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Abstract: An abstract property (H) is the key to a complete a priori error analysis in the (discrete) energy norm
for several nonstandard finite element methods in the recent work [Lowest-order equivalent nonstandard fi-
nite element methods for biharmonic plates, Carstensen and Nataraj, M2AN, 2022]. This paper investigates the
impact of (H) to the a posteriori error analysis and establishes known and novel explicit residual-based a pos-
teriori error estimates. The abstract framework applies to Morley, two versions of discontinuous Galerkin, C°
interior penalty, as well as weakly over-penalized symmetric interior penalty schemes for the biharmonic equa-
tion with a general source term in H2(Q).

Keywords: a posteriori, residual-based, biharmonic problem, smoother, best-approximation, companion oper-
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1 Introduction

The concept of a quasi-optimal smoother and the key assumption (H) from [24] allow for an abstract a posteriori
error analysis for five lowest-order schemes for the biharmonic problem. This paper unifies and completes
[2,4,5, 34, 36, 40] and provides novel reliable and efficient a posteriori error estimators for a right-hand side
Fe H2(Q).

1.1 Overview

The traditional view on a posteriori error control is that the well-posedness of the linear problem on the con-
tinuous level directly leads from the error to residuals and their dual norms. In the simplest setting of a Hilbert
space (V, a) with induced norm || - || := a(-,-)/?, the weak solution u € V is the Riesz representation of a given
source F € V": u € V solves

a(u,v)=F(v) VvelV. (1.1)

Given any conforming companion J,uy € V to some discrete approximation uy € Vy, where vV ¢ V is typically
not a subset of V and J,uy € V is a postprocessing of uj, the norm of the error e := u - Juy € V is the norm
of the residual F - a(Jnup, ) € V': The Riesz isometry between the residual and its Riesz representation e € V
reads

F(v) —a(Jpup, v
llell = IF = anp, Yl == sup W)~ 4Unttn V)|

1.2)
ve\{0} (Il
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Tab. 1: Five discretizations.

Morley  €°1P dGI dGII WOPSIP Reference

Vp M(T) ST PAT) P(T) P(T) (4D
I= IhIM V- Vh id ICIM IM IM IM IM in Def. 4.1, Ic in (4.6)
Jp=JIg:Vy =V J Y I Y Y Jin Lemma 4.1

The a posteriori error control is left with the task of deriving computable upper and lower bounds of the dual
norm ||F - a(Jup, *)||. The known data are F € V" and Jruy € V and the techniques to derive bounds are very
different from those of an a priori error analysis.

The paradigm change in this paper employs a recent tool (H) (stated in Section 2.2 below) from the a priori
error analysis [24] to arrive at an a posteriori error bound

llell? < C(llun = Jn uhlli +Res((1 - Jyl)e) + data approximation error) 1.3)

with some operator I € L(V; V) and anorm || - ||, on V + Vj,. The main advantage of the master estimate (1.3)
over the error identity (1.2) is the known structure (1 - JpI)e € V of the test function. The a posteriori error
analysis based on (1.3) then only requires to study the properties of the operators (1 — JI) € L(V; V). This
allows explicit estimates of the error term Res((1 - J,I)e) with universal arguments for generic u, € Vj and,
most importantly, independent of the discrete system that defines uy € V.

The application to the biharmonic equation (1.1) provides novel simultaneous insight in the residuals and
estimators for the piecewise quadratic discrete solution u, € P;(7) to the Morley, two variants of discontin-
uous Galerkin (dG), the C° interior penalty (C°IP), and the weakly over-penalized symmetric interior penalty
(WOPSIP) method. Table 1 below displays the discrete spaces Vj and operators I, ; introduced in Section 4. The
multiplicative constant C in (1.3) exclusively depends on the shape regularity of the underlying triangulation.

The discussion includes the standard and modified schemes that come with and without a smoother J,
on the right-hand side. This paper completes the a posteriori error analysis for these lowest-order discretisa-
tions and provides novel reliable and efficient a posteriori error estimators for a rather general class of general
sources F € V".

1.2 Outline

Section 2 introduces the abstract discretisation scheme with the key assumption (H) for the a priori analysis
in [24]. Section 3 discusses a known abstract error identity and its application in the a posteriori error analysis.
This is followed by the concept of a quasi-optimal smoother and the a priori key property (H) that lead to an
explicit a posteriori error hound with a particular structure of the test function as in (1.3). Section 4 provides
examples for the abstract setting in terms of five lowest-order schemes for the biharmonic equation. Section 5
establishes explicit estimates for the error contributions of the a posteriori error bound from Section 3. Section 6
presents a unified a posteriori error control for five lowest-order schemes for the biharmonic equation in a
simplified setting with a right-hand side F € L?(Q) and recovers [2, 4, 5, 34, 36, 40]. The restriction to sources in
L? underlines the state of the art before this paper and thereby highlights the new paradigm through comparison
with known results. The emphasis in Section 7 is on a class of general sources F € V* with a novel a posteriori
error estimator of the residual that is reliable and efficient up to data-oscillations. Appendix A shades a different
light on the discussion in Section 7 and provides lower and upper bounds for the dual norm of functionals
FeV".

The presentation is laid out in two dimensions with shape-regular triangulations into triangles and second-
order discretizations for simplicity; but the arguments apply to 3D as well, cf. [26] for a companion operator [, in
3D. The abstract results of this paper will be applied to an a posteriori error analysis of semilinear problems [18],
where a linearisation enforces (piecewise polynomial) F € H%(Q) \ L?(Q) in future research.
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1.3 General notation

Standard notation on Lebesgue and Sobolev spaces, their norms, and L? scalar products applies throughout the
paper such as the abbreviation || - || for || - | ;2 (). Recall that the energy norm || - || := |ID? || is a norm on HS(Q).
Throughout this paper, 7 denotes a shape-regular triangulation of a polygonal and bounded (possibly multiply-
connected) Lipschitz domain Q ¢ R? into triangles. Let V() and &(Q) denote the set of interior vertices and
edges in the triangulation T and let V(0Q) and £(0€2) denote the boundary vertices and edges. The gradient
and Hessian operators Vpy = Dpw and Dlz,W act piecewise on the space H™(T) = [[reg H™(T) of piecewise
Sobolev functions for m = 1, 2 with the abbreviation H™(K) = H™(int K) for a triangle or edge K € TU &
with relative interior int(K). The space Py (K) of polynomials of total degree at most k € Ny on K € T U € with
diameter hg defines the space of piecewise polynomials

P(T) = {p € L™(Q) : plr € Pp(T) ¥T € T).

The mesh-size ho € Py(7) is the piecewise constant function with hy|r = hy = diam(T) forall T € 7.
Throughout this paper, let H¥(Q; X), H(T; X), resp. P, (T; X) denote the space of (piecewise) Sobolev functions
resp. polynomials with values in X = R?, R¥2, S for k € No; S ¢ R*? is the set of symmetric 2 x 2 matrices.
The spaces H¥(Q) = (H(Q))" are the dual spaces of H(Q) for k € N. Given any function v € L*(E) on an
edge E € &, define the integral mean fE vdx = h;l fE vdx. The notation A < B abbreviates A < CB for some
positive generic constant C, which exclusively depends on the shape-regularity of the underlying triangulation
T; A = B abbreviates A < B < A.

2 Unified a priori error analysis

Nonstandard schemes compute discontinuous approximations in general and require a smoother to map the
discrete functions into the continuous space V.

2.1 Discretisation

Given the Hilbert space (V, a) from the continuous problem (1.1), consider some bigger Hilbert space (V, a)
that contains V c V as well as the discrete spaces Vy, Ve C V.Letd := apw + jn be the sum of the semi-scalar
products apw, ji : VxV - R where, apw extends a = apw|yxy and is a scalar product with induced norm
Il llpw = @pw(:, )72 in V + V. The semi-scalar product ji : V x V — R represents jumps that vanish in V + Vyc,
ie,jp(v,") =0foranyv € V + Vp. The induced norm on V reads

-l = (I Wy +jn () Y* and satisfies || flpw = || - [l in V + Vi @1

The discretisation consists of a finite-dimensional trial and test space V;, with respect to a shape-regular trian-
gulation T of Q and the (possibly unsymmetric) bilinear form

ap: (V+Vp+ Vi) x (V+Vy+ Vo) 2 R

We assume that ay, is Vj-elliptic and bounded on V; with respect to || - || in the sense that some universal
constants 0 < a < M < o satisfy, for all vy, wy € Vy, that

2
allvplly, < ap(vp, vp), ap(vp, wi) < Ml|vpllpllwpllg- (2.2)

Since Vi, C V is not a subset of V, the evaluation F(vy) at vy € Vj is not well-defined for general F € V",
Therefore many of the earlier contributions, in particular to the a posteriori error control, merely consider
F € L%(Q) whenever V c L%(Q). The series of papers [42-44] advertise a smoother Q € L(Vj; V) to evaluate
the modified source F(Qvy) on the discrete level. This paper complements those contributions on the a priori
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error analysis by reliable and efficient a posteriori error estimates. This is itself highly relevant in scientific
computing and a first step towards adaptive mesh-refining.

To be more general, this paper considers a rather general class of sources that allow an extension FeV
of F = I?Iv- The Lax-Milgram lemma ensures the existence of a unique discrete solution uy € Vj to

an(up, v) = F(Qup)  Vvp € Vp (2.3)

for the two cases Q = id (no smoother, but depending on P)and Q = J, for asmoother J, € L(Vy; V). The history
of J isrelated to averaging techniques and dates back to the analysis of the Crouzeix—Raviart method [16, 25, 44]
for the reliable error control [22]. An earlier motivation was the construction of intergrid transfer operators in
the convergence analysis of multigrid methods for nonconforming schemes [9].

The first results will be derived for F = f € L?(Q) to recover known results in a unified framework, while
Section 7 specifies a large class of extended sources Fand provides novel a posteriori error estimates with and
without smoother.

2.2 Quasi-best approximation

The abstract framework from [24] provides a tool for the a priori analysis therein.

Definition 2.1 (quasi-optimal smoother). An operator J, € L(Vp; V) is called a quasi-optimal smoother if there
exists a constant Cj > 0 such that

Ve = Jnvalln < G IJE{I} lv=vnplln Yvy e V. 2.4

All the examples in [42-44] discuss [, € L(Vp; V) with J; = id in V n V. The framework in [24] introduces a
smoother that satisfies (2.4) and is quasi-optimal with a constant Cj = 1. The interpretation is that Jv, € Visa
good approximation of vy, € Vj and provides a bridge between the discrete objects in Vj, and V.

The key assumption (H) connects the bilinear forms a from (1.1) and a, from (2.3) and requires the existence
of Ay > 0 with

ap(Wp, V) = a(Jpwp, Javn) < Aullwg = Jowpllpllvelln - Y wp, vy € V. (H)

This assumption leads to quasi-optimality of u; in the discrete norm || - ||, and holds for a class of problems
including the examples in [24] except WOPSIP. A key step is therefore the design of a quasi-optimal smoother,
e.g., Jn = J o I with the conforming companion J and a generalised interpolation operator I.

Theorem 2.1 (quasi-best approximation). Given an operator J, € L(Vy; V) with (2.4) and (H), there exists a con-
stant Cyo > 0 (that exclusively depends on a, M, Cy, Ay, and ||J||) such that the exact solution u € V to (1.1) and
the discrete solution uy, to (2.3) satisfy

llu = unlln < Cqo Min ||t = vpllp. (Q0)
vReVy
Proof. This is proven in [24, Thm. 2.3] inspired by the seminal work [42]. m]

A stronger version (H) of (H) in [24, Sect. 6] even leads to a priori error bounds in weaker (piecewise) Sobolev
norms.
2.3 Transfer operators

The error analysis requires transfer operators with certain approximation properties between the three sub-
spaces V, Vy, V¢ of V. Throughout this paper, assume there are three linear operators I, € L(Vye; Vi), Inc €
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Inc € L(V + Ve + Vi; Vie) Tab. 2: Operators.
I € L(Vne; Vp)

] €L(Vng;V)

Jn € L(V+ Vpe+ V3 V)

Jn=Je°1
ViVactVy — 2 oy

Vne Fig. 1: Definition of /.

