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Abstract
The nonconforming virtual element method (NCVEM) for the approximation of the
weak solution to a general linear second-order non-selfadjoint indefinite elliptic PDE
in a polygonal domain � is analyzed under reduced elliptic regularity. The main tool
in the a priori error analysis is the connection between the nonconforming virtual
element space and the Sobolev space H1

0 (�) by a right-inverse J of the interpolation
operator Ih . The stability of the discrete solution allows for the proof of existence of a
unique discrete solution, of a discrete inf-sup estimate and, consequently, for optimal
error estimates in the H1 and L2 norms. The explicit residual-based a posteriori error
estimate for the NCVEM is reliable and efficient up to the oscillation terms. Numerical
experiments on different types of polygonal meshes illustrate the robustness of an error
estimator and support the improved convergence rate of an adaptive mesh-refinement
in comparison to the uniform mesh-refinement.

Mathematics Subject Classification 65N12 · 65N15 · 65N30 · 65N50

1 Introduction

The nonconforming virtual element method approximates the weak solution u ∈
H1
0 (�) to the second-order linear elliptic boundary value problem
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Lu := −div(A∇u + bu) + γ u = f in � (1.1)

for a given f ∈ L2(�) in a bounded polygonal Lipschitz domain � ⊂ R
2 subject to

homogeneous Dirichlet boundary conditions.

1.1 General introduction

The virtual element method (VEM) introduced in [4] is one of the well-received
polygonal methods for approximating the solutions to partial differential equations
(PDEs) in the continuation of the mimetic finite difference method [7]. This method
is becoming increasingly popular [1, 3, 5, 6, 16, 17] for its ability to deal with fairly
general polygonal/polyhedral meshes. On the account of its versatility in shape of
polygonal domains, the local finite-dimensional space (the space of shape functions)
comprises non-polynomial functions. The novelty of this approach lies in the fact that
it does not demand for the explicit construction of non-polynomial functions and the
knowledge of degrees of freedom along with suitable projections onto polynomials is
sufficient to implement the method.

Recently, Beirão da Veiga et al. discuss a conforming VEM for the indefinite
problem (1.1) in [6]. Cangiani et al. [17] develop a nonconforming VEM under the
additional condition

0 ≤ γ − 1

2
div(b), (1.2)

which makes the bilinear form coercive and significantly simplifies the analysis. The
two papers [6, 17] prove a priori error estimates for a solution u ∈ H2(�) ∩ H1

0 (�)

in a convex domain �. The a priori error analysis for the nonconforming VEM in
[17] can be extended to the case when the exact solution u ∈ H1+σ (�)∩ H1

0 (�) with
σ > 1/2 as it is based on traces. This paper shows it for all σ > 0 and circumvents any
trace inequality. Huang et al. [31] discuss a priori error analysis of the nonconforming
VEM applied to Poisson and Biharmonic problems for σ > 0. An a posteriori error
estimate in [16] explores the conforming VEM for (1.1) under the assumption (1.2).
There are a few contributions [9, 16, 34] on residual-based a posteriori error control for
the conforming VEM. This paper presents a priori and a posteriori error estimates for
the nonconforming VEM without (1.2), but under the assumption that the Fredholm
operator L is injective.

1.2 Assumptions on (1.1)

This paper solely imposes the following assumptions (A1)–(A3) on the coefficients
A,b, γ and the operator L in (1.1) with f ∈ L2(�).

(A1) The coefficients A jk,b j , γ for j, k = 1, 2 are piecewise Lipschitz continu-
ous functions. For any decomposition T (admissible in the sense of Sect. 2.1)
and any polygonal domain P ∈ T, the coefficients A,b, γ are bounded

123



A priori and a posteriori error analysis of the… 553

pointwise a.e. by ‖A‖∞, ‖b‖∞, ‖γ ‖∞ and their piecewise first derivatives by
|A|1,∞, |b|1,∞, |γ |1,∞.

(A2) There exist positive constants a0 and a1 such that, for a.e. x ∈ �, A(x) is SPD
and

a0|ξ |2 ≤
2∑

j,k=1

A jk(x)ξ jξk ≤ a1|ξ |2 for all ξ ∈ R
2. (1.3)

(A3) The linear operator L : H1
0 (�) → H−1(�) is injective, i.e., zero is not an

eigenvalue of L .

Since the bounded linear operatorL is a Fredholmoperator [30,p. 321], (A3) implies
that L is bijective with bounded inverse L−1 : H−1(�) → H1

0 (�). The Fredholm
theory also entails the existence of a unique solution to the adjoint problem, that is,
for every g ∈ L2(�), there exists a unique solution � ∈ H1

0 (�) to

L∗� := −div(A∇�) + b · ∇� + γ� = g. (1.4)

The bounded polygonal Lipschitz domain �, the homogeneous Dirichlet boundary
conditions, and (A1)–(A2) lead to some 0 < σ ≤ 1 and positive constants Creg
and C∗

reg (depending only on σ,� and coefficients of L) such that, for any f , g ∈
L2(�), the unique solution u to (1.1) and the unique solution � to (1.4) belong to
H1+σ (�) ∩ H1

0 (�) and satisfy

‖u‖1+σ,� ≤ Creg‖ f ‖L2(�) and ‖�‖1+σ,� ≤ C∗
reg‖g‖L2(�). (1.5)

(The restriction σ ≤ 1 is for convenience owing to the limitation to first-order con-
vergence of the scheme.)

1.3 Weak formulation

Given the coefficients A,b, γ with (A1)–(A2), define, for all u, v ∈ V := H1
0 (�),

a(u, v) := (A∇u,∇v)L2(�), b(u, v) := (u,b ·∇v)L2(�), c(u, v) := (γ u, v)L2(�)

(1.6)
and

B(u, v) := a(u, v) + b(u, v) + c(u, v) (1.7)

(with piecewise versions apw, bpw, cpw and Bpw for∇ replaced by the piecewise gradi-
ent∇pw and local contributions aP , bP , cP defined in Sect. 3.1 throughout this paper).
The weak formulation of the problem (1.1) seeks u ∈ V such that

B(u, v) = ( f , v)L2(�) for all v ∈ V . (1.8)
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Assumptions (A1)–(A3) imply that the bilinear form B(·, ·) is continuous and satisfies
an inf-sup condition [11]

0 < β0 := inf
0 �=v∈V sup

0 �=w∈V
B(v,w)

‖v‖1,�‖w‖1,� . (1.9)

1.4 Main results and outline

Section 2 introduces the VEM and guides the reader to the first-order nonconforming
VEM on polygonal meshes. It explains the continuity of the interpolation operator and
related error estimates in detail. Section 3 starts with the discrete bilinear forms and
their properties, followed by some preliminary estimates for the consistency error and
the nonconformity error. The nonconformity error uses a new conforming companion
operator resulting in the well-posedness of the discrete problem for sufficiently fine
meshes. Section 4 proves the discrete inf-sup estimate and optimal a priori error esti-
mates. Section 5 discusses both reliability and efficiency of an explicit residual-based
a posteriori error estimator. Numerical experiments in Sect. 6 for three computational
benchmarks illustrate the performance of an error estimator and show the improved
convergence rate in adaptive mesh-refinement.

1.5 Notation

Throughout this paper, standard notation applies to Lebesgue and Sobolev spaces Hm

with norm ‖ · ‖m,D (resp. seminorm | · |m,D) for m > 0, while (·, ·)L2(D) and ‖ · ‖L2(D)

denote the L2 scalar product and L2 norm on a domain D. The space C0(D) consists
of all continuous functions vanishing on the boundary of a domain D. The dual space
of H1

0 (�) is denoted by H−1(�) with dual norm ‖ · ‖−1. An inequality A � B
abbreviates A ≤ CB for a generic constant C , that may depend on the coefficients of
L, the universal constants σ , ρ (from (M2) below), but that is independent of themesh-
size. Let Pk(D) denote the set of polynomials of degree at most k ∈ N0 defined on a
domainD and let 	k denote the piecewise L2 projection on Pk(T) for any admissible
partition T ∈ T (hidden in the notation 	k). The notation Hs(P) := Hs(intP) for
a compact polygonal domain P means the Sobolev space Hs [30] defined in the
interior int(P) of P throughout this paper. The outward normal derivative is denoted
by ∂ •

∂nP
= nP · ∇• for the exterior unit normal vector nP along the boundary ∂P of

the domain P .

2 First-order virtual element method on a polygonal mesh

This section describes class of admissible partitions of � into polygonal domains
and the lowest-order nonconforming virtual element method for the problem (1.1) [3,
17].
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Fig. 1 Polygonal domains P1
and P2 share one edge, while P1
and P4 share three edges P4

P3P2

P1

2.1 Polygonal meshes

A polygonal domain P in this paper is a non-void compact simply-connected set P
with polygonal boundary ∂P so that int(P) is a Lipschitz domain. The polygonal
boundary ∂P is a simple closed polygon described by a finite sequence of distinct
points. The setN(∂P) = {z1, z2, . . . , z J } of nodes of a polygon P is enumerated with
z J+1 := z1 such that E( j) := conv{z j , z j+1} defines an edge and all J edges cover
the boundary ∂P = E(1)∪· · ·∪ E(J )with an intersection E( j)∩ E( j +1) = {z j+1}
for j = 1, . . . , J −1 and E(J )∩ E(1) = z1 with dist(E( j), E(k)) > 0 for all distinct
indices j �= k.

Let T be a family of partitions of � into polygonal domains, which satisfies the
conditions (M1)–(M2) with a universal positive constant ρ.

(M1) Admissibility. Any two distinct polygonal domains P and P ′ in T ∈ T are
disjoint or share a finite number of edges or vertices (Fig. 1).

(M2) Mesh regularity. Every polygonal domain P of diameter hP is star-shaped with
respect to every point of a ball of radius greater than equal to ρhP and every
edge E of P has a length |E | greater than equal to ρhP .

Here and throughout this paper, hT|P := hP denotes the piecewise constant mesh-
size and T(δ) := {T ∈ T : hmax ≤ δ ≤ 1} with the maximum diameter hmax of the
polygonal domains in T denotes the subclass of partitions of� into polygonal domains
of maximal mesh-size ≤ δ. Let |P| denote the area of polygonal domain P and |E |
denote the length of an edge E . With a fixed orientation to a polygonal domain P ,
assign the outer unit normal nP along the boundary ∂P and nE := nP |E for an edge
E of P . Let E (resp. Ê) denote the set of edges E of T (resp. of T̂) and E(P) denote the
set of edges of polygonal domain P ∈ T. For a polygonal domain P , define

mid(P) := 1

|P|
∫

P
x dx and mid(∂P) := 1

|∂P|
∫

∂P
x ds.

Let Pk(T) := {v ∈ L2(�) : ∀P ∈ T v|P ∈ Pk(P)} for k ∈ N0 and 	k denote the
piecewise L2 projection onto Pk(T). The notation 	k hides its dependence on T and
also assume 	k applies componentwise to vectors. Given a decomposition T ∈ T of
� and a function f ∈ L2(�), its oscillation reads

osck( f , P) := ‖hP (1 − 	k) f ‖L2(P) and

osck( f , T) :=
(
∑

P∈T
‖hP (1 − 	k) f ‖2L2(P)

)1/2
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Fig. 2 a Polygon P and b its
sub-triangulation T̂(P)

z1 z2 z3

z4

z5z6

E(1) E(2)

E(3)

E(4)

E(5)

E(6)

(a)

cT (E(6))

z1 z2 z3

z4

z5z6

E(1) E(2)

E(3)

E(4)

E(5)

E(6)

(b)

with osc( f , •) := osc0( f , •).

Remark 1 (consequence of mesh regularity assumption) There exists an interior node
c in the sub-triangulation T̂(P) := {T (E) = conv(c, E) : E ∈ E(P)} of a polygonal
domain P with hT (E) ≤ hP ≤ CsrhT (E) as illustrated inFig. 2. Each polygonal domain
P can be divided into triangles so that the resulting sub-triangulation T̂|P := T̂(P) of
T is shape-regular. The minimum angle in the sub-triangulation solely depends on ρ

[13,Sec. 2.1].

Lemma 2.1 (Poincaré–Friedrichs inequality) There exists a positive constant CPF, that
depends solely on ρ, such that

‖ f ‖L2(P) ≤ CPFhP | f |1,P (2.1)

holds for any f ∈ H1(P) with
∑

j∈J

∫
E( j) f ds = 0 for a nonempty subset J ⊆

{1, . . . ,m} of indices in the notation ∂P = E(1)∪ · · · ∪ E(m) of Fig. 2. The constant
CPF depends exclusively on the number m := |E(P)| of the edges in the polygonal
domain P and the quotient of the maximal area divided by the minimal area of a
triangle in the triangulation T̂(P).

Some comments on CPF for anisotropic meshes are in order before the proof gives
an explicit expression for CPF.

Example 2.1 Consider a rectangle P with a large aspect ratio divided into four con-
gruent sub-triangles all with vertex c = mid(P). Then, m = 4 and the quotient of the
maximal area divided by the minimal area of a triangle in the criss-cross triangulation
T̂(P) is one. Hence CPF ≤ 1.4231 (from the proof below) is independent of the aspect
ratio of P .

Proof of Lemma 2.1 The case J = {1, . . . ,m} with f ∈ H1(P) and
∫
∂P f ds = 0

is well-known cf. e.g. [13, Sec. 2.1.5], and follows from the Bramble-Hilbert lemma
[14, Lemma 4.3.8] and the trace inequality [13, Sec. 2.1.1]. The remaining part of the
proof shows the inequality (2.1) for the case J ⊆ {1, . . . ,m}. The polygonal domain
P and its triangulation T̂(P) from Fig. 2 has the center c and the nodes z1, . . . , zm for
the m := |E(P)| = |̂T(P)| edges E(1), . . . , E(m) and the triangles T (1), . . . , T (m)

with T ( j) = T (E( j)) = conv{c, E( j)} = conv{c, z j , z j+1} for j = 1, . . . ,m. Here
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and throughout this proof, all indices are understood modulo m, e.g., z0 = zm . The
proof uses the trace identity

−
∫

E( j)
f ds = −

∫

T ( j)
f dx + 1

2
−
∫

T ( j)
(x − c) · ∇ f (x) dx (2.2)

for f ∈ H1(P) as in the lemma. This follows from an integration by parts and the
observation that (x−c)·nF = 0 on F ∈ E(T ( j))\E( j) and the height (x−c)·nE( j) =
2|T ( j)|
|E( j) of the edge E( j) in the triangle T ( j), for x ∈ E( j); cf. [24, Lemma 2.1] or
[25, Lemma 2.6] for the remaining details. Another version of the trace identity (2.2)
concerns conv{z j , c} =: F( j) = ∂T ( j − 1) ∩ ∂T ( j) and reads

−
∫

F( j)
f ds = −

∫

T ( j−1)
f dx + 1

2
−
∫

T ( j−1)
(x − z j−1) · ∇ f (x) dx

= −
∫

T ( j)
f dx + 1

2
−
∫

T ( j)
(x − z j+1) · ∇ f (x) dx (2.3)

in T ( j − 1) and T ( j). The three trace identities in (2.2)–(2.3) are rewritten with the
following abbreviations, for j = 1, . . .m,

x j := −
∫

E( j)
f ds, f j := −

∫

T ( j)
f dx, a j := 1

2
−
∫

T ( j)
(x − c) · ∇ f (x) dx,

b j := 1

2
−
∫

T ( j)
(x − z j ) · ∇ f (x) dx, c j := 1

2
−
∫

T ( j)
(x − z j+1) · ∇ f (x) dx .

Let tmin = minT ∈̂T(P) |T | and tmax = maxT ∈̂T(P) |T | abbreviate the minimal and

maximal area of a triangle in T̂(P) and let 	̂0 f ∈ P0(̂T(P)) denote the piecewise
integral means of f with respect to the triangulation T̂(P). The Poincaré inequality in
a triangle with the constant CP := 1/ j1,1 and the first positive root j1,1 ≈ 3.8317 of
the Bessel function J1 from [24, Thm. 2.1] allows for

‖ f − 	̂0 f ‖L2(T ( j)) ≤ CPhT ( j)| f |1,T ( j) for j = 1, . . . ,m.

Hence ‖ f − 	̂0 f ‖L2(P) ≤ CPhP | f |1,P . This and the Pythagoras theorem (with
f − 	̂0 f ⊥ P0(̂T(P)) in L2(P)) show

‖ f ‖2L2(P)
= ‖	̂0 f ‖2L2(P))

+ ‖ f − 	̂0 f ‖2L2(P))
≤ ‖	̂0 f ‖2L2(P))

+ C2
Ph

2
P | f |21,P .

(2.4)

It remains to bound the term‖	̂0 f ‖2L2(P))
. The assumptionon f reads

∑
j∈J

∫
E( j) f ds

= ∑
j∈J |E( j)|x j = 0 for a subset J ⊂ {1, . . . ,m} so that 0 ∈ conv{|E(1)|x1, . . . ,

|E(m)|xm}. It follows 0 ∈ conv{x1, . . . , xm} and it is known that this implies
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m∑

k=1

x2k ≤ M
m∑

k=1

(xk − xk−1)
2 (2.5)

for a constant M = 1
2(1−cos(π/m))

that depends exclusively on m [25, Lemma 4.2].
Recall (2.2) in the form x j = f j + a j to deduce from a triangle inequality and (2.5)
that

1

2

m∑

j=1

f 2j ≤
m∑

k=1

x2k +
m∑

=1

a2 ≤ M
m∑

k=1

(xk − xk−1)
2 +

m∑

=1

a2 .

This shows that

t−1
max‖	̂0 f ‖2L2(P)

= t−1
max

m∑

j=1

|T ( j)| f 2j ≤
m∑

j=1

f 2j ≤ 2M
m∑

k=1

(xk − xk−1)
2 + 2

m∑

=1

a2 .

Recall (2.2)–(2.3) in the form f j− f j−1 = b j−1−c j and x j−x j−1 = f j− f j−1+a j−
a j−1 = b j−1 − a j−1 + a j − c j for all j = 1, . . . ,m. This and the Cauchy–Schwarz
inequality imply the first two estimates in

2|x j − x j−1| =
∣∣∣∣−
∫

T ( j−1)
(c − z j−1) · ∇ f (x) dx + −

∫

T ( j)
(z j+1 − c) · ∇ f (x) dx

∣∣∣∣

≤ max{|c − z j−1|, |c − z j+1|}(
|T ( j − 1)|−1/2| f |1,T ( j−1) + |T ( j)|−1/2| f |1,T ( j)

)

≤ hPt
−1/2
min | f |1,T ( j−1)∪T ( j)

with the definition of hP and tmin in the end. The inequality
∫
T ( j) |x − c|2 dx ≤

1
2h

2
T ( j)|T ( j)| [25, Lemma 2.7] and the Cauchy–Schwarz inequality show, for j =

1, . . . ,m, that

|a j | ≤ 2−3/2hT ( j)|T ( j)|−1/2| f |1,|T ( j)| ≤ 2−3/2hPt
−1/2
min | f |1,|T ( j)|.

The combination of the previous three displayed estimates result in

4h−2
P (tmin/tmax)‖	̂0 f ‖2L2(P)

≤ 2M
m∑

k=1

| f |2T (k−1)∪T (k) +
m∑

=1

| f |21,T ()

= (4M + 1)| f |21,P .

This and (2.4) conclude the proofwith the constantC2
PF = (M+1/4)(tmax/tmin)+C2

P.��
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In the nonconforming VEM, the finite-dimensional space Vh is a subset of the
piecewise Sobolev space

H1(T) := {v ∈ L2(�) : ∀P ∈ T v|P ∈ H1(P)} ≡
∏

P∈T
H1(P).

The piecewise H1 seminorm (piecewise with respect to T hidden in the notation for
brevity) reads

|vh |1,pw :=
( ∑

P∈T
|vh |21,P

)1/2

for any vh ∈ H1(T).

2.2 Local virtual element space

The first nonconforming virtual element space [3] is a subspace of harmonic functions
with edgewise constant Neumann boundary values on each polygon. The extended
nonconforming virtual element space [1, 17] reads

V̂h(P) :=
{
vh ∈ H1(P) : �vh ∈ P1(P) and ∀E ∈ E(P)

∂vh
∂nP

∣∣∣
E

∈ P0(E)

}
.

(2.6)

Definition 2.2 (Ritz projection) Let 	∇
1 be the Ritz projection from H1(P) onto the

affine functions P1(P) in the H1 seminorm defined, for vh ∈ H1(P), by

(∇	∇
1 vh − ∇vh,∇χ)L2(P) = 0 for all χ ∈ P1(P)

and
∫

∂P
	∇

1 vh ds =
∫

∂P
vh ds. (2.7)

Remark 2 (integral mean) For P ∈ T and f ∈ H1(P), ∇	∇
1 f = 	0∇ f . (This

follows from (2.7.a) and the definition of the L2 projection operator 	0 (acting com-
ponentwise) onto the piecewise constants P0(P;R2).)

Remark 3 (representation of 	∇
1 ) For P ∈ T and f ∈ H1(P), the Ritz projection

	∇
1 f reads

(	∇
1 f )(x) = 1

|P|
( ∫

∂P
f nP ds

)
·
(
x − mid(∂P)

)
+ −

∫

∂P
f ds for x ∈ P. (2.8)

(The proof of (2.8) consists in the verification of (2.7): The equation (2.7.a) follows
from Remark 2 with an integration by parts. The equation (2.7.b) follows from the
definition of mid(∂P) as the barycenter of ∂P .)

The enhanced virtual element spaces [1, 17] are designed with a computable L2

projection 	1 onto P1(T). The resulting local discrete space under consideration
throughout this paper reads
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Vh(P) :=
{
vh ∈ V̂h(P) : vh − 	∇

1 vh ⊥ P1(P) in L2(P)

}
. (2.9)

The point in the selection of Vh(P) is that the Ritz projection 	∇
1 vh coincides with

the L2 projection 	1vh for all vh ∈ Vh(P). The degrees of freedom on P are given
by

dofE (v) = 1

|E |
∫

E
v ds for all E ∈ E(P) and v ∈ Vh(P). (2.10)

Proposition 2.3 (a) The vector space V̂h(P) from (2.6) is of dimension 3+|E(P)|. (b)
Vh(P) from (2.9) is of dimension |E(P)| and the triplet (P, Vh(P), dofE : E ∈ E(P))

is a finite element in the sense of Ciarlet [28].

Proof Let E(1), . . . , E(m) be an enumeration of the edges E(P) of the polygonal
domain P in a consecutive way as depicted in Fig. 2a and define W (P) := P1(P) ×
P0(E(1))×· · ·×P0(E(m)). Recall V̂h(P) from (2.6) and identify the quotient space
V̂h(P)/R ≡ {

f ∈ V̂h(P) : ∫
∂P f ds = 0

}
with all functions in V̂h(P) having zero

integral over the boundary ∂P of P . Since the space V̂h(P) consists of functions with
an affine Laplacian and edgewise constant Neumann data, the map

S : V̂h(P)/R → W (P), f �→
(

−� f ,
∂ f

∂nP

∣∣∣
E(1)

, . . . ,
∂ f

∂nP

∣∣∣
E(m)

)

is well-defined and linear. The compatibility conditions for the existence of a solution
of a Laplacian problem with Neumann data show that the image of S is equal to

R(S) =
⎧
⎨

⎩( f1, g1, . . . , gm) ∈ W (P) :
∫

P
f1dx +

m∑

j=1

g j |E( j)| = 0

⎫
⎬

⎭ .

(The proof of this identity assumes the compatible data ( f1, g1, . . . , gm) from the set
on the right-hand side and solves the Neumann problem with a unique solution û in
V̂h(P)/R and Sû = ( f1, g1, . . . , gm).) It is known that the Neumann problem has a
unique solution up to an additive constant and so S is a bijection and the dimension
m + 2 of V̂h(P)/R is that of R(S). In particular, dimension of V̂h(P) is m + 3. This
proves (a).

Let �0,�1,�2 : H1(P) → R be linear functionals

�0 f := 	0 f , � j f := M j ((	
∇
1 − 	1) f )

with M j f := 	0((x j − c j ) f ) for j = 1, 2 and f ∈ H1(P) that determines an
affine function p1 ∈ P1(P) such that (P,P1(P), (�0,�1,�2)) is a finite element
in the sense of Ciarlet. For any edge E( j) ∈ E(P), define � j+2 f = −

∫
E( j) f ds

as integral mean of the traces of f in H1(P) on E( j). It is elementary to see that
�0, . . . , �m+2 are linearly independent: If f in V̂h(P) belongs to the kernel of all the
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linear functionals, then	∇
1 f = 0 from (2.8)with� j f = 0 for each j = 3, . . . , 2+m.

Since the functionals� j f = 0 for j = 1, 2, (x j −c j )(	∇
1 −	1) f = 0 and	∇

1 f = 0
imply 	1 f = 0. An integration by parts leads to

‖∇ f ‖2L2(P)
= (−� f , f )L2(P) +

(
f ,

∂ f

∂nP

)

L2(∂P)
= 0.

This and −
∫
∂P f ds = 0 show f ≡ 0. Consequently, the intersection ∩m+2

j=0 Ker(� j )

of all kernels Ker(�0), . . . ,Ker(�)m+2 is trivial and so that the functionals
�0, . . . , �m+2 are linearly independent. Since the number of the linear functionals is
equal to the dimension of V̂h(P), (P, V̂h(P), {�0, . . . , �m+2}) is a finite element in
the sense of Ciarlet and there exists a nodal basis ψ0, . . . , ψm+2 of V̂h(P) with

� j (ψk) = δ jk for all j, k = 0, . . . ,m + 2.

The linearly independent functionsψ3, . . . , ψm+2 belong toVh(P) and so dim(Vh(P))

≥ m. Since Vh(P) ⊂ V̂h(P) and three linearly independent conditions (1−	∇
1 )vh ⊥

P1(P) in L2(P) are imposed on V̂h(P) to define Vh(P), dim(Vh(P)) ≤ m. This
shows that dim(Vh(P)) = m and hence, the linear functionals dofE = −

∫
E • ds for

E ∈ E(P) form a dual basis of Vh(P). This concludes the proof of (b). ��
Remark 4 (stability of L2 projection) The L2 projection 	k for k = 0, 1 is H1 and
L2 stable in Vh(P), in the sense that any vh in Vh(P) satisfies

‖	kvh‖L2(P) ≤ ‖vh‖L2(P) and ‖∇(	kvh)‖L2(P) ≤ ‖∇vh‖L2(P). (2.11)

(The first inequality follows from the definition of 	k . The orthogonality in (2.9)
and the definition of 	1 imply that the Ritz projection 	∇

1 and the L2 projection 	1
coincide on the space Vh(P) for P ∈ T. This with the definition of the Ritz projection
	∇

1 verifies the second inequality.)

Definition 2.4 (Fractional order Sobolev space [14]) Let α := (α1, α2) denote amulti-
index with α j ∈ N0 for j = 1, 2 and |α| := α1 + α2. For a real number m with
0 < m < 1, define

H1+m(ω) :=
{
v ∈ H1(ω) : |vα(x) − vα(y)|

|x − y|(1+m)
∈ L2(ω × ω) for all |α| = 1

}

with vα as the partial derivative of v of order α. Define the seminorm | · |1+m and
Sobolev-Slobodeckij norm ‖ · ‖1+m by

|v|21+m,ω=
∑

|α|=1

∫

ω

∫

ω

|vα(x) − vα(y)|2
|x − y|2(1+m)

dx dy and ‖v‖21+m,ω=‖v‖21,ω+|v|21+m,ω.

Proposition 2.5 (approximation by polynomials [29, Thm. 6.1]) Under the assump-
tion (M2), there exists a positive constant Capx (depending on ρ and on the polynomial
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degree k) such that, for every v ∈ Hm(P), the L2 projection 	k on Pk(P) for k ∈ N0
satisfies

‖v − 	kv‖L2(P) + hP |v − 	kv|1,P ≤ Capxh
m
P |v|m,P for 1 ≤ m ≤ k + 1. (2.12)

2.3 Global virtual element space

Define the global nonconforming virtual element space, for any T ∈ T, by

Vh :=
{
vh ∈ H1(T) : ∀P ∈ T vh |P ∈ Vh(P) and ∀E ∈ E

∫

E
[vh]E ds = 0

}
.

(2.13)

Let [·]E denote the jumpacross an edge E ∈ E: For twoneighboringpolygonal domains
P+ and P− sharing a common edge E ∈ E(P+) ∩ E(P−), [vh]E := vh|P+ − vh|P− ,
where P+ denote the adjoint polygonal domain with nP+|E = nE and P− denote
the polygonal domain with nP−|E = −nE . If E ⊂ ∂� is a boundary edge, then
[vh]E := vh |E .
Example 2.2 If each polygonal domain P is a triangle, then the finite-dimensional
space Vh coincides with CR-FEM space. (Since the dimension of the vector space
Vh(P) is three and P1(P) ⊂ Vh(P), Vh(P) = P1(P) for P ∈ T.)

Lemma 2.6 There exists a universal constant CF (that depends only on ρ from (M2))
such that, for all T ∈ T, any vh ∈ Vh from (2.13) satisfies

‖vh‖L2(�) ≤ CF|vh |1,pw. (2.14)

Proof Recall from Remark 1 that T̂ is a shape regular sub-triangulation of T into
triangles. Since Vh ⊂ H1(̂T) and the Friedrichs’ inequality holds for all functions
in H1(̂T) [14,Thm. 10.6.16], there exists a positive constant CF such that the (first)
inequality holds in

‖vh‖L2(�) ≤ CF

⎛

⎝
∑

T ∈̂T
‖∇vh‖2L2(T )

⎞

⎠
1/2

= CF|vh |1,pw.

The (second) equality follows for vh ∈ H1(P) with P ∈ T. ��
Lemma 2.6 implies that the seminorm | · |1,pw is equivalent to the norm ‖ · ‖1,pw :=

‖ · ‖2
L2(�)

+ | · |21,pw in Vh with mesh-size independent equivalence constants.

2.4 Interpolation

Definition 2.7 (interpolation operator) Let (ψE : E ∈ E) be the nodal basis of Vh
defined by dofE (ψE ) = 1 and dofF (ψE ) = 0 for all other edges F ∈ E \ {E}. The
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global interpolation operator Ih : H1
0 (�) → Vh reads

Ihv :=
∑

E∈E

(
−
∫

E
v ds

)
ψE for v ∈ V .

Since a Sobolev function v ∈ V has traces and the jumps [v]E vanish across any edge
E ∈ E, the interpolation operator Ih is well-defined. Recall ρ from (M2), CPF from
Lemma 2.1, and Capx from Proposition 2.5.

Theorem 2.8 (interpolation error)

(a) There exists a positive constant CItn (depending on ρ) such that any v ∈ H1(P)

and its interpolation Ihv ∈ Vh(P) satisfy

‖∇ Ihv‖L2(P) ≤ CItn‖∇v‖L2(P).

(b) Any P ∈ T ∈ T and v ∈ H1(P) satisfy |v − Ihv|1,P ≤ (1 + CItn)‖(1 −
	0)∇v‖L2(P)

and

h−1
P ‖(1 − 	1 Ih)v‖L2(P) + |(1 − 	1 Ih)v|1,P ≤ (1 + CPF)‖(1 − 	0)∇v‖L2(P).

(c) The positive constant CI := Capx(1 + CItn)(1 + CPF), any 0 < σ ≤ 1, and any
v ∈ H1+σ (P) with the local interpolation Ihv|P ∈ Vh(P) satisfy

‖v − Ihv‖L2(P) + hP |v − Ihv|1,P ≤ CIh
1+σ
P |v|1+σ,P . (2.15)

Proof of (a) The boundedness of the interpolation operator in Vh(P) is mentioned in
[17] with a soft proof in its appendix. The subsequent analysis aims at a clarification
that CI depends exclusively on the parameter ρ in (M2). The elementary arguments
apply to more general situations in particular to 3D. Given Ihv ∈ Vh(P), q1 :=
−�Ihv ∈ P1(P) is affine and

∫
E (v − Ihv) ds = 0. Since ∂ Ihv

∂nP
is edgewise constant,

this shows
∫
E

∂ Ihv
∂nP

|E (v − Ihv) ds = 0 for all E ∈ E(P) and so
〈
∂ Ihv
∂nP

, v − Ihv
〉
∂P = 0.

An integration by parts leads to

(∇ Ihv,∇(Ihv − v))L2(P) = (q1, Ihv − v)L2(P) = (q1,	
∇
1 Ihv − v)L2(P)

with q1 ∈ P1(P) and 	1vh = 	∇
1 vh for vh ∈ Vh(P) in the last step. Consequently,

‖∇ Ihv‖2L2(P)
= (∇ Ihv,∇(Ihv − v))L2(P) + (∇ Ihv,∇v)L2(P)

= (q1,	
∇
1 Ihv − v)L2(P) + (∇ Ihv,∇v)L2(P)

≤ ‖q1‖L2(P)‖v − 	∇
1 Ihv‖L2(P) + ‖∇ Ihv‖L2(P)‖∇v‖L2(P) (2.16)
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with the Cauchy inequality in the last step. Remarks 2 and 3 on the Ritz projection,
and the definition of Ih show

	0∇v = ∇	∇
1 v = |P|−1

∫

∂P
v nP ds

= |P|−1
∫

∂P
IhvnP ds = 	0∇ Ihv = ∇	∇

1 Ihv. (2.17)

The function f := v − 	∇
1 Ihv ∈ H1(P) satisfies

∫
∂P f ds = ∫

∂P (v − Ihv) ds = 0
and the Poincaré–Friedrichs inequality from Lemma 2.1.a shows

‖v − 	∇
1 Ihv‖L2(P) ≤ CPFhP‖∇(v − 	∇

1 Ihv)‖L2(P) = CPFhP‖(1 − 	0)∇v‖L2(P)

(2.18)

with (2.17) in the last step. Let φc ∈ S10 (̂T(P)) := {w ∈ C0(P) : w|T (E) ∈
P1(T (E)) for all E ∈ E(P)} denote the piecewise linear nodal basis function of
the interior node c with respect to the triangulation T̂(P) = {T (E) : E ∈ E(P)} (cf.
Fig. 2b for an illustration of T̂(P)). An inverse estimate

‖ f1‖L2(T (E)) ≤ C1‖φ1/2
c f1‖L2(T (E)) for all f1 ∈ P1(̂T(P))

on the triangle T (E) := conv(E ∪ {c}) holds with the universal constant C1. A
constructive proof computes the mass matrices for T with and without the weight φc

to verify that the universal constant C1 does not depend on the shape of the triangle
T (E). This implies

C−1
1 ‖q1‖2L2(P)

≤ (φcq1, q1)L2(P) = (−�Ihv, φcq1) = (∇ Ihv,∇(φcq1))L2(P)

(2.19)

with an integration by parts for φcq1 ∈ H1
0 (P) and Ihv in the last step. The mesh-size

independent constant C2 in the standard inverse estimate

hT (E)‖∇q2‖L2(T (E)) ≤ C2‖q2‖L2(T (E)) for all q2 ∈ P2(T (E))

depends merely on the angles in the triangle T (E), E ∈ E(P), and so exclusively on
ρ. With C−1

sr hP ≤ hT (E) from Remark 1, this shows

C−1
2 C−1

sr hP‖∇φcq1‖L2(P) ≤ ‖φcq1‖L2(P) ≤ ‖q1‖L2(P).

This and (2.19) lead to

‖q1‖L2(P) ≤ C1C2Csrh
−1
P ‖∇ Ihv‖L2(P). (2.20)

The combination with (2.16)–(2.18) proves

‖∇ Ihv‖2L2(P)
≤ (C1C2CsrCPF‖(1 − 	0)∇v‖L2(P) + ‖∇v‖L2(P))‖∇ Ihv‖L2(P)
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≤ (1 + C1C2CsrCPF)‖∇v‖L2(P)‖∇ Ihv‖L2(P).

��
Proof of (b) The identity (2.17) reads 	0∇(1 − Ih)v = 0 and the triangle inequality
results in

|v − Ihv|1,P = ‖(1 − 	0)∇(1 − Ih)v‖L2(p)

≤ ‖(1 − 	0)∇v‖L2(P) + ‖(1 − 	0)∇ Ihv‖L2(P). (2.21)

Since Ih is the identity inP1(P), it follows (1−	0)∇ Ihv = (1−	0)∇ Ih(v−	∇
1 v).

This and the boundedness of the interpolation operator Ih lead to

‖(1 − 	0)∇ Ihv‖L2(P) ≤ ‖∇ Ih(1 − 	∇
1 )v‖L2(P)

≤ CItn‖∇(1 − 	∇
1 )v‖L2(P) = CItn‖(1 − 	0)∇v‖L2(P)

(2.22)

with Remark 2 in the last step. The combination of (2.21) and (2.22) proves the first
part of (b).

The identity |(1 − 	1 Ih)v|1,P = ‖(1 − 	0)∇v‖L2(P) follows from (2.17). Since
	1 = 	∇

1 inVh and
∫
∂P v ds = ∫

∂P Ihv ds = ∫
∂P 	∇

1 Ihv ds, thePoincaré–Friedrichs
inequality

‖(1 − 	1 Ih)v‖L2(P) ≤ CPFhP |(1 − 	1 Ih)v|1,P

follows from Lemma 2.1.a. This concludes the proof of (b). ��
Proof of (c) This is an immediate consequence of the part (b) with (2.12) and the
Poincaré–Friedrichs inequality for v − Ihv (from above) in Lemma 2.1.a. ��

3 Preliminary estimates

This subsection formulates the discrete problem along with the properties of the dis-
crete bilinear form such as boundedness and a Gårding-type inequality.

3.1 The discrete problem

Denote the restriction of the bilinear forms a(·, ·), b(·, ·) and c(·, ·) on a polygonal
domain P ∈ T by aP (·, ·), bP (·, ·) and cP (·, ·). The corresponding local discrete
bilinear forms are defined for uh, vh ∈ Vh(P) by

aP
h (uh, vh) := (A∇	1uh,∇	1vh)L2(P) + SP ((1 − 	1)uh, (1 − 	1)vh), (3.1)

bPh (uh, vh) := (	1uh,b · ∇	1vh)L2(P), (3.2)
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cPh (uh, vh) := (γ	1uh,	1vh)L2(P), (3.3)

BP
h (uh, vh) := aP

h (uh, vh) + bPh (uh, vh) + cPh (uh, vh). (3.4)

Choose the stability term SP (uh, vh) as a symmetric positive definite bilinear form on
Vh(P) × Vh(P) for a positive constant Cs independent of P and hP satisfying

C−1
s aP (vh, vh) ≤ SP (vh, vh) ≤ Csa

P (vh, vh) for all vh ∈ Vh(P) with 	1vh = 0.
(3.5)

For some positive constant approximation AP of A over P and the number NP :=
|E(P)| of the degrees of freedom (2.10) of Vh(P), a standard example of a stabilization
term from [4],[36,Sec. 4.3] with a scaling coefficient AP reads

SP (vh, wh) := AP

NP∑

r=1

dofr (vh)dofr (wh) for all vh, wh ∈ Vh . (3.6)

Note that an approximation AP is a positive real number (not a matrix) and can be
chosen as

√
a0a1 with the positive constants a0 and a1 from (A2). For f ∈ L2(�) and

vh ∈ Vh , define the right-hand side functional fh on Vh by

( fh, vh)L2(P) := ( f ,	1vh)L2(P). (3.7)

The sum over all the polygonal domains P ∈ T reads

ah(uh, vh) :=
∑

P∈T
aP
h (uh, vh), bh(uh, vh) :=

∑

P∈T
bPh (uh, vh),

ch(uh, vh) :=
∑

P∈T
cPh (uh, vh), sh(uh, vh) :=

∑

P∈T
SP ((1 − 	1)uh, (1 − 	1)vh),

Bh(uh, vh) :=
∑

P∈T
BP
h (uh, vh), ( fh, vh)L2(�) :=

∑

P∈T
( fh, vh)L2(P) for all uh, vh ∈ Vh .

The discrete problem seeks uh ∈ Vh such that

Bh(uh, vh) = ( fh, vh)L2(�) for all vh ∈ Vh . (3.8)

Remark 5 (polygonal mesh with small edges) The conditions (M1)–(M2) are well
established and apply throughout the paper. The sub-triangulation T̂may not be shape-
regular without the edge condition |E | ≥ ρhP for an edge E ∈ T(P) and P ∈ T,
but satisfies the maximal angle condition and the arguments employed in the proof of
[8,Lemma 6.3] can be applied to show (2.20) in Theorem 2.8.a. For more general star-
shaped polygon domains with short edges, the recent anisotropic analysis [8, 15, 18]
indicates that the stabilization term has to be modified as well to avoid a logarithmic
factor in the optimal error estimates.
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3.2 Properties of the discrete bilinear form

The following proposition provides two main properties of the discrete bilinear form
Bh .

Proposition 3.1 There exist positive universal constants M, α and a universal non-
negative constant β depending on the coefficients A, b, γ such that

(a) Boundedness: |Bh(uh, vh)| ≤ M |uh |1,pw|vh |1,pw for all uh, vh ∈ Vh .
(b) Gårding-type inequality: α|vh |21,pw−β‖vh‖2L2(�)

≤ Bh(vh, vh) for all vh ∈ Vh .

Proof of (a) The upper bound of the coefficients from the assumption (A1), the
Cauchy–Schwarz inequality, the stability (2.11) of 	1, and the definition (3.5) of
the stabilization term imply the boundedness of Bh with M := (1 + Cs)‖A‖∞ +
CF‖b‖∞ + C2

F‖γ ‖∞. The details of the proof follow as in [6, Lemma 5.2] with the
constant CF from Lemma 2.6. ��
Proof of (b) The first step shows that ah(·, ·) is coercive. For vh ∈ Vh(P), 	1vh =
	∇

1 vh and∇	1vh ⊥ ∇(vh−	∇
1 vh) in L2(P;R2). This orthogonality, the assumption

(A2), and the definition of the stability term (3.5) with the constant C−1
s ≤ 1 imply

for α0 = a0C−1
s that

α0|vh |21,pw ≤ a0‖∇pw	1vh‖2L2(�)
+ a0C

−1
s ‖∇pw(1 − 	1)vh‖2L2(�)

≤
(
A∇pw	1vh,∇pw	1vh)L2(�)+C−1

s (A∇pw(1 − 	1)vh,∇pw(1−	1)vh

)

L2(�)

≤ (A∇pw	1vh,∇pw	1vh)L2(�)+sh((1 − 	1)vh, (1 − 	1)vh)= ah(vh, vh).
(3.9)

The Cauchy–Schwarz inequality, (2.11), and the Young inequality lead to

|bh(vh, vh) + ch(vh, vh)|
≤ ‖b‖∞‖	1vh‖L2(�)‖∇pw	1vh‖L2(�) + ‖γ ‖∞‖	1vh‖2L2(�)

leq‖b‖∞‖vh‖L2(�)|vh |1,pw + ‖γ ‖∞‖vh‖2L2(�)

≤ ‖b‖2∞
2α0

‖vh‖2L2(�)
+ α0

2
|vh |21,pw + ‖γ ‖∞‖vh‖2L2(�)

. (3.10)

The combination of (3.9)–(3.10) proves

α0

2
|vh |21,pw −

(‖b‖2∞
2α0

+ ‖γ ‖∞
)

‖vh‖2L2(�)
≤ Bh(vh, vh).

This concludes the proof of (b) with α = α0
2 and β = ‖b‖2∞

2α0
+ ‖γ ‖∞. ��

Remark 6 (‖ · ‖h ≈ | · |1,pw) The discrete space Vh of the nonconforming VEM is
endowed with the natural norm ‖ · ‖h := ah(·, ·)1/2 induced by the scalar product ah .
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The boundedness of ah is proven in (a), while (3.9) shows the converse estimate in
the equivalence ‖ · ‖h ≈ | · |1,pw in Vh , namely

α0|vh |21,pw ≤ ah(vh, vh) ≤ ‖A‖∞(1 + Cs)|vh |21,pw for all vh ∈ Vh .

3.3 Consistency error

This subsection discusses the consistency error between the continuous bilinear form
B and the corresponding discrete bilinear form Bh . Recall the definition BP (·, ·) ≡
aP (·, ·)+bP (·, ·)+cP (·, ·) and BP

h (·, ·) ≡ aP
h (·, ·)+bPh (·, ·)+cPh (·, ·) for a polygonal

domain P ∈ T from Sect. 2.1.

Lemma 3.2 (consistency)

(a) There exists a positive constant Ccst (depending only on ρ) such that any v ∈
H1(�) and wh ∈ Vh satisfy

BP (	1v,wh) − BP
h (	1v,wh) ≤ Ccst hP‖v‖1,P |wh |1,P for all P ∈ T. (3.11)

(b) Any f ∈ L2(�) and fh := 	1 f satisfy

‖ f − fh‖V ∗
h

:= sup
0 �=vh∈Vh

( f − fh, vh)L2(�)

‖vh‖1,pw ≤ CPF osc1( f , T). (3.12)

Proof Observe that SP ((1−	1)	1v, (1−	1)wh) = 0 follows from (1−	1)	1v =
0. The definition of BP and BP

h show

BP (	1v,wh) − BP
h (	1v,wh) =: T1 + T2 + T3. (3.13)

The term T1 in (3.13) is defined as the difference of the contributions from aP and
aP
h . Their definitions prove the equality (at the end of the first line below) and the

definition of 	1 prove the next equality in

T1 := aP (	1v,wh) − a p
h (	1v,wh) = (A∇	1v,∇(1 − 	1)wh)L2(P)

= ((A − 	0A)(∇	1v),∇(1 − 	1)wh)L2(P) ≤ hP |A|1,∞|v|1,P |wh |1,P .

The last inequality follows from the Cauchy–Schwarz inequality, the Lipschitz
continuity of A, and the stabilities ‖∇	1vh‖L2(P) ≤ ‖∇vh‖L2(P) and ‖∇(1 −
	1)wh‖L2(P) ≤ ‖∇wh‖L2(P) from Remark 4. Similar arguments apply to T2 from
the differences of bP and bPh , and T3 from those of cP and cPh in (3.13). This leads to

T2 := bP (	1v,wh) − bPh (	1v,wh)

= ((b − 	0b)	1v,∇(1 − 	1)wh)L2(P)

+ ((	0b)(1 − 	0)(	1v),∇(1 − 	1)wh)L2(P)
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≤ (|b|1,∞ + Capx‖b‖∞)hP‖v‖1,P |wh |1,P ,

T3 := cP (	1v,wh) − cPh (	1v,wh) = (γ	1v, (1 − 	1)wh)L2(P)

≤ CPF ‖γ ‖∞hP‖v‖L2(P)|wh |1,P .

The inequality for the last step in T2 follows from the Cauchy–Schwarz inequality, the
Lipschitz continuity of b, the estimate ‖(1 − 	0)	1v‖L2(P) ≤ ‖(1 − 	0)v‖L2(P) ≤
CapxhP |v|1,P from (2.12), and the above stabilities ‖∇	1vh‖L2(P) ≤ ‖∇vh‖L2(P)

and ‖∇(1 − 	1)wh‖L2(P) ≤ ‖∇wh‖L2(P). The inequality for the last step in T3
follows from the Cauchy–Schwarz inequality, ‖	1v‖L2(P) ≤ ‖v‖L2(P) from (2.11)
and the Poincaré–Friedrichs inequality in Lemma 2.1.a forwh−	1wh with

∫
∂P (wh−

	1wh) ds = 0 from 	1 = 	∇
1 in Vh . The combination of the above estimates shows

(3.11). The proof of (3.12) adapts the arguments in the above analysis of T3 and the
definition of osc1( f , T) in Sect. 2.1 for the proof of

( f − fh, wh)L2(P) = ( f − 	1 f , wh − 	1wh)L2(P) ≤ CPF|wh |1,P osc1( f , P).

This concludes the proof. ��

3.4 Nonconformity error

Enrichment operators play a vital role in the analysis of nonconforming finite element
methods [12]. For any vh ∈ Vh, the objective is to find a corresponding function
Jvh ∈ H1

0 (�). The idea is to map the VEM nonconforming space into the Crouzeix-
Raviart finite element space

CR1
0(̂T) := {v ∈ P1(̂T) :∀ E ∈ Ê v is continuous at mid(E) and

∀ E ∈ E(∂�) v(mid(E)) = 0}

with respect to the shape-regular triangulation T̂ from Remark 1. Let ψE be the edge-
oriented basis functions of CR1

0(̂T) with ψE (midE) = 1 and ψE (midF) = 0 for all
other edges F ∈ Ê \ {E}. Define the interpolation operator ICR : Vh → CR1

0(̂T), for
vh ∈ Vh , by

ICRvh =
∑

F∈̂E

(
−
∫

F
vh ds

)
ψF . (3.14)

The definition of Vh implies
∫
F [vh] ds = 0 for vh ∈ Vh and for all F ∈ E. Since

vh |P ∈ H1(P), it follows
∫
F [vh] ds = 0 for all F ∈ Ê \ E. This shows

∫
F vh|T± ds

is unique for all edges F = ∂T+ ∩ ∂T− ∈ Ê and, consequently, ICRvh is well-
defined (independent of the choice of traces selected in the evaluation of −

∫
F vh ds =

−
∫
F vh |T+ ds = −

∫
F vh |T− ds). The approximation property of ICR on each T ∈ T̂ reads

h−1
T ‖vh − ICRvh‖L2(T ) + |vh − ICRvh |1,T ≤ 2|vh |1,T (3.15)
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(cf. [23, Thm 2.1] or [21, Thm 4] for explicit constants). Define an enrichment operator
Eh : CR1

0(̂T) → H1
0 (�) by averaging the function values at each interior vertex z,

that is,

EhvCR(z) = 1

|̂T(z)|
∑

T ∈̂T(z)

vCR|T (z) (3.16)

and zero on boundary vertices. In (3.16) the set T̂(z) := {T ∈ T̂ |z ∈ T } of neighboring
triangles has the cardinality |̂T(z)| ≥ 3.

The following lemma describes the construction of a modified companion operator
J : Vh → H1

0 (�), which is a right-inverse of the interpolation operator Ih from
Definition 2.7.

Lemma 3.3 (conforming companion operator) There exists a linear map J : Vh →
H1
0 (�) and a universal constant CJ � 1 such that any vh ∈ Vh satisfies Ih Jvh = vh

and

(a) −
∫

E
Jvh ds = −

∫

E
vh ds for any edge E ∈ Ê,

(b) ∇pw(vh − Jvh) ⊥ P0(T;R2) in L2(�;R2),

(c) vh − Jvh ⊥ P1(T) in L2(�),

(d) ‖h−1
T (vh − Jvh)‖L2(�) + |vh − Jvh |1,pw ≤ CJ|vh |1,pw.

Design of J in Lemma 3.3 Given vh ∈ Vh , let vCR := ICRvh ∈ CR1
0(̂T). There exists

an operator J ′ : CR1
0(̂T) → H1

0 (�) from [22, Prop. 2.3] such that any vCR ∈ CR1
0(̂T)

satisfies

(a’) −
∫

E
J ′vCR ds = −

∫

E
vCR ds for any edge E ∈ Ê,

(b’)
∫

P
∇pw(vCR − J ′vCR) dx = 0 for all P ∈ T,

(c’) ‖h−1
T̂ (vCR − J ′vCR)‖L2(�) + |vCR − J ′vCR|1,pw ≤ CJ′ min

v∈H1
0 (�)

|vCR − v|1,pw

with a universal constant CJ′ from [25]. Set v := J ′ ICRvh ∈ V := H1
0 (�). Recall

that T̂(P) is a shape-regular triangulation of P into a finite number of triangles. For
each T ∈ T̂(P), let bT ∈ W 1,∞

0 (T ) denote the cubic bubble-function 27λ1λ2λ3 for
the barycentric co-ordinates λ1, λ2, λ3 ∈ P1(T ) of T with −

∫
T bT dx = 9/20 and

‖∇bT ‖L2(T ) � h−1
T |T |1/2 ≈ 1. Let bT be extended by zero outside T and, for P ∈ T,

define

bP := 20

9

∑

T ∈̂T(P)

bT ∈ W 1,∞
0 (P) ⊂ W 1,∞

0 (�) (3.17)

with −
∫
P bP dx = 1 and ‖∇bP‖L2(P) � h−1

P |P|1/2 ≈ 1. Let vP ∈ P1(T) be the
Riesz representation of the linear functional P1(T) → R defined by w1 �→ (vh −
v,w1)L2(�) forw1 ∈ P1(T) in the Hilbert spaceP1(T) endowed with the weighted L2
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scalar product (bP•, •)L2(P). Hence vP exists uniquely and satisfies 	1(vh − v) =
	1(bPvP ). Given the bubble-functions (bP : P ∈ T) from (3.17) and the above
functions (vP : P ∈ T) for vh ∈ Vh , define

Jvh := v +
∑

P∈T
vPbP ∈ V . (3.18)

��
Proof of (a) Since bP vanishes at any x ∈ E ∈ E, it follows for any E ∈ Ê that

−
∫

E
Jvh ds = −

∫

E
v ds = −

∫

E
J ′vCR ds = −

∫

E
vCR ds = −

∫

E
vh ds,

where the definition of v = J ′vCR, (a), and vCR = ICRvh lead to the second, third,
and fourth equality. This proves (a). ��
Proof of (b) An integration by parts and (b) show, for all vh ∈ Vh with Jvh from (3.18),
that

∫

P
∇ Jvh dx =

∫

∂P
JvhnP ds =

∑

E∈E(P)

( ∫

E
JvhnE ds

)

=
∑

E∈E(P)

( ∫

E
vhnE ds

)
=

∫

P
∇vh dx .

Since this holds for all P ∈ T, it proves (b). ��
Proof of (c) This is 	1vh = 	1 Jvh and guaranteed by the design of J in (3.18). ��
Proof of (d) This relies on the definition of J in (3.18) and J ′ with (c′). Since (a) allows
for

∫
∂P (vh − Jvh) ds = 0, the Poincaré–Friedrichs inequality from Lemma 2.1.a

implies

h−1
P ‖vh − Jvh‖L2(P) ≤ CPF|vh − Jvh |1,P .

Hence it remains to prove |vh − Jvh |1,pw � |vh |1,pw. Triangle inequalities with
vh, Jvh, v = J ′vCR and vCR = ICRvh show the first and second inequality in

|vh − Jvh |1,pw − |v − Jvh |1,pw ≤ |v − vh |1,pw
≤ |vh − ICRvh |1,pw + |vCR − J ′vCR|1,pw
≤ (1 + CJ′)|vh |1,pw (3.19)

with (b′) for |vCR|1,pw = ‖	0∇pwvh‖L2(�) ≤ ‖∇pwvh‖L2(�) = |vh |1,pw in the last
step. The equivalence of norms in the finite-dimensional space P1(P) assures the
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existence of a positive constant Cb, independent of hP , such that any χ ∈ P1(P)

satisfies the inverse inequalities

C−1
b ‖χ‖2L2(P)

≤ (bP , χ2)L2(P) ≤ Cb‖χ‖2L2(P)
, (3.20)

C−1
b ‖χ‖L2(P) ≤ ‖bPχ‖L2(P) + hP‖∇(bPχ)‖L2(P) ≤ Cb‖χ‖L2(P). (3.21)

These estimates are completely standard on shape-regular triangles [2,p. 27] or [37];
so they hold on each T ∈ T̂ and, by definition of bP , their sum is (3.20)–(3.21). The
analysis of the term |v − Jvh |1,pw starts with one P ∈ T and (3.18) for

|v − Jvh |1,P = |vPbP |1,P ≤ Cbh
−1
P ‖vP‖L2(P) (3.22)

with (3.21) in the last step. The estimate (3.20) leads to the first inequality in

C−1
b ‖vP‖2L2(P)

≤ (bPvP , vP )L2(P) = (vh − v, vP )L2(P)

≤ ‖vh − v‖L2(P)‖vP‖L2(P).

The equality results from 	1(vh − v) = 	1(vPbP ) and vP ∈ P1(T), while the last
step is the Cauchy–Schwarz inequality. Consequently, ‖vP‖L2(P) ≤ Cb‖vh−v‖L2(P).
This and (3.22) show

|v − Jvh |1,pw ≤ C2
b‖h−1

T (v − vh)‖L2(�) ≤ C2
bCPF|v − vh |1,pw

with
∫
∂P (v − vh) ds = 0 from (a) and hence the Poincaré–Friedrichs inequality for

v − vh from Lemma 2.1.a in the last step. Recall |v − vh |1,pw � |vh |1,pw from (3.19)
to conclude |v − Jvh |1,pw � |vh |1,pw from the previous displayed inequality. This
concludes the proof of (d). ��

Proof (Proof of Ih J = id in Vh) Definition 2.7 and Lemma 3.3.a show, for all
vh ∈ Vh , that

Ih Jvh =
∑

E∈E

(
−
∫

E
Jvh ds

)
ψE =

∑

E∈E

(
−
∫

E
vh ds

)
ψE = vh .

This concludes the proof of Lemma 3.3. ��

Since Vh is not a subset of H1
0 (�) in general, the substitution of discrete function

vh in the weak formulation leads to a nonconformity error.

Lemma 3.4 (nonconformity error) There exist positive universal constants CNC,C∗
NC

(depending on the coefficients A, b and the universal constants ρ, σ ) such that all
f , g ∈ L2(�) and all T ∈ T(δ) (with the assumption hmax ≤ δ ≤ 1) satisfy (a) and
(b).
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(a) The solution u ∈ H1+σ (�) ∩ H1
0 (�) to (1.1) satisfies

sup
0 �=vh∈Vh

|Bpw(u, vh) − ( f , vh)L2(�)|
‖vh‖1,pw ≤ CNCh

σ
max‖ f ‖L2(�). (3.23)

(b) The solution � ∈ H1+σ (�) ∩ H1
0 (�) to the dual problem (1.4) satisfies

sup
0 �=vh∈Vh

|Bpw(vh,�) − (g, vh)L2(�)|
‖vh‖1,pw ≤ C∗

NCh
σ
max‖g‖L2(�). (3.24)

Proof of (a) Given vh ∈ Vh , define Jvh ∈ V and the piecewise averages A :=
	0(A),b := 	0(b), and γ := 	0(γ ) of the coefficients A,b, and γ . The choice of
test function v := Jvh ∈ V in the weak formulation (1.8) having extra properties pro-
vides the terms with oscillations in the further analysis. Abbreviate σ := A∇u + bu.
The weak formulation (1.8), Lemma 3.3.b–c, and the Cauchy–Schwarz inequality
reveal that

Bpw(u, vh) − ( f , vh)L2(�) = Bpw(u, vh − Jvh) − ( f , vh − Jvh)L2(�)

≤ ‖σ − 	0σ‖L2(�)‖∇pw(1 − J )vh‖L2(�)

+ ‖hT(1 − 	1)( f − γ u)‖L2(�)‖h−1
T (1 − J )vh‖L2(�). (3.25)

The first term on the right-hand side of (3.25) involves the factor

‖σ − 	0σ‖L2(�) ≤ ‖A∇u − 	0(A∇u)‖L2(�) + ‖bu − 	0(bu)‖L2(�)

≤ ‖(A − A)∇u + A(1 − 	0)∇u‖L2(�)

+ ‖(b − b)u + b(1 − 	0)u‖L2(�)

≤
(
hmax(|A|1,∞ + |b|1,∞) + Capx(h

σ
max‖A‖∞ + hmax‖b‖∞)

)

‖u‖1+σ,�.

The last inequality follows from the Lipschitz continuity of the coefficients A and b,
and the estimate (2.12). Lemma 3.3.d leads to the estimates ‖∇pw(1 − J )vh‖L2(�) ≤
CJ |vh |1,pw and

‖hT(1 − 	1)( f − γ u)‖L2(�)‖h−1
T (1 − J )vh‖L2(�) ≤ osc1( f − γ u, T)CJ |vh |1,pw.

The substitution of the previous estimates in (3.25) with hmax ≤ 1 (from δ ≤ 1 by
assumption) and the regularity (1.5) show

Bpw(u, vh) − ( f , vh) ≤ CNCh
σ
max‖ f ‖L2(�)‖vh‖1,pw

with CNC := CJ

(
(|A|1,∞ + |b|1,∞ +Capx(‖A‖∞ + ‖b‖∞) + ‖γ ‖∞)Creg + 1

)
. This

concludes the proof of Lemma 3.4.a. ��
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Proof of (b) The solution� ∈ V to (1.4) satisfies B(v,�) = (g, v)L2(�) for all v ∈ V .

This implies

Bpw(vh,�) − (g, vh)L2(�) = Bpw(vh − Jvh,�) − (g, vh − Jvh)L2(�).

The arguments in the proof of (a) lead to the bound (3.24) with

C∗
NC := CJ

(
(|A|1,∞ + Capx‖A‖∞ + ‖b‖∞ + ‖γ ‖∞)C∗

reg + 1
)
.

The remaining analogous details are omitted in the proof of Lemma 3.4.b for brevity.
��

4 A priori error analysis

This section focuses on the stability, existence, and uniqueness of the discrete solution
uh . The a priori error analysis uses the discrete inf-sup condition.

4.1 Existence and uniqueness of the discrete solution

Theorem 4.1 (stability) There exist positive constants δ ≤ 1 and Cstab (depending on
α, β, σ, ρ, and CF) such that, for all T ∈ T(δ) and for all f ∈ L2(�), the discrete
problem (3.8) has a unique solution uh ∈ Vh and

|uh |1,pw ≤ Cstab‖ fh‖V ∗
h
.

Proof In the first part of the proof, suppose there exists some solution uh ∈ Vh to the
discrete problem (3.8) for some f ∈ L2(�). (This is certainly true for all f ≡ 0 ≡ uh ,
but will be discussed for all those pairs at the end of the proof and shall lead to
the uniqueness of discrete solutions.) Since uh satisfies a Gårding-type inequality in
Proposition 3.1.b,

α|uh |21,pw ≤ β‖uh‖2L2(�)
+ Bh(uh, uh) = β‖uh‖2L2(�)

+ ( fh, uh)L2(�).

This, (2.14), and the definition of the dual norm in (3.12) lead to

α|uh |1,pw ≤ βCF‖uh‖L2(�) + ‖ fh‖V ∗
h
. (4.1)

Given g := uh ∈ L2(�), let � ∈ V ∩ H1+σ (�) solve the dual problem L∗� = g
and let Ih� ∈ Vh be the interpolation of � from Sect. 2.4. Elementary algebra shows

‖uh‖2L2(�)
=

(
(g, uh)L2(�) − Bpw(uh,�)

)
+ Bpw(uh,� − Ih�)

+
(
Bpw(uh, Ih�) − Bh(uh, Ih�)

)
+ ( fh, Ih�)L2(�). (4.2)

123



A priori and a posteriori error analysis of the… 575

Rewrite a part of the third term corresponding to diffusion on the right-hand side of
(4.2) as

aP (uh, Ih�) − aP
h (uh, Ih�) = (A∇uh,∇(1 − 	1)Ih�)L2(P)

+ (∇(1 − 	1)uh, (A − 	0A)(∇	1 Ih�))L2(P)

− SP((1 − 	1)uh, (1 − 	1)Ih�
)
.

The Cauchy–Schwarz inequality in the semi-scalar product SP (•, •), and (3.5) with
the upper bound ‖A‖∞ for the coefficient A in aP (•, •) lead to the estimate

C−1
s SP((1 − 	1)uh, (1 − 	1)Ih�

) ≤ |(1 − 	1)uh |1,P |(1 − 	1)Ih�|1,P
≤ ‖A‖∞|uh |1,P

(
‖∇(Ih� − �)‖L2(P) + ‖∇(1 − 	1 Ih)�‖L2(P)

)

≤ ‖A‖∞Capx

(
2 + CPF + CItn

)
hσ
P |uh |1,P |�|1+σ,P (4.3)

with Theorem 2.8.b followed by (2.12) in the final step. This and Theorem 2.8 imply
that

|aP (uh, Ih�) − aP
h (uh, Ih�)| ≤ hσ

P |uh |1,P‖�‖1+σ,P

×
(
‖A‖∞Capx(2 + CPF + CItn)(1 + Cs) + |A|1,∞CItn

)
.

The terms bP − bPh and cP − cPh are controlled by

|bP (uh, Ih�) − bPh (uh, Ih�)| + |cP (uh, Ih�) − cPh (uh, Ih�)|
≤ hσ

P‖�‖1+σ,P
(‖b‖∞(Capx(2 + CPF + CItn)‖uh‖L2(P) + CItnCPF|uh |1,P )

+ ‖γ ‖∞CPF(CItn‖uh‖L2(P) + |uh |1,P )
)
.

The combination of the previous four displayed estimates with Lemma 2.6 leads to an
estimate for P . The sum over all polygonal domains P ∈ T reads

Bpw(uh, Ih�) − Bh(uh, Ih�) ≤ Cdh
σ
max|uh |1,pw‖�‖1+σ,� (4.4)

with a universal constantCd . The bound for (4.2) results fromLemma 3.4.b for the first
term, the boundedness of Bpw (with a universal constant Mb := ‖A‖∞ +CF‖b‖∞ +
C2
F‖γ ‖∞) and (2.15) for the second term, (4.4) for the third term, and Theorem 2.8.a

for the last term on the right-hand side of (4.2). This shows

‖uh‖2L2(�)
≤

(
C∗
NC + CIMb + Cd

)
hσ
max|uh |1,pw‖�‖1+σ,� + CItn‖ fh‖V ∗

h
‖�‖1,�.

This and the regularity estimate (1.5) lead to C3 = C∗
NC + CIMb + Cd in

‖uh‖L2(�) ≤ C3 C
∗
regh

σ
max|uh |1,pw + CItn‖ fh‖V ∗

h
.

123



576 C. Carstensen et al.

The substitution of this in (4.1) proves

α|uh |1,pw ≤ βCFC3C
∗
regh

σ
max|uh |1,pw + (βCFCItn + 1)‖ fh‖V ∗

h
. (4.5)

For all 0 < hmax ≤ δ := ( α
2βCFC3C∗

reg
)1/σ , the constant c = (1 − β

α
CFC3C∗

regh
σ
max) is

positive and Cstab := βCFCItn+1
α−βCFC3C∗

regh
σ
0
is well-defined. This leads in (4.5) to

|uh |1,pw ≤ Cstab‖ fh‖V ∗
h
. (4.6)

In the last part of the proof, suppose fh ≡ 0 and let uh be any solution to the resulting
homogeneous linear discrete system. The stability result (4.6) proves uh ≡ 0. Hence,
the linear system of equations (3.8) has a unique solution and the coefficient matrix is
regular. This proves that there exists a unique solution uh to (3.8) for any right-hand
side fh ∈ V ∗

h . The combination of this with (4.6) concludes the proof. ��
An immediate consequence of Theorem 4.1 is the following discrete inf-sup esti-

mate.

Theorem 4.2 (discrete inf-sup) There exist 0 < δ ≤ 1 and β0 > 0 such that, for all
T ∈ T(δ),

β0 ≤ inf
0 �=uh∈Vh

sup
0 �=vh∈Vh

Bh(uh, vh)

|uh |1,pw|vh |1,pw . (4.7)

Proof Define the operatorLh : Vh → V ∗
h , vh �→ Bh(vh, •). The stability Theorem 4.1

can be interpreted as follows: For any fh ∈ V ∗
h there exists uh ∈ Vh such that

Lhuh = fh and

β0|uh |1,pw ≤ ‖ fh‖V ∗
h

= sup
0 �=vh∈Vh

( fh, vh)

|vh |1,pw = sup
0 �=vh∈Vh

Bh(uh, vh)

|vh |1,pw .

The discrete problem Bh(uh, •) = ( fh, •)L2(�) has a unique solution in Vh . Therefore,
fh and uh are in one to one correspondence and the last displayed estimate holds for
any uh ∈ Vh . The infimum over uh ∈ Vh therein proves (4.7) with β0 = C−1

stab. ��

4.2 A priori error estimates

This subsection establishes the error estimate in the energy norm | · |1,pw and in the
L2 norm. The discrete inf-sup condition allows for an error estimate in the H1 norm
and an Aubin–Nitsche duality argument leads to an error estimate in the L2 norm.

Recall u ∈ H1
0 (�) is a unique solution of (1.8) and uh ∈ Vh is a unique solution of

(3.8). Recall the definition of the bilinear form sh(·, ·) from Sect. 3.1 and define the
induced seminorm |vh |s := sh(vh, vh)1/2 for vh ∈ Vh as a part of the norm ‖ · ‖h from
Remark 6.
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Theorem 4.3 (error estimate) Set σ := A∇u + bu ∈ H(div,�). There exist positive
constants C4,C5, and δ such that, for all T ∈ T(δ), the discrete problem (3.8) has a
unique solution uh ∈ Vh and

|u − uh |1,pw + |u − 	1uh |1,pw + h−σ
max(‖u − uh‖L2(�) + ‖u − 	1uh‖L2(�))

+ |uh |s + |Ihu − uh |s
≤ C4

(
‖(1 − 	0)σ‖L2(�) + ‖(1 − 	0)∇u‖L2(�) + osc1( f − γ u, T)

)

≤ C5h
σ
max‖ f ‖L2(�). (4.8)

Proof Step 1 (initialization). Let Ihu ∈ Vh be the interpolation of u fromDefinition 2.7.
The discrete inf-sup condition (4.7) for Ihu − uh ∈ Vh leads to some vh ∈ Vh with
|vh |1,pw ≤ 1 such that

β0|Ihu − uh |1,pw = Bh(Ihu − uh, vh).

Step 2 (error estimate for |u − uh |1,pw). Rewrite the last equation with the continuous
and the discrete problem (1.8) and (3.8) as

β0|Ihu − uh |1,pw = Bh(Ihu, vh) − B(u, v) + ( f , v)L2(�) − ( fh, vh)L2(�).

This equality is rewritten with the definition of B(u, v) in (1.7), the definition of
Bh(Ihu, vh) in Sect. 3.1, and with fh = 	1 f . Recall v := Jvh ∈ V from Lemma 3.3
and recall ∇pw	1 Ihu = 	0∇u from (2.17). This results in

LHS := β0|Ihu − uh |1,pw − sh((1 − 	1)Ihu, (1 − 	1)vh)

= (A	0∇u + b	1 Ihu,∇pw	1vh)L2(�) + (γ	1 Ihu,	1vh)L2(�)

− (σ ,∇v)L2(�) + ( f − γ u, v)L2(�) − ( f ,	1vh)L2(�).

Abbreviate w := v − 	1vh and observe the orthogonalities ∇pww ⊥ P0(T;R2) in
L2(�;R2) and w ⊥ P1(T) in L2(�) from Lemma 3.3.b-c and the definition of 	1
with 	1 = 	∇

1 in Vh . Lemma 3.3.d, the bound |(1−	∇
1 )vh |1,pw ≤ |vh |1,pw ≤ 1, and

the Poincaré–Friedrichs inequality for vh − 	∇
1 vh from Lemma 2.1.a lead to

|w|1,pw ≤ |v − vh |1,pw + |vh − 	1vh |1,pw ≤ CJ + 1, (4.9)

‖h−1
T w‖L2(�) ≤ ‖h−1

T (v − vh)‖L2(�) + ‖h−1
T (vh − 	1vh)‖L2(�) ≤ CJ + CPF.

(4.10)

Elementary algebra and the above orthogonalities prove that

LHS = ((A − 	0A)(	0 − 1)∇u + b(	1 Ihu − u),∇pw	1vh)L2(�)

−((1 − 	0)σ ,∇pww)L2(�) + (γ (	1 Ihu − u),	1vh)L2(�)

+(hT(1 − 	1)( f − γ u), h−1
T w)L2(�)
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≤
(
|A|1,∞ + (1 + CPF)(‖b‖∞ + CF‖γ ‖∞)

)
hmax‖(1 − 	0)∇u‖L2(�)

+(CJ + 1)‖(1 − 	0)σ‖L2(�) + (CJ + CPF)osc1( f − γ u, T) (4.11)

with the Lipschitz continuity ofA, Lemma 2.8.b, the stabilities of	1 from (2.11), and
(4.9)–(4.10) in the last step. The definition of stability term (3.5) and Theorem 2.8.b
lead to

C−1
s sh((1 − 	1)Ihu, (1 − 	1)vh)

≤ ‖A‖∞|(1 − 	1)Ihu|1,pw|(1 − 	1)vh |1,pw
≤ ‖A‖∞(|Ihu − u|1,pw + |u − 	1 Ihu|1,pw)|vh |1,pw
≤ ‖A‖∞(2 + CItn + CPF)‖(1 − 	0)∇u‖L2(�)|vh |1,pw. (4.12)

The triangle inequality, the bound (2.15) for the term |u − Ihu|1,pw, and (4.11)–(4.12)
for the term |Ihu − uh |1,pw conclude the proof of (4.8) for the term |u − uh |1,pw.
Step 3 (duality argument). To prove the bound for u−uh in the L2 norm with a duality
technique, let g := Ihu − uh ∈ L2(�). The solution � ∈ H1

0 (�) ∩ H1+σ (�) to the
dual problem (1.4) satisfies the elliptic regularity (1.5),

‖�‖1+σ,� ≤ C∗
reg‖Ihu − uh‖L2(�). (4.13)

Step 4 (error estimate for ‖u − uh‖L2(�)). Let Ih� ∈ Vh be the interpolation of �

from Definition 2.7. Elementary algebra reveals the identity

‖g‖2L2(�)
= ((g, g)L2(�) − Bpw(g,�)) + Bpw(g,� − Ih�)

+ (Bpw(g, Ih�) − Bh(g, Ih�)) + Bh(g, Ih�). (4.14)

The bound (4.4) with g as the first argument shows

Bpw(g, Ih�) − Bh(g, Ih�) ≤ Cdh
σ
max|g|1,pw‖�‖1+σ,�.

This controls the third term in (4.14), Lemma 3.4.b controls the first term, the bound-
edness of Bpw and the interpolation error estimate (2.15) control the second term on
the right-hand side of (4.14). This results in

‖Ihu − uh‖2L2(�)
≤ (C∗

NC + CIMb + Cd)h
σ
max|g|1,pw‖�‖1+σ,� + Bh(g, Ih�).

(4.15)

It remains to bound Bh(g, Ih�). The continuous and the discrete problem (1.8) and
(3.8) imply

Bh(g, Ih�) = Bh(Ihu, Ih�) − B(u,�) + ( f ,�)L2(�) − ( fh, Ih�)L2(�).

The definition of Bh and 	0 lead to

Bh(g, Ih�) − sh((1 − 	1)Ihu, (1 − 	1)Ih�)
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= ((A − 	0A)(	0 − 1)∇u + b(	1 Ihu − u),∇pw	1 Ih�)L2(�)

+ (γ (	1 Ihu − u),	1 Ih�)L2(�) − ((1 − 	0)σ ,∇pw(1 − 	1 Ih)�)L2(�)

+ ( f − γ u,� − 	1 Ih�)L2(�). (4.16)

The bound for the stability term as in (4.12) is

sh((1 − 	1)Ihu, (1 − 	1)Ih�)

≤ Cs‖A‖∞|(1 − 	1)Ihu|1,pw|(1 − 	1)Ih�|1,pw
≤ Cs‖A‖∞(2 + CItn + CPF)

2Capxh
σ
max‖(1 − 	0)∇u‖L2(�)|�|1+σ,�. (4.17)

Step 5 (oscillation). The last term in (4.16) is of optimal order O(h1+σ
max ), but the

following arguments allow to write it as an oscillation. Recall the bubble-function
bT|P := bP ∈ H1

0 (P) from (3.17) extended by zero outside P . Given � := � −
	1 Ih�, let �1 ∈ P1(T) be the Riesz representation of the linear functional P1(T) →
R defined by w1 �→ (�,w1)L2(�) in the Hilbert space P1(T) endowed with the
weighted scalar product (bT•, •)L2(�). That means 	1(bT�1) = 	1�. The identity
( f − γ u, bT�1)L2(�) = (σ ,∇(bT�1))L2(�) follows from (1.8) with the test function
bT�1 ∈ H1

0 (�). The L2 orthogonalities�−bT�1 ⊥ P1(T) in L2(�) and∇(bT�1) ⊥
P0(T;R2) in L2(�;R2) allow the rewriting of the latter identity as

( f − γ u, �)L2(�) = (hT(1 − 	1)( f − γ u), h−1
T (� − bT�1))L2(�)

+ ((1 − 	0)σ ,∇(bT�1))L2(�)

≤ osc1( f − γ u, T)‖h−1
T (� − bT�1)‖L2(�)

+ ‖(1 − 	0)σ‖L2(�)|bT�|1,pw. (4.18)

It remains to control the terms ‖h−1
T (� − bT�1)‖L2(�) and |bT�|1,pw. Since the

definition of Ih and the definition of 	∇
1 with 	1 = 	∇

1 in Vh imply
∫
∂P � ds =∫

∂P (� − 	1 Ih�) ds = 0, this allows the Poincaré–Friedrichs inequality for � from
Lemma 2.1.a on each P ∈ T. This shows

‖h−1
T �‖L2(�) ≤ CPF|�|1,pw ≤ CPFCapxh

σ
max|�|1+σ,� (4.19)

with Theorem 2.8.b and (2.12) in the last inequality. Since bP�1 ∈ H1
0 (P) for P ∈ T,

the Poincaré–Friedrichs inequality from Lemma 2.1.a leads to

‖h−1
P (bP�1)‖L2(P) ≤ CPF|bP�1|1,P . (4.20)

The first estimate in (3.20), the identity 	1(bT�1) = 	1�, and the Cauchy–Schwarz
inequality imply

C−1
b ‖h−1

P �1‖2L2(P)
≤ ‖h−1

P b1/2P �1‖2L2(P)
= (h−1

P �1, h
−1
P �)L2(P)

≤ ‖h−1
P �1‖L2(P)‖h−1

P �‖L2(P).
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This proves ‖h−1
P �1‖L2(P) ≤ Cb‖h−1

P �‖L2(P). The second estimate in (3.21) fol-
lowed by the first estimate in (3.20) leads to the first inequality and the arguments as
above lead to the second inequality in

C−3/2
b |bP�1|1,P ≤ ‖h−1

P b1/2P �1‖L2(P) ≤ ‖h−1
P �1‖1/2L2(P)

‖h−1
P �‖1/2

L2(P)

≤ C1/2
b ‖h−1

P �‖L2(P)

with ‖h−1
P �1‖1/2L2(P)

≤ C1/2
b ‖h−1

P �‖1/2
L2(P)

fromabove in the last step. The combination
of the previous displayed estimate and (4.18)–(4.20) results with C6 := CPFCapx(1+
C2
b (1 + CPF)) in

( f − γ u, �)L2(�) ≤ C6(osc1( f − γ u, T) + ‖(1 − 	0)σ‖L2(�))h
σ
max|�|1+σ,�.

(4.21)

Step 6 (continued proof of estimate for ‖u − uh‖L2(�)). The estimate in Step 2 for
|g|1,pw, (4.15)–(4.17), and (4.21) with the regularity (4.13) show

‖Ihu − uh‖L2(�)

� hσ
max

(
‖(1 − 	0)∇u‖L2(�) + ‖(1 − 	0)σ‖L2(�) + osc1( f − γ u, T)

)
. (4.22)

Rewrite the difference u − uh = (u − Ihu) + (Ihu − uh), and apply the triangle
inequality with (2.15) for the first term

‖u − Ihu‖L2(�) ≤ CIh
1+σ
max |u|1+σ,�.

This and (4.22) for the second term Ihu − uh conclude the proof of the estimate for
the term h−σ

max‖u − uh‖L2(�) in (4.8) .
Step 7 (stabilisation error |uh |s and |Ihu−uh |s). The triangle inequality and the upper
bound of the stability term (3.5) lead to

|uh |s ≤ |Ihu − uh |s + |Ihu|s ≤ C1/2
s ‖A‖1/2∞ (|Ihu − uh |1,pw + |(1 − 	1)Ihu|1,pw)

with |(1− 	1)(Ihu − uh)|1,pw ≤ |Ihu − uh |1,pw in the last inequality. The arguments
as in (4.12) prove that |(1 − 	1)Ihu|1,pw ≤ (2 + CItn + CPF)‖(1 − 	0)∇u‖L2(�).
This and the arguments in Step 2 for the estimate of |Ihu − uh |1,pw show the upper
bound in (4.8) for the terms |uh |s and |Ihu − uh |s.
Step 8 (error estimate for u−	1uh). The VEM solution uh is defined by the computed
degrees of freedom given in (2.10), but the evaluation of the function itself requires
expansive additional calculations. The later are avoided if uh is replaced by the Ritz
projection 	1uh in the numerical experiments. The triangle inequality leads to

|u − 	1uh |1,pw ≤ |u − uh |1,pw + |uh − 	1uh |1,pw. (4.23)
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A lower bound of the stability term (3.5) and the assumption (A2) imply

|uh − 	1uh |1,P ≤ a−1/2
0 C1/2

s SP ((1 − 	1)uh, (1 − 	1)uh)
1/2. (4.24)

This shows that the second term in (4.23) is bounded by |uh |s. Hence Step 2 and
Step 7 prove the estimate for |u − 	1uh |1,pw. Since

∫
∂P (uh − 	1uh) ds = 0 from

the definition of 	∇
1 and 	1 = 	∇

1 in Vh , the combination of Poincaré–Friedrichs
inequality for uh − 	1uh from Lemma 2.1.a and (4.24) result in

C−1
PF a

1/2
0 C−1/2

s ‖uh − 	1uh‖L2(P) ≤ hP S
P ((1 − 	1)uh, (1 − 	1)uh)

1/2. (4.25)

The analogous arguments for ‖u − 	1uh‖L2(�), (4.25), and the estimate for |uh |s
prove the bound (4.8) for the term h−σ

max‖u − 	1uh‖L2(�). This concludes the proof
of Theorem 4.3. ��

5 A posteriori error analysis

This section presents the reliability and efficiency of a residual-type a posteriori error
estimator.

5.1 Residual-based explicit a posteriori error control

Recall uh ∈ Vh is the solution to the problem (3.8), and the definition of jump [·]E
along an edge E ∈ E from Section 2. For any polygonal domain P ∈ T, set

η2P :=h2P‖ f − γ	1uh‖2L2(P)
(Volume residual),

ζ 2
P :=SP ((1 − 	1)uh, (1 − 	1)uh) (Stabilization),

�2
P :=‖(1 − 	0)(A∇	1uh + b	1uh)‖2L2(P)

(Inconsistency),

�2
P :=

∑

E∈E(P)

|E |−1‖[	1uh]E‖2L2(E)
(Nonconformity).

These local quantities •|P form a family (•|P : P ∈ T) over the index set T and
their Euclid vector norm •|T enters the upper error bound: ηT := (

∑
P∈T η2P )1/2, ζT :=

(
∑

P∈T ζ 2
P )1/2, �T := (

∑
P∈T �2

P )1/2, and �T := (
∑

P∈T �2
P )1/2. The following

theorem provides an upper bound to the error u − uh in the H1 and the L2 norm.
Recall the elliptic regularity (1.5) with the index 0 < σ ≤ 1, and recall the assumption
hmax ≤ 1 from Sect. 2.1.

Theorem 5.1 (reliability) There exist positive constants Crel1 and Crel2 (both depend-
ing on ρ) such that

C−2
rel1|u − uh |21,pw ≤ η2T + ζ 2

T + �2
T + �2

T (5.1)
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and
‖u − uh‖2L2(�)

≤ C2
rel2

∑

P∈T

(
h2σP (η2P + ζ 2

P + �2
P + �2

P )
)
. (5.2)

The proof of this theorem in Sect. 5.3 relies on a conforming companion operator
elaborated in the next subsection. The upper bound in Theorem 5.1 is efficient in the
following local sense, where ωE := int(∪T(E)) denotes the patch of an edge E and
consists of the one or the two neighbouring polygons in the set T(E) := {P ′ ∈ T :
E ⊂ ∂P ′} that share E . Recall σ = A∇u+bu from Sect. 4.2 and the data-oscillation
osc1( f , P) := ‖hP (1 − 	1) f ‖L2(P) from Sect. 2.1.

Theorem 5.2 (local efficiency up to oscillation) The quantities ηP , ζP ,�P , and �P

from Theorem 5.1 satisfy

ζ 2
P � |u − uh |21,P + |u − 	1uh |21,P , (5.3)

η2P � ‖u − uh‖21,P + |u − 	1uh |21,P + ‖(1 − 	0)σ‖2L2(P)
+ osc21( f − γ u, P),

(5.4)

�2
P � ‖u − uh‖21,P + |u − 	1uh |21,P + ‖(1 − 	0)σ‖2L2(P)

, (5.5)

�2
P �

∑

E∈E(P)

∑

P ′∈ωE

(‖u − uh‖21,P ′ + |u − 	1uh |21,P ′). (5.6)

The proof of Theorem 5.2 follows in Sect. 5.4. The reliability and efficiency esti-
mates in Theorem 5.1 and 5.2 lead to an equivalence up to the approximation term

apx := ‖σ − 	0σ‖L2(�) + osc1( f − γ u, T).

Recall the definition of |uh |s from Sect. 4.2. In this paper, the norm | · |1,pw in the
nonconforming space Vh has been utilised for simplicity and one alternative is the
norm ‖ · ‖h from Remark 6 induced by ah . Then it appears natural to have the total
error with the stabilisation term as

total error := |u − uh |1,pw + |u − 	1uh |1,pw + h−σ
max‖u − uh‖L2(�)

+h−σ
max‖u − 	1uh‖L2(�) + |uh |s.

The point is that Theorem4.3 assures that total error+ apx convergeswith the expected
optimal convergence rate.

Corollary 5.3 (equivalence) The estimator := ηT+ζT+�T+�T ≈ total error+apx.

Proof Theorem 5.2 motivates apx and shows

estimator � ‖u − uh‖1,pw + ‖σ − 	0σ‖L2(�) + osc1( f − γ u, T) + |uh |s
≤ total error + apx.
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This proves the first inequality � in the assertion. Theorem 5.1, the estimates in
Sect. 5.3.3.1, and the definition of |uh |s show total error � estimator. The first of the
terms in apx is

‖σ − 	0σ‖L2(�)

≤ ‖σ − 	0σ h‖L2(�) ≤ ‖σ − σ h‖L2(�) + ‖(1 − 	0)σ h‖L2(�).

The definition of σ and σ h plus the triangle and the Cauchy–Schwarz inequality show

‖σ − σ h‖L2(�) ≤ ‖A‖∞|u − 	1uh |1,pw + ‖b‖∞‖u − 	1uh‖L2(�) � ‖u − 	1uh‖1,pw.

The upper bound is � estimator as mentioned above. Since the term ‖(1 −
	0)σ h‖L2(�) = �T is a part of the estimator, ‖(1 − 	0)σ‖L2(�) � estimator. The
other term in apx is

osc1( f − γ u, T) ≤ osc1( f − γ	1uh, T) + ‖hTγ (u − 	1uh)‖L2(�)

≤ ηT + ‖γ ‖∞hmax‖u − 	1uh‖L2(�) � estimator.

��
Section 5 establishes the a posteriori error analysis of the nonconforming VEM.

Related results are known for the conforming VEM and the nonconforming FEM.

Remark 7 (comparison with nonconforming FEM) Theorem 5.1 generalizes a result
for the nonconforming FEM in [19,Thm. 3.4] from triangulations into triangles to
those in polygons (recall Example 2.2). The only difference is the extra stabilization
term that can be dropped in the nonconforming FEM.

Remark 8 (comparison with conforming VEM) The volume residual, the inconsis-
tency term, and the stabilization also arise in the a posteriori error estimator for the
conforming VEM in [16,Thm. 13]. But it also includes an additional term with normal
jumps compared to the estimator (5.1). The extra nonconformity term in this paper is
caused by the nonconformity Vh �⊂ V in general.

5.2 Enrichment and conforming companion operator

The link from the nonconforming approximation uh ∈ Vh to a global Sobolev func-
tion in H1

0 (�) can be designed with the help of the underlying refinement T̂ of the
triangulation T (from Sect. 2). The interpolation ICR : V + Vh → CR1

0(̂T) in the
Crouzeix-Raviart finite element space CR1

0(̂T) from Sect. 3.4 allows for a right-inverse
J ′. A companion operator J ′ ◦ ICR : Vh → H1

0 (�) acts as displayed
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Define an enrichment operator Epw : P1(̂T) → S10 (̂T) by averaging nodal values:
For any vertex z in the refined triangulation T̂, let T̂(z) = {T ∈ T̂ : z ∈ T } denote the
set of |̂T(z)| ≥ 1 many triangles that share the vertex z, and define

Epwv1(z) = 1

|̂T(z)|
∑

T ∈̂T(z)

v1|T (z)

for an interior vertex z (and zero for a boundary vertex z according to the homogeneous
boundary conditions). This defines Epwv1 at any vertex of a triangle T in T̂, and linear
interpolation then defines Epwv1 in T ∈ T̂, so that Epwv1 ∈ S10 (̂T). Huang et al. [31]
design an enrichment operator by an extension of [32] to polygonal domains, while we
deduce it from a sub-triangulation. The following lemma provides an approximation
property of the operator Epw.

Lemma 5.4 There exists a positive constant CEn that depends only on the shape reg-
ularity of T̂ such that any v1 ∈ P1(T) satisfies

‖h−1
T (1 − Epw)v1‖L2(�) + |(1 − Epw)v1|1,pw ≤ CEn

(
∑

E∈E
|E |−1‖[v1]E‖2L2(E)

)1/2

.

(5.7)

Proof There exists a positive constant CEn independent of h and v1 [32,p. 2378] such
that

‖h−1
T̂ (1 − Epw)v1‖L2(�) +

⎛

⎝
∑

T ∈̂T
‖∇(1 − Epw)v1‖2L2(T )

⎞

⎠
1/2

≤ CEn

⎛

⎝
∑

E∈̂E
|E |−1‖[v1]E‖2L2(E)

⎞

⎠
1/2

.

Note that any edge E ∈ E is unrefined in the sub-triangulation T̂. Since v1|P ∈ H1(P)

is continuous in each polygonal domain P ∈ T and hT ≤ hP for all T ∈ T̂(P), the
above inequality reduces to (5.7). This concludes the proof. ��

Recall the L2 projection	1 onto the piecewise affine functionsP1(T) from Sect. 2.
An enrichment operator Epw ◦ 	1 : Vh → H1

0 (�) acts as displayed
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5.3 Proof of Theorem 5.1

5.3.1 Reliable H1 error control

Define E1uh := Epw	1uh ∈ H1
0 (�) so thatu−E1uh ∈ H1

0 (�). The inf-sup condition
(1.9) leads to some v ∈ H1

0 (�) with ‖v‖1,� ≤ 1 and

β0‖u − E1uh‖1,� = B(u − E1uh, v) = (( f , v)L2(�) − Bpw(	1uh, v))

+ Bpw(	1uh − E1uh, v) (5.8)

with B(u, v) = ( f , v)L2(�) from (1.8) and the piecewise version Bpw of B in the last
step. The definition of Bh from Sect. 3.1 and the discrete problem (3.8) with vh = Ihv
imply

Bpw(	1uh,	1 Ihv) + sh((1 − 	1)uh, (1 − 	1)Ihv)

= Bh(uh, Ihv) = ( f ,	1 Ihv)L2(�). (5.9)

Abbreviatew := v−	1 Ihv and σ h := A∇pw	1uh +b	1uh . This and (5.9) simplify

( f , v)L2(�) − Bpw(	1uh, v) = ( f , w)L2(�) − Bpw(	1uh, w)

+ sh((1 − 	1)uh, (1 − 	1)Ihv)

= ( f − γ	1uh, w)L2(�) − ((1 − 	0)σ h,∇pww)L2(�)

+ sh((1 − 	1)uh, (1 − 	1)Ihv) (5.10)

with
∫
P ∇w dx = 0 for any P ∈ T from (2.17) in the last step. Recall the notation

ηP ,�P , and ζP from Sect. 5.1. The Cauchy–Schwarz inequality and Theorem 2.8.b
followed by ‖(1 − 	0)∇v‖L2(�) ≤ |v|1,� ≤ 1 in the second step show

( f − γ	1uh, w)L2(P) ≤ ηPh
−1
P ‖w‖L2(P) ≤ (1 + CPF)ηP , (5.11)

((1 − 	0)σ h,∇w)L2(P) ≤ �P |w|1,P ≤ (1 + CPF)�P . (5.12)

The upper bound ‖A‖∞ of the coefficientA, (3.5), and theCauchy–Schwarz inequality
for the stabilization term lead to the first inequality in

C−1/2
s SP ((1 − 	1)uh, (1 − 	1)Ihv)

≤ ‖A‖1/2∞ SP ((1 − 	1)uh, (1 − 	1)uh)
1/2|(1 − 	1)Ihv|1,P

≤ ‖A‖1/2∞ (2 + CPF + CItn)ζP . (5.13)

The second inequality in (5.13) follows as in (4.3) and with ‖(1− 	0)∇v‖L2(P) ≤ 1.
Recall the boundedness constant Mb of Bpw from Sect. 4.1 and deduce from (5.7) and
the definition of �T from Sect. 5.1 that

Bpw(	1uh − E1uh, v) ≤ Mb|	1uh − E1uh |1,pw ≤ MbCEn�T. (5.14)
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The substitution of (5.10)–(5.14) in (5.8) reveals that

‖u − E1uh‖1,� ≤ C7(ηT + �T + ζT + �T) (5.15)

with β0C7 = 1+CPF +C1/2
s ‖A‖1/2∞ (2+CPF +CItn) + MbCEn. The combination of

(4.24), (5.15) and (5.7) leads in the triangle inequality

|u − uh |1,pw ≤ |u − E1uh |1,� + |E1uh − 	1uh |1,pw + |	1uh − uh |1,pw

to (5.1) with Crel1/2 = C7 + CEn + a−1/2
0 C1/2

s .

5.3.2 Reliable L2 error control

Recall ICR from (3.14) and J ′ from the proof of Lemma 3.3, and define E2uh :=
J ′ ICRuh ∈ H1

0 (�) from Sect. 5.2. Let� ∈ H1
0 (�)∩H1+σ (�) solve the dual problem

B(v,�) = (u − E2uh, v)L2(�) for all v ∈ V and recall (from (1.5)) the regularity
estimate

‖�‖1+σ,� ≤ C∗
reg‖u − E2uh‖L2(�). (5.16)

The substitution of v := u − E2uh ∈ V in the dual problem shows

‖u − E2uh‖2L2(�)
= B(u − E2uh, �).

The algebra in (5.8)–(5.10) above leads with v = � to the identity

‖u − E2uh‖2L2(�)
− sh((1 − 	1)uh, (1 − 	1)Ih�)

= ( f − γ	1uh, � − 	1 Ih�)L2(�) − ((1 − 	0)σ h,∇pw(� − 	1 Ih�))L2(�)

+ Bpw(	1uh − E2uh, �). (5.17)

The definition of ICR and J ′ proves the first and second equality in

∫

E
uh ds =

∫

E
ICRuh ds =

∫

E
E2uh ds for all E ∈ E.

This and an integration by parts imply
∫
P ∇(uh − E2uh) dx = 0 for all P ∈ T. Hence

Definition 2.2 of Ritz projection 	∇
1 = 	1 in Vh shows

∫
P ∇(	1uh − E2uh) ds = 0

for all P ∈ T. This L2 orthogonality ∇pw(	1uh − E2uh) ⊥ P0(T;R2) and the
definition of Bpw in the last term of (5.17) result with elementary algebra in

Bpw(	1uh − E2uh, �) = ((A − 	0A)∇pw(	1uh − E2uh),∇�)L2(�)

+ (∇pw(	1uh − E2uh), (	0A)(1 − 	0)∇�)L2(�)

+ (	1uh − E2uh,b · ∇� + γ�)L2(�). (5.18)
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The triangle inequality and (c) from the proof of Lemma 3.3 imply the first inequality
in

|	1uh − E2uh |1,pw ≤ |	1uh − ICRuh |1,pw + CJ′ min
v∈V |ICRuh − v|1,pw

≤ |	1uh − ICRuh |1,pw + CJ′ |ICRuh − E1uh |1,pw
≤ |	1uh − ICRuh |1,pw + CJ′(|ICRuh − 	1uh |1,pw

+ |	1uh − E1uh |1,pw)

≤ (1 + CJ′)|uh − 	1uh |1,pw + CJ′ |	1uh − E1uh |1,pw. (5.19)

The second estimate in (5.19) follows from E1uh ∈ V , the third is a triangle inequality,
and eventually |	1uh − ICRuh |1,pw ≤ |uh −	1uh |1,pw results from the orthogonality
∇pw(uh − ICR) ⊥ P0(̂T;R2) and 	1uh ∈ P1(T). The Cauchy–Schwarz inequality,
the Lipschitz continuity ofA, and the approximation estimate ‖(1−	0)∇�‖L2(P) ≤
Capxhσ

P |�|1+σ,P in (5.18) lead to the first inequality in

Bpw(	1uh − E2uh, �) ≤
∑

P∈T

(
(hP |A|1,∞ + ‖A‖∞Capxh

σ
P )|	1uh − E2uh |1,P

+ ‖	1uh − E2uh‖L2(P)(‖b‖∞ + ‖γ ‖∞)
)
‖�‖1+σ,P

≤
∑

P∈T

(
hP |A|1,∞ + ‖A‖∞Capxh

σ
P + CPF(‖b‖∞ + ‖γ ‖∞)hP

)

|	1uh − E2uh |1,P‖�‖1+σ,P

≤ C8

∑

P∈T
hσ
P ((1 + CJ′)|uh − 	1uh |1,P

+ CJ′ |	1uh − E1uh |1,P )‖�‖1+σ,P . (5.20)

The second inequality in (5.20) follows from the Poincaré–Friedrichs inequality in
Lemma 2.1.a for 	1uh − E2uh with

∫
∂P (	1uh − E2uh) ds = 0 (from above); the

constant C8 := |A|1,∞ + Capx‖A‖∞ + CPF(‖b‖∞ + ‖γ ‖∞) results from (5.19) and
hP ≤ hσ

P (recall hmax ≤ 1). Lemma 5.4 with v1 = 	1uh and (4.24) in (5.20) show

Bpw(	1uh − E2uh, �)

≤ C8

∑

P∈T
hσ
P ((1 + CJ′)a

−1/2
0 C1/2

s ζP + CJ′CEn�P )‖�‖1+σ,P . (5.21)

Rewrite (5.11)–(5.13) with w = � − 	1 Ih� and h−1
P ‖w‖L2(P) + |w|1,P ≤ (1 +

CPF)‖(1− 	0)∇�‖L2(P) ≤ Capx(1+CPF)hσ
P |�|1+σ,P from (2.12). This and (5.21)

lead in (5.17) to

‖u − E2uh‖2L2(�)
≤ C9

∑

P∈T
hσ
P (ηP + ζP + �P + �P)‖�‖1+σ,P
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for C9 := Capx(1+CPF +C1/2
s ‖A‖1/2∞ (2+CPF +CItn))+C8((1+CJ′)a

−1/2
0 C1/2

s +
CJ′CEn). This and the regularity (5.16) result in

‖u − E2uh‖L2(�) ≤ C9C
∗
reg

∑

P∈T
hσ
P (ηP + ζP + �P + �P ). (5.22)

The arguments in the proof of (5.20)–(5.21) also lead to

‖E2uh − 	1uh‖L2(�) ≤ CPF((1 + CJ′)a
−1/2
0 C1/2

s + CJ′CEn)
∑

P∈T
hP (ζP + �P).

(5.23)

The combination of (4.25), (5.22)–(5.23) and the triangle inequality

‖u − uh‖L2(�) ≤ ‖u − E2uh‖L2(�) + ‖E2uh − 	1uh‖L2(�) + ‖	1uh − uh‖L2(�)

lead to (5.2) with Crel2/2 = C9C∗
reg + CPF

(
(2 + CJ′)a

−1/2
0 C1/2

s + CJ′CEn
)
. This

concludes the proof of the L2 error estimate in Theorem 5.1.

5.3.3 Comments

5.3.3.1 Estimator for u − �1uh

The triangle inequality with (5.1) and (4.24) provide an upper bound for H1 error

1

2
|u − 	1uh |21,pw≤|u − uh |21,pw + |(1 − 	1)uh |21,pw ≤ 2C2

rel1(η
2
T+ζ 2

T+�2
T+�2

T).

The same arguments for an upper bound of the L2 error in Theorem 5.1 show that

1

2
‖u − 	1uh‖2L2(�)

≤ ‖u − uh‖2L2(�)
+ ‖(1 − 	1)uh‖2L2(�)

≤ C2
rel2

∑

P∈T
h2σP (η2P + 2ζ 2

P + �2
P + �2

P ).

The numerical experiments do not display Crel1 and Crel2, and directly compare the
error H1e := |u − 	1uh |1,pw in the piecewise H1 norm and the error L2e := ‖u −
	1uh‖L2(�) in the L

2 norm with the upper bound H1μ and L2μ (see, e.g., Fig. 5).

5.3.3.2 Motivation and discussion of apx

We first argue that those extra terms have to be expected and utilize the abbreviations
σ := A∇u + bu and g := f − γ u for the exact solution u ∈ H1

0 (�) to (1.8), which
reads

(σ ,∇v)L2(�) = (g, v)L2(�) for all v ∈ H1
0 (�). (5.24)
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Recall the definition of sh(·, ·) from Sect. 3.1. The discrete problem (3.8) with the
discrete solution uh ∈ Vh assumes the form

(σ h,∇	1vh)L2(�)+sh((1−	1)uh, (1 − 	1)vh)=(gh,	1vh)L2(�) for all vh ∈ Vh
(5.25)

for σ h := A∇	1uh + b	1uh , and gh := f − γ	1uh . Notice that σ h and gh may
be replaced in (5.25) by 	0σ h and 	1gh because the test functions ∇	1vh and 	1vh
belong to P0(T;R2) and P1(T) respectively. In other words, the discrete problems
(3.8) and (5.25) do not see a difference of σ h and gh compared to 	0σ h and 	1gh
and so the errors σ h − 	0σ h and gh − 	1gh may arise in a posteriori error control.
This motivates the a posteriori error term ‖σ h − 	0σ h‖L2(�) = �T as well as the
approximation terms σ −	0σ and g−	1g on the continuous level. The natural norm
for the dual variable σ is L2 and that of g is H−1 and hence their norms form the
approximation term apx as defined in Sect. 5.1.

Example 5.1 (b = 0) The term (1 − 	0)σ may not be visible in case of no advection
b = 0 at least if A is piecewise constant. Suppose A ∈ P0(T;R2×2) and estimate

‖(1 − 	0)(A∇u)‖L2(�) ≤ ‖A‖∞‖(1 − 	0)∇u‖L2(�) � |u − 	1uh |1,pw.

If A is not constant, there are oscillation terms that can be treated properly in adaptive
mesh-refining algorithms, e.g., in [27].

Example 5.2 (γ piecewise constant) While the data approximation term osc1( f , T)

[10] is widely accepted as a part of the total error in the approximation of nonlinear
problems, the term osc1(γ u, T) = ‖γ hT(u − 	1u)‖L2(�) � h1+σ

max ‖ f ‖L2(�) is of
higher order and may even be absorbed in the overall error analysis for a piecewise
constant coefficient γ ∈ P0(T). In the general case γ ∈ L∞(�)\P0(T), however,
osc1(u, T) leads in particular to terms with ‖γ − 	0γ ‖L∞(�).

5.3.3.3 Higher-order nonconforming VEM

The analysis applied in Theorem 5.1 can be extended to the nonconforming VEM
space of higher order k ∈ N (see [17, Sec. 4] for the definition of discrete space).
Since the projection operators ∇	∇

k and 	k−1∇ are not the same for general k,
and the first operator does not lead to optimal order of convergence for k ≥ 3, the
discrete formulation uses 	k−1∇ (cf. [6, Rem. 4.3] for more details). The definition
and approximation properties of the averaging operator Epw extend to the operator
Ek : Pk (̂T) → H1

0 (�) (see [32, p. 2378] for a proof). The identity (5.9) does not hold
in general, but algebraic calculations lead to

η2P := h2P‖ f − γ	kuh‖2L2(P)
, �2

P := ‖(1 − 	k−1)(A	k−1∇uh + b	kuh)‖2L2(P)

ζ 2
P := SP ((1 − 	k)uh, (1 − 	k)uh), �2

P :=
∑

E∈E(P)

|E |−1‖[	kuh]E‖2L2(E)
.

123



590 C. Carstensen et al.

The analysis developed for the upper bound of L2 norm also extends to the general
case. The model problem is chosen in 2D for the simplicity of the presentation. The
results of this work can be extended to the three-dimensional case with appropriate
modifications. The present analysis holds for any higher regularity index σ > 0 and
avoids any trace inequality for higher derivatives. This is possible by amedius analysis
in the form of companion operators [26].

5.3.3.4 Inhomogeneous boundary data

The error estimator for general Dirichlet condition u|∂� = g ∈ H1/2(∂�) can be
obtained with some modifications of [33] in Theorem 5.1. The only difference is in
the modified jump contributions of the boundary edges in the nonconformity term

�2
T =

∑

E∈E(�)

|E |−1‖[	1uh]‖2L2(E)
+

∑

E∈E(∂�)

|E |−1‖g − 	1uh‖2L2(E)
.

5.4 Proof of Theorem 5.2

Recall the notation σ = A∇u + bu and σ h = A∇	1uh + b	1uh from Sect. 5.3.

Proof of 5.3 The upper bound (3.5) for the stabilisation term and the triangle inequality
show

ζ 2
P ≤ Cs |(1 − 	1)uh |21,P ≤ 2Cs(|u − uh |21,P + |u − 	1uh |21,P ).

This concludes the proof of (5.3). ��
Proof of (5.5) The definition of �P ,	0, and the triangle inequality lead to

�P = ‖σ h − 	0σ h‖L2(P) ≤ ‖σ h − 	0σ‖L2(P)

≤ ‖A∇(	1uh − u) + b(	1uh − u)‖L2(P)

+ ‖(1 − 	0)σ‖L2(P). (5.26)

The upper bound ‖A‖∞ and ‖b‖∞ for the coefficients and the triangle inequality lead
to

�P − ‖(1 − 	0)σ‖L2(P) ≤ (‖A‖∞ + ‖b‖∞)‖	1uh − u‖1,P
≤ (‖A‖∞+‖b‖∞)(‖uh − 	1uh‖1,P+‖u − uh‖1,P )≤C10(ζP + ‖u − uh‖1,P )

(5.27)
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with ‖uh − 	1uh‖1,P ≤ (1 + hPCPF)a
−1/2
0 C1/2

s ζP from (4.24)–(4.25) and with

C10 := (‖A‖∞+‖b‖∞)((1+hPCPF)a
−1/2
0 C1/2

s +1). This followedby (5.3) concludes
the proof of (5.5). ��

Recall the bubble-function bT|P = bP supported on a polygonal domain P ∈ T
from (3.17) as the sum of interior bubble-functions supported on each triangle T ∈
T̂(P).

Proof of (5.4) Rewrite the term

f − γ	1uh = 	1( f − γ	1uh) + (1 − 	1)( f − γ	1uh) =: R + θ, (5.28)

and denote RP := R|P and θP := θ |P . The definition of Bpw(u − 	1uh, v) and the
weak formulation B(u, v) = ( f , v)L2(�) from (1.8) for any v ∈ V imply

Bpw(u − 	1uh, v) + (σ h,∇v)L2(�) = ( f − γ	1uh, v)L2(�) = (R + θ, v)L2(�).

(5.29)

Since bP RP belongs to H1
0 (�) (extended by zero outside P), v := bP RP ∈ V is

admissible in (5.29). An integration by parts proves that (	0σ h,∇(bP RP ))L2(P) = 0.
Therefore, (5.29) shows

(RP , bP RP )L2(P) = BP (u − 	1uh, bP RP ) − (θP , bP RP )L2(P)

+ ((1 − 	0)σ h,∇(bP RP ))L2(P).

The substitution of χ = RP = 	1( f −γ	1uh)|P ∈ P1(P) in (3.20) and the previous
identity with the boundedness of B and the Cauchy–Schwarz inequality lead to the
first two estimates in

C−1
b ‖RP‖2L2(P)

≤ (RP , bP RP )L2(P)

≤
(
Mb|u−	1uh |1,P+‖(1 − 	0)σ h‖L2(P)

)
|bP RP |1,P+‖θP‖L2(P)‖bP RP‖L2(P)

≤ Cb

(
Mb|u − 	1uh |1,P + �P + hP‖θP‖L2(P)

)
h−1
P ‖RP‖L2(P).

The last inequality follows from the definition of �P , and (3.21) with χ = RP . This
proves that C−2

b hP‖RP‖L2(P) ≤ Mb|u −	1uh |1,P +�P + hP‖θP‖L2(P). Recall ηP

from Sect. 5.1 and ηP = hP‖ f − γ	1uh‖L2(P) ≤ hP‖RP‖L2(P) + hP‖θP‖L2(P)

from the split in (5.28) and the triangle inequality. This and the previous estimate of
hP‖RP‖L2(P) show the first estimate in

ηP ≤ C2
b (Mb|u − 	1uh |1,P + �P ) + (C2

b + 1)hP‖θP‖L2(P)

≤ (C2
b+1)

(
Mb|u−	1uh |1,P+�P+hP‖( f − γ	1uh)−	1( f − γ u)‖L2(P)

)

≤ (C2
b + 1)

(
(Mb + hP‖γ ‖∞)‖u − 	1uh‖1,P + �P + osc1( f − γ u, P)

)
.
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The second step results from the definition of θP = (1 − 	1)( f − γ	1uh)|P in
(5.28) followed by the L2 orthogonality of 	1, and the last step results from an
elementary algebra with the triangle inequality and osc1( f − γ u, P) = hP‖(1 −
	1)( f −γ u)‖L2(P) from Sect. 5.1. The triangle inequality for the term u−	1uh and
the estimate of ‖uh − 	1uh‖1,P as in (5.27) lead to

C−1
11 ηP ≤ ‖u − uh‖1,P + ζP + �P + osc1( f − γ u, P)

withC11 := (C2
b+1)(Mb+hP‖γ ‖∞)((1+hPCPF)a

−1/2
0 C1/2

s )+1). The combination
of (5.3) and (5.5) in the last displayed estimate concludes the proof of (5.4). ��
Proof of (5.6) Recall for u ∈ H1

0 (�) and uh ∈ Vh that −
∫
E u ds and −

∫
E uh ds are well

defined for all edges E ∈ E, and so the constant αE := −
∫
E (u − uh) ds is uniquely

defined as well. Since the jump of u−αE across any edge E ∈ E vanishes, [	1uh]E =
[	1uh − u + αE ]E . Recall ωE = int(P+ ∪ P−) for E ∈ E(�) and ωE = int(P) for
E ∈ E(∂�) from Sect. 5.1. The trace inequality ‖v‖2

L2(E)
≤ CT (|E |−1‖v‖2

L2(ωE )
+

|E | ‖∇v‖2
L2(ωE )

) (cf. [13,p. 554]) leads to

|E |−1/2‖[	1uh]E‖L2(E)

≤ CT

(
|E |−1‖	1uh − u + αE‖L2(ωE ) + ‖∇pw(	1uh − u)‖L2(ωE )

)
.

This and the triangle inequality show the first estimate in

|E |−1/2‖[	1uh]E‖L2(E)

≤ CT

(
|E |−1(‖uh − 	1uh‖L2(ωE ) + ‖uh − u + αE‖L2(ωE ))

+ ‖∇pw(uh − 	1uh)‖L2(ωE ) + ‖∇pw(u − uh)‖L2(ωE )

)
. (5.30)

The estimates (4.24)–(4.25) control the term ‖uh − 	1uh‖1,P as in (5.27), and the
Poincaré–Friedrichs inequality from Lemma 2.1.b for uh − u +αE with

∫
E (uh − u +

αE ) ds = 0 (by the definition of αE ) implies that ‖uh −u+αE‖L2(P) ≤ CPFhP |uh −
u|1,P . This with the mesh assumption hP ≤ ρ−1|E | and (5.30) result in

|E |−1/2‖[	1uh]E‖L2(E) ≤ CT ((CPFρ
−1 + 1)a−1/2

0 C1/2
s + CPF + 1)

∑

P ′∈ωE

(�P ′ + |u − uh |1,P ′).

Since this holds for any edge E ∈ E(P), the sum over all these edges and the bound
(5.3) in the above estimate conclude the proof of (5.6). ��
Remark 9 (convergence rates of L2 error control for 0 < σ ≤ 1) The efficiency
estimates (5.4)–(5.6)with amultiplication of h2σP show that the local quantity h2σP (η2P+
�2

P + �2
P ) converges to zero with the expected convergence rate.
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Remark 10 (efficiency up to stabilisation and oscillation for L2 error control when
σ = 1) For convex domains and σ = 1, there is even a local efficiency result that is
briefly described in the sequel: The arguments in the above proof of (5.4)–(5.5) lead
to

h2Pη2P � ‖u − uh‖2L2(P)
+ h2P (ζ 2P + osc21( f − γ u, P) + ‖(1 − 	0)σ‖2L2(P)

),

h2P�2
P � ‖u − uh‖2L2(P)

+ h2P (ζ 2P + ‖A − 	0A‖2L∞(P)‖ f ‖2L2(�)
+ ‖(1 − 	0)bu‖2L2(P)

).

The observation [	1uh]E = [	1uh − u]E for the term �P , the trace inequality, and
the triangle inequality show, for any E ∈ E, that

|E |1/2‖[	1uh]E‖L2(E) ≤ CT
(‖uh − 	1uh‖L2(ωE ) + ‖u − uh‖L2(ωE )

+|E |(‖∇	1(u − uh)‖L2(ωE ) + ‖∇(u − 	1u)‖L2(ωE ))
)
.

The bound (4.25) for the first term and the inverse estimate ‖∇χ‖L2(P) ≤
Cinvh

−1
P ‖χ‖L2(P) for χ ∈ Pk(P) for the third term result in

|E |1/2‖[	1uh]E‖L2(E) � ‖u−uh‖L2(ωE )+|E |
∑

P ′∈ωE

(
‖∇(1−	1)u‖L2(P ′) + �P ′

)
.

Themesh assumption (M2) implies that h2P�2
P ≤ ρ−1 ∑

E∈E(P) |E | ‖[	1uh]E‖2
L2(E)

.

This and the above displayed inequality prove the efficiency estimate for h2P�2
P .

6 Numerical experiments

This section manifests the performance of the a posteriori error estimator and an
associated adaptivemesh-refining algorithmwithDörflermarking [37]. The numerical
results investigate three computational benchmarks for the indefinite problem (1.1).

6.1 Adaptive algorithm

Input: initial partition T0 of �.
For  = 0, 1, 2, . . . do

1. SOLVE. Compute the discrete solution uh to (3.8) with respect to T for  =
0, 1, 2 . . . (cf. [5] for more details on the implementation).

2. ESTIMATE. Compute all the four terms η := ηT
, ζ := ζT

, � := �T
and

� := �T
, which add up to the upper bound (5.1).

3. MARK. Mark the polygons P in a subsetM ⊂ T with minimal cardinality and

H1μ2
 := H1μ2(T) := η2 + ζ 2

 + �2
 + �2

 ≤ 0.5
∑

P∈M

(η2P + ζ 2
P + �2

P + �2
P ).
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Fig. 3 Refinement of a polygon
into quadrilaterals

4. REFINE - Refine the marked polygon domains by connecting the mid-point of the
edges to the centroid of respective polygon domains and update T. (cf. Fig. 3 for
an illustration of the refinement strategy.)

end do
Output: The sequences T, and the bounds η, ζ,�,�, and H1μ for  =

0, 1, 2, . . . .
The adaptive algorithm is displayed for mesh adaption in the energy error H1.

Replace estimator H1μ in the algorithm by L2μ (the upper bound in (5.2)) for
local mesh-refinement in the L2 error. Both uniform and adaptive mesh-refinement
run to compare the empirical convergence rates and provide numerical evidence for the
superiority of adaptive mesh-refinement. Note that uniform refinement means all the
polygonal domains are refined. In all examples below,AP = 1 in (3.6). The numerical
realizations are based on a MATLAB implementation explained in [35] with a Gauss-
like cubature formula over polygons. The cubature formula is exact for all bivariate
polynomials of degree at most 2n−1, so the choice n ≥ (k+1)/2 leads to integrate a
polynomial of degree k exactly. The quadrature errors in the computation of examples
presented below appear negligible for the input parameter n = 5.

6.2 Square domain (smooth solution)

This subsection discusses the problem (1.1) with the coefficients A = I ,b = (x, y)
and γ = x2 + y3 on a square domain � = (0, 1)2, and the exact solution

u = 16x(1 − x)y(1 − y) arctan(25x − 100y + 50)

with f = Lu. Since γ − 1
2div(b) = x2 + y3 − 1 is not always positive on �, this

is an indefinite problem. Initially, the error and the estimators are large because of an
internal layer around the line 25x − 100y + 50 = 0 with large first derivative of u
resolved after few refinements as displayed in Fig. 4-5.
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Fig. 4 Output T1, T8, T15 of the adaptive algorithm

ndof
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1

(a)
ndof

1

1

(b)

Fig. 5 Convergence history plot of estimator μ and error e := u − 	1uh in the a piecewise H1 norm, b
L2 norm versus number ndof of degrees of freedom for both uniform and adaptive refinement

6.3 L-shaped domain (non-smooth solution)

This subsection shows an advantage of using adaptive mesh-refinement over uniform
meshing for the problem (1.1) with the coefficients asA = I ,b = (x, y) and γ = −4
on a L-shaped domain � = (−1, 1)2\[0, 1) × (−1, 0] and the exact solution

u = r2/3 sin

(
2θ

3

)

with f := Lu. Since the exact solution is not zero along the boundary ∂�, the
error estimators are modified according to Sect. 5.3.3.4. Since γ − 1

2div(b) = −5 <

0, the problem is non-coercive. Observe that with increase in number of iterations,
refinement is more at the singularity as highlighted in Fig. 6. Since the exact solution
u is in H (5/3)−ε(�) for all ε > 0, from a priori error estimates the expected order of
convergence in H1 norm is 1/3 and in L2 norm is at least 2/3 with respect to number
of degrees of freedom for uniform refinement. Figure 7 shows that uniform refinement
gives the sub-optimal convergence rate, whereas adaptive refinement lead to optimal
convergence rates (1/2 for H1 norm and 5/6 in L2 norm).
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Fig. 6 Output T1, T10, T15 of the adaptive refinement
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Fig. 7 Convergence history plot of estimator μ and error e := u − 	1uh in the a piecewise H1 norm, b
L2 norm vs number ndof of degrees of freedom for both uniform and adaptive refinement

6.4 Helmholtz equation

This subsection considers the exact solution u = 1 + tanh(−9(x2 + y2 − 0.25)) to
the problem

−�u − 9u = f in � = (−1, 1)2.

There is an internal layer around the circle centered at (0, 0) and of radius 0.25 where
the second derivatives of u are large because of steep increase in the solution resulting
in the large error at the beginning, and this gets resolved with refinement as displayed
in Fig. 8-9.

6.5 Conclusion

The three computational benchmarks provide empirical evidence for the sharpness of
the mathematical a priori and a posteriori error analysis in this paper and illustrate the
superiority of adaptive over uniform mesh-refining. The empirical convergence rates
in all examples for the H1 and L2 errors coincide with the predicted convergence
rates in Theorem 4.3, in particular, for the non-convex domain and reduced elliptic
regularity. The a posteriori error bounds from Theorem 5.1 confirm these convergence
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Fig. 8 Output T1, T5, T11 of the adaptive refinement
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Fig. 9 Convergence history plot of estimator μ and error e := u − 	1uh in the a piecewise H1 norm, b
L2 norm vs number ndof of degrees of freedom for both uniform and adaptive refinement

rates as well. The ratio of the error estimator μ by the H1 error e, sometimes called
efficiency index, remains bounded up to a typical value 6; we regard this as a typical
overestimation factor for the residual-based a posteriori error estimate. Recall that the
constantCreg has not been displayed so the error estimatorμ does not provide a guar-
anteed error bound. Figures 10 and 11 display the four different contributions volume
residual (

∑
P η2P )1/2, stabilization term (

∑
P ζ 2

P )1/2, inconsistency term (
∑

P �2
P )1/2

and the nonconformity term (
∑

P �2
P )1/2 that add up to the error estimator μ. We

clearly see that all four terms converge with the overall rates that proves that none of
them is a higher-order term and makes it doubtful that some of those terms can be
neglected. The volume residual clearly dominates the a posteriori error estimates,while
the stabilisation term remains significantly smaller for the natural stabilisation (with
undisplayed parameter one). The proposed adaptive mesh-refining algorithm leads
to superior convergence properties and recovers the optimal convergence rates. This
holds for the first example with optimal convergence rates in the large pre-asymptotic
computational range as well as in the second with suboptimal convergence rates under
uniform mesh-refining according to the typical corner singularity and optimal con-
vergence rates for the adaptive mesh-refining. The third example with the Helmholtz
equation and a moderate wave number shows certain moderate local mesh-refining
in Fig. 8 but no large improvement over the optimal convergence rates for uniform
mesh-refining. The adaptive refinement generates hanging nodes because of the way
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ndof ndof ndof

Fig. 10 Estimator components corresponding to the error H1e = |u−	1uh |1,pw of the adaptive refinement
presented in Subsection 6.2–6.4

ndof ndof ndof

Fig. 11 Estimator components corresponding to the error L2e = ‖u − 	1uh‖L2(�) of the adaptive refine-
ment presented in Subsection 6.2–6.4

refinement strategy is defined, but this is not troublesome in VEM setting as hanging
node can be treated as a just another vertex in the decompostion of domain. However,
an increasing number of hanging nodes with further mesh refinements may violate the
mesh assumption (M2), but numerically the method seems robust without putting any
restriction on the number of hanging nodes. The future work on the theoretical investi-
gation of the performance of adaptive mesh-refining algorithm is clearly motivated by
the successful numerical experiments. The aforementioned empirical observation that
the stabilisation terms do not dominate the a posteriori error estimates raises the hope
for a possible convergence analysis of the adaptive mesh-refining strategy with the
axioms of adaptivity [20] towards a proof of optimal convergence rates: The numeri-
cal results in this section support this conjecture at least for the lowest-order VEM in
2D for indefinite non-symmetric second-order elliptic PDEs.
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