degree at most k € Ny defined on a
domain D and let IT; denote the piecewise L? projection on P4 (7) for any admissible
partition 7 € T (hidden in the notation ITj). The notation H*(P) := H*(intP) for
a compact polygonal domain P means the Sobolev space H*® [30] defined in the
interior int(P) of P throughout this paper. The outward normal derivative is denoted
by 2% = np - Ve for the exterior unit normal vector np along the boundary d P of

on P .
the domain P.

2 First-order virtual element method on a polygonal mesh
This section describes class of admissible partitions of €2 into polygonal domains

and the lowest-order nonconforming virtual element method for the problem (1.1) [3,
17].
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Fig.1 Polygonal domains P;
and P, share one edge, while P;

and Py share three edges P,

PN/ Ps

Py

2.1 Polygonal meshes

A polygonal domain P in this paper is a non-void compact simply-connected set P
with polygonal boundary d P so that int(P) is a Lipschitz domain. The polygonal
boundary d P is a simple closed polygon described by a finite sequence of distinct
points. The set N(0 P) = {z1, 22, . . ., 2z} of nodes of a polygon P is enumerated with
Zj+1 = z1 such that E(j) := conv{z;, z; 11} defines an edge and all J edges cover
the boundary d P = E(1)U---U E(J) with anintersection E(j)NE(j+1) = {zj+1}
forj=1,...,J—land E(J)NE(1) = z; withdist(E(j), E(k)) > 0 for all distinct
indices j # k.

Let T be a family of partitions of € into polygonal domains, which satisfies the
conditions (M1)—-(M2) with a universal positive constant p.

(M1) Admissibility. Any two distinct polygonal domains P and P’ in 7 € T are
disjoint or share a finite number of edges or vertices (Fig. 1).

(M2) Mesh regularity. Every polygonal domain P of diameter 4 p is star-shaped with
respect to every point of a ball of radius greater than equal to php and every
edge E of P has a length | E| greater than equal to php.

Here and throughout this paper, 47| p := h p denotes the piecewise constant mesh-
sizeand T(8) := {7 € T : hpmax < § < 1} with the maximum diameter /1,5 of the
polygonal domains in 7 denotes the subclass of partitions of Q into polygonal domains
of maximal mesh-size < §. Let | P| denote the area of polygonal domain P and |E|
denote the length of an edge E. With a fixed orientation to a polygonal domain P,
assign the outer unit normal np along the boundary 9 P and ng := np|g for an edge
E of P.Let & (resp. &) denote the set of edges E of 7 (resp. of 7) and E(P) denote the
set of edges of polygonal domain P € 7. For a polygonal domain P, define

1 1
mid(P) := m/ xdx and mid(dP) := ﬁ xds.
P apP

Let Pi(7) := {v € L2(Q) : VP € T v|p € Pr(P)} for k € Ny and IT; denote the
piecewise L2 projection onto P (7). The notation IT; hides its dependence on 7 and

also assume IT; applies componentwise to vectors. Given a decomposition 7 € T of
2 and a function f € L2(), its oscillation reads

osck(f, P) := [lhp(l — Hk)f”LZ(P) and

1/2
oscr(f, D) := (Z Ilhp(1— nk>f||’iz(,,)>

PeT
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Fig.2 aPolygon P and b its 26 E(5) 25 26 E(5) s
sub-triangulation 7( P) 1 L
E(4) E(4)
E(6) 24 E(6)| T(E®6) 24
E(3) E(3)
21 B(1) 22 B(2) 23 21 B(1) 22 B2) 23
(@) (b)

with osc(f, ®) := osco(f, o).

Remark 1 (consequence of mesh regularity assumption) There exists an interior node
¢ in the sub-triangulation /'Z\'(P) :={T(E) = conv(c, E) : E € &(P)} of a polygonal
domain P withh7gy < hp < Cshr(g) asillustrated in Fig. 2. Each polygonal domain
P can be divided into triangles so that the resulting sub-triangulation 7] pi= T(P) of
7T is shape-regular. The minimum angle in the sub-triangulation solely depends on p
[13,Sec. 2.1].

Lemma 2.1 (Poincaré—Friedrichs inequality) There exists a positive constant Cp, that
depends solely on p, such that

I fllL2cpy < Cerhplflip 2.1

holds for any f € H'(P) with Zjej fE(j) fds = 0 for a nonempty subset J <
{1,...,m} of indices in the notation 9P = E(1)U---U E(m) of Fig. 2. The constant
Cpr depends exclusively on the number m := |E(P)| of the edges in the polygonal
domain P and the quotient of the maximal area divided by the minimal area of a
triangle in the triangulation ”Z\'(P).

Some comments on Cpr for anisotropic meshes are in order before the proof gives
an explicit expression for Cpr.

Example 2.1 Consider a rectangle P with a large aspect ratio divided into four con-
gruent sub-triangles all with vertex ¢ = mid(P). Then, m = 4 and the quotient of the
maximal area divided by the minimal area of a triangle in the criss-cross triangulation
/’]\‘(P) is one. Hence Cpr < 1.4231 (from the proof below) is independent of the aspect
ratio of P.

Proofof Lemma 2.1 The case J = {1,...,m} with f € Hl(P) and faP fds =0
is well-known cf. e.g. [13, Sec. 2.1.5], and follows from the Bramble-Hilbert lemma
[14, Lemma 4.3.8] and the trace inequality [13, Sec. 2.1.1]. The remaining part of the

proof shows the inequality (2.1) for the case J < {1, ..., m}. The polygonal domain
P and its triangulation 7(P) from Fig. 2 has the center ¢ and the nodes z1, . .., z,, for

the m := |E(P)| = |”Z\'(P)| edges E(1), ..., E(m) and the triangles T (1), ..., T (m)
with T'(j) = T(E(j)) = conv{c, E(j)} = conv{c, zj, zj41} for j =1, ..., m. Here
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and throughout this proof, all indices are understood modulo m, e.g., zo = z,,. The
proof uses the trace identity

fds = fdx + 1][ (x —¢)- VF£(x)dx (2.2)
E(j) T(j) T(j)

for f € H'(P) as in the lemma. This follows from an integration by parts and the
observation that (x —c)-np = 0on F € &(T (j))\E(j) and the height (x —c) -ng(j) =
% of the edge E(j) in the triangle T (j), for x € E(j); cf. [24, Lemma 2.1] or
[25, Lemma 2.6] for the remaining details. Another version of the trace identity (2.2)
concerns conv{z;, c} =: F(j) = 9T (j — 1) N 9T (j) and reads

1
fds=][ fdx+—][ (x —zj-1)-Vfx)dx
F(j) T(ji—1) 2)1¢-1

:][ fdx+l][ (x —zjy1) - Vf(x)dx 2.3)
() 2Jra)

in T(j — 1) and T (j). The three trace identities in (2.2)—(2.3) are rewritten with the
following abbreviations, for j = 1, ...m,

Xj = fds, fj:= fdx, aj:= l][ (x—¢)-Vf(x)dx,
T(j)

EG) () 2

1 1
bj:= —][ ' (x—z;)-Vf(x)dx, cj:= —][ ' (x —zj+1) - Vf(x)dx.
2Jr ) 2Jr )

Let typin = ming AP |T| and fpax = maxT P |T| abbreviate the minimal and

maximal area of a triangle in T(P) and let Ho f € PO(T(P)) denote the piecewise
integral means of f with respect to the triangulation ’T(P) The Poincaré inequality in
a triangle with the constant Cp := 1/ 1 and the first positive root ji | ~ 3.8317 of
the Bessel function J; from [24, Thm. 2.1] allows for

If = Mo flliz2cr¢y = Cehrplflirgy forj=1,....m

Hence || f — ﬁoflle(P) < Cphp|f|1,p. This and the Pythagoras theorem (with
f —Tof L Po(Z(P)) in L2(P)) show

1 1Z2py = IT0 £ 172y, + 1f = Tof 112 pyy < IT0f172py, + CohBIfIT p-
2.4)

It remains to bound the term ||H0f||L2(P)) The assumptionon f reads Zjej fE(j) fds
= Zjej |[E(j)|x; = 0forasubset J C {I,...,m}sothat 0 € conv{|E(1)|x1, ...,

|E(m)|xy}. It follows O € conv{xy, ..., x;} and it is known that this implies
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Yoxp MY (i —xi1)’ (2.5)
k=1

k=1

for a constant M = m that depends exclusively on m [25, Lemma 4.2].
Recall (2.2) in the form x; = f; + a; to deduce from a triangle inequality and (2.5)
that

WD EDY szzm—xk 02 +zaz

j=1 k=1 (=1

This shows that

s IT0 1172 ) = maxz ITDIf] < Zﬂ <2M Z(xk — xe1)? +2Za@

Recall (2.2)—(2.3)inthe form f;— fj 1 =bj_1—cjandxj—x;_1 = fj— fj—1+a;—

aj1=bj1—aj1+aj—cjforall j=1,..., m. This and the Cauchy—Schwarz
inequality imply the first two estimates in

2x; —xj—1| =

][ (C—Zj—1)~Vf(x)dx+][ (zj+1—0) - Vf(x)dx
T(j—1) ()

<max{lc —z;j-1l, lc — zj4+1}

(TG = O 211G +ITGOI Pl

< hptmm |f|1 T(j—1)UT())

with the definition of /4 p and #y;, in the end. The inequality fT( ) |x c|2 dx
éhzT(])|T( 7)1 [25, Lemma 2.7] and the Cauchy—Schwarz inequality show, for j
1, , m, that

IA

laj| <273 2hy y ITDI 21 f 1y < 2_3/2hptmm Lfl1,7())-

The combination of the previous three displayed estimates result in

415" (tmin/ tmax) 1Tl £ 172 py < 2M Z | £ 3 g—pure + Z 1713 7
=1

= (4/\/1 + l)lfllyp.
This and (2.4) conclude the proof with the constant CPF = (M4+1/4)(tmax/tmin) + C

O
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In the nonconforming VEM, the finite-dimensional space V}, is a subset of the
piecewise Sobolev space

H' () :={veL*(Q):YPeT v|lpec H(P)} = ]_[ H'(P).
PeT

The piecewise H' seminorm (piecewise with respect to 7 hidden in the notation for
brevity) reads

1/2
[vpl1,pw = (Z|vhlip) for any v, € H'(7).

PeT

2.2 Local virtual element space

The first nonconforming virtual element space [3] is a subspace of harmonic functions
with edgewise constant Neumann boundary values on each polygon. The extended
nonconforming virtual element space [1, 17] reads

Vi(P) := {vh € H'(P): Av, € Pi(P) and VE € &P) 3

. € PQ(E)} .
(2.6)

Definition 2.2 (Ritz projection) Let l'[lV be the Ritz projection from H'!(P) onto the
affine functions P;(P) in the H'! seminorm defined, for v, € H(P), by

(VITY vy — Vop, V) 2py =0 forall x € Py(P)

and / Y vy ds = / v ds. 2.7
P aP

Remark 2 (integral mean) For P € 7 and f € H'(P), VI"IIVf = IIpV f. (This
follows from (2.7.a) and the definition of the L? projection operator Iy (acting com-
ponentwise) onto the piecewise constants Pgy(P; R?).)

Remark 3 (representation of T1)') For P € Tand f € H'!(P), the Ritz projection
Hlv f reads

My fHx) = %(/BP fnp ds) : (x —mid(aP)) +4 fds forxe P. (28)

oP

(The proof of (2.8) consists in the verification of (2.7): The equation (2.7.a) follows
from Remark 2 with an integration by parts. The equation (2.7.b) follows from the
definition of mid(a P) as the barycenter of d P.)

The enhanced virtual element spaces [1, 17] are designed with a computable L>
projection IT; onto P;(7). The resulting local discrete space under consideration
throughout this paper reads
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Vi(P) i= {vh € Vi(P) 1 vy — Y vy L Py(P) in L2(P)} X))

The point in the selection of V,(P) is that the Ritz projection Hlvvh coincides with
the L2 projection I1jvy for all v, € Vj,(P). The degrees of freedom on P are given
by

1
dofg (v) = m L vds forall E € &(P)and v € Vj,(P). (2.10)

Proposition 2.3 (a) The vector space Vh (P) from (2.6) is of dimension 3+ |E(P)|. (b)
Vi (P) from (2.9) is of dimension |E(P)| and the triplet (P, Vi (P), dof : E € E(P))
is a finite element in the sense of Ciarlet [28].

Proof Let E(1), ..., E(m) be an enumeration of the edges £(P) of the polygonal
domain P in a consecutive way as deEicted in Fig. 2a and define W (P) := P (P) x
Po(E(1)) X -+ x Po(E(m)). Recall V},(P) from (2.6) and identify the quotient space
Vi(P)/R = | f € Vi(P): [,p fds =0} with all functions in Vj(P) having zero
integral over the boundary d P of P. Since the space Vi (P) consists of functions with
an affine Laplacian and edgewise constant Neumann data, the map

S Vh(P)/R% W(P)» f = <_Af’ % E(l)’ e % E(m))

is well-defined and linear. The compatibility conditions for the existence of a solution
of a Laplacian problem with Neumann data show that the image of § is equal to

R(S) = (fl,gln--,gm)eW(P):/PfldX+Zgj|E(j)|=0

j=1

(The proof of this identity assumes the compatible data ( f1, g1, - - ., gn) from the set
on the right-hand side and solves the Neumann problem with a unique solution % in
Vh(P)/R and Su = (f1, g1, ..., &n).) It is known that the Neumann problem has a
unique solution up to an additive constant and so S is a bijection and the dimension
m + 2 of V,(P)/R is that of R(S). In particular, dimension of V,(P) is m + 3. This
proves (a).

Let Ag, A1, Az : HY(P) — R be linear functionals

Aof ==Tof, Ajf:=M;(I1) —If)

with M f := Io((x; —c;)f) for j = 1,2 and f € H'(P) that determines an
affine function p; € P;(P) such that (P, P1(P), (Ag, A1, A2)) is a finite element
in the sense of Ciarlet. For any edge E(j) € &£(P), define Aj o f = fE(/.) fds
as integral mean of the traces of f in H Lp) on E(j). It is elementary to see that
Ao, ..., Ao are linearly independent: If f in Vj, (P) belongs to the kernel of all the
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linear functionals, then Hlvf = O0from (2.8) with A ; f = Oforeachj =3,...,2+m.
Since the functionals A ; f = Ofor j = 1,2, (x; —c;)(TIY =I1}) f = O0and 1} f =0
imply IT; f = 0. An integration by parts leads to

0
IV Baipy = CAF Dy + (£ 55) =
This and fa p fds = 0show f = 0. Consequently, the intersection ﬂm+2Ker(A i)
of all kernels Ker(Ayp), ..., Ker(A),,+2 is trivial and so that the functionals
Ag, ..., Apyo are linearly independent. Since the number of the linear functionals is
equal to the dimension of f/\h(P), (P, Vh(P), {Ao, ..., Amy2}) is a finite element in
the sense of Ciarlet and there exists a nodal basis ¥, . .., Y42 of Vh(P) with

ANj(Yx) =0, forall j,k=0,...,m+2.

The linearly 1ndependent functions 3, . .., ¥, 42 belong to Vj, (P) and so dim(V}, (P))
> m. Since V;,(P) C Vh(P) and three hnearly independent conditions (1 — Hv)vh 1
P1(P) in L*>(P) are imposed on Vh(P) to define V,(P), dim(V,(P)) < m. This
shows that dim(Vj,(P)) = m and hence, the linear functionals dofg = fE e ds for
E € E(P) form a dual basis of V},(P). This concludes the proof of (b). O

Remark 4 (stability of L> projection) The L? projection ITj for k = 0, 1is H' and
L? stable in V},(P), in the sense that any vy, in Vj,(P) satisfies

IMxvallizzcpy < lvnliz2py and [IVITkvi)liz2py < IVURll2(p)- 2.11)

(The first inequality follows from the definition of Ilx. The orthogonality in (2.9)
and the definition of IT; imply that the Ritz projection l'[lv and the L? projection IT,
coincide on the space Vj,(P) for P € 7. This with the definition of the Ritz projection
l'IlV verifies the second inequality.)

Definition 2.4 (Fractional order Sobolev space [14]) Let @ := (1, op) denote a multi-
index with o; € No for j = 1,2 and |a| := o + a3. For a real number m with
0 <m < 1, define

[v*(x) — v*(y)]

1+m . 1 .
H (w) = {veH (w) : =y

€ L*(w x w) forall || = 1}

with v* as the partial derivative of v of order «. Define the seminorm | - |14, and
Sobolev-Slobodeckij norm || - || 14, by

2
2 Z [v*(x) — v¥(y)] 2 2 2
1V m.0= //mdxdy and [vlly 4 o=V o+ 011400
laj=17@ Yo

Proposition 2.5 (approximation by polynomials [29, Thm. 6.1]) Under the assump-
tion (M2), there exists a positive constant Capx (depending on p and on the polynomial
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degree k) such that, for every v € H™(P), the L? projection Ty on Py (P) fork € Ny
satisfies

o = Tgvll 2cpy + hplo = Tevli p < CaphBlvlmp for 1 <m <k+1. (2.12)

2.3 Global virtual element space

Define the global nonconforming virtual element space, for any 7 € T, by

Vi = {vh e H' (D):VP €T vylp € Vy(P) and VE € & /[vh]Eds=0}.
E
(2.13)

Let[-]g denote the jump across anedge E € &: For two neighboring polygonal domains
PT and P~ sharing a common edge E € E(PT) NE(PT), [vnlE := vy p+ — Vpyp-»
where P denote the adjoint polygonal domain with n p+|g = ng and P~ denote
the polygonal domain with np-gp = —ng. If E C 99 is a boundary edge, then
[vhlE == vplE.

Example 2.2 1f each polygonal domain P is a triangle, then the finite-dimensional
space Vj, coincides with CR-FEM space. (Since the dimension of the vector space
Vi (P) is three and Py (P) C Vi (P), V4 (P) = P (P) for P € T)

Lemma 2.6 There exists a universal constant Cg (that depends only on p from (M2))
such that, for all T € T, any vy, € Vj, from (2.13) satisfies

lvrllz2(@) < Celvalipw- (2.14)

Proof Recall from Remark 1 that 7 is a shape regular sub-triangulation of 7 into
triangles. Since V, C H 1(”23 and the Friedrichs’ inequality holds for all functions
in H'(7) [14,Thm. 10.6.16], there exists a positive constant Cg such that the (first)
inequality holds in

172
lvallz2) < Cr [ Y IVRlGay | = Crlvalipw
TeT
The (second) equality follows for v, € H!(P) with P € T. O

Lemma 2.6 implies that the seminorm | - |1 py is equivalent to the norm || - [|1,pw :=

I - ||i2 @ + |- |%pw in V;, with mesh-size independent equivalence constants.

2.4 Interpolation

Definition 2.7 (interpolation operator) Let (g : E € &) be the nodal basis of V,
defined by dofg (¥g) = 1 and dof (¥ g) = O for all other edges F € £\ {E}. The
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global interpolation operator I}, : HO1 (2) — Vj, reads

Ipv = Z (ﬁ UdS)I//E forve V.

Ee&

Since a Sobolev function v € V has traces and the jumps [v]g vanish across any edge
E € &, the interpolation operator Ij, is well-defined. Recall p from (M2), Cpr from
Lemma 2.1, and Cypx from Proposition 2.5.

Theorem 2.8 (interpolation error)
(a) There exists a positive constant Cyy (depending on p) such that any v € H'(P)
and its interpolation Iv € V;,(P) satisfy

||VI;,v||L2(p) = CItn”VUHLZ(P)'

(b) Any P € T € Tand v € H'(P) satisfy [v — Ipvl1,p < (1 + Ci)|I(1 —
o) Vull2(py
and

hp (1= T L) vll 2epy + 1(1 =TI Ip)vly p < (1 + Cpp)II(1 — TTo) Vvl 2(p)-

(¢c) The positive constant C1 := Cyapx (1 + Cyn)(1 + Cpp), any 0 < o < 1, and any
v € H'Y9(P) with the local interpolation Iyv|p € Vi (P) satisfy

lv = Iyl 2py + hplv — Ivlp < Cihpt [Vl 140, p. (2.15)

Proof of (a) The boundedness of the interpolation operator in Vj,(P) is mentioned in
[17] with a soft proof in its appendix. The subsequent analysis aims at a clarification
that C depends exclusively on the parameter p in (M2). The elementary arguments
apply to more general situations in particular to 3D. Given Ipv € Vi, (P), q1 =

—AlIpv € P1(P) is affine and fE(v — Iyv)ds = 0. Since %ﬁf: is edgewise constant,
this shows [, %ﬁ’; |g(v—Iv)ds = 0forall E € &(P) and so (dafl—h;, v—Ipv),, = 0.

An integration by parts leads to
(VIhU, V(Ihv — U))LZ(P) = (q1, ]hv — U)LZ(P) = (ql, nlvlhv — U)LZ(P)
with g1 € P1(P) and [T v, = H]Vvh for v, € Vj,(P) in the last step. Consequently,

||VI[1U||%2(P) = (V]hl}, V(Ihl) — v))LZ(P) + (VIhU, VU)LZ(P)
= (q1. 1} Ihyv — v) 12(py + (VIpv, V) 12(py
= ”ql”LZ(P)”U - H1V1hv||L2(P) + ||V1hv||L2(P)||VU||L2(P) (2.16)
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with the Cauchy inequality in the last step. Remarks 2 and 3 on the Ritz projection,
and the definition of I, show

MyVv = Vv = |P|™! / vnp ds
P

= |P|_1/ Iyvnp ds = TyVIv = VITY Ijv. (2.17)
P

The function f :=v — I"Ilvlhv € H'(P) satisfies fap fds = faP(v —Iv)ds =0
and the Poincaré—Friedrichs inequality from Lemma 2.1.a shows

lv — T} Iyvll 2 py < CorhplIV (v — TTY I40) |l 2(py = Cophp (1 — TIg) Vull 12p)
(2.18)

with (2.17) in the last step. Let ¢, € Sy(Z(P)) = {w € CUP) : wlrE) €
PI(T(E)) forall E € E(P)} denote the piecewise linear nodal basis function of
the interior node ¢ with respect to the triangulation "Z\'(P) ={T(E): E € &P)} (cf.
Fig. 2b for an illustration of /’f(P)). An inverse estimate

I fill 2z ey < Cilldd? fill ey forall fi € Pi(Z(P))

on the triangle T(E) := conv(E U {c}) holds with the universal constant Ci. A
constructive proof computes the mass matrices for 7 with and without the weight ¢,
to verify that the universal constant C; does not depend on the shape of the triangle
T (E). This implies

Cl_l llg1 ||i2(p) = (¢c6117111)L2(p) = (=Alv, ¢cq1) = (Vijpv, V(¢c‘]l))L2(p)
(2.19)

with an integration by parts for ¢.q; € H(} (P) and I, v in the last step. The mesh-size
independent constant C; in the standard inverse estimate

hre) Va2 ey = Callgzll2(rey forall g2 € Po(T(E))

depends merely on the angles in the triangle 7' (E), E € £(P), and so exclusively on
p. With C;'hp < hr(g) from Remark 1, this shows

Cy s hplIVeeqill 2p) < I0eqill2py < laill2cp)-
This and (2.19) lead to
g1l 2(py < C1C2Csth IV Il L2y, (2.20)
The combination with (2.16)—(2.18) proves

||V[hU||i2 < (C1C2CsCpp|I (1 — HO)VU”LZ(P) + ||VU||L2(p))||VIhU||L2(P)

(P)
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= (1 + CiGCCCrr) IVl 2py VIRV L2(py-

O

Proof of (b) The identity (2.17) reads IToV(1 — I;;)v = 0 and the triangle inequality
results in

v —Ipvli,p = [[(1 = Ho) V(L = vl 2(p
= (A =To)Vulz2py + I(1 = o) VIpvll2(p). (2.21)

Since I}, is the identity in Py (P), it follows (1 —I1g)VIv = (1 =) VI, (v — Hlvv).
This and the boundedness of the interpolation operator I, lead to
(1 — HO)VIhU”LZ(p) < [[VI(1 - Hlv)U”LZ(P)
< CinlIVA = )] 12(py = Cn (1 = TT0) V| 12y
(2.22)

with Remark 2 in the last step. The combination of (2.21) and (2.22) proves the first
part of (b).

The identity [(1 — [Ty Ix)v|i,p = [[(1 — T1o) V|l 2(py follows from (2.17). Since
I, = 1} in V) and [ypvds = [,phvds = [,p I1Y I,v ds, the Poincaré-Friedrichs
inequality

(1 = IiZp)vliz2py < Cerhpl(1 — I1iIp)vl1,p

follows from Lemma 2.1.a. This concludes the proof of (). O

Proofof (c) This is an immediate consequence of the part (b) with (2.12) and the
Poincaré—Friedrichs inequality for v — I v (from above) in Lemma 2.1.a. O
3 Preliminary estimates

This subsection formulates the discrete problem along with the properties of the dis-
crete bilinear form such as boundedness and a Gdarding-type inequality.

3.1 The discrete problem
Denote the restriction of the bilinear forms a(-, -), b(:, -) and c(-, -) on a polygonal

domain P € 7 by af (¢, ), bP(, ) and (-, ). The corresponding local discrete
bilinear forms are defined for uj, v, € V;,(P) by

aj, (up, vp) = (AVITiup, VITiop) 20py + ST = TDug, (1= T)vg),  (3.1)
by (up, vp) := (Myup, b - VIT1vR) 12p). (3.2)
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ey (s vp) = (yun, THop) 2 (py.» (3.3)

B (un, vi) = af (un, vp) + bf (un, vp) + cf (up, vp). (3.4)

Choose the stability term S (uy,, vy,) as a symmetric positive definite bilinear form on
Vi (P) x V,(P) for a positive constant C; independent of P and & p satisfying

C;lal (p, vn) < ST (up, vn) < Cya® (vp, o) for all vy, € Vi (P) with vy, = 0.

(3.5)
For some positive constant approximation Ap of A over P and the number Np :=
|E(P)| of the degrees of freedom (2.10) of V;,(P), a standard example of a stabilization
term from [4],[36,Sec. 4.3] with a scaling coefficient A p reads

Np
ST (v, wp) :=Ap Zdofr(vh)dofr(wh) for all vy, wy € Vj. (3.6)
r=1
Note that an approximation A p is a positive real number (not a matrix) and can be

chosen as /aga; with the positive constants ag and a; from (A2). For f € L?(2) and
v, € Vj, define the right-hand side functional f;, on V), by

(fns vn)2py = (f, Thvp) 2¢py- (3.7)

The sum over all the polygonal domains P € 7reads

ap(up, vp) = Zaf,)(uh, vp), bp(up, vp) == be(uh, V),

PeT PeT

cnun, vn) =Y cf (n, vr), snGuns vi) == ST = Tup, (1= T)ws),
PeT PeT

By (up, vp) 1= Z By (up. vn). (i vn) 120 = Z(fh» vn)p2py forall up, vy € V.
PeT PeT

The discrete problem seeks uj, € Vj, such that

By (up, vp) = (fn, Uh)Lz(Q) for all v, € V. (3.8)

Remark 5 (polygonal mesh with small edges) The conditions (Ml)—(MZ) are well
established and apply throughout the paper. The sub-triangulation 7 may not be shape-
regular without the edge condition |E| > php for an edge E € 7(P) and P € 7,
but satisfies the maximal angle condition and the arguments employed in the proof of
[8,Lemma 6.3] can be applied to show (2.20) in Theorem 2.8.a. For more general star-
shaped polygon domains with short edges, the recent anisotropic analysis [8, 15, 18]
indicates that the stabilization term has to be modified as well to avoid a logarithmic
factor in the optimal error estimates.
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3.2 Properties of the discrete bilinear form

The following proposition provides two main properties of the discrete bilinear form
By,.

Proposition 3.1 There exist positive universal constants M, « and a universal non-
negative constant 3 depending on the coefficients A, b, y such that

(a) Boundedness: |By(up, vp)| < Mlupli pwlvnlipw forall up, vy € Vj.
(b) Garding-type inequality:a|vh|%’pw—/3||vh||iz(m < Bp(vp, vy) forall v, € V.

Proof of (a) The upper bound of the coefficients from the assumption (Al), the
Cauchy—Schwarz inequality, the stability (2.11) of IT;, and the definition (3.5) of
the stabilization term imply the boundedness of By with M := (1 + Cy)||Allec +
Cr|Iblloo + C%Hy lloo- The details of the proof follow as in [6, Lemma 5.2] with the
constant Cg from Lemma 2.6. m]

Proof of (b) The first step shows that a; (-, -) is coercive. For v;, € V,(P), ITjv, =
Hlvvh and VIT v, L V(v — l'[lvvh) in LZ(P; Rz). This orthogonality, the assumption
(A2), and the definition of the stability term (3.5) with the constant C < imply
for ap = aoCS’1 that

a0V 7y < @0l VowTivall7a g + @0Cy 1 Vpw(1 = T wAlIZ5 g

< (AVpw 10, Vo) 120+ €5 (AVpu (1 = T, va(l—novh)Lz(Q)

< (AVpwITivp, VpwITivp) p2(gy+sn (1 = T ve, (1 = TI)vp) = an(vp, va)-
3.9)

The Cauchy—Schwarz inequality, (2.11), and the Young inequality lead to

|br (Vn, vi) + cp(vn, vp)|
< IbllocITlivpll L2 I VowIT1vnll 20y + "V”oo”Hlvh”iz(Q)
leq|blloollvallz2 (@) lvalipw + 1V locllvn IIiz(Q)

LY
20

=

(200]
ol Z2) + 2 10 lF g + 17 oo 10 I1Z2 (3.10)

The combination of (3.9)—(3.10) proves

o IbI12
S 1onl ( rc 17l ) 0nlE2 gy = BaCun un).

2
This concludes the proof of (b) with ¢ = ‘% and g = % + 17 loo- O

Remarké (|| - |ln ~ | - |I1,pw) The discrete space Vj, of the nonconforming VEM is
endowed with the natural norm || - ||, := ay,(-, -)'/? induced by the scalar product ay,.
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The boundedness of a;, is proven in (a), while (3.9) shows the converse estimate in
the equivalence || - [, ~ | - [1,pw in Vj, namely

@0[n T py < an (s vi) < [Alloo(1+ C)lvali py, forall v € V.

3.3 Consistency error

This subsection discusses the consistency error between the continuous bilinear form
B and the corresponding discrete bilinear form Bj,. Recall the definition B” (-, ) =
al (. )+bP (¢, )+cP ¢, yand BY (-, ) = af (-, )+bF (-, ) +cf (-, ) forapolygonal
domain P € 7 from Sect. 2.1.
Lemma 3.2 (consistency)
(a) There exists a positive constant Ceg (depending only on p) such that any v €
HY(Q) and wy, € V), satisfy
B (Myv, wy) — B (Myv, wy) < Cesthplvlly plwali p forall P e T (3.11)

(b) Any f € L>(Q) and fy = 1} f satisfy

”f_fh”VZ = sup (f_f]’H vh)LZ(Q)

< Cprosci(f, D). (3.12)
0£vpeVy lvnll1,pw

Proof Observe that S¥ ((1—T11)I1 v, (1—T11)wy,) = 0 follows from (1 — 1)1 v =
0. The definition of B¥ and Bf show

BY (v, wy) — BY (Myv, wpy) =: T + Tr + T3. (3.13)

The term T in (3.13) is defined as the difference of the contributions from a” and

af . Their definitions prove the equality (at the end of the first line below) and the
definition of IT; prove the next equality in

Ty :=a’ (I, wp) — a (v, wy) = (AVITv, V(1 — MDwn) 2p)
= ((A = TA)(VIT v), V(I = TTDws) 2(py < hp|Al1 sVl plwili,p.

The last inequality follows from the Cauchy—Schwarz inequality, the Lipschitz
continuity of A, and the stabilities |[VITivpll2py < [Vonrllp2py and V(1 —

Mwallz2py < IIVwillp2(py from Remark 4. Similar arguments apply to 7> from
the differences of b* and b,f , and T3 from those of ¢f and cf in (3.13). This leads to

Ty := b" (Mg, wy) — by (v, wy)
= ((b — ITob)IT1v, V(1 — IT)wn) 12 (py
+ ((TTpb) (1 — M) (ITyv), V(1 — IT)wn) 12(py
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< (Ibl1.0o + Capx[Iblloc)rp IV l1.pwil1. p.
Ts := c” (Tyv, wp) — ¢f (v, wy) = (v, (1 = T wa) 12(p)

< Cpr Iy lloch PVl L2¢pylwnli, p-

The inequality for the last step in 7> follows from the Cauchy—Schwarz inequality, the
Lipschitz continuity of b, the estimate |[(1 — [To)IT1v[|2¢py < (1 — Mo)vlliL2p) <
Capxhp|vli, p from (2.12), and the above stabilities [|VITivnll2py < [[Vorllp2p)
and [|[V(I — IIDwallz2py < IVwiliz2(py- The inequality for the last step in 73
follows from the Cauchy—Schwarz inequality, [[TTjv|l;2(py < [[vllz2(py from (2.11)
and the Poincaré-Friedrichs inequality in Lemma 2.1.a for wy, — IT{ wy, with f oap(Wp—
IMywy)ds = 0 from I1; = 1'[1v in Vj,. The combination of the above estimates shows
(3.11). The proof of (3.12) adapts the arguments in the above analysis of 73 and the

definition of oscy(f, 7) in Sect. 2.1 for the proof of

(f = fuswn)p2py = (f =1 f, wp — Tywp) 12(py < Cerlwily,posci(f, P).

This concludes the proof. O

3.4 Nonconformity error

Enrichment operators play a vital role in the analysis of nonconforming finite element
methods [12]. For any v;, € Vj, the objective is to find a corresponding function
Juy € H(} (£2). The idea is to map the VEM nonconforming space into the Crouzeix-
Raviart finite element space

CR(I)(?) ={veP; (?5 .V E € £ v is continuous at mid(E) and
VE e€&0R) v(mid(E)) =0}

with respect to the shape-regular triangulation 7 from Remark 1. Let Y be the edge-
oriented basis functions of CR(I) (?5 with Y g (midE) = 1 and ¥ g(midF) = 0O for all
other edges F € ?\ {E}. Define the interpolation operator Icr : V), — CR(I)(”]\j, for
v, € Vp, by

Icrvy = Z (

][ " ds> V. (3.14)
PS F

Feg
The definition of V}, implies fF[vh]ds = 0 for v, € Vj, and for all F € &. Since
vnlp € HY(P), it follows [, [vy]ds = O for all F € £\ &. This shows Jp vnr=ds
is unique for all edges F = dT+ N dT~ € & and, consequently, Icrvy is well-
defined (independent of the choice of traces selected in the evaluation of fF vy ds =
fF vplp+ds = fF vp |- ds). The approximation property of Icr oneach T € Treads

hy v = Icrvnll 2y + lon — Icrvnli < 2loplir (3.15)
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(cf. [23, ThEl 2.17or [21, Thm 4] for explicit constants). Define an enrichment operator
Ej : CR(D — H}(Q) by averaging the function values at each interior vertex z,
that is,

1
Epvcr(2) = %TZ uer|T(2) (3.16)
€7(z)

and zero on boundary vertices. In (3.16) the set/’jfz) ={T € /’flz € T} of neighboring
triangles has the cardinality |”]\'(z)| > 3.

The following lemma describes the construction of a modified companion operator
J V- HO1 (£2), which is a right-inverse of the interpolation operator I, from
Definition 2.7.

Lemma 3.3 (conforming companion operator) There exists a linear map J : Vy —
H(; () and a universal constant Cy < 1 such that any v, € Vy, satisfies I Jvp = vy,
and

(a) ][ Jupds =][ vy, ds for any edge E e:‘:’,
E E
(b) Vpw(vn — Jvp) L Po(T; R?) in L*(Q; R?),
(c) vy — Jup L P1(D)in L2(Q),
(d) IIh7" (n = Jv)ll 2 + [vn — JVnl1pw < Clvaltpw.

Design of J in Lemma 3.3 Given v, € Vj, let vcr := Icrun € CRO(T) There exists
an operator J' CRl (’D — H (2) from [22, Prop. 2.3] such that any vcr € CR (’D
satisfies

(@) ][ J'verds =][ ver ds for any edge E € &,
E E

(b*) / Vpw(vcr — J'vcr) dx = O forall P € 7,
P

(©) bz (ver = J'ver) |2 + 1vcr = J'verlipw < Cy min_Jucr — vl1,pw
veH ()

with a universal constant Cy from [25]. Set v := J'Icrvy € V = H(} (2). Recall
that ”]\'(P) is a shape-regular triangulation of P into a finite number of triangles. For
each T € /’Z\'(P), let by € WO1 "®°(T) denote the cubic bubble-function 2741 AA3 for
the barycentric co-ordinates A1, Az, A3 € Pi(T) of T with fT brdx = 9/20 and
IVbr ||L2(T) S hy |T|1/2 ~ 1. Let by be extended by zero outside 7" and, for P € 7,
define

20
bp = Z br € Wy (P) C Wy™(R) (3.17)
TeT(P)

~

Riesz representation of the linear functional P;(7) — R defined by w; — (v, —
v, i) g) forwy € Py (7) in the Hilbert space P; (7) endowed with the weighted L>

with fp bpdx = 1 and |Vbpl2p) S hp'IPIYV? ~ 1. Let vp € Pi(T) be the
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scalar product (bpe, e) 12(p)- Hence vp exists uniquely and satisfies I1;(vy — v) =
IT;(bpvp). Given the bubble-functions (bp : P € 7) from (3.17) and the above
functions (vp : P € 7) for vy € Vj, define

Jvp:=v+ Y vpbpeV. (3.18)
PeT

Proofof (a) Since bp vanishes at any x € E € &, it follows for any E € € that

][ Jvhds=][ vds=][ J’vCRds=][ UCRds=][ vy ds,
E E E E E

where the definition of v = J'vcR, (a), and vcr = Icrvy lead to the second, third,
and fourth equality. This proves (a). O

Proof of (b) An integration by parts and (b) show, for all v, € V, with Juvj, from (3.18),
that

/PVJvhdx:/aPJvhnpds: Z (/EJvhnEds)

Ec&(P)
= Z (/ Uhl‘lEdS> :f Vo, dx.
gesp) VE P
Since this holds for all P € 7, it proves (b). O

Proofof (c) This is ITyv, = I1;Jv;, and guaranteed by the design of J in (3.18). 0O

Proof of (d) This relies on the definition of J in (3.18) and J’ with (¢’). Since (a) allows
for f ap(h — Jup)ds = 0, the Poincaré—Friedrichs inequality from Lemma 2.1.a
implies

—1
hp lon — Jupllp2py < Cerlvn — Joplip-

Hence it remains to prove |v, — Juplipw S |vklipw. Triangle inequalities with
vp, Jup, v = J'ver and ver = Icrvy, show the first and second inequality in

lvp — Jvh|1,pw —|v— Jvh'],pw <lv-— vh|1,pw
< |vn — Icrvnl1,pw + lvcrR — J vCR |1, pw
< (I + Cp)lvplipw (3.19)

with (b) for [verl1.pw = ITloVpworll2() < VpwUrll2@@) = vnlipw in the last
step. The equivalence of norms in the finite-dimensional space P;(P) assures the
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existence of a positive constant Cj, independent of & p, such that any x € Pi(P)
satisfies the inverse inequalities

Cy Ixlagpy < @py XD r2epy < Collx N2 (p)s (3.20)
Cy  x 2y < bpxll2cpy +hpIV BRI 2py < Collx Il 2(p)- (3.21)
These estimates are completely standard on shape-regular triangles [2,p. 27] or [37];

so they hold on each T € Tand, by definition of bp, their sum is (3.20)—(3.21). The
analysis of the term [v — Jvy |1 pw starts with one P € Tand (3.18) for

lv—Juplip = lvpbplip < Cohp'lvelap) (322)
with (3.21) in the last step. The estimate (3.20) leads to the first inequality in

—1
Cy Ivpligapy < bpvp, ve)p2(py = (04 — v, VP) 2(p)

< llvn = vllg2pyllvellz2cpy-

The equality results from IT; (v, — v) = [11(vpbp) and vp € P;(7), while the last
step is the Cauchy—Schwarz inequality. Consequently, [vpll2py < Cpllvn —vliz2(py-
This and (3.22) show

v = Junlipw < Cyllhz' (v = vl 2@y < CHCrEIY — Vi1 pw
with f ap( — vp)ds = 0 from (a) and hence the Poincaré-Friedrichs inequality for
v — vy, from Lemma 2.1.a in the last step. Recall [v — vp |1, pw < [vn|1,pw from (3.19)
to conclude [v — Juul1,pw S |vrl1,pw from the previous displayed inequality. This
concludes the proof of (d). O

Proof (Proof of IJ = id in V}) Definition 2.7 and Lemma 3.3.a show, for all
v, € Vy, that

InJvu, = Z (][ Jup ds)wE = Z <][E o ds)wE = vp.

gec VE Eeg
This concludes the proof of Lemma 3.3. O

Since V}, is not a subset of HOl (£2) in general, the substitution of discrete function
vy, in the weak formulation leads to a nonconformity error.

Lemma 3.4 (nonconformity error) There exist positive universal constants Cnc, C{ie
(depending on the coefficients A, b and the universal constants p, o) such that all
f,g € L%(Q) and all T € T(8) (with the assumption hyae < 8 < 1) satisfy (a) and
(b).
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(a) The solution u € H'7(Q) N H}(Q) to (1.1) satisfies

|B (uavh)_(fv Uh)LZ Q |
sup  — E < OnchGull flli2iy (3:23)
0£v,eV) lvn ll1,pw

(b) The solution ® € H'*°(Q) N HOl (R2) to the dual problem (1.4) satisfies

| By (vi, ) — (g, vi) 2l
sup @D < ClichGullgl 2 o- (3.24)
0£v,eVy ”Uh”l,pw

Proofof (a) Given v, € Vj, define Jv, € V and the piecewise averages A :=
[o(A), b := Iy(b), and ¥ := [I(y) of the coefficients A, b, and y. The choice of
test function v := Jv, € V in the weak formulation (1.8) having extra properties pro-
vides the terms with oscillations in the further analysis. Abbreviate o := AVu + bu.
The weak formulation (1.8), Lemma 3.3.b—c, and the Cauchy—Schwarz inequality
reveal that

Bpw(u, vp) — (f, v) 2() = Bpw(u, v — Jop) — (f, vn — Jvn) 2
<llo — oo |12 Vpw(l = Dvnll 2
+ (1 = TID(f = yw)ll 2y llhz (1 = Dl 20y (3.25)

The first term on the right-hand side of (3.25) involves the factor

lo — Moo [l 2¢q) < IIAVU — TTo(AVu)ll12(q) + Ibu — To(bu) (| 12(q)
< A = A)Vu + A(l — To) Vull 12(q,
+ 11 — b)u + b(1 — Mo)ul ;2o
< (hmax(AT1. 00 + Ib11.00) + Capx s | A lloo + v Bl ) )

lulli+o.Q-

The last inequality follows from the Lipschitz continuity of the coefficients A and b,
and the estimate (2.12). Lemma 3.3.d leads to the estimates || Vpw (1 — J)vall12q) <
Cy |Uh|1,pw and

Ilh7(1 = TIN(f = yw)ll 2o llhz' (1 = Dvpll 2y < 0ser(f — yu, DCy1valt,pw-

The substitution of the previous estimates in (3.25) with Apax < 1 (from § < 1 by
assumption) and the regularity (1.5) show

Bpw (u, vp) = (f, vn) = Onchiax L2 1or Il pw

with Cne i= Cy ((IA100 + Bl1,00 + Caps (1A llos + IBlloc) + 1 lloc) Creg + 1)- This
concludes the proof of Lemma 3.4.a. O
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Proof of (b) The solution ® € V to(1.4) satisfies B(v, ®) = (g, v) 2(q, forallv € V.
This implies

Bpw(Uhs P) — (g, Uh)LZ(Q) = Bpw(Uh —Jup, @) — (g, v — JUh)LZ(Q)~

The arguments in the proof of (a) lead to the bound (3.24) with

Ciic = Cs((Al100 + CapxlIAlloe + IBlloc + 17 o) Cieg +1)-
The remaining analogous details are omitted in the proof of Lemma 3.4.b for brevity.
O
4 A priori error analysis

This section focuses on the stability, existence, and uniqueness of the discrete solution
uy. The a priori error analysis uses the discrete inf-sup condition.

4.1 Existence and uniqueness of the discrete solution
Theorem 4.1 (stability) There exist positive constants § < 1 and Cyyp (depending on

o, B, 0, p, and Cg) such that, for all T € T(8) and for all f € L*(Q), the discrete
problem (3.8) has a unique solution uy, € Vj, and

|”h|1,pw < Cstab”fh”V;“
Proof In the first part of the proof, suppose there exists some solution u;, € Vj, to the
discrete problem (3.8) for some f € LZ(Q). (This is certainly true for all f =0 = uy,
but will be discussed for all those pairs at the end of the proof and shall lead to

the uniqueness of discrete solutions.) Since u), satisfies a Garding-type inequality in
Proposition 3.1.b,

alunl] py < Blunlgag, + Bin, un) = Blunlyziq) + (s un)r20)-
This, (2.14), and the definition of the dual norm in (3.12) lead to
alunltpw < BCElunll 20 + 1 filvs- @.1)

Given g = uj, € L%2(Q),let ® € V N H'1(Q) solve the dual problem L*® = g
and let 1, ® € V}, be the interpolation of ® from Sect. 2.4. Elementary algebra shows

i 132 gy = (8 )12 — By th, ®)) + Byns 1, ® = 1,®)

+ (Bpw(uh, 1, ®) — Bp(unp, Ihq>)> + (fn, In®) 2 (4.2)
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Rewrite a part of the third term corresponding to diffusion on the right-hand side of
(4.2) as

a’ (up, ) — aj (up, [®) = (AVuy, V(I — TN L) 12(p)
+ (V1 = up, (A = TToA)(VIT1 I, P)) 12 p)
—SP((1 = Tpup, A =T D).

The Cauchy—Schwarz inequality in the semi-scalar product S (e, e), and (3.5) with
the upper bound ||A || for the coefficient A in a” (e, o) lead to the estimate

¢SSP (= Tun, (1 = T 1®) < (1= Tl pI(1 = T Gl p
< IAlsclunly,p (IVUR® = @) 2y + 190 = T 1)@ 2p))

< IAllocCapx (2 + Cor + Citn )R ltnl1, 1Pl “3)

with Theorem 2.8.b followed by (2.12) in the final step. This and Theorem 2.8 imply
that

la® (up, 1, ®) — af (up, 1,®)| < h%|upli pl|®ll1+0.p

x (1A llooCapx(2 + Cor + Cun) (1 + C) + |Al1,00Cin)-
The terms b¥ — bF" and ¢” — ¢}’ are controlled by

b7 un, 1®) = by Gy 1)+ le” un, 1n®) — ¢ un, InP))|
< [ ®ll140. P (IDlloo (Capx (2 + CpE + Crn) llunll 12 py + CrnCeElunli,p)
+ 17 oo Crr(Cranllunll 2¢py + lunli,p)).

The combination of the previous four displayed estimates with Lemma 2.6 leads to an
estimate for P. The sum over all polygonal domains P € 7 reads
Bpw (up, In®) — By (up, Iy®) < Cahy o lunli,pwl Plli4o.0 4.4)

max

with a universal constant C;. The bound for (4.2) results from Lemma 3.4.b for the first
term, the boundedness of Bp,, (with a universal constant M}, := ||Al|oo + Crlblloc +
C}% v llso) and (2.15) for the second term, (4.4) for the third term, and Theorem 2.8.a
for the last term on the right-hand side of (4.2). This shows

||uh||iz(9) < (CI’QC + C1M,, + Cd)hgqaxhlh|],pw||©||l+a,Q + Crll fullvy 1911, -
This and the regularity estimate (1.5) lead to C3 = C{j + C1Mj, + Cy in

lunllz2@) < C3 Creghmaxltnli,pw + Crnll fll v
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The substitution of this in (4.1) proves

Ol|"th|1,pw = ﬂCFC?aCr)‘;gh&ax'uhh,pw + (,BCFCItn + 1)||fh ”Vh*' (45)
Forall 0 < hpax < 8 = (MCF“T%)W, the constant ¢ = (1 — £CpC3C}i hg,,) is
positive and Cgap := __BCeCt] o \well-defined. This leads in 4.5)to

a—pBCrC3 C;“eghg

|uh|1,pw = Cstab”fh”Vh*- (4.6)

In the last part of the proof, suppose f;, = 0 and let uj, be any solution to the resulting
homogeneous linear discrete system. The stability result (4.6) proves u;, = 0. Hence,
the linear system of equations (3.8) has a unique solution and the coefficient matrix is
regular. This proves that there exists a unique solution u, to (3.8) for any right-hand
side f, € V;'. The combination of this with (4.6) concludes the proof. O

An immediate consequence of Theorem 4.1 is the following discrete inf-sup esti-
mate.

Theorem 4.2 (discrete inf-sup) There exist 0 < § < 1 and B, > 0 such that, for all
TeT®O),

_ B
By< inf sup —ohUm ) 4.7)

T 0FupeV; 0#v, €V |uh|1,pw|vh|l,pw .

Proof Define the operator L, : V), — Vh*, vy, — Bp (v, e). The stability Theorem 4. 1
can be interpreted as follows: For any fj € V}:" there exists u;, € Vj such that
Ehuh = fh and

- (fh> vn) By (up, vn)
Bolunlipw < I full vy = S = sp

0£vpeVy [Vnlipw  0zvev, [Unlipw
The discrete problem By, (uj,, ) = (fn, ®)12(q) has aunique solution in V},. Therefore,
frn and uy, are in one to one correspondence and the last displayed estimate holds for

any uy € Vj. The infimum over uj, € V), therein proves (4.7) with Eo =C S_talb. O

4.2 A priori error estimates

This subsection establishes the error estimate in the energy norm | - |1 pw and in the
L? norm. The discrete inf-sup condition allows for an error estimate in the H' norm
and an Aubin—Nitsche duality argument leads to an error estimate in the L norm.

Recallu € HO1 (2) is a unique solution of (1.8) and u;, € Vj, is a unique solution of
(3.8). Recall the definition of the bilinear form s (-, -) from Sect. 3.1 and define the
induced seminorm |vy|s := sp, (vy, v)Y2 forvy, € V, as a part of the norm || - ||;, from
Remark 6.
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Theorem 4.3 (error estimate) Set 0 := AVu + bu € H(div, Q). There exist positive
constants Cyq, Cs, and § such that, for all T € T(8), the discrete problem (3.8) has a
unique solution up, € Vy, and

lu —unlipw + lu = Tuply pw + hpgex (e — unll 20y + llu — upllL2(q))
+ lupls + [Ipu — upls
= Gy (I = M)l 2 + (1 = To) Vil 2y + 051 (f = yu, D))
< Cshpax 1 f | L2¢0)- (4.8)
Proof Step 1 (initialization). Let I,u € V), be the interpolation of u from Definition 2.7.

The discrete inf-sup condition (4.7) for Inu — uy, € V), leads to some v, € V), with
[val1,pw < 1 such that

Bollnt — upli.pw = By(Inu — up, vp).

Step 2 (error estimate for [u — up|1,pw). Rewrite the last equation with the continuous
and the discrete problem (1.8) and (3.8) as

BolInu — uplipw = Br(Inu, vi) — B, v) + (f, V)12 — (fhs V8) 12(00)-

This equality is rewritten with the definition of B(u, v) in (1.7), the definition of
B (Inu, vy) in Sect. 3.1, and with f, = IT; f. Recall v := Jv, € V from Lemma 3.3
and recall Vpy ITy Iyu = TToVu from (2.17). This results in

LHS := Byl Inu — upli,pw — sp (1 — T Ty, (1 — T1)vp)
= (AT1yVu + bIl Iju, prnlvh)Lz(Q) + (yI1 Ihu, Hlvh)LZ(Q)
— (0, V)2 + (f = vu, v)2) — (f, Thvp) 12(q)-
Abbreviate w := v — ITjv;, and observe the orthogonalities Vpww L Po(T; R?) in

L2 R?) and w L Py (7) in L%(2) from Lemma 3.3.b-c and the definition of IT;
with IT; = T1} in Vj,. Lemma 3.3.d, the bound |(1 — T} )vs|1,pw < val1,pw < 1, and

the Poincaré—Friedrichs inequality for v, — Hlvvh from Lemma 2.1.a lead to

[wlipw = [v —vrlipw + [vn — Tivplipw < Cr + 1, 4.9)

Ih7 wll 2@y < A7 0 — vl 2 + A7 (n — Tiva)ll12(g) < Cr + CeE.
(4.10)

Elementary algebra and the above orthogonalities prove that

LHS = (A — MA) Iy — DVu + b1 Lt — u), VowT1v4) 20
—((1 = Mo)o, Vpww) 12(q) + (¥ (1 Lpu — u), ivp) p2(q)
+(h7(1 = TH)(f — yu), hy'w)2q)
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< (1Al100 + (1 + Cor)(IIbllos + CollY loo) ) man| (1 = ) Vil 2
+(Cy+ DI =Mool 2q) + (Cy + Cerosci (f — yu, T) 4.11)
with the Lipschitz continuity of A, Lemma 2.8.b, the stabilities of IT; from (2.11), and
(4.9)—(4.10) in the last step. The definition of stability term (3.5) and Theorem 2.8.b
lead to
Cy lsn (1= T Iy, (1 = TIn)wp)
< |Alloo(1 — TI) Iputl 1 pw|(1 — T ) vpl1 pw
< N Alloo(Hpu — ul1 pw + lu — M Tpuly pw)|vnlipw

< [IAlleo 2 + Cita + Cep)lI(1 — o) Vull 22y v 1, pw- (4.12)

The triangle inequality, the bound (2.15) for the term |u — Ijulq pw, and (4.11)—(4.12)
for the term |[u — up|1,pw conclude the proof of (4.8) for the term |u — up |1 pw.
Step 3 (duality argument). To prove the bound for u — uy, in the L? norm with a duality
technique, let g := Iu — uj, € L*(). The solution ® € HJ () N H'*7(Q) to the
dual problem (1.4) satisfies the elliptic regularity (1.5),

(@140, < Cregllntt — unll 2 (4.13)

reg

Step 4 (error estimate for |u — upllp2(q))- Let [P € Vi be the interpolation of &
from Definition 2.7. Elementary algebra reveals the identity

181720 = (8- ) 120 — Bpw(g. @) + Bpu (8. © — 1, ®)
+ (Bpw (g, 1n®) — Bp(g, InP)) + Bi(g, nP). 4.14)
The bound (4.4) with g as the first argument shows
Bpw(g, In®) — Bi(g, 1 ®) < Cahy gl pwll®ll140,0-
This controls the third term in (4.14), Lemma 3.4.b controls the first term, the bound-
edness of By, and the interpolation error estimate (2.15) control the second term on

the right-hand side of (4.14). This results in

[ 1pu — uhlliZ(Q) < (CRc + CiMp + Ca)hguc gl pwll @ll140.2 + Br(g, D).
(4.15)

It remains to bound By (g, I ®). The continuous and the discrete problem (1.8) and
(3.8) imply

By (g, 1n®) = Bp(lpu, In®) — Bu, ) + (f, P)r2q) — (fn: InP) 12
The definition of Bj, and I lead to

By(g, 1 ®) — sp((1 — ) lpu, (1 — 1) 1, ®)
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= (A = ITpA)(ITgp — 1)Vu + b(I1{ Ihu — u), VowIl1 1 ®) 2@
+ (v (i dpu — w), 1 [, @) 12y — (1 — To)o, Vpw (1 — TTiIp) ) 12(q)

The bound for the stability term as in (4.12) is

sp((1 =TI Ipu, (1 — 1)1, )
< GsllAllool (1 = T Tpuly pwl(1 — I I @1, pw
< CslAlloo(2 + Crn + CPF)2CapxhrUnax”(1 — o) Vullp2q)|Pliteo.  (4.17)

Step 5 (oscillation). The last term in (4.16) is of optimal order O(hl*9), but the

max
following arguments allow to write it as an oscillation. Recall the bubble-function

b7rlp == bp € Hd (P) from (3.17) extended by zero outside P. Given ¥ := & —
I111,®, let V1 € Pi(7) be the Riesz representation of the linear functional P (7) —
R defined by w; +— (¥, w1);2(q) in the Hilbert space P;(7) endowed with the
weighted scalar product (b7e, e) L2(Q)- That means IT;(b7V1) = I1; V. The identity
(f —yu, br¥ )Lz(Q) = (o, V(leI-'l))Lz(Q) follows from (1.8) with the test function
bW € HJ (). The L? orthogonalities W — b7V L Py (7) in L*(R) and V(b7¥;) L
Po(T: R?) in L2(2; R?) allow the rewriting of the latter identity as

(f = yu, W) 2q) = (hr(1 = TI)(f — yu), hy (¥ — b1%1)) 12,
+ (1 = Ho)o, VoY1) 120
<osci(f — yu, DIhy (¥ — br¥) | 12
+ (1 = To)o [l 20y BT 1 pw- (4.18)

It remains to control the terms ||h}1(\11 — bqwl)lle(Q) and [b7¥|1,pw. Since the
definition of I and the definition of Hlv with IT; = l'[lV in Vj, imply fa pVds =
/: ap(® — I 1, ®) ds = 0, this allows the Poincaré-Friedrichs inequality for W from
Lemma 2.1.a on each P € 7. This shows

17" Wl 20y < CorI®11pw < CprCapxhax| ®l140.0 (4.19)

with Theorem 2.8.b and (2.12) in the last inequality. Since bp W € H(} (P)for P €7,
the Poincaré—Friedrichs inequality from Lemma 2.1.a leads to

Ihp" YD 2¢p) < CrelbpWil1,p. (4.20)

The first estimate in (3.20), the identity I1; (b7¥) = I1; ¥, and the Cauchy—Schwarz
inequality imply
C; Hnp w13,

—14,1/2 _ _
< Ihp b2 Wil ) = (hp W1, B W) 2 )

(P) (P)

< " Wil 2oy lhp Wl L2y
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This proves ||h;1\111 lz2(py < Chllhp ‘I’||L2(P) The second estimate in (3.21) fol-
lowed by the first estimate in (3.20) leads to the first inequality and the arguments as
above lead to the second inequality in

—-3/2 —1,.1/2 - 1/2 - 1/2
Cy Plbp Wil e < Wy by Wil 2gpy < I W1 5 15 W
1/2
/||h Vllr2py
with ||h;1 Wil }‘/22( Py = 1/ 2 lhp Ly | }‘/22 ) from above in the last step. The combination

of the previous dlsplayed estlmate and (4 18)—(4.20) results with Cg := CppCapx (1 +
C7(1+ Cpp)) in

(f —yu, W) 2 < Celosc1 (f —yu, D) + [|(1 = To)o || 120 nax | Pli+o.0-
4.21)

Step 6 (continued proof of estimate for |[u — upl|;2(q))- The estimate in Step 2 for
lgl1,pw, (4.15)—~(4.17), and (4.21) with the regularity (4.13) show

[ Thu — unllp2q)

< M (10 = T0) Vatl 2 g + (1 = M)l 2y + 0501 (f = yu, D). (4:22)

Rewrite the difference u — up, = (u — Iyu) + (Inu — up), and apply the triangle
inequality with (2.15) for the first term

1
lu = Inull 12y < Crhphd luli1o.0-

This and (4.22) for the second term Iu — uy conclude the proof of the estimate for
the term Ay 7 (lu — up |l 2 () in (4.8) .

Step 7 (stabilisation error |uy|s and |[Ipu — uy|s). The triangle inequality and the upper
bound of the stability term (3.5) lead to

172, 4 y1/2

lunls < [Thu — upls + [Thuls < Cs

lAlloo™ (Mpu — upli,pw + [(1 =TI Tpuly pw)

with [(1 = TI1)(Ipu — up)|1,pw < [Ipt — up|1,pw in the last inequality. The arguments

as in (4.12) prove that |(1 — M) Tty pw < (2 + Cr + Cep)[[(1 — M) V|| 2.
This and the arguments in Step 2 for the estimate of |I,u — up|1,pw show the upper
bound in (4.8) for the terms |uy|s and |Ipu — up|s.

Step 8 (error estimate for u — ITjuj). The VEM solution uy, is defined by the computed
degrees of freedom given in (2.10), but the evaluation of the function itself requires
expansive additional calculations. The later are avoided if uy, is replaced by the Ritz

projection ITjuy, in the numerical experiments. The triangle inequality leads to

lu — Tupltpw < lu — uplipw + lup — gl pw. (4.23)
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A lower bound of the stability term (3.5) and the assumption (A2) imply

—1/2 2
lup — Muply p < ag 2CI2SP (1= T, (1= Tu) /2. (4.24)

This shows that the second term in (4.23) is bounded by |uy|s. Hence Step 2 and
Step 7 prove the estimate for |u — ITyup|1 pw. Since faP(”h — IMiup)ds = 0 from
the definition of l'[lV and I1; = l'Ilv in V},, the combination of Poincaré—Friedrichs
inequality for u, — ITjuy, from Lemma 2.1.a and (4.24) result in

Copay>C5 P lun — Myunll2py < hpST (1 = Tup, (1= Mup)' /2. (4.25)

The analogous arguments for [[u — [Tjupll;2(q), (4.25), and the estimate for |up|s
prove the bound (4.8) for the term A7 |lu — TTjupll 2 (). This concludes the proof

max

of Theorem 4.3. O

5 A posteriori error analysis

This section presents the reliability and efficiency of a residual-type a posteriori error
estimator.

5.1 Residual-based explicit a posteriori error control

Recall uj;, € V), is the solution to the problem (3.8), and the definition of jump [-]g
along an edge E € & from Section 2. For any polygonal domain P € 7, set

n% =h%| f -yl 1uh||iz( P (Volume residual),
¢z =8P ((1 = Tup, (1 = Ty)up) (Stabilization),
A% =111 = To) (AVTT iy, + bTTup) 175 p) (Inconsistency),
g2 = Z |E|~! ||[1'I1uh]E||%2(E) (Nonconformity).

Ec&(P)

These local quantities o] p form a family (e|p : P € 7) over the index set 7 and
their Euclid vector norm e|7enters the upper error bound: n7:= (3~ p eT’ﬁ) W2 o=
O pertHV2 A1 = (X per A2, and E1 = (3 por ES)/2. The following
theorem provides an upper bound to the error u — uy, in the H' and the L? norm.
Recall the elliptic regularity (1.5) with the index 0 < o < 1, and recall the assumption
hmax < 1 from Sect. 2.1.

Theorem 5.1 (reliability) There exist positive constants Cyep and Crepy (both depend-
ing on p) such that

Cratiltt = unl} p < 07+ L7+ AT+ EF (5.1)
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and
=il < Con Y (¥ G + ¢+ 23 +8D). 62
PeT

The proof of this theorem in Sect. 5.3 relies on a conforming companion operator
elaborated in the next subsection. The upper bound in Theorem 5.1 is efficient in the
following local sense, where wg := int(UZ(E)) denotes the patch of an edge E and
consists of the one or the two neighbouring polygons in the set 7(E) := {P’' € T :
E C 9P’} that share E. Recall 0 = AVu + bu from Sect. 4.2 and the data-oscillation
osci(f, P) := [lhp(1 — I11) f |l L2(py from Sect. 2.1.

Theorem 5.2 (local efficiency up to oscillation) The quantities np, {p, Ap, and Ep
from Theorem 5.1 satisfy

¢ Slu—upl? p + lu— Mupli p. (5.3)
np S lu—unlli p+lu = Muglf p + (1= To)all7s ) +0sci(f — yu, P),
5.4)
Ap S llu—unllf p + lu = Tupli p + 11 = To)o |72, (5.5)
Ep S D Y (u—unli p+ lu = Thuslf p). (5.6)

Ec&(P) P cwg

The proof of Theorem 5.2 follows in Sect. 5.4. The reliability and efficiency esti-
mates in Theorem 5.1 and 5.2 lead to an equivalence up to the approximation term

apx := |lo — Too || 12y + 0sc1(f — yu, D).
Recall the definition of |uy|s from Sect. 4.2. In this paper, the norm | - |1 pw in the
nonconforming space Vj has been utilised for simplicity and one alternative is the

norm || - ||, from Remark 6 induced by aj. Then it appears natural to have the total
error with the stabilisation term as

total error := |u — up |1 pw + |4 — Tun|ipw + hpa e — unll2(q)

Fhpax e = Thugll 2y + lunls-

The pointis that Theorem 4.3 assures that total error + apx converges with the expected
optimal convergence rate.

Corollary 5.3 (equivalence) The estimator := n7+ {7+ A7+ E7 = total error + apx.

Proof Theorem 5.2 motivates apx and shows

estimator < [lu — upll1pw + llo — Moo || 2(q) +osc1(f — yu, D) + |unls
< total error + apx.
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This proves the first inequality < in the assertion. Theorem 5.1, the estimates in
Sect. 5.3.3.1, and the definition of |uj,|s show total error < estimator. The first of the
terms in apx is

lo — ool 2

<o —Toonll2 < llo —0anllp2@ + (1 —o)onll2)-
The definition of o and o, plus the triangle and the Cauchy—Schwarz inequality show
lo —onlli2@ < IAlloolu — Munlipw + Ibllocllu — Miupll2q) S llu — Munlli,pw-

The upper bound is < estimator as mentioned above. Since the term | (1 —

H0)0h||L2(Q) = Aqis a part of the estimator, ||(1 — H0)0||Lz(9) < estimator. The
other term in apx is

osci(f —yu, D) <osci(f —yMup, T) + |hry (u — Tup)| 12
< N7+ 1V loohmaxllu — Thupll2(q) < estimator.

O

Section 5 establishes the a posteriori error analysis of the nonconforming VEM.
Related results are known for the conforming VEM and the nonconforming FEM.

Remark 7 (comparison with nonconforming FEM) Theorem 5.1 generalizes a result
for the nonconforming FEM in [19,Thm. 3.4] from triangulations into triangles to
those in polygons (recall Example 2.2). The only difference is the extra stabilization
term that can be dropped in the nonconforming FEM.

Remark 8 (comparison with conforming VEM) The volume residual, the inconsis-
tency term, and the stabilization also arise in the a posteriori error estimator for the
conforming VEM in [16,Thm. 13]. But it also includes an additional term with normal
jumps compared to the estimator (5.1). The extra nonconformity term in this paper is
caused by the nonconformity V;, ¢ V in general.

5.2 Enrichment and conforming companion operator

The link from the nonconforming approximation u#;, € V), to a global Sobolev func-
tion in HO1 (£2) can be designed with the help of the underlying refinement 7 of the
triangulation 7 (from Sect. 2). The interpglation IR : V+V, —> CR(I)(/’]\') in the
Crouzeix-Raviart finite element space CR(I) (7) from Sect. 3.4 allows for a right-inverse
J'. A companion operator J' o Icg : Vj — Hé (R2) acts as displayed

Icr J!

Vi ———————— CR}(T) H;(Q)

Icr

Vi CRY(T) H ()
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Define an enrichment operator Epy : Py (7) — S0 (7) by averagmg nodal values:
For any vertex z in the refined triangulation T let T(z) {T € T:ze T} denote the
set of |’T(z)| > 1 many triangles that share the vertex z, and define

1
EpWUI(Z) == v1l7(2)
17(2)] 1w

for an interior vertex z (and zero for a boundary vertex z according to the homogeneous
boundary conditions). This defines Epwv1 at any vertex of a trlang}e T in T and linear
interpolation then defines Epwv; in T € T so that Epwv; € S0 (7). Huang et al. [31]
design an enrichment operator by an extension of [32] to polygonal domains, while we
deduce it from a sub-triangulation. The following lemma provides an approximation
property of the operator Epy.

Lemma 5.4 There exists a positive constant C g, that depends only on the shape reg-
ularity of T such that any v € P1(7) satisfies

1/2
1h7" (1 = Epw)vill 2y + 1(1 = Epw)vil1pw < CEn (Z |E|—1||[v1]E||iz(E)> :
Ee&

5.7

Proof There exists a positive constant C g, independent of # and v; [32,p. 2378] such
that

1/2
151 (1= Epw)villzay + [ 2 1V = Ep)villFa g,
Te/’Z\’
1/2

< Co | D IEIT I0E N2
Ee€

Note that any edge E € £1is unrefined in the sub-triangulation”]\f Since vijp € H L(p)
is continuous in each polygonal domain P € 7and hr < hp forall T € 7(P), the
above inequality reduces to (5.7). This concludes the proof. O

Recall the L2 projection I onto the piecewise affine functions P (7) from Sect. 2.
An enrichment operator Epy, o Iy : Vj — H& (£2) acts as displayed

I ~ Epw
vV, ——— P (T) — P (T)

H;(Q)
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5.3 Proof of Theorem 5.1
5.3.1 Reliable H' error control

Define Eyuy := EpwIliuy € HOI(Q) sothatu—FE uy € Hol(Q).Theinf—supcondition
(1.9) leads to some v € H{ () with [|v]l;,o < I and

Pollu — Evuplli,e = B(u — Evup, v) = ((f, v)12(q) — Bpw(IT1up, v))
+ Bpw(ITyup — Equp, v) (5.8)

with B(u, v) = (f, v)12(q) from (1.8) and the piecewise version By of B in the last
step. The definition of By, from Sect. 3.1 and the discrete problem (3.8) with v, = Iv

imply
Bpw(ITyup, M Ipv) + 55, (1 = Iuy, (1 — Iy Iv)
= Bp(up, Ipv) = (f, 1 1pv) 12(q)- (5.9

Abbreviate w := v—II{Ivand 6, := AVl up, +bIIuy. This and (5.9) simplify

(fs V)2 — BpwIliup, v) = (f, w)r2(q) — Bpw(ITiup, w)
+sp((1 = up, (1 — ) 1pv)
= (f —yup, w)p2q) — (1 —Ho)op, Vpww) 2(q)
+sp((1 = up, (1 — 1) 1pv) (5.10)

with f p Vwdx = 0 forany P € 7 from (2.17) in the last step. Recall the notation
np, Ap,and {p from Sect. 5.1. The Cauchy—Schwarz inequality and Theorem 2.8.b
followed by [[(1 — TIp) Vvl 2(q) < [v]i.@ < 1 in the second step show

(f = yMiup, w)2py < nphptlwllp2py < (14 Cop)np, (5.11)
(1 =To)on, Vw)2py < Aplwlip < (1 + Cpr)Ap. (5.12)

The upper bound ||A ||« of the coefficient A, (3.5), and the Cauchy—Schwarz inequality
for the stabilization term lead to the first inequality in

—-1/2
C; 2SP (1 = Tup, (1 — ) )
2
< IANZSP (1 = Tup, (1= ) 2|1 = ) Iyl p
2
< 1A1L2 @ + Cop + Crn)ip. (5.13)

The second inequality in (5.13) follows as in (4.3) and with || (1 — 1) Vv ||L2(P) <1
Recall the boundedness constant M, of Bpy from Sect. 4.1 and deduce from (5.7) and
the definition of E7 from Sect. 5.1 that

Bow(Ilyup — Ejup, v) < Mp|Tliup — Ejuplipw < MpCenET. (5.14)
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The substitution of (5.10)—(5.14) in (5.8) reveals that

lu — Eyuplh,e < Cr(nr+ AT+ 7+ ED (5.15)

with BoC7 = 1+ Cpr + Co? | A1 (2 4+ Cpr + Cln) + My, Cpn. The combination of

(4.24), (5.15) and (5.7) leads in the triangle inequality

[ —uplipw < lu — Erupli, + |E1up — yup |y pw + [TTiug — upl pw

t0 (5.1) with Cret1 /2 = C7 + Cen + a5 >C">.

5.3.2 Reliable L2 error control

Recall Icg from (3.14) and J’ from the proof of Lemma 3.3, and define Ejuj :=
J'Icruy, € HY () from Sect. 5.2. Let W € Hj ()N H ' () solve the dual problem
B(v, V) = (u — Eaup, v)12(q) for all v € V and recall (from (1.5)) the regularity
estimate

IWlli1o,0 < Crgllu — Exupll2(q)- (5.16)

reg

The substitution of v := u — Epuy, € V in the dual problem shows
lle = Eaunll}aqy = B — Eaup, W),

The algebra in (5.8)—(5.10) above leads with v = W to the identity

lu = Eaup |3 ) = sn((1 = Mup, (1 = M1 ¥)
=(f —yMup, ¥ — W) 2q) — (1= Tlo)on, Vpw(W — I I,\W)) 2(q
+ Bpw(ITiup — Eaup, W). (5.17)

The definition of Icg and J’ proves the first and second equality in

/uh ds:/ ICRuhdSZf Eyupds forall E € £.
E E E

This and an integration by parts imply [’ p V(up — Exup) dx = 0 forall P € 7. Hence
Definition 2.2 of Ritz projection MY = I1; in V}, shows fP V(ITyup — Eyup)ds =0
for all P € 7. This L? orthogonality VowIlup — Eoup) L Po(T; R?) and the
definition of Bpy in the last term of (5.17) result with elementary algebra in

Bpw(ITup — Equp, W) = ((A — ToA) Vpw (TTup — Exup), V) 12
+ (Vpw(ITiup — Equp), (TIoA)(1 — M) VW) 12(qy
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The triangle inequality and (c) from the proof of Lemma 3.3 imply the first inequality
in

Thup — Exuplipw < [Tliup — Icrunl1pw + Cy “23 [Icrun — vl1,pw
v

< [Mup — Icrunlipw + Cyllcrun — Ejupli pw
< |Mup — Icrunl1,pw + Cy (Icrun — upl1 pw
+ [iup — Eruplipw)
< (I + Cyp)lup — huplipw + CylTliup — Equplipw- (5.19)

The second estimate in (5.19) follows from Euj, € V,the third s a triangle inequality,
and eventually |TTyuy — Icrunl1,pw < lun — Iiupl1,pw results from the orthogonality
Vpw(up — Icr) L 730(/’]\'; R?) and [T u;, € Pi(7). The Cauchy—Schwarz inequality,
the Lipschitz continuity of A, and the approximation estimate ||(1 — ITo) VW[ 2(py <

Capxh‘;, |W|140,p in (5.18) lead to the first inequality in

Bow (Mt — Eatn, W) = Y ((hp|Al1oo + [AllowCapxhD) T ius — Eattn]y, p
PeT

+ Mun — Exuplip2py (bl + ||V||oo)>||‘P||1+a,P

= 3 (hpIALoo + IAllocCapn + Crr(lbllos + 17 lloc)ir)
PeT

[TTup — Exuply,pl|Wllito,p
< Cg Y hG((1+ Cp)lup — Thuy |1, p
PeT
+ Cy|Tlup — Eruplt, p) IV 140, p- (5.20)

The second inequality in (5.20) follows from the Poincaré-Friedrichs inequality in
Lemma 2.1.a for Iyuy — Eoup with [, ,(Tjuy, — Eaup)ds = 0 (from above); the
constant Cg := A} 00 + CapxllAllcc + CpE([Iblloc + [V loo) results from (5.19) and
hp < h9 (recall hmax < 1). Lemma 5.4 with vy = ITju; and (4.24) in (5.20) show

Bpw(nluh — Equp, V)

—-1/2 ~1/2 —
< Cs Y hG((1+Cpag 2C%ep + CyCanBp) W lhsop.  (521)

PeT
Rewrite (5.11)—(5.13) with w = ¥ — I1;[, ¥ and h;1||w||Lz(P) + lwlhip < (1 +

Cep) |(1 = TM0) V|l 12(py < Capx(1 + Cpr)h% V|14, p from (2.12). This and (5.21)
lead in (5.17) to

lu — Exupll 3o gy < Co D hp(p +¢p + Ap + Ep) | Wlito,p
PeT
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172, « 11/2

for Co := Capx (1 + Cpr + C3/* [ Al|s5* (2 + Cpr + Cin)) + Cs((1 + Cp)ag 12C57% +
Cy Cgp). This and the regularity (5.16) result in

Il = Eaupll20) < CoCleg D h(p +¢p+ Ap+Ep).  (5.22)
PeT

The arguments in the proof of (5.20)—(5.21) also lead to

2?4 CyCpn) ZhP(KP + Ep).

PeT

I Ecup — Mupllz2q) = Cpr((1 + Cy)a,
(5.23)

The combination of (4.25), (5.22)—(5.23) and the triangle inequality

lu —unllp2) < llu — Exunllp2) + 1 Eaun — hupll 2 + IThun — unllz2@

12 1

lead to (5.2) with Cye2/2 = CoChy + Cpr((2 + Cy)ay />C{"* + CyCgy). This

reg
concludes the proof of the L? error estimate in Theorem 5.1.

5.3.3 Comments

5.3.3.1 Estimator for u — ITju;,

The triangle inequality with (5.1) and (4.24) provide an upper bound for H' error

1
Sl = Thunlf py <l =l + (1= Tunlf < 2Ci (7 HET+ATHED.

The same arguments for an upper bound of the L? error in Theorem 5.1 show that

1
Sl = Tl o gy < Nl = unllga gy + 11 = TRl 2 g

< Capp Y_h¥ (1p + 25 + Ap + Ep).
pPeT

The numerical experiments do not display Crej; and Cie, and directly compare the
error Hle := |u — ITjup|1 pw in the piecewise H' norm and the error L2e := |ju —
Munllp2q) in the L? norm with the upper bound H 1 and L2y (see, e.g., Fig. 5).

5.3.3.2 Motivation and discussion of apx

We first argue that those extra terms have to be expected and utilize the abbreviations
0 := AVu + bu and g := f — yu for the exact solution u € HOl (2) to (1.8), which
reads

(U VU)LZ(Q) (g, U)LZ(Q) forall v HO (Q) (524)
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Recall the definition of sy, (-, -) from Sect. 3.1. The discrete problem (3.8) with the
discrete solution u; € V), assumes the form

(on, VITivp) 2y +sn (I=T1Dup, (1 — ) vp)=(gn, IT1vp) 12(q) for all v, € Vi,
(5.25)

for o) := AVIliu, + bIljuy, and g5 := f — yIjuy. Notice that o) and g, may
be replaced in (5.25) by I1po;, and I1; g, because the test functions VI1jv, and [1jvy
belong to Py (7; R?) and Py (7) respectively. In other words, the discrete problems
(3.8) and (5.25) do not see a difference of o and g; compared to I[1go;, and I1; g,
and so the errors o, — [1go;, and g, — I11 g, may arise in a posteriori error control.
This motivates the a posteriori error term [|o, — oo sl ;2(q) = A7 as well as the
approximation terms ¢ — I1po and g — Il g on the continuous level. The natural norm
for the dual variable o is L2 and that of g is H~! and hence their norms form the
approximation term apx as defined in Sect. 5.1.

Example 5.1 (b = 0) The term (1 — I1p)o may not be visible in case of no advection
b = 0 at least if A is piecewise constant. Suppose A € Po(7; R?*?) and estimate

(1 — o)AVl 12y = IAlleoll(1 = Tlo) Vel 12y < e — Miuenli pw-

If A is not constant, there are oscillation terms that can be treated properly in adaptive
mesh-refining algorithms, e.g., in [27].

Example 5.2 (y piecewise constant) While the data approximation term osci(f, 7)
[10] is widely accepted as a part of the total error in the approximation of nonlinear
problems, the term osci(yu,T) = [lyhp(u — Thu)ll2q) S h}nﬁ,‘(’||f||Lz(Q) is of
higher order and may even be absorbed in the overall error analysis for a piecewise
constant coefficient y € Py(7). In the general case y € L*(R2)\Po(7), however,

oscy(u, 7) leads in particular to terms with ||y — Ioy |l (@).

5.3.3.3 Higher-order nonconforming VEM

The analysis applied in Theorem 5.1 can be extended to the nonconforming VEM
space of higher order k € N (see [17, Sec. 4] for the definition of discrete space).
Since the projection operators Vl'[kv and I1;_;V are not the same for general k,
and the first operator does not lead to optimal order of convergence for k > 3, the
discrete formulation uses IT;_{V (cf. [6, Rem. 4.3] for more details). The definition
and appr0x1mat10n properties of the averaging operator Epy, extend to the operator
EX Py (77 — H (2) (see [32, p. 2378] for a proof). The identity (5.9) does not hold
in general, but algebralc calculations lead to

np = hplf =y Maunlfspys AP i= 101 = o)) ATy Vi, + D) 1175 )

¢p = ST = My, A= Tw),  Epi= Y |ET IMaunle ) -
Ee&(P)

@ Springer



590 C. Carstensen et al.

The analysis developed for the upper bound of L? norm also extends to the general
case. The model problem is chosen in 2D for the simplicity of the presentation. The
results of this work can be extended to the three-dimensional case with appropriate
modifications. The present analysis holds for any higher regularity index o > 0 and
avoids any trace inequality for higher derivatives. This is possible by a medius analysis
in the form of companion operators [26].

5.3.3.4 Inhomogeneous boundary data

The error estimator for general Dirichlet condition u|ypg = g € H 1/2(3K2) can be
obtained with some modifications of [33] in Theorem 5.1. The only difference is in
the modified jump contributions of the boundary edges in the nonconformity term

Er= Y B MMunllae + Y 1EI g = Miunl s -
Ec&(2) Ec&(0R)

5.4 Proof of Theorem 5.2

Recall the notation 6 = AVu + bu and 6, = AVIT u;, + bIT uy; from Sect. 5.3.

Proof of 5.3 The upper bound (3.5) for the stabilisation term and the triangle inequality
show

¢p < Col(1 = Tuplf p < 2Cs(Ju — upli p + lu — Mupl? p).
This concludes the proof of (5.3). O
Proof of (5.5) The definition of A p, 1y, and the triangle inequality lead to

Ap = llop —Hoonll2py < llon — oo ll2¢p)
< |AVITiup — u) + b(ITyup — w)llp2py
+ [I[(1 = Ho)o I 2¢py- (5.26)

The upper bound ||A ||« and ||b|| s for the coefficients and the triangle inequality lead
to

Ap — (0 =To)oll2(py = ([Alleo + IIblloo) TT1up — ull1,p

< (IAllco+IIblloc) (len — Myupll1, p+llu —uplli,p) <Cio0(p + lu — upli1,p)
(5.27)
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with u, — Mupllp < (1 + hpCep)ay />Ci%¢p from (4.24)~(4.25) and with

C10 = (1A lloo+IIblloo) (147 pCpr)ag > C./* +1). This followed by (5.3) concludes

the proof of (5.5). O

Recall the bubble-function b7]p = bp supported on a polygonal domain P € 7
from (3.17) as the sum of interior bubble-functions supported on each triangle 7" €
1(P).

Proof of (5.4) Rewrite the term
f =y, = (f —yMug) + (1 =T)(f — yIu,) = R4+6, (5.28)

and denote Rp := R|p and 0p := 0|p. The definition of By (u — ITjuy, v) and the
weak formulation B(u, v) = (f, v)12(q) from (1.8) for any v € V imply

BPW(M - Hluh, U) + (Uh, VU)LZ(Q) = (f - '}/Hluh, U)LZ(Q) = (R + 9, U)LZ(Q)'
(5.29)

Since bp Rp belongs to H& (2) (extended by zero outside P), v := bpRp € V is
admissible in (5.29). An integration by parts proves that (IToo'p, V(bpRp)) 2(p)y = 0.
Therefore, (5.29) shows

(Rp.bpRp) 2p) = B (u — Tiun, bpRp) — (O, brRp) 12(p)
+ (1 —To)on, VIbrPRP))2(p)-

The substitutionof x = Rp = I[11(f —yITiup)|p € P1(P)in (3.20) and the previous
identity with the boundedness of B and the Cauchy—Schwarz inequality lead to the
first two estimates in

Cy HIRP 12 py < (Rp.bPRP) 2(p)
< (Mb|u—nluh|1,P+|I(1 - Ho)“hllLZ(P))|bPRP|1,P+||9P||L2(P)||bPRP||L2(P)

< Cy(Mplu = Taunli p + Ap +hpl60p ] 20 )5 I RP 20

The last inequality follows from the definition of A p, and (3.21) with x = Rp. This
proves that C};ZhPHRPHLZ(P) < Mplu—Tluplr,p +Ap+hplfplp2p) Recall np
from Sect. 5.1 and np = hpllf — yunl2py < heliRpl2py +hr 0P 2P
from the split in (5.28) and the triangle inequality. This and the previous estimate of
hplIRp| 12(py show the first estimate in
np < Cy(Mplu — Tupli,p + Ap) + (Cj + Dhpll0pll2p,
< (CZ+1)(Mh|u—nluh|1,P+AP+hP||(f —yup)—ILi(f — V”)||L2(P)>

< (@ + D((My + hplly o) lu = Mgl p + Ap +05e1(f = yu, P)).
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The second step results from the definition of 6p = (1 — ITy)(f — yITiup)|p in
(5.28) followed by the L? orthogonality of ITj, and the last step results from an
elementary algebra with the triangle inequality and osci(f — yu, P) = hp||(1 —
Iy)(f —yu) ||L2(P) from Sect. 5.1. The triangle inequality for the term u — ITjuj and
the estimate of |jup — ITiup|1,p asin (5.27) lead to

Cil'np < llu —uplh,p +¢p + Ap +osci(f — yu, P)

with C1 1= (C24+1)(Mp+hp |y loo) (14+7pCpr)ag > C{/*)+1). The combination
of (5.3) and (5.5) in the last displayed estimate concludes the proof of (5.4). O

Proof of (5.6) Recall for u € H}(2) and u, € Vj, that fruds and f, uy ds are well
defined for all edges E € &, and so the constant ap := fE (u — up) ds is uniquely
defined as well. Since the jump of u —a g across any edge E € & vanishes, [ITiu,]g =
[T u, —u + aplg. Recall wg = int(PT U P7) for E € £(Q) and wg = int(P) for
E € ) from Sect. 5.1. The trace inequality ||v]|?,, .. < Cr(|E|""||v|? +

L2(E) = L2(w)
[ELIVVI2,,,,) (cf. [13,p. 5541) leads to

|EI 2T unlell 2

< Cr (IEI™ I Mun — 0+ gl 20 + Vpw (Mt = 0l 20 ) -
This and the triangle inequality show the first estimate in

\EI 2 unlell 2

< Cr(IEI™ Gl = Tyl 2y + ln = 1+ o l2,)

+ 1 Vow un — Thun) [l 12y + I Vpw (e — ”h)||L2(wE)>- (5.30)

The estimates (4.24)—(4.25) control the term |ju, — ITiup|1,p as in (5.27), and the
Poincaré—Friedrichs inequality from Lemma 2.1.b for u;, — u + og with f pup —u+
ag)ds = 0 (by the definition of og) implies that ||uy —u + g ||Lz(p) < Cpphplu, —
u|y, p. This with the mesh assumption hp < p~ ' E| and (5.30) result in

|EI™V 2 Munlelp2cp) < Cr((Copp ™" + Dag /2C5"% + Cor + 1)

D (Aplu—uplyp).

P'ewg

Since this holds for any edge E € £(P), the sum over all these edges and the bound
(5.3) in the above estimate conclude the proof of (5.6). O

Remark 9 (convergence rates of L’ error control for 0 < o < 1) The efficiency
estimates (5.4)—(5.6) with a multiplication of h%f show that the local quantity h%," (1712[, +
A% + E%J) converges to zero with the expected convergence rate.
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Remark 10 (efficiency up to stabilisation and oscillation for L? error control when
o = 1) For convex domains and o = 1, there is even a local efficiency result that is
briefly described in the sequel: The arguments in the above proof of (5.4)—(5.5) lead
to

Wpnp S Nl = upllFapy +hp@p +0sei (f = yu, P) + (1 = o) 175 )

WpAD S llu = upllgapy + 15 Ep + 1A = oA T py | f 172y + (1 = To)bull 75 p))-

The observation [[Tjuy]g = [[11u), — u]g for the term E p, the trace inequality, and
the triangle inequality show, for any E € &, that

/"M un)ell 2y < Cr (len — Tl 2 + 1t — unll 2005
HIENVIT @ = i) 120 + 1V @ = T2, )) -

The bound (4.25) for the first term and the inverse estimate |V x|| 2Py =
Cim,hl_,1 | x|l2¢py for x € Pr(P) for the third term result in

BT ell 2y S luwnl2wp+1EL Y (IVA=TTul e + Ap).
P ewg
The mesh assumption (M2) implies that 2%, €% < p™' Y peg(p) | E| ||[H1uh]E||%2(E).
This and the above displayed inequality prove the efficiency estimate for h%, E%.

6 Numerical experiments

This section manifests the performance of the a posteriori error estimator and an
associated adaptive mesh-refining algorithm with Dorfler marking [37]. The numerical
results investigate three computational benchmarks for the indefinite problem (1.1).

6.1 Adaptive algorithm

Input: initial partition 7 of .
For¢=0,1,2,... do

1. SOLVE. Compute the discrete solution u; to (3.8) with respect to 7, for £ =
0,1,2... (cf. [5] for more details on the implementation).

2. ESTIMATE. Compute all the four terms n, = n7,, {¢ := {7,, Ay := A7, and
8¢ := B7;, which add up to the upper bound (5.1).

3. MARK. Mark the polygons P in a subset M, C 7, with minimal cardinality and

Hipd = Hlp (To) =0} + &7 + A+ BF <05 Y (np + ¢} + Ap + ED).
PeMy
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Fig.3 Refinement of a polygon
into quadrilaterals

4. REFINE - Refine the marked polygon domains by connecting the mid-point of the
edges to the centroid of respective polygon domains and update 7;. (cf. Fig. 3 for
an illustration of the refinement strategy.)

end do

Output: The sequences 7y, and the bounds 1y, &g, Ag, E¢, and H1lpg for £ =
0,1,2,....

The adaptive algorithm is displayed for mesh adaption in the energy error H'.
Replace estimator H1uy in the algorithm by L2u, (the upper bound in (5.2)) for
local mesh-refinement in the L? error. Both uniform and adaptive mesh-refinement
run to compare the empirical convergence rates and provide numerical evidence for the
superiority of adaptive mesh-refinement. Note that uniform refinement means all the
polygonal domains are refined. In all examples below, A p = 1 in (3.6). The numerical
realizations are based on a MATLAB implementation explained in [35] with a Gauss-
like cubature formula over polygons. The cubature formula is exact for all bivariate
polynomials of degree at most 2n — 1, so the choice n > (k + 1)/2 leads to integrate a
polynomial of degree k exactly. The quadrature errors in the computation of examples
presented below appear negligible for the input parameter n = 5.

6.2 Square domain (smooth solution)
This subsection discusses the problem (1.1) with the coefficients A = I, b = (x, y)
and y = x? + y> on a square domain € = (0, 1)?, and the exact solution

u = 16x(1 — x)y(l — y)arctan(25x — 100y + 50)

with f = Lu. Since y — %div(b) = x2 + y3 — 1 is not always positive on £, this
is an indefinite problem. Initially, the error and the estimators are large because of an
internal layer around the line 25x — 100y 4 50 = 0 with large first derivative of u
resolved after few refinements as displayed in Fig. 4-5.
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0 1 0 1 0 1

Fig.4 Output 77, 7g, 715 of the adaptive algorithm

10° . . 10? . .
—6— Hle(uniform) —6— L2e(uniform)
—+— Hle(adaptive) —+— L2e(adaptive)
—e— H1p(uniform) —e— L2y (uniform)
—2— H1p(adaptive) 100 —2— L2p(adaptive)
10' ¢
' g
2
1071 . . .
10? 10° 10* 10°
ndof ndof
(@) (b)

Fig. 5 Convergence history plot of estimator p and error e := u — ITjuy, in the a piecewise H ! norm, b
L2 norm versus number ndof of degrees of freedom for both uniform and adaptive refinement

6.3 L-shaped domain (non-smooth solution)

This subsection shows an advantage of using adaptive mesh-refinement over uniform
meshing for the problem (1.1) with the coefficientsas A = I, b = (x, y) and y = —4
on a L-shaped domain Q2 = (—1, 1)2\[0, 1) x (—1, 0] and the exact solution

u = r23sin (2—9>
3

with f := Lu. Since the exact solution is not zero along the boundary 9€2, the
error estimators are modified according to Sect. 5.3.3.4. Since y — %div(b) =-5<
0, the problem is non-coercive. Observe that with increase in number of iterations,
refinement is more at the singularity as highlighted in Fig. 6. Since the exact solution
u is in H®/3=¢(Q) for all € > 0, from a priori error estimates the expected order of
convergence in H'! norm is 1/3 and in L? norm is at least 2/3 with respect to number
of degrees of freedom for uniform refinement. Figure 7 shows that uniform refinement
gives the sub-optimal convergence rate, whereas adaptive refinement lead to optimal
convergence rates (1/2 for H! norm and 5/6 in L? norm).
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-1 0 1 =1 0 1 =<1 0 1

Fig.6 Output 77, 71(, 715 of the adaptive refinement

10! . 10! . .
—a— Hle(uniform) —e— L2e(uniform)
—o— Hle(adaptive) : —+— L2e(adaptive)
—4— H1p(uniform)
—— H1p(adaptive)

—a— L2p(uniform)
—2— L2p(adaptive)

107!

1073
’ &
6
1075 . .
10! 10° 10°
ndof ndof
(a) (b)

Fig. 7 Convergence history plot of estimator p and error e := u — I1juy, in the a piecewise H' norm, b
L% norm vs number ndof of degrees of freedom for both uniform and adaptive refinement

6.4 Helmholtz equation

This subsection considers the exact solution u = 1 4 tanh(—9(x* + y? — 0.25)) to
the problem

—Au—9u=f in Q=(—1,1>%

There is an internal layer around the circle centered at (0, 0) and of radius 0.25 where
the second derivatives of u are large because of steep increase in the solution resulting
in the large error at the beginning, and this gets resolved with refinement as displayed
in Fig. 8-9.

6.5 Conclusion

The three computational benchmarks provide empirical evidence for the sharpness of
the mathematical a priori and a posteriori error analysis in this paper and illustrate the
superiority of adaptive over uniform mesh-refining. The empirical convergence rates
in all examples for the H' and L? errors coincide with the predicted convergence
rates in Theorem 4.3, in particular, for the non-convex domain and reduced elliptic
regularity. The a posteriori error bounds from Theorem 5.1 confirm these convergence
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Fig.8 Output 71, 75, 711 of the adaptive refinement

. 10? : :
—a— Hle(uniform) —e— L2e(uniform)
—o— Hle(adaptive) —»— L2e(adaptive)
100 —4— Hlp(uniform) | | —a— L2p(uniform)
—»— H1p(adaptive) 10° —&— L2p(adaptive)
10°
1072}
107! 4 !
2 107 & ] 5
10 10? 10% 104 10°
ndof ndof
(@) (b)

Fig.9 Convergence history plot of estimator y and error e := u — I1juy, in the a piecewise H! norm, b
L? norm vs number ndof of degrees of freedom for both uniform and adaptive refinement

rates as well. The ratio of the error estimator w, by the H! error e;, sometimes called
efficiency index, remains bounded up to a typical value 6; we regard this as a typical
overestimation factor for the residual-based a posteriori error estimate. Recall that the
constant Creg has not been displayed so the error estimator 1y does not provide a guar-
anteed error bound. Figures 10 and 11 display the four different contributions volume
residual (3 p n%)l/z, stabilization term () _ p g%,) 172 inconsistency term Qp A%D)l/2
and the nonconformity term (3 p E%,)l/ 2 that add up to the error estimator pg. We
clearly see that all four terms converge with the overall rates that proves that none of
them is a higher-order term and makes it doubtful that some of those terms can be
neglected. The volume residual clearly dominates the a posteriori error estimates, while
the stabilisation term remains significantly smaller for the natural stabilisation (with
undisplayed parameter one). The proposed adaptive mesh-refining algorithm leads
to superior convergence properties and recovers the optimal convergence rates. This
holds for the first example with optimal convergence rates in the large pre-asymptotic
computational range as well as in the second with suboptimal convergence rates under
uniform mesh-refining according to the typical corner singularity and optimal con-
vergence rates for the adaptive mesh-refining. The third example with the Helmholtz
equation and a moderate wave number shows certain moderate local mesh-refining
in Fig. 8 but no large improvement over the optimal convergence rates for uniform
mesh-refining. The adaptive refinement generates hanging nodes because of the way
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107
10!

10° 100

10% 10° 10* 10° 10! 10° 10° 10° 10* 10! 10°
ndof ndof ndof

Fig. 10 Estimator components corresponding to the error H le = [u—ITjup |1, pw of the adaptive refinement
presented in Subsection 6.2-6.4

10° 10!

—o— (Y hE3)

&
Sosceeo

104L 100k
10? 10° 10 10° 10? 10° 10 10°

ndof ndof ndof

Fig. 11 Estimator components corresponding to the error L2e = ||u — ITjuy|| 12(Q) of the adaptive refine-
ment presented in Subsection 6.2-6.4

refinement strategy is defined, but this is not troublesome in VEM setting as hanging
node can be treated as a just another vertex in the decompostion of domain. However,
an increasing number of hanging nodes with further mesh refinements may violate the
mesh assumption (M2), but numerically the method seems robust without putting any
restriction on the number of hanging nodes. The future work on the theoretical investi-
gation of the performance of adaptive mesh-refining algorithm is clearly motivated by
the successful numerical experiments. The aforementioned empirical observation that
the stabilisation terms do not dominate the a posteriori error estimates raises the hope
for a possible convergence analysis of the adaptive mesh-refining strategy with the
axioms of adaptivity [20] towards a proof of optimal convergence rates: The numeri-
cal results in this section support this conjecture at least for the lowest-order VEM in
2D for indefinite non-symmetric second-order elliptic PDEs.
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