L(V + Vi + Vie; Vi), and the conforming companion operator J € L(Vy; V) and constants Ay, Anc, Ay > 0 such
that

[lVne = InVnclln < A T‘E}El‘r} IV ="Vncllpw ¥ Vnc € Vne (2.5)

lvh = IncVnlln < Anc I“)ﬂl‘l} lVv=vnlln ~ YvheVy (2.6)
€

IVne = Jvnellpw < Ay I“)ﬂellr} IV = vncllpw ¥ Vnc € Vnc. 2.7

Two immediate consequences on the abstract level at hand shall be utilized below.
Lemma 2.1 (intermediate bound). Given any v € V and vy € Vy, (2.5)—(2.7) imply
IV = JhneInnelll < (1 + Ap) (1 + Anc) (1 + Ap) [V = Viclllpw- (2.8
Proof. Let wy¢ = IncIpvnec and wy, = Ipvpc. The triangle inequality and (2.7) show
v =Jwnell < llv=wncllpw + lI(1 = Wncllpw < (1 + APV = wiclllpw-
Note [|[v = Wncllpw = |V = Wnclln from (2.1). The triangle inequality and (2.5)—(2.6) show
IV =Wncllp < IV =Whlln+ (1= Inc)Whlln < (1+ Anc) ||V = Whlln
IV =wWhlln < IV =Vnclln + (1= Ip) Vnelln < (1 + ARV = Vicllpw-
The combination of those estimates establishes (2.8). O

The above transfer operators (see Fig. 1 and Table 2) lead to a quasi-optimal smoother [, := J o Inc € L(Vy; V).
Although J, maps V + Vo + Vi, = V, its restriction to V}, plays a central role in the sequel.

Lemma 2.2 (quasi-optimal smoother). Given any vy € Vi, and Jp, := J o Inc € L(Vy; V), (2.6)-(2.7) show (2.4) with
C] = Anc + A] + A]Anc.

Proof. A triangle inequality with vy = Iycvy, and (2.7) verify

VA = JVnclln < IV = Vnelln + Ay (IIV = Vallp + [[VR = Vnclln)
for an arbitrary v € V. This and (2.6) conclude the proof. O
Lemma 2.2 shows that Jj, is a quasi-optimal smoother with the following property.

Theorem 2.2 (quasi-best approximation [24]). Let u € V resp. up € Vy solve (1.1) resp. (2.3). Suppose (H), (2.1)-
(2.2), and (2.5)—(2.7). Then

llu = Jrunll + 11w = upllp < min flu = vacllpw-
Vnc € Vne
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Proof. Lemma 2.2 and Theorem 2.1 verify (QO) for J. A triangle inequality, (2.5), and || - llow = || * [[n in V + Vi
verify

llu—upllp < Cqollu = Invncllp < Cqo(1+ Ap)lltt = Vnclllpw

for arbitrary vpe € Vnc. The proof of Lemma 2.1 shows [[v = Jpwylll < (1+Ag) (1+ Anc) |V - wp ||, for an arbitrary
v € V, wy € Vj. The combination with the previously displayed inequality concludes the proof. m]

3 Abstract a posteriori error analysis

The abstract error identity in Subsection 3.1 reveals that [|Res||« is a contribution to the error. Subsection 3.2
revisits the Crouzeix-Raviart and Morley FEM and recalls known bounds thereof. Subsection 3.3 explains a
paradigm shift towards a universal error analysis that is explicit in the structure of the test function through a
quasi-optimal smoother and the property (H).

3.1 Abstract error identity for F € V*

Given the exact solution u € V to (1.1) and the discrete solution u, € Vy to (2.3), the natural error u — uy €
V + Vy c V can be measured in the norm || - ||, from Subsection 2.1. This allows a well-known split with the
residual Res := F = apy (up,*) € V" [19].

Theorem 3.1 (error identity). The exact solution u € V to (1.1) and the discrete solution uy € V, to (2.3) satisfy

2 2 z 2
Il = uplly, = lIRes|llx +r§619||v-uhllh- (3.1

Proof. Letw € V be the Riesz representation of the linear and bounded functional apw (up,*) € V" in the Hilbert
space (V, apw), so that apw (un — w,*) = 01in V. This orthogonality shows that w € V is the best-approximation
of up € Vi, c Vin the complete subspace V, i.e.,

6 = llw = unllpw = min v = up llpw (3.2)
and allows for the Pythagoras identity
Nl = unllgw = llw=wii* + llw = gl 3.3)
The orthogonality also shows, for all v € V, that
a(u-w,v) = a(u,v) - apw(up, v) = Res(v)

with a(u, -) = Fin V in the last step. In other words, u - w is the Riesz representation of Res € V" in the Hilbert
space (V, a) and the Riesz isomorphism reveals

Res(v)
llu = wil = [IRes|| == sup

. (3.4)
vengoy VI

The summary of (3.2)~(3.4) reads [|u = up|l5,, = [IRes||Z + 8> Since ji (-, v) = ja(v,") = 0, the proof concludes
with [[v = ug I = IV - unll3y +jn (up, up) forany v € V. o

Remark 3.1 (explicit a posteriori bounds). The proof of Theorem 3.1 is nothing but a Pythagoras identity and
serves asanidealisation: While j (up, up) comes for free, the computation of [|Res|||« or of § = minyey ||[v-uy ||i—
Jn(up, up) is far too costly. Instead, the error identity rather serves as a guide to design individual upper bounds
of § and [|Res]|+. The a priori error analysis of Section 2.1 provides a quasi-optimal smoother J, € L(Vy; V).
Then (2.4) shows

min ||v - upllp < lup = Jptpllp < GGmin ||v = up|lg. (3.5)
veV veV
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Fig. 2: The interior edge patch w(E) and normal vg = vy,
P, A of E=0T, NnaT-.

In the language of a posteriori error control, (3.5) asserts the reliability and efficiency of the a posteriori esti-
mator ||up = Jpup||n of the error minyey ||v - up||p. This ends the discussion of ||up, - J,up ||, and motivates the
focus on bounds of Res below.

In order to understand the difference between the classical and the current treatment, the two simplest non-
conforming schemes will be discussed in the subsequent subsection.

3.2 Crouzeix-Raviart and Morley FEM

This subsection motivates the abstract a posteriori error analysis by a recollection [10, 11, 14, 19, 20, 29, 41]
for m = 1 and [2, 13, 35, 36] for m = 2 of the simplest nonconforming schemes for the m-harmonic equation
(-A)™u = f for m = 1, 2 with right-hand function f € L?(Q). The weak solution seeks u € V := HW(Q) V=
H™(T) to

a(u,v) = (f,V)2 VYvevV (3.6)

with the energy scalar product a := apw|vxv and apw(:,*) = (D™, D’"—)LZ(Q) inV.

3.2.1 Crouzeix-Raviart FEM

Letu e V = Hé(Q) be the weak solution to the Poisson model problem, i.e., u solves (3.6) for m = 1. The
Crouzeix—Raviart finite element space requires the definition of jumps across an edge E € € in the triangulation
7. Let vy be the unit outer normal of T € T and fix the orientation of the unit normal v on every edge E € &
with midpoint mid(T). Every interior edge E = 0T, n 0T- € £(Q) has exactly two neighbouring triangles
T,, T- € T asin Fig. 2, labelled such that vg = +vr, |, and the jump of a piecewise Sobolev function v € H(7)
across E reads [v]g := v|r, - v|r. € HY(E). On a boundary edge E € £(d%), the jump [v]g := v is the unique
trace of the function v € H'(7). Define the space

CR})(TF) ={p e P (T) | [p]e(mid E) = 0 vanishes for every edge E € £}

of piecewise affine polynomials over a given shape-regular triangulation T with continuity at the midpoints
of the edges. This space Vi, := CR})(T) comes with the natural interpolation operator Icg : V + Vpe = Vi
that maps v € V + Vj to the unique function Icgv € Vy with fE(v - Icgv)ds = 0 for every edge E € E.
The classical formulation of the lowest-order nonconforming Crouzeix—Raviart FEM approximates the weak
solution u € Hé(Q) of (3.6) with the discrete solution ucg € CR}](‘D = Vpe to

Apw(UCR, VCR) = / Vpwlicr - VpwVer AX = (f, Ver)z2) Y Ver € CRY(T). (3.7
Q
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This is exactly (2.3) for the natural choice F:=F= f € L?(Q) and without smoother Q := id. The semi-scalar
product ayy induces the piecewise energy norm || - lpw = [|[Vpw * [[In V + Vi = H(l](Q) + CR%(‘D [23]. In this
particular example, the residual from Section 3.1 reads

Res = (f, ')LZ(Q) - apw(uCR, ) € V*.

3.2.2 Classical residual-based explicit error estimator

This approach follows [19] and is closely related to the analysis of conforming schemes. Let I : Hé (Q)+CR(1) T~
8(1)(7 ) denote a quasi-interpolation operator onto the continuous piecewise affine polynomials Sé(‘D =Pi(T)N
Ha () with homogeneous boundary conditions. Since (3.7) holds, the definition of the residual shows Res(w¢) =
0 for any we € S3(T) ¢ CRy(7), i.e., S}(T) < kerRes lies in the kernel of Res € V", and an integration by parts
with the test function w := v - Icv shows, for f € L%(Q), that

Res(v) = Res(w) = (f, w)j2(q) ~ Z Z /pruCR -vpwds

TeTEce(T) YE

=, w2 ~ Z /[pruCR]E'VEWdS-

Ecg(Q) YE

The last step is a careful resummation over the edges: Each interior edge E € £(Q) has two contributions (from
T, and T- as in Fig. 2) with opposite signs from vy, = —vr_on E. No contributions arise from the boundary edges
E € £(0Q) because of w|yq = 0. Cauchy inequalities show

= 1/2 -1/2
Res(v) < [lhaflllhg wil+ > by Vpwtcrle - Vellpz ey 21wl zee) - (38)
EcE(Q)

The quasi-interpolation operator Ic from [28, 39] satisfies the stability estimates
hZH v = Ievlize(ry < Caps IVVIlg2(w(ry) inTeT

with a constant Capx > 0 that exclusively depends on the shape regularity of 7. Here w(T) denotes the layer-1
patch around T € 7. The trace inequality [30, Eq. (12.17)]:

_1 2 —
B iz < Co (A7 IVl + IVl ) Vve v

bounds the norms on the edge E c dT(E) by norms of some adjacent triangle T (E) € T with a constant Cy > 0
that exclusively depends on the shape-regularity of 7. This and a final Cauchy inequality in £2 for the sum in (3.8)
show

Res(v
IResll- = sup o < jingfi+ | S hell(Vucale vl - G9
ven{oy VIl ECEQ)

The jump term in (3.9) can be bounded by ||h+f|| and the simpler
lIRes|ll- < lhofll (3.10)

estimate without normal jumps is possible. For any interior edge E € £(Q), the edge-patch w(E) = int(T,UT-)
depicted in Fig. 2 is the union of the two neighboring triangles T, T- € 7.

Lemma 3.1 (bound without jumps). The normal jumps from (3.9) satisfy
h *NVuele Vellz) < Ihofllwe)  VE € E(Q).

Proof. Recall the edge-oriented basis function Y € CR(l)(‘J’) as the unique function in CR(l)(‘Jj with Yg(mid E) =
1 and Yg(mid F) = 0 for every other edge F € £\{E}. Since Y € CR(I,(‘J' ) is piecewise affine, its support w(E) is
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the edge-patch w(E) with yr = 1 on E = 0T, N 8T-. This, an integration by parts for the interior edge E € £(Q),
and (3.7) prove for f := [Vucr]g ' Ve € R,

I[Vucr]E - VE”iz(E) = ﬁ/E[VUCR]E'VE Ypds = ﬁ/(E) Vucg - Ve dx = B (f, YE)12(0(E))-
w

The midpoint quadrature rule shows ||g||%, ... = |T|/3 = h% = hZ in 2D by shape-regularity. Since ||g||
12(T) T =g

|E| = hg, the previous displayed identity, a Cauchy inequality, and the definition of § verify

2
LYX(E) —

12
I[VucrlE - VE”%z(E) < ||hirf||L2(w(E))hE/ I[Vucrle - VEllz2(g)-

This concludes the proof of (3.10). O

3.2.3 Bound from Crouzeix-Raviart interpolation

The integration by parts formula on T € T and the definition of the natural interpolation Icg : V + Ve = Ve
reveal

/V(V‘ICRV)'Vpl dx = Z [VowD1lE  VE /(V_ICRV) ds=0
T Ece(T) E

forany v € V+ Vye, p1 € P1(7) and (v - Icrv) L P1(7) is apw-orthogonal to P1(T) > CR(l)(‘D. This, (3.7), and the
interpolation error estimate [ ;' (v - Icrv)|| < xcrlIV]| from [12, Sect. 4] with xcg = (1/48 +j3 ,)/? < 0.2983 for
the first positive root jj ; of the Bessel function of the first kind shows

Res(V) (fv-Irv) e
[IRes|l|« := sup = L7 RILA®)
venioy VIl vengoy fvll

< #erllhgfll. (3.11)

The difference to the bound in Lemma 3.1 is not only the explicit control in terms of the smaller constant xcg,
but above all, that the methodology directly controls ||Res||+ as in [13, p. 317] without jump terms. The latter also
follows from (3.9) and Lemma 3.1.

The key observation is that this technique does not need any conforming subspace S(l) (7 c CR}) (7) and this
is a relevant advance for the application to the Morley FEM.

3.2.4 Morley FEM
Letu eV = H(Z)(Q) be the weak solution to the biharmonic equation A’u = f € L%(Q), i.e., u solves (3.6) for
m = 2. Define the normal jump [dv/dVg]r := [Vv - Vg of a function v € H?(7) along an edge E € &. The

Morley function space

(3.12)

p(z) is continuous at every z € V(Q) and p|ygq) =0
M(T) := {p € Py(T)

[VpwP * VE] g(mid E) = 0 vanishes for every edge E € €
comes with a natural interpolation operator Iy : H(z)(Q) +M(T) = M(7).

Definition 3.1 (classical Morley interpolation [8, 12]). Given any function v € HS(Q) + M(7), the Morley interpo-
lation operator Iy : H3(Q) + M(T) —» M(7) defines Iyyv € M(T) by

(v-Iyv)(z) =0 for ze V(Q) and f w ds=0 for E € £(Q).
E E

This interpolation operator possesses the apw-orthogonality property v - Iyv Lq,, P2(7) for any v € HS(Q) +
M(T). The nonconforming Morley FEM approximates u € Hg(Q) with the unique discrete solution uy €
M(T) = Vnc to

apw (Un, Vi) = /D%WuM D3 umdx = (f,v)pz) YV € M(T). (3.13)
Q
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This represents (2.3) for F=TF-= f € L?(Q) and Q = id while Section 6.2 considers Q = id and Q = Jj
simultaneously in a new a posteriori analysis and Section 7 discusses general sources F € V". Note that ap is a
scalar-productin V+Vy. = Hg (€)+M(T) [23]. The residual from Section 3.1 reads Res = (f, )2 (o) ~apw(Unm, *) €
V.

3.2.5 Bounds from Morley interpolation

An approach similar to Subsection 3.2.2 for the Crouzeix-Raviart FEM fails immediately because S(z) (MHn Hg (Q)
is not rich enough: For many triangulations Sé (MHn Hg () = {0} is trivial, however not in general [38, Sect. 3.3].

However, the apy-orthogonality v — Iyyv Lay, P2(7) for all v € V with the Morley interpolation Iy allows
the arguments from Subsection 3.2.3 that lead in [2, 36] to

Res(v) (f,v-Iuv)e (o)
IIRes]+ := sup - (

= <mmllR2 Al (3.14)
vev IVIE vev vl T

The interpolation error estimate ||h‘72(v = Inv)|| < #um|v]| holds with constant »y < 0.2575 [12, Sect. 4].

3.3 Paradigm of unified a posteriori error analysis

The discussion in this subsection departs from the error identity of Theorem 3.1 that includes the dual norm
[IRes||« of the residual Res € V*. Recall that u € V solves (1.1) in V and uj, € V}, solves (2.3).

Subsection 3.1 discussed the error identity (3.1) with the dual norm of the residual given as a supremum over
all continuous test functions. Since uy, ¢ V in general, the computable (conforming) post-processing Jyup € V
serves as its approximation and motivates the error definition e := u - Jyuy € V on the continuous level and
InIncu - up € Vi on the discrete level. The efficient error estimator ||uy — Joup||n from (3.5) is computable and
a triangle inequality in the norm || - ||, and (2.1) lead to

llu=uplln < llell + lup = Jnunrllin, llell < llu = upllp + llup = Jnunlln. (3.15)

Recall F|y = F from (2.3). The first argument to establish an alternative abstract error bound applies the
continuous (resp. discrete) equation (1.1) (resp. (2.3)) to the test function J,e, € V (resp. ey = IpInce € Vp),
namely,

an(un, en) = F(Qen) = a(u, Jnen) - F(Jnen - Qep). (3.16)

For Q = Jp, the last term vanishes and (3.16) becomes the key identity ay(up, ep) = a(u, Jpey). The second
argument is the link of ay (up, ey) to a(Joup, Jnex) by (H),

ap(un, ep) = a(Jpup, Jnen) < Aullup = Jnupllnllerln- (3.17)

The (generalized) key identity (3.16) shows that the left-hand side of (3.17) is equal to a(e, Jrep) - IA-"([ nen—Qep).
This and the abbreviation w := e - e show

llell = a(e, w) + a(e, Jnen) < F(w) = a(Jnun, w) + F((Jn = Q)en) + Aulltn — Jntnllnllenlln

with a(u, w) = F(w) in the last step. This, the Cauchy inequality apw(up = Jaun, w) < llup = Jaugpllnllwll us-
ing (2.1), and the residual Res := F — apw(up, ) € V" reveal

llell® < (llwll + Asllenlln) i = Tnitalln + Res(w) + F(Jnen = Qep). (3.18)

Theorem 3.2 (alternative abstract error bound). Let J, € L(Vy; V) be a quasi-optimal smoother and suppose
(2.5)—(2.7) and (H). Then there exists a constant C; > 0 such that the error e := u - Jyuy € V for the solution
u € Vto(1.1) and uy € Vy, to (2.3) satisfies

= wnli? + el < € (lun = Jtnli2 + Res(e = Julnlnce) + F(Jnen - Qen)) (319
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Proof. Abbreviate w = e - Jpep, € V with ey, = IyIyce € Vy. Lemma 2.1 leads to C;llllwlll < |le - Incellpw <
(1+ [[IncIDllelll for C2 = (1 + Ap) (1 + Anc) (1 + Ap) and the operator norms control ||ey||n < [|Incll|[x|lllell. This,
a Young inequality, and (3.18) show

1 1 ~
zlllé’lll2 < EC§IIuh = Jnunll% + Res(w) + F(Jren - Qep)

with C3 := Co(1+|[Incl|) + Aul/Incll |l Ix]l- This and (3.15) conclude the proof of (3.19) for Cf = max{2+3C%,6}. O

The equivalence ||up = Jpupl|lp = minyey ||v = uy || from (2.4) provides
2 2 T ; 2
llu = unlly + llell” < Res(e = Jnlnnce) + F(Jnen = Qen) +min |[v = uplly

as an equivalent formulation of (3.19). The remaining parts of this paper discuss explicit bounds of the right-
hand side of (3.19) for a simultaneous a posteriori analysis of five nonstandard FEMs for the biharmonic equa-
tion.

4 Examples of lowest-order finite element schemes

This section introduces the spaces and transfer operators for five lowest-order methods for the biharmonic
equation.

4.1 Three second-order finite element spaces

Recall the space of piecewise polynomials Py (7T) of total degree at most k € N from Subsection 1.3. Let SX(7T) :=
Pr(T)NCY(Q) and SK(T) = {p € SK(T) | pjaq = 0} = P(T) N H} (Q). The associated L projection ITy : L*(Q) ~
Py (7) is defined by the L? orthogonality (1 - Iy)v L Py(7) for all v € L%(Q). Recall the nonconforming Morley
space M(7) from (3.12). Throughout the remaining parts of this paper on the biharmonic equation, specify
Ve i= M(7), V := HA(Q) c V := H*(T), and

M(7) for Morley
Vi =4 P2(7) for dG or WOPSIP 4.1)
Si(T)  for COIP.

4.2 Hilbert space of piecewise H? functions

The semi-scalar product apy := (D%, D4,)12(q) in V := H*(7) extends the energy scalar product a := apw|yxv
and the subspace (M(7), apw) is a Hilbert space. Recall the jump [v]g resp. normal jump [dv/dVE]g across an
edge E € & of a piecewise function v € H'(T) resp. v € H*(T) from Subsections 3.2.3 and 3.2.4. Let V(E) denote
the vertices of the edge E € €. Define the semi-scalar product jj, : V x V, for any v, w € v, by

; . [VIE(2) [W]E(2) oV ow
jn(v, w) = Z Z - n +f£[avELdst[avELds). 4.2)

Ec& \zeV(E)

Since j,(v,-) = 0 vanishes for any v € V + M(7), (H*(T), apw + jr) is a Hilbert space with the induced norm
[| * |n from (2.1).

Remark 4.1 (completeness of (V, apw + jp))- Itisclear [24, Sect. 4.1] that (V, [I-ln) is anormed linear space. Recall

that (H*(7), || * llg2()) equipped with the piecewise H* norm || - ”iﬂ(?) = Npeg - ||22(T) is a Banach space.
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id(T)

Fig. 3: The Lagrange Py, the Morley, and the HCT finite element (left to right).

Let Q : H%(T) — P1(7) denote the H? orthogonal projection onto the finite dimensional space P1(T) c H?(7)
and set X := (1 - Q)H?(7). The Bramble—Hilbert lemma (see [30, Lem. 11.9]) asserts that || - lpw is @ norm on
X stronger than the piecewise H> norm || - llz2(ry S 11+ lIn- Since [24, Thm. 4.1] shows that || - [ln < || - [|gz(g) 1S
also weaker than the piecewise H? norm, both norms are equivalent on X and X is complete. The direct sum
V=X Py(T) of two complete spaces is complete.

4.3 Classical and averaged Morley interpolation

The classical Morley interpolant from Subsection 3.2.4 is defined for functions in V +M(7) and has an extension
to piecewise H? functions. Define the average (@)r := % (@lr, + 9|7.) of @ € H'(T) across an interior edge
E = 9T, noT- € £(Q) of the adjacent triangles T, and T- € T as in Fig. 2 and (¢)r = ¢|¢ along a boundary
edge E € £(0Q).Let T(z) := {T € T| z € T} denote the |T(z)| € N many neighbouring trianglesof z € T € 7.

Definition 4.1 (Morley interpolation [24]). Given any piecewise function vyy € V, the Morley interpolation op-
erator Iy : V — Vy sets the degrees of freedom of the Morley finite element function Iyvpw € Vic = M(T)

by

Invpw(2) = [T D (pulr)(2)  for z e V(Q)
TeT(2)

olyv ov
f VTPV s ::f< pw> ds for E € E(Q).
E Ovp g\ Ovg E

It is well known that there is a unique quadratic polynomial Iyvvpw|r € P2(T) that assumes the above values
(ImVpw)(2) and fE O0Iyvpw/0veds at z € V(T) and for all E € £(T). Explicit formulas for the basis functions
can be found in [14]. This definition extends the classical Morley interpolation from Definition 3.1 to piecewise
H? functions in V = H2(T). For any v € H3(Q) + M(T), the apy-orthogonality

apw(v —Inqv,w2) =0 Vw; € Po(7) 4.3)
verifies the best-approximation property

v-Iyv = min |[jv-v . 44
IV = uvllpy = | min_ {1y = vallpw (44)

This does not extend to discontinuous functions v, € H?(7) in general. Recall || - ||, from (2.1).
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Theorem 4.1 (interpolation error [24, Thm. 4.3]). Any piecewise smooth function vyy € H2%(T) and its Morley in-
terpolation Iyvpw € M(T) from Definition 4.1 satisfy

(a) IVpw = ImVpwlln < [I(1 - HO)D%wpr” +jr (Vpw, pr)l/z
2
(b) 2 M v = Ivpwlmery = min_ Vg = Willn = Vg = TV
M

m=0

Since Iy € L(V; M(7)) is a bounded operator, the Cauchy inequality and the best-approximation property (4.4)
verify (2.6) for I := Iy with Apc = Am = 2 + || Im]|5- Indeed, for arbitrary v, € P2(7) andv € V,

vz = huvzllp < vz = vilp + v = Duvilpw + [Im(v = v2)lln < Amllv = vallp. 4.5)

4.4 Transfer operator I,

The abstract setting from Section 2.1 requires a transfer operator I, with (2.5) from V. := M(7) into V}, defined
in (4.1) for the different schemes. The natural choice I;, := id for the Morley, dG, and WOPSIP method with
Vie C Vp fulfils (2.5) with Aj, = 0. The situation is different for the C°IP method with Voe ¢ V), := S3(7) and
requires the Lagrange interpolation Iy, = Ic : M(7) - S(Z)(TI) defined, for all vy € M(7), by

vm(z) VzeV
(Icvm)(2) =1 (vm)g (z) forz =mid(E), E € E(Q) (4.6)
0 for z = mid(E), E € £(0Q).

(It is well known that there exists a unique Icvy|r € Po(T) with prescribed values at the vertices and edge
midpoints from the unisolvence of the P, Lagrange finite element.) Lemma 3.2 in [15] establishes (2.5) for the
operator I, = Ic with Ay, = 1.

4.5 Companion operator J

A conforming finite-dimensional subspace of H(Z)(Q) is the Hsieh—Clough-Tocher (HCT) [27, Ch.6] space
HCT(T7) := {v e H(Z)(Q) 1 V|7 € P3(X(T)) for all T € T} with the subtriangulation X(T) := {conv{E, mid(T)} :
E € E(T)} of T € T obtained by joining the vertices of T with mid(T). Figure 3 shows the degrees of freedom
of the HCT finite element that extend those of the Morley element and facilitate the design of a right-inverse to
Iy : V- M().

Lemma 4.1 (right-inverse [25, 33, 42]). There exists a linear right-inverse | : M(T) —» HCT(T) + Pg(7) N H(z)(Q)
for I : V. — M(T) and a constant Ay, that exclusively depends on the shape regularity, such that any vy € M(7T)
satisfies

Iva = Jvmllpw < Aymin lva = vilpw-

See [25, Sect. 5] for the definition of J € L(Vy; V). Note that Lemma 4.1 verifies (2.7) for the conforming com-
panion J. Recall from the previous subsections that In. = Iy € L(I7; Vne) and Iy, € L(Vye; Vi) verify (2.6)-(2.5).
An immediate consequence of Lemma 2.2 is that J, = Iy € L(V;V)isa quasi-optimal smoother. We refer
to [25] for a 3D version.
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5 Building blocks for explicit residual-based a posteriori error
estimators

This section establishes bounds on the error contributions in the right-hand side of (3.19). Recall the residual
Res = F - apw(up,*) € V* from Section 3 and set Vy := M(7) with interpolation operator I, = Iy and
quasi-optimal smoother J, = JIy; throughout the remaining parts of this paper.

5.1 Estimates for 1-JpI,Iy and (1-Jp)IpIn

The linear operators 1 - JpIpIy : V = Vand Inly — JpIlply : V — V are stable in the energy norm.

Lemma 5.1 (stability). Anyv e V = H2(Q) withw = (1~ JpIpIm)v € Vorw = (1 - Jp)IpInv € V satisfies

2
-2 -3/2 -1/2g
DBy + Y (IR WU g+ IR PV, g ) < CHIVIE.
m=0 EcE(Q)
Proof. Since J is a right-inverse of I, the functions v, vy = Iyv, vy = Iyvm, IMvy and Jpvy in H2(T) are
continuous at any vertex z € V and coincide at z € V. Hence, w|r € H%(T) vanishes at the three vertices of the
triangle T € 7. It is textbook analysis [3, 6, 27, 30] to derive the bounds

2
-27512 2 11512
Z |h? W|H"‘(T) < CBH|W|H2(T) (51)

m=0

from an application of the Bramble-Hilbert lemma with a constant Cgy > 0 and we refer to [17, Sect. 3] for
explicit constants in terms of the maximal angles in the triangle T € 7. The sum of all those estimates (5.1)
results in

2

-27512 2 =112
DR W ) < ChyllWly-
m=0

The previous estimate, [|Wllpw < [[W[ln < Cslv]| with Cs := max{1, Cj} (1+A}) (1+Anc) (1+Ap) from Lemma 2.1-
2.2 and (4.4) conclude the proof of

2
DRI B( ) < CayCEIVIIP. 5.2)
m=0

Given any interior edge E € £(€2) with adjacent triangle T(E) € T, the trace inequality [30, Eq. (12.17)] provides
a constant Cy > 0 exclusively depending on the shape-regularity with
-3/2 “1/295, “2(5 -5, ~
h, / Wll2g) + Ay / IVWll2g) < Cur (hT2||W||L2(T(E)) + W7 Wgn (reey) + |W|H2(T(E))) .
This and the sum over the interior edges E € £(Q) result in
3/2 1/2 2 :
2 (B lger) + R PNV leey ) <3CE DT Y IRF W -
EcE(Q) m=0 EcE(Q)

Since every triangle T(E) € T is counted at most 3 times (once for every edge E € £(T(E))) in the last sum, the
claim follows with C4 := (3Cy + 1)CpyCs. O

Corollary 5.1 (bound for F € [2(Q)). Any F = f € L*(Q) and v € V = HX(Q) with w := (1 - JpIpIy)v € V or
w = (1-Jp)IpIyv € V satisfy

/Q Fiv dx < CollREfI IVII- 53)
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Proof. This follows from Lemma 5.1 and a Cauchy inequality in L?(Q) in
/Qfﬂ/ dx < |1REfIIRGEWI < Coll R3S VI o

Define the oscillations of f € L%(Q) by oscy(f, T) = ||k (f = Iaf)||12(r) and abbreviate

0scz(f, 8) = {Z osc3(f, T)
Te8

for a subset 8 € T of triangles in 7. The efficiency of the term ||h2,If l2(ry is known, e.g., from [5, Lem. 4.2,
Rem. 4.4]; Section 7 treats a more general source F € V.

Lemma 5.2 (efficiency up to oscillations [5]). Let u € V be the weak solution to (1.1) for a right-hand side F = f €
L*(Q). Then ||haf |27y < [u = Inulg: () + 0sca(f, T).

5.2 Error estimates for apy (vs, W)

Recall the abbreviation w := v - J,IIyv for v € V. Since J from Subsection 4.5 is a right-inverse of the Morley
interpolation Iy from Subsection 4.3, the key observation for the situation Ij, = id is

Iyw = Iyv - IM]hIhIMV = IM(V - IhIMV) =0. (5.4

This is the case for the Morley, dG, and WOPSIP methods and, hence, the a-orthogonality of the Morley interpo-
lation of w € V and Iyw = 0 imply apw(up, w) = 0. For the COIP method with Vj, = S(Z)(‘I) and I, = I¢ # id from
Subsection 4.4 the situation differs and is the content of the remaining part of this subsection.

Lemma 5.3 (bound for apw(vp, w)). Any vy € Vi andv € V withw = v - JpIpIyv satisfies

if I =id
CayJ S MENOSVALEI, o IVIl I = Ic.

|apw (vi, W)| <

Proof. With the remark succeeding (5.4), the claim holds for I;, = id and it remains the case I;, = I¢. Since the
piecewise Hessian DIZ,th of vy, € 8(2)(7 ) is piecewise constant, no volume contributions arise in a piecewise
integration by parts with the conforming test function w € V. A careful re-arrangement of the contributions
along the boundary 0T of T € T reveals

apw(vh; W) = Z /VW . [Drz)wvh]EVE ds. (5.5)
Ece@) VE

Recall from the proof of Lemma 5.1 that w(z) = 0 vanishes at any vertex, whence Lp ow/ds ds = 0 on any edge
E € &. Since the matrix [DIZ,th]E € Py(E;S) is constant, the split Vw = (0w/0s) 1 + (0w/0Vvg)vg along E € &
and the Cauchy inequality show

ow

ow _
/VW. [D%’WV”]EVEdSZ/T[G%VVh]E ds < h;'/? S,

E £ OVE

hgz ||[a\2/Vvh]E”LZ(E) .
12(E)

Notice that the trace of Vw - vg along E is continuous for w € V. This, a Cauchy inequality in ¢2, and
low/ovellLz ey < [IVWI 2 (k) verify

aPW(Vh:W)<\/ Z hE”[a%vvh]E“izw)\/ Z W VWIS, g, -
E E

€&(Q) €e(Q)

This and Lemma 5.1 conclude the proof. O
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The efficiency estimate of the jump contributions in Lemma 5.3 is known, e.g., from the C°IP method [4]. For
any edge E € &, the sub-triangulation T(w(E)) := {T € T | E c 0T} in the edge-patch w(E) = int(T, U T-)
consists of one or two triangles.

Lemma 5.4 (see [4, Lem.4.3]). Letu € V solve (1.1) for F = f € L*(Q). Any v, € P,(7) and any edge E € & satisfy
P05 vl Ellze ) S 1= Valar 7wy +0sc2(f, T(@(E)).
Proof. The proof of [4, Lem. 4.3] for the jump [82,v,] of any vy, € P»(T) shows that

1/2
R 21102, valEllz e < U= Vil wE) + IRl wE) -

Lemma 5.2 and |u — ImU|gz(py = Miny, ep, (1) [U = Vplgz(r) @s in (4.4) conclude the proof. m]

5.3 Estimate of ||vy —JpVhlln

This subsection discusses reliable and efficient bounds of ||vj, = J, v || in terms of two different jump terms that
appear in the a posteriori analysis, e.g., in [2, 4, 5, 36].

Theorem 5.1 (reliability and efficiency of ||v, = JyVpllp). Any vy € V}, satisfies

: 2 2 - 2 2 :
min [[v = valf = 1va = Jovall} = > RellDFwvalETellz g +Jn (Vo i)

Ee&
[6vh] 2
OVE | L2(E)

= > R vl gl g + 3t
Ecé&

The remaining parts of this subsection are devoted to the proof and depart with the following generalization

of [36, Thm. 2.1].

Lemma 5.5 (bound for [|vy, = Jyvpllp). Any vy € V}, satisfies

Cot v =Javally < D Rell[DFwVRlETellZs g +in(Vas V).
Ecé

Proof. Given any v, € Vp, set vy = Iyvp € M(7). A triangle inequality and (2.1) verify ||[vy = Jpvplln <
Ve = vmlln + llvm = Jvmllpw. It follows from [25, Lem. 5.1] that

2 2 2
s = Jomllge < " RelDgu vl ETel2e g -
Eecé&

This, a triangle inequality, and the discrete trace inequality hé/ 2||D12)W(vh - vl S ID?(vy, = vl L2(T)
from [30, Lem. 12.8] result in

2 2 2 2
v = Jomil < > RENDEVRIETEN: ) + 1V = Vil
Eeég

This and [|vy, = Vullpw < [[Va = Valln S jn(Va, vi)'/? from (2.1) and Theorem 4.1.a with D3,,v;, € Py(T) conclude
the proof. m]

The inverse inequality leads to an alternative upper bound in Lemma 5.5.

Vil (2) )2 2

Lemma 5.6 (alternative bound). Any vy, € Vj, and any edge E € & satisfy
R L D W
E

+ f [?] ds
2€V(E) ELOVE g

< 7 (R IVRIENE ) + B ITOVR/VELEI, )
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Proof. The split D?vy, - 7 = (8%v/9s9s)TE + (8%vy/dsdvE) v, the Cauchy inequality, and the linearity of the
jump show
2

0s0s *

L2(E)

I [Dngh]}s “Tell2E) < [(Vhle

0 |0dvy
s 6\/5 E

L2(E)
The inverse inequality [30, Lem. 12.1] states the existence of a constant Cipy > 0 With |p|gm gy < CinghZ"IPl12(£)

and [Ipllzeg) < Cinvhé/p_l/qllpllm(g) forany p € Po(E) and m € Ny, 1 < p, q < . Since [vy]g and [0vy/0VE]E
are quadratic polynomials on E, this shows

R IID3vnlE - Telleey < Cine (R IRl 2 g + iy 2 1T0VR/OVE] L2 |

[[vale(2)] - -3/2
D e < 2hvalEle ey < 2Cmeh VALl ey
2eV(E) E

f [ avh
E|OVE
The sum of these terms squared and the Cauchy inequality (A +B)? < 24% +2B? for A, B € R conclude the proof

with Cy = 6C2 m]

inv’

d
E

s| < h5118vn/@VElEllLs ey < Cinvhy *I1[8Vn/OVEEllz2 -

Proof of Theorem 5.1. The reliability of the first estimator follows from Lemma 5.5. This and Lemma 5.6 provide
vr = Javally < D Rell[D3wvnletellfs g +in(Vhs v)

Ecé
. - ovp 2
S W 1val g7 g + hE' —] :
Eze;(l( P OVE |Ellp2 (k)
Since the jumps [Jvp]g and [0, vy /0VvE]E vanish for a conforming function J,vy, € V on any edge E € € and
v = Jnvallpw > O, the last term is bounded by

2

[O(Vh _]th)]
aVE E

— 2 —
Ve = JnvrllZ + > (h; 1vh = Tnval el ) + 17 ) = lva = Juval’

Eeé L*(E)
with the equivalence of norms in V + P;(7) from [15, Thm. 4.1] in the last step. This proves the equivalence of
both estimators to ||[vy = JyVplln < Cyminyey ||V - villp by the quasi-optimality (2.4) of Jj,. The trivial estimate

minyey ||V = vulln < IV = JuVrlln concludes the proof. O

6 Unified a posteriori error control

This section reconsiders the biharmonic equation (3.6) with weak solution u € V := Hg(sz) and the discrete
solution uy € Vj of the Morley, dG, CIP, and WOPSIP schemes defined in Subsections 6.2—6.6. The presentation
unifies the a posteriori error analysis of the well-known discretization schemes with orignal and modified right-
hand side.

6.1 Discretisation of the biharmonic equation

Recall that V = H?(7) is a Hilbert space with scalar product apw + jp. Recall the discrete spaces Ve = M(7)
and V}, from Section 4. The weak solution u € V := HS(Q) to the biharmonic equation A%u = F € V" solves (1.1)
with the energy scalar product a := apw|y«y on V and apy : V x V — R given in Subsection 4.2.

Recall J, = JIy € L(I7; V) from Section 4. Each method defines its particular discrete bilinear form ay, :
(Vi + M(7)) x (Vi + M(7)) — R in the subsequent subsections. The discrete solution uy € V}, solves

an(un,vn) = (f, QVh)rz@)  YVvh € Vi (6.1)
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with f € L?(Q) and Q € {id, J;} in this section. The discrete problem (6.1) is a rewriting of (2.3) for F=F= fe
L?(Q) without smoother Q := id or with the quasi-optimal (by Lemma 2.2) smoother Q := Jj. Section 7 discusses
more general right-hand sides F € V" with a natural extension F € H%(7)*. The key assumption (H) from [24]
holds for the Morley, dG, and COTP discretisations. Hence, the a priori estimate from Theorem 2.2 holds for these
methods and leads to the quasi-best approximation property

u-u < llu-Ivu = min ||lu-v . (6.2)
= wnlln < W= Bl = | il = vallpw

In particular, this shows equivalence of these methods from an a priori point of view.

6.2 Morley FEM
The Morley FEM for the biharmonic equation (6.1) comes with aj := apw. The subsequent result recovers the
equivalent a posteriori estimates from [36, Thm. 2.2] and [2, Eq. (3.2)].

Theorem 6.1 (a posteriori estimate). The discrete Morley solution uy € Vy to (6.1) and the exact solution u € V
to (1.1) with source f € L*(Q) satisfy

Il = unlly +0sc3(f) = 1RSI + Z;: hell (D unlETE N7 )
Ee

= IREF1P+ 3 (e Hunl s gy + 3t

Eeég

[6uh] 2
OVE |Elip2(E) .

Proof. Setw = e-Jpey € V,e, = Iye € M(T)and w := (1-Jy)ey € V+M(T) for e := u-J,uy and recall I, = id
from Subsection 4.4. Since apw (Up, w) = 0 from Lemma 5.3, the definition of the residual and F(w) < || h? “flllell
from Corollary 5.1 show

The equivalence constants exclusively depend on the shape-regularity of 7.

Res(w) := F(W) = apw(up, w) = F(w) < RS lllell.

Since (f, Jnen — Qen)r2(q) = 0 vanishes for Q = Jp, Corollary 5.1 provides

/ Fnen - Qex) dx < 27 1llell 6.3)

for Q =id and Q = Jj. The two previously displayed estimates and (3.15) verify
Res(w) +/f(]heh = Qep) dx < [|h3 N (I = unlllpw + 1w = Jnttnlln)-

The stability of the L? projection shows osc, (f) < ||h? 5f1l. Hence, Theorem 3.2 plus a weighted Young inequality
result in

llu = up 3y +0sc5(F) < [1RZFII* + llup = Jnunll3- (6.4)

Since jp (up, up) = 0 for up € M(7), Theorem 5.1 bounds ||uy - ]huh||2 in (6.4) by either of the jump terms. This
proves the reliability for both estimators. The efficiency of ||h? 7/l follows from Lemma 5.2 while Theorem 5.1
verifies the efficiency for all jump terms. m]

6.3 Discontinuous Galerkin 1

Recall the definition of the jump [-]; and average () ; (applied componentwise to matrix-valued functions) along
an edge E € € from Subsection 3.2 and 4.3.
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The bilinear form
ah(') ) = apW(') ) + bh(') ) + CdG(', ) (6.5)

for the discontinuous Galerkin method (dG) [1, 32] depends on -1 < ® < 1 and parameters g1, o3 > 0. For every
V2, Wz € Py(T) D Ve + Vi,

bp(va, wy) = -0F(vy, wa) — J(wa, v2) (6.6a)
d(vg, wy) = Z/ prvz <Dpwwz> veds (6.6b)
Eeé&
cac(vy, w '—Z ﬂ/[v] [wa]p ds % % ows ds (6.6¢)
ag(Va, wp) = 24\ n 21p [W2]p ds+ — ne ave |, | vz |, . .

This is the symmetric (resp. non symmetric) interior penalty Galerkin formulation for ® = 1 (resp. ® = -1). An
appropriate choice [32, 40] of the parameters g, g, guarantees Vy-ellipticity (2.2). Throughout this paper, (2.2)
is assumed for g; = 03 = 1. The following theorem recovers the known a posteriori error estimator from [21]
for the linear part.

Theorem 6.2 (a posteriori estimate). The discrete dG solution u, € Vj, to (6.1) with ay from (6.5) and the exact
solution u € V to (1.1) with f € L*(Q) satisfy

I = unllZ +05e3(F) = REFI+ > hell DR unl el g, + i (itn )
Eeé
B
OVE |llz2 (k)

= [1R3AI2+ )" [ unl gl g, + hE'
Ecé
Proof. Recall I, = id from Subsection 4.4 and, thus, the proof of the reliability and efficiency follows the proof
of Theorem 6.1 verbatim except for j, (up, up) # 0 in general. The additional term j (up, uy) from the reliability
estimate of ||up — Joup||n in Lemma 5.5 enters the right-hand side of the first estimator. Since ||u - uy, ||fl bounds
the efficient jump terms j (up, up) = jn(u = up, u - uy) by definition in (2.1), this concludes the proof. O

The equivalence constants exclusively depend on the shape-regularity of 7.

Corollary 6.1. The discrete dG solution uy € Vj, to (6.1) with ay from (6.5) and the exact solution u € V to (1.1)
and f € L*(Q) satisfy

- 2
llw = unll3y + cag(Un, un) +0sc3(f) = AN + cag (Un, up).
p

Proof. Since 01 = g, = 1, the jump contributions in the second estimator in Theorem 6.2 are equivalent to
cqc(Up, Up). Because cqg (v, -) = Ovanishesforany v € V, the statement follows with the equivalence ||u—uy, ||fl =
llu = upll3w + cag (un, up) from [15, Thm. 4.1]. O

6.4 Discontinuous Galerkin 2

The identity a(v, w) = (Av, Aw) 12(Q) for v, w € V motivates the alternative discontinuous Galerkin method
from [34, 40] with discrete bilinear form

ap = (Apw, pr')LZ(Q) + by + cqg- (6.7)

The semi-scalar product cq is (6.6¢) and by, reads, for any vy, wy € Py(T) D Ve + Vi,

bp(vz, wa) := = ©J(va, wa) — J(w2, va) (6.82)
ov
J(vy, W) :=EZE;€ / [6\/125] {(Apww2) . ds (6.8b)

for -1 < © < 1. Appropriate parameters gi, g, in cqg guarantee Vy-ellipticity (2.2) of ap, [40]. The bilinear
form (6.7) allows for (H).
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Lemma 6.1 (quasi-best approximation). The discontinuous Galerkin method with ay, from (6.7) satisfies (H) and
the quasi-best approximation property (6.2).

Proof. Given vy, w, € Vy, abbreviate v := Jpvp,w = Jpwyp € Vand vy = Iyvy, wy = Inywp € M(T).
Algebraic manipulations as in [24, Eq. (6.15)] reveal
ap(v, wp) — a(v, w) = (Apw(Vp = V), ApwWh)12() + br(Vi = v, Wp) (6.9)
+ (ApwVM, Apw(Wp = W) 12(q) + bn(Vm, Wi = W)
+ Cag (Vi Wi) + (ApwVM, ApwWh) 12 (q) — a(V, w).

Cauchy inequalities, [|Apw - || < V2| - llpw, the boundedness of by, and (4.5) provide

(Apw (Vi = VM), ApwWh)12(@) + (Vi = VM, Wi) < (2 + (1Dl AmIIV = vallpllwnlln- (6.10)

Recall the definition of the jump [-]; and average (-) along an edge E € € from Subsection 3.2 and 4.3 and the
product rule for jump terms [ab]y = (a)g [b]g + [a]g (b)[ for any a, b € H'(T). This and an integration by
parts verify

(ApwvMm, Apw(Wp — WM))LZ(Q) + by (vy, wy — wyp) (6.11)

a(Wh WM) oV ~ ~
_Eezé/([prvM < Vg >E © a_VEE<APW(Wh WM)>E) ds=0

with [ (8(wy ~ Iuw)/0vE)g ds = [, [0vm/dVE]g ds = 0 for any edge E € € from the definition of Iy in the
last step. Since the Morley interpolation I exactly interpolates the integral mean over an edge E € & of the
normal derivative of w = Jwy € V (from IyyJ = 1), an integration by parts for any p; € P,(T) shows the
orthogonality

(ApwP2. Apw(W = W)z = > (Apup2) /E 3((1- Iy)Jwy)/vg ds = 0.
Eecé&
Since a(v, w) = (Av, AW);2 g, this, a Cauchy inequality, and [|Apw - || < V2| - lllpw imply
(AvaM) APWWM)LZ(Q) - a(V, W) = (pr(l _])VM, ApW]WM)LZ(Q)
<21+ Am) 1l mllp v = vallpllwhlp-

This, the combination of (6.9) with (6.10)—(6.11), and cag(vh, wp) < Acllv = vpllpllwnlln for Ac < 1 from
[24, Sect. 7] conclude the proof of (H). The quasi-best approximation property (6.2) is a consequence of (H) and
Theorem 2.2. i

Since the dG formulations from Subsections 6.3-6.4 allow for (H) and utilize the same space Vj, = Py(7), the a
posteriori results from Subsection 6.3 follow verbatim for the alternative dG formulation in this subsection.

Theorem 6.3 (a posteriori estimate). The discrete dG solution uy € Vj to (6.1) with ay, from (6.7) and the exact
solution u € V to (1.1) with f € L?(Q) satisfy

lu = unll} + 0s3(f) = IREFI? + > el D3y unlete |2 g, +Jn(ttn, un)

Eecé
2
auh
= IREFIE+ > W unl gl gy + hE 6—] :
et VE lEllL2 ()

The equivalence constants exclusively depend on the shape-regularity of 7.

The following corollary provides an improvement to the a posteriori error estimator that comes without the
jump term || [ApwUr]Ellz2(g) OVer an interior edge E € £(2) and so refines the a posteriori result in [34].

Corollary 6.2 (see [34]). The discrete dG solution uy, € Vj to (6.1) with a, from (6.7) and the exact solution u € V
to (1.1) with f € L?(Q) satisfy

2 20ey o B2 FUI2
llu = unllpw + cac(un, un) +0scy(f) = [h5f1l° + cag (Un, un)-
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6.5 CYinterior penalty (C°IP)

The bilinear form ap = apw + by + cpp for COIP [7, 21] utilizes by, from (6.6a) and depends on the parameter
op > 0in

aip 6\)2 aWZ
crp(ve, Wy) = /[ ] [ ] ds (6.12a)
J;E ovg oV

for vy, wy € Vi, := Py(7). The scheme is a modification of the dG method in Section 6.3 with trial and test func-
tions restricted to the continuous piecewise polynomials Vj, = S(Z) (7). For oyp = 1 sufficiently large but bounded,
the bilinear form is coercive. The abstract framework applies the transfer operator I, = Ic € L(Vyc; Vy) from
Subsection 4.4.

Theorem 6.4 (a posteriori estimate). The discrete solution uy, € Vy, of the C°IP method to (6.1) and the exact solu-
tion u € V to (1.1) with f € L?(Q) satisfy

2 2
It = uplly + oscy (f)

= IR3fI% + ) el D unletellpy + > ReN[O3unlE 2 ) +nuns )
Ecé E€E(Q)

<irpite 3| 5

Ecé
The equivalence constants exclusively depend on the shape-regularity of 7.

+ > el unlel, .
2
ENL2(E)  Eee(Q)

Proof. Setw = (1-Jplchw)e € Vand w = (Q - Jp)IcIye € V + S%(‘J’) for e := u - Jpuy € V. The definition of
the residual, Corollary 5.1, and Lemma 5.3 with Ij, = I show

Res(w) = F(w) - apw(uh,W)<<||h f||+\/ Z hell[03,unlell7, gz, |llell-
E

ce(Q)

Theorem 3.2 and the definition of the residual result in |u - uh||2 llup = Jhunll® + Res(w) - l?(ﬁ/) Since
the stability of the L? projection shows osc;(f) < ||h? +f1l, this, the bound F(w) ||h2 =flllell from (6.3), and a
weighted Young inequality reveal

= unl} +0sG5(f) < IREAI + lun = Junlly + D" Rell[03,unlels g,
E€E(Q)
Theorem 5.1 bounds ||uy — Jpuy||? either in terms of Ypee hell [Dpwuh]ETEH%Z(E) plus ji (up, up) or in terms of
Yrpeeh 1|| [auh/avE]Ean(E) (because [uy]g = 0 for uy € Sﬁ(‘D). This concludes the proof of the reliability.

Lemma 5.4 provides the efficiency of the normal-normal jumps. The efficiency of the remaining terms follows
verbatim as in the proof of Theorem 6.2. O

The following corollary recovers the a posteriori result from [4, Sects. 3 and 4].
Corollary 6.3 (see [4]). The discrete C°IP solution uj € Vj to (6.1) and the exact solution u € V to (1.1) with
f € L*(Q) satisfy

Il = wnlly + e (un, wn) + 0563 () = IRESI2 + ecwun, wn) + D hell[03,unlels g, -

ECE(Q)

Proof. Since [vy]g = 0 for any vy, € S3(T), cip = cqg coincide in S3(T) x S2(7T) and the proof follows verbatim
that of Corollary 6.1; further details are omitted. O
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6.6 WOPSIP

The weakly over-penalized symmetric interior penalty (WOPSIP) scheme [5] is a penalty method with the sta-
bilisation term

. -2 [VlE(z) [W]g(2) ov ow
cp(v, w) = ZhE Z - e +fg[a_vELds fE[a—vELds) (6.13)

Eeé& zeV(E)

for piecewise smooth functions v,w € H?(7). The difference of c¢p in (6.13) to j, from (4.2) is the over-
pernalisation by an additional negative power of the mesh size hg. This and hpax = maXreghr establish

jn(v,v) < hacp(v, V) Yve V= HX(T). (6.14)

Hence || |lp == (IlI- |||}2)W +cp (s, -))1/z isanormin V stronger than || - ||,. The WOPSIP method computes the discrete
solution up € Vy := P2(7) to (6.1) with the bilinear form aj := apw + cp and fits into the abstract setting with
Ve = M(7).

The main difference to the methods under consideration above is the missing quasi-best approximation
property due to the penalisation. Instead of this, the following a priori estimate for the energy norm

2 2 2
llu = unllpw + co(un, un) < llu = Intlllpy + s Intllipy

holds with the extra term || thMulllﬁw (see [24, Thm. 9.1]). This suggests that (H) does not hold, but the methodol-
ogy of the a posteriori analysis of Subsection 3.3 is still applicable. Indeed, the key assumption only enters in the
error bound from Theorem 3.2 and a careful analysis with I, = id leads to (3.19). This allows the application of
the developed tool chain and leads to a new a posteriori estimate without the WOPSIP stabilisation term (6.13)
but still with the weaker stabilization jp,.

Theorem 6.5 (a posteriori estimate). The WOPSIP solution uy, € Po(7) to (6.1) and the exact solutionu € V to(1.1)
with f € L*(Q) satisfy

l[u = upl, + osc3(f) = |h3fII* + Z hE||[DI%wuh]ETE||%z(E) +Jn(up, up)
Eeé&
[auh] 2
OVE |gllr2 (k)

= ISP+ D [ Hunlgl2e ) + it
Eec&
Proof. Lete = u- Jpup € V and recall J,, = JIy as well as IyJ = id on V.. The key assumption (H) enters
the proof of Theorem 3.2 with (3.17). This proof exploits that the transfer operator I, :== id : V. = Vj, is the
identity and deduces (3.17) directly (and so circumvents (H)). Indeed, since cp (-, vpe) = 0 for any v € V. and
apw (Up, en — Jnen) = 0 by the orthogonality (4.3) for ey, := IyIve = ImJnen € Vi,

The equivalence constants exclusively depend on the shape-regularity of 7.

ap(up, e) = apw(Up, €p) = apw(Un, Jnen)
ap(up, ep) = a(JpUp, Jnen) = apw(Up = Jatn, Jnen) < Wnllllun = Jnttnllpwllenllpw
follow with a Cauchy inequality in the last step. Hence (3.17) even holds with the weaker norm || - [lpw < || * |-
The remaining parts of the proof for Theorem 3.2 apply analogously and verify
= wnli2 < llwn - Juunl? + Res(w) - /wa o = flup - Tt 2 + /Qf(w - ) dx
with apw(up, w) = 0 from Lemma 5.3 for w := e - JpIpIye and W = Qep, - Jpep € V + V. The remaining
arguments follow the proofs of Theorem 6.2 and Theorem 6.1 verbatim. m]

The inclusion of the stabilisation term cp on both sides of the error estimate in Theorem 6.5 recovers the a
posteriori estimate from [5, Sect. 6].
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Corollary 6.4 (see [5]). The discrete WOPSIP solution uy € Vj, to (6.1) and the exact solution u € V to (1.1) with
f € L*(Q) satisfy

2 2
llu = upllipw + cp(un, un) + 0scy(f)

- - oup 2
= [|h3f11* + 2 Wunlgll7e g, + ME [—] +cp(Up, Up).
T LZE;: E 2@ O | Bvg |, L
The equivalence constants exclusively depend on the shape-regularity of 7. O

Proof. This follows from Corollary 6.1 with ¢p(-,v) = 0 for all v € V and jj(up, up) < cp(up, up) from (6.14);
further details are omitted. O

7 More general sources

This section considers a class of rather general right-hand sides F € V" and introduces an estimator for the
residual that is reliable and efficient up to a data approximation error.

7.1 A general class of source terms

Every functional in F € V* = H%(Q) has (non-unique) representations by volume loads f, € L?(Q) for all 6
multi-indices a = (a1, a) € N3 of order |a| := a1 + a < 2, written (fo)|q|<z € L*(Q)%, with

F(p) = (F, p) = Z (fo, 0%@)12) Vo € HX(Q). (7.1)
|al<2
Theorem 7.1 (characterization). Given any F € H 2(Q) there exist (fo)|aj<2 € L*()® such that (7.1) holds. The
norm of F in H™%(Q) (the dual of H%(<) endowed with the full Sobolev norm of H*(Q)) is the minimum

I Fll g2 (0 = min{ Z|a|<2 fall?, ) @ Faliaicz € LA(Q)° satisfies (7.1)}.

Proof. This is a natural generalization of the corresponding result for functionals in H 1(Q), e.g., [31, Sect.5.9,
Thm. 1]; hence further details are omitted. O

Remark 7.1 (characterization for semi-norm || - ||). The norm representation of Theorem 7.1 is given in the (full)
norm || - || g2(q) of H 2(Q). A corresponding assertion

Fl|« == sup FW)/|[v|| = min {|lo . F=(0,D* 7.2
(gl veg W/lIvIl GeLz(Q;S){ll 22 () ( )iz} (7.2)

follows from the Riesz representation theorem for the H> seminorm || - || = | - | m2(q) as well. The minimizer
o = D*u € L*(©; S) in (7.2) is the Hessian of the weak solution u € V to (1.1).

A more general source term may include point forces §, € V" at finitely many points z € A c Q and line loads
(805 )12(ry)> (&1, Ov)12(ry) along the hypersurfaces I'y, Iy ¢ Q in addition to (7.1). The Dirac delta distribution
6,(f) = f(z) evaluates f € V c C(Q) at the atom z and we suppose for simplicity that the mesh is adapted in
that A c V(Q) consists of interior vertices. Recall the set T7(z) := {T € T : z € T} of neighbouring triangles
from Subsection 4.3 and suppose that the mesh resolves I'; = | £(Ij) with £(T}) := {E € € : int(E) c T} for
j=0,1.

This section considers sources F := flv € V" in terms of an extended source F € V* = H2(T)", defined, for
V€ H2(7), by

F@) = ) (for 05V + . (& @Dy + Y, Y Bralr(2). (73)

laf<2 j=0,1 2€A TeT(2)
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The given data in (7.3) are Lebesgue functions (f;)|4/<2 € L2(©)8, line loads gj € LZ(Fj) along the hypersurface
Ij ¢ UE&(Q) forj = 0,1, and point forces of intensity 5, = XTeT(2) BrzeRatze AcV(Q).

Remark 7.2 (influence of F). Since F o J, = F o J, holds (for the five schemes from Section 6) with the smoother
Q = Jy, the discrete solution u, € Vj to (2.3) depends on F but is independent of its representation (7.3). The
classical scheme without smoother Q = id, however, depends on the chosen data for the representation F.

Throughout this section, we suppose that we have piecewise smooth approximations G; € L? (Tj) of gjforj=0,1
and F, € H'9(T) of f, in (7.3) for |a| < 2 to define an approximation Fypy of F with piecewise smooth data. The
reason for this approximation is that we shall integrate by parts with piecewise smooth functions to reveal an
efficient a posteriori upper error bound in the subsequent subsection.

Definition 7.1 (data approximation error). The approximated source term reads

Fapx() = > (Fo, 03 V)p2y + ». > (G (@ Wp)e) (7.4)

laj<2 j=0,1 E€E(T))

for all v € H?(7). The data approximation error apx(F,T) := ( X ;. apx(F, T))l/ 2

the contribution

2- 3/2-j
apxt(F,T) = 3 Ihy “fa=Follary+ Y. D) g7 (&= Glidap-
la|<2 Jj=0,1 E€E(T})NE(T)

has, on the triangle T € 7,

The data approximation error generalizes data oscillations. Let ITg x : L?(E) - Py(E) denote the L? projection
onto Py (E) onthe edge E € €.

Example 7.1 (data oscillations). The natural candidates for (Fg)|q<z and Gy, G1 in (7.4) are L? projections onto
polynomials of degree at most k € Ny. Then the data approximation error apx?(F, T) becomes an oscillation
term

osc(F,7) = Y IS A=) falldagy + D >, Iy 7 (=T gk -

lal<2 J=0,1 E€&(Ty)

Lemma 7.1 (data approximation error). With the linear operators J, Iy, I, from Table 2,
max {II(F = Faps) (1 = JuTnT)ll, I1CE = Faps) (1 = Ji) Ty} < Cy apx(F, 7).

Proof. Recall that w = (1 - JpIpIy)v vanishes at the vertices for all v € V and for all five schemes under
consideration. This shows

(F~Fap) (W) = " (fu = Fa, 8" W)z + . (& = Gj, % W)zary) < Caapx(F, T)Ivl]
lal<2 j=01

with a Cauchy inequality and the constant C4 from Lemma 5.1 in the last step. Analog arguments provide the
asserted bound of [[|(F = Fapx) o (1 = Ju)IpDull+. m|

7.2 Estimator for the residual

The paradigm shift in this paper is that Theorem 3.2 provides an upper error bound with a specific structure of
the test function as an element in (1 - J,InIy) V for the residual part. This subsection designs an estimator u(7)
for the dual norm ||Reso (1-J,IpIy)l|+ of the residual that is reliable and efficient up to the data approximation
error apx(F, 7)

lIRes o (1 = JpIpIw)lll+ < u(T) +apx(F,T) < [lu = unllpw + apx(F, 7). (7.5)

The residual Res := F - apw(up, *) € V" includes the discrete solution uj € Vj to (2.3) with or without smoother
Q € {id, J}. The analysis in this section for an upper bound of the dual norm ||Res o (1 - JpIpIm)ll+ allows for
a general discrete object uy € Vj; said differently, up € Vj, is arbitrary in (7.5).
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To define the estimator contributions in u(7), abbreviate Fy := F(q0) € LY(Q),
F F 1F
= "em@ry), F=|, % 209, (7.6)
Fo) 2Fa Foo

The extra factor 1/2 in the definition of F, allows the simplification (Fj, D{JW-) 12Q) = 2| a\:j(Fa’ Opw)iz (o) for
j=0,1,2. Let the divergence
dinw(FZ)l

div, FZ = .
- (dwpw(Fz)z

) € HY(T:R?»)
of the matrix-valued function F; = ((F3)1; (F2)2) € H*(T;S) apply row-wise. Recall ], Iy, I, from Section 4 and
the special treatment of I, = id in Subsection 5.2. Define

3 (T) = [|h3 (Fo = divpwFy + divi, Fy)||?

U3(T) = ) h3|Go + [F1 = divpwFs ~ 8(Fatr) /3s]E VL

Ec&(Q)
u3(7) = Rell(1=Tlg0) (G + [Favelg vl ) i Tn =1d
égia) | hellGr+ [(Fz = Dyun)Vele  VEllD, ) ifIn=1Ic
WA(T) = pi (T) + 5 (T) + u5(7T).

Here G; € LZ(I“]-) c L*(U &) is extended by zero to the entire skeleton for j = 0, 1.

Proposition 7.1 (reliability). The estimator u(7) = u?(7)'/? of the residual is reliable
Cy'IRes o (1= JpInhw) I+ < 1(T) +apx(F, 7).

Proof. Given any v € V, the function w = v - JpIyIyv € V vanishes at the vertices z € V. The split Vw =
(0w/0vg)ve+(0w/0s)tg along an edge E = conv{4, B} € £ and an integration by parts with w(4) = w(B) =0
verify

([F2VE]E, VW)12(gy = ([F2VE]E, VEOW/OVE) 12 (£) + ([F2VE]E, TEOW/OS)12(F)
= ([F2VElE, vEOW/OVE)12(E) — (O[F2TE]E/OS, VEW) 12(E) (7.7
with t¢ - Fovg = v - F57¢ for all symmetric matrix-valued F; € H?(T;S) in the last step. An integration by parts

and (7.7) lead to

Fapx(w) = (Fo - divpwFy + div}Z)WFZ, W)r2(q) + Z (G1+ [F2VE|gVE, OW/OVE)12(E)
ECE(Q)

+ Z (Go + [F1 — divpwFy = 0(F27E)/9S]E * VE, W)12(E)- (7.8)
EcE(Q)
Since Iyw = 0 for Iy = id, the integral mean Ilgo(0w/dvg) = 0 vanishes along any edge E € E. Hence,
(po, OW/0VE) 2y = 0is zero for any constant po € Pg(E). An integration by parts with (5.5) for the piecewise
constant Hessian D%Wuh € Py(T;S), qo := Ego(Ga + [F2Ve]E - Vi) € Po(E), and the split of Vw as in (7.7) result
in

Apw(Up, W) = (Drz)wuh:DZW)LZ(Q) = Z

{ (qo, aW/aVE)LZ(E) ifI =id
ECE(Q)

([D3wunVelE * Ve, dW/@VE)2(p)  otherwise.

This and the Cauchy inequality reveal

2

-1/2 ow
L2(E)

=3/2. 112
I Wit ) + g 5

Faps (W) = Gy (up, W) < u(‘-T)\/IIh}ZWIIZ £y

< Capr (DI

Ec&(Q) (
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with the constant C4 from Lemma 5.1 in the last step. This and Lemma 7.1 provide Res(w) = (F - fapx)(w) +
Fapx(W) — apw (up, w) < u(7) +apx(F, 7). o

Proposition 7.2 (efficiency up to data approximation). Letu € V solve (1.1) with the right-hand side F = FlyeV*
given by (7.3). If Go, G1 € Py(€) and (Fq)|q<2 € Px(7T)8 are piecewise polynomials of degree at most k € Ny,
then the estimator ¢ (7) of the residual is efficient up to the data approximation error

Ca'u(T) < llu = upllpw + apx(F, T).
The constant Cg exclusively depends on the shape-regularity of T and on k € Ny.

Before the technical proof of Proposition 7.2 follows in Subsection 7.4, the extension of the a posteriori analysis
from Section 6 to F € V" is in order.

7.3 Application to lowest-order schemes

This subsection extends the a posteriori error control from Section 6 for the right-hand side F € L2(Q) to a
general source F = f|V € V" from (7.3). In fact, the efficient bounds of ||uy - Jyuy||x from Theorem 5.1 imply
the following novel result generalizing [23, Thm. 6.2] for Q = J. Let (Fo)jaj<2 € Px(7)%, (Go, G1) € Px(€)?
be piecewise polynomials of degree at most k € Ny that enter Definition 7.1 for the data approximation error

apx(F, 7).

Theorem 7.2 (a posteriori for Q = ;). Let uy € Vj, solve (2.3) with Q = Jj, for any of the five discrete schemes from
Section 6 and let u € V solve (1.1). Then

= upl +apx? (F, 7) = () + " Rell D2 unl el g + jn(tn, wn) + apx? (F, )

Ecé&
auh
ovgp E

=1 (T) + 3 (hE NunlelZe gy + 5
The hidden equivalence constants exclusively depend on the shape-regularity of T and on k € Ny.

2

)+apx2(F,‘J').

EcE L2(E)

Proof. Theorem 3.2 provides ||[u—up|lp < Res(w)+||up = Jpupllp for w = v=JpIIyv and some v € V for Morley,
dG, and CIP. Recall from the proof of Theorem 6.5 that this error bound also holds for the WOPSIP scheme even
without the validity of (H) in full generality. The efficient bound Res(w) < u(7) < [|u - up|lpw +apx(F, T) of the
residual by the estimator u(7) from Proposition 7.1-7.2 and the efficient a posteriori control of ||uy = Jnuplln
from Theorem 5.1 conclude the proof. m]

The original formulation (2.3) without a smoother, Q = id, leads to an additional term
F(en - Jnen) = (F = Fapx)(en — Jnen) + Fapx(en — Jnen)

in the a posteriori error bound from Theorem 3.2 and reflects the particular choice of the extended data Fin
the definition (7.3). While the difference F - IA-"apX is bounded by the data approximation error apx(F, 7), the
non-conforming test function ey, - Jre, ¢ V prevents an efficient control of the higher-order volume sources
in (7.4) by residual terms through an integration by parts.

For Morley, dG, and WOPSIP, the critical terms are the intermediate sources f, for |a] = 1 and the proof
below explains why those are omitted in the (reduced) model class of right-hand sides in [23]. The following
theorem generalizes [23, Thm. 6.1] for Q = id.

Theorem 7.3 (a posteriori for Q = id). Suppose
Fa=0 V]al=1, FqaePy(7) Vlal=2 (7.9)
for Morley, dG, WOPSIP, and
Fo =0 Vl]al=2, G1=0 (7.10)
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for CUIP. Let uy, € Vy, solve (2.3) without smoother;, Q = id, for any of the five discrete schemes from Section 6 and
let u € V solve (1.1). Then

lu = unl + apx? (F, 7) = () + " Rell D2 unl el g + jn(tn, un) +apx>(F, T)

Eecé&
auh
ovg E

=@+ Y (AP Iunlgll g + hE
The hidden equivalence constants exclusively depend on the shape-regularity of T and on k € Nj,.

2

)+apx2(F,T).

Eeé& L2(E)

Proof. For Morley, dG, and C°IP, Theorem 3.2 with e := u—Juy € V and the splitf(vh) = fapx(vh)+(l?—l?apx)(vh)
for vy, = (1 - Jp)IpIye € Vy provide
llu - unll? < llup — Jaunlls + Res(e = JnIpve) = (F = Fapx) (Vi) = Fapx(vy) (7.11)

< llun = Jntnlly + (u(T) +apx(F, 7)) lu = Jaunll = Fapx(va) (7.12)

with Lemma 7.1 and Proposition 7.1 in the last step. The discussion in the proof of Theorem 6.5 implies (7.11)-
(7.12) also for the WOPSIP method. The triangle inequality ||u = Joup|l < [|u—uplln + lup = Jutnllp, (7.12), and a
Young inequality verify

llu = unll? < llup = Jnunll2 + u*(T) + apx?(F, T) = Fapx(Vp). (7.13)

It remains to bound the extra term fapx(vh). Recall the abbreviations Fy, F1, Fy from (7.6).

The key step towards an efficient control of Fapx(vy) is an integration by parts in (7.8) that collects the
volume loads Fy, Fq, F, in the single residual term u (7)) (resp. the jumps in yy(7), p3(7)). A similar approach
for the efficient bound of Fapx (vy) with the non-conforming test function vy, ¢ V leads to additional terms from
the product rule for jumps on the edge E € £, namely,

[F1-VeVhlg = (F1* VE)E [Vilg + [F1 - VElE (Vn)E
[F2VE - VVp]g = (F2VE)E [VVnlE + [F2VElE (VVR)E -
However, the average terms (F; - ve)r and (Fovg)r over the edges E € & are no residuals and their efficiency
is open; cf. the partial efficiency result (excluding the average terms) in [37, Thm.7.2] or the omission of the

efficiency analysis in [21]. Instead, the assumptions (7.9)-(7.10) and the additional information on the structure
of the test function vj, € (1 - Jp)IInV allows the efficient control of Fapx(vy).

Case I, = id: Since Fy € Py(T;S) = D%WPZ(‘D is piecewise constant, Iyvy, = 0 from IyJp, = Iy and (4.3) verify

the L? orthogonality v, L F,. This and (7.9) lead to

Fapx(vh) = (Fo, vi)z(@) + (Go, Vidzery + ), (1 =TIg0)Ga, 8yVp)pa e (7.14)
Ec&(Iy)

with I1g g0, vy ds = 0 for any E € € from Iyvy = 0.
Case I, = I¢: Since the test function vy, € V + Sﬁ(i’) is H' conforming, (7.10) and an integration by parts show
Fapx(vy) = (Fo — divpwF1, va)2(q) + (Go + [Filg - VE, VR)L2(ry)- (7.15)

Cauchy inequalities, Lemma 5.1, and (7.14) for Morley, dG, WOPSIP and (7.15) for CO1P result in |fapx(vh)| <
w()lell- This, (7.13), and a Young inequality provides

lu=upll? < llup = Jaunlls + ©(7) + apx®(F, 7).

Theorem 5.1 and the efficiency of ¢(T) from Proposition 7.2 conclude the proof. m]
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Remark 7.3 (apx(F, T) in Theorem 7.3). Since Theorem 7.3 requires (Fq)jq|=1 = 0 to vanish for the Morley, dG,

and WOPSIP methods, the data approximation error apx(F, T) includes the term \/Z la|=1 |hofall iz @ This term
is linear in the mesh-size and converges with the expected rate for lowest-order schemes. This term may even
be of higher order if the triangulation is quasi-uniform and Q is non-convex with a reduced convergence rate

lu—uplln = O(h%x) of the schemes. However, it is not a classical (higher-oder) data oscillation term if f # 0

does not vanish for all |a| = 1. The assumption (7.10) for C°IP leads to the term _ /> lal=2 Ifa ||%2 @ independent of

the mesh-size in the data approximation error apx(F, 7). Hence a meaningful interpretation of the a posteriori
estimate in Theorem 7.3 for C°IP requires ||f|| 12(¢) to be small for all |a| = 2.

Remark 7.4 (smoother vs. no smoother). Since Theorem 7.2 for the smoother Q = ], applies to any choice of
data approximations, Remark 7.1 shows that the data approximation error apx(F, T) can be replaced by data
oscillations osc(F, 7) of arbitrary order. This provides a novel reliable and efficient a posteriori error bound for
any right-hand side F € V" of the form (7.3) up to data oscillations.

For no smoother Q = id, additional requirements on the data approximations (7.9) for Morley, dG, and
WOPSIP (resp. (7.10) for C 0IP) in Theorem 7.3 seem necessary for an efficient error control. However, Remark 7.3
explains that this either restricts the admissible data in (7.3) or leads to terms in the data approximation error
apx(F, 7) that are no oscillations.

Remark 7.5 (F € L%(Q)). Theorems 7.2-7.3 for source terms F = f € L*(Q) with Fy = IIf € P(7) (and
F,=f,=0forall |a] =1,2aswell as Gy = G1 = 0) imply the a posteriori results of Theorems 6.1-6.5. Indeed,

the Pythagoras theorem |If|%, ) = If ~Tf 112, 1) * If 112, (1 for the triangle T € T verifies

if 1, = id
hell [DgyunvelE - v5||i2(E) otherwise.

u()? +apx (F,7) = I f12 +

ECE(Q)

Since j (up, uy) = 0 vanishes for all Morley solutions u, € M(7) and every C°IP solution uy, € 8(2) (7) has zero
jump [up]g = 0 along an edge E € &, Theorems 7.2-7.3 recover the corresponding results from Section 6.

7.4 Proof of Proposition 7.2

This proof applies the bubble-function methodology [45]. Recall
||D2(u - Ivwllzz(ry = min ||D2(u =vp)llze(r) < ||D2(u =up)llzzcry (7.16)
vRePy (T)

for any T € 7 from the best-approximation property (4.4).

Step 1 (efficiency of the volume contribution). Let w = Fo — divpwFy + divf,sz € Py(T) abbreviate the vol-
ume contribution of y(7) for some T € 7. The element bubble-function by = 27910203 € P3(T) N H(l](T)
with ||br||=(r) = 1 is given in terms of the three barycentric coordinates ¢; € P1(T) for j = 1,2, 3. Since
apw (Ivu, bZTzzr) = 0from (4.3) and IM(bZTw) = 0, the equivalence of the weighted norm ||br@/|| 2 (1) = 1@ |2 (7)
and an integration by parts without boundary terms from szzU € HS(T) show

@2, (Fo — divpwF1 + din,sz, b))

(=
= Fapx (b3@) = apw(u ~ Iytt, b3w) + (Fapx (b3 @) - F(b}@))
< (ID2 = Bl + apx(F, ) ) ID* (B3 @)llgz 1)

with (F = Fapx) (V) = (F = Fapx) (V= JaInImv) < apx(F, T)||D?V||2(r) for v € H2(T) from Iy = 0 plus Lemma 7.1

and a Cauchy inequality in the last step. This and the inverse inequality h%||D*(b2@)|Ir2(r) < Ib3@ |12 (1) <
l@|| 27y from [30, Lem. 12.1] conclude the proof of the local efficiency of the volume contributions, namely,

h3|[Fo = divpwFy + divgy Fallze(ry < 1D*(u = Iyw) |27y + apx(F, T). (7.17)
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Step 2 (set-up for an interior edge). For any interior edge E = conv{A,B} =T, N T- € £(Q),let ¢p,, Qa+, Pp+ €
P;(R?) (resp. ¢p_, 9a -, pp- € P1(R?)) denote the barycentric coordinates of T, = conv{P,, A, B} (resp. T- :=
conv{P-, A, B}) seen as globally defined affine functions. The edge bubble-function reads br := 1604 +®a,- 95 +
x@p,- € P4y(R?) N HY(w(E)) and br, := 2704 :9p:¢p, € P3(R?) N H}(T:) denotes the element bubble-function
in T, € Twith vy |p = tvg. Let 8, := 0/0vg abbreviate the normal derivative and recall that the gradient
Vop, = —0;'ve of the barycentric coordinate ¢p, scales like h;! with the height op = 2|T,|/|E| = hg from
shape-regularity. The function b% has been utilised in the literature before, e.g., in [4, p. 788] with its scaling
properties; the usage of b2T+ is standard. The product rule and ¢r, |¢ = 0 verify

8y(pr,b%) = -05'b% onE. (7.18)

Given p € Ny, any polynomial q € P,(E) on the edge E defines a unique polynomial on the straight line L that
extends E c L. The extension of q from L to R? by constant values along the normal v defines a polynomial
q € Pp(R?) on R? of the same degree. Let I, P. € L denote the projection of the vertex P, € T. opposite to
E onto L along the normal direction vg. The maximal value ||q||z= (. (k)) is attained on the line segment L=
conv{E, II;P.} c L and the shape-regularity controls the ratio |Z |/|E| = 1. Hence

Iqll=wiey) =14l z) < Cllallz= (k) (7.19)

follows with some constant C = 1 that exclusively depends on the shape-regularity of the triangulation 7 and
onp.

Step 3 (efficiency of the first jump contribution). This step establishes the local efficiency of the term 9 := Gy +
[F1 — divywFy — 0F27£/0S]E - Vg € Pi(E) in the form

W19 28y S 11D% (= W)l 12w (k) +@PX(F, T2) + apx(F, T-). (7.20)
Let &g € Poi(E) denote the (unique) Riesz representation of the functional gg (8, b2, ) 12(g) in the vector space
P, (E) with respect to the weighted scalar product (b% ) (E)’ ie,
(ba&e, P2i) () = QE(avbjzg,ka)Lz(E) ¥ Dok € Pox(E). (7.21)
This, the equivalence of the weighted norm ||bgéel| 2y = |bEll2(g), and hg = @ show
”EE”%z(E) = ||bE€E||i2(E) = hp(8yb%, Ep)r2k) < ReNOVDEl L2 (e 1 €EllL2 (i
with a Cauchy inequality in the last step. Holder’s inequality and an inverse estimate [30, Lem. 12.1] lead to
1/2 1/2 -1/2 -1/2
19vbE Iz gy < hy “10vbElLe ey < Mg VDRl (k) < hg 2IDE Lo (r) < Ry,
This proves ||Eellz2g) S h}g/z and another inverse inequality provides ||¢g(lz=k) < h;/zllg‘EIILz(E) < 1. Let

9r € Pr(R2) and & € Py (R?) denote the extension of 95 € Py(E) and & € Py (E) to R? as in Step 2. This, (7.18),
and (7.21) verify the L? orthogonality

9y (D% + pr,b2Ee)Ip) = (0y(b2) - 0 b2Er) I L Px(E)  inL*(E).
Let &1, € Pyr(T:) be the unique solution to

(bZthTt:ka)H(Ti) = (b3 + §0T+b%-jEE)p2k)L2(Tt) Y pok € Por(Ts).
An inverse iEequality arld (7.19) ShOXV I éTr llz=(r.y < 1. The definition of &r, verifies that the function Y :=
(b} + o1,b38e = b xr.81, = by x1-81.)9 € Hi(w(E)) is L*(T.) orthogonal to Py(T.). Since b}, € HE(Ts)
vanishes on E, the normal derivative 8, ¢r|r = a,,((bfE + (pnbgg)gg)l £ L Py(E) is L*(E) orthogonal to Py(E).
This, (7.7), and an integration by parts show
0 = (Fo ~ divpwF1 + divey, Fa, YE)12(0(e)) + (G2 = [F2VE]E - VE, Ov¥E)12(E)
= (Fo, YE)12(w(E)) + (F1 — divpwF2, VUE) 12 (E))
= ([F1 = divpwF2]E * VE, YE)12(E) + (G2 = [F2VElE * VE, Ov¥E) 12 (E)
= Fapx (¥£) - (9, VE)L2(E)-
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The Morley interpolation Iyyr = 0 of Y € HS(w(E)) vanishes from ITgp0y¢r = 0 and apw(Imu, Yg) = 0
follows from (4.3). Since (Yg - b%ﬁ]g)hg = 0is zero on E, the equivalence ||9¢||;2(g) = [|DEOEl 12(g) results in

I19E1132 gy = (95, BEOE)12(8) = (O, YE)12 (k) = Fapx (V)
With a(u, ¥g) = F(¢r) from (1.1), this shows
192122 ) = @pw(tt = wtt, Yi) + (Fapx(Y) = F(Yp))

< (”D%w(u = Il 12(w(E)) +apX(F, T-) + apx(F, T+)) ID*PE 12 o)) -
The inverse inequality, |Yell 12w (k) $ ||5]5||L2(w(5)), and (7.19) provide

3 2
h]25||D2¢E||L2(w(E)) S Wellz ) S I0Ell2(wE) S h}g/ 19elL2 (k) - (7.22)
This verifies the efficiency (7.20) of the jump contributions J¢.

Step 4 (efficiency of the second jump contribution). The local efficiency of the remaining term follows with similar
arguments. Since the Hessian D}%Wuh of uy, € P,(7)is piecewise constant, the stability of the L? projection results
in

(1 = Tg0) (G + [Favele - VE)llzacey < 1G1 + [(Fa = Do) VELE * VEll12(E)-

It is therefore sufficient to prove the local efficiency of the term (¢ = Gy + [(F3 - Dlz,wuh)vE] £ Vg € Py(E),
namely,

1/2
Y 1CE e ey S 1DE (U = un)llz2(w(e)) +aDX(F, T.) + apx(F, T-). (7.23)
Indeed, let o7, € Pox(T+) be the unique solution to
(b}.01., P22,y = (91.0%, Dadiz(r.y Y Pak € Pa(Te).

Observe that ¥, = —(@r,b} - b7 xr.0r1, = sz_)(T,QT,)EE € Hy(w(E)) is L* perpendicular to Py(T:) with zero
trace ¥,|p = 0 on E. This and an integration by parts show

0 = (Fo — divpywF1 + diVIZ)WFz, V2)2(wE)) + (O ¥2)12(k)
= Faps(¥2) = (G1 + [FaVE]E  VE, 0v¥2)12(5) = Fapx ($2) = apw (Un, ¥2) = (G, Ov¥2) 12

with ([D%WuhvE]E “VE, Ov2)12(p) = Apw(Up, ) in the last step. The equivalences ||(e|l2g) = IDECEll L2y and
hg = o, (7.18), and 9, (2 + @1, b:(E)|r = 0 provide

h?”(}s”izw) = 05 (¢e, b2{p) 12k = ~((E, av((oﬁb%ZE))Lz(E) = (C, Ov¥2) 12 (k)
= Fapx ($2) — Gpw (Un, ¥2) = apw (U~ tp, ) + (Faps(¥2) = F(2))

with a(u, ) = F(1;) from (1.1) in the last step. The remaining steps follow Step 3 and utilize || D1 22 (w(E) S
hf/ 2 I¢Ell12(g) from an inverse inequality as in (7.22); further details are omitted. The combination of the local
efficiency results (7.17), (7.20), and (7.23) with (7.16) concludes the proof. O
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A A posteriori error control of a piecewise polynomial source in
H*(Q)

This appendix provides an alternative view on the reliable and efficient estimator from Section 7 as lower and
upper bounds for the dual norm of a piecewise polynomial source in H~2(Q). Suppose the piecewise polynomials
Ao € Pi(T), A1 € Pp(T;R?), and A, € Py (T;S) define the linear functional A € H™%(Q) by

A(V) = /(on +A1-VVv+Ay: D*v)dx Vv e HAX(Q). (A1)
Q

Recall the transfer operators I, Iy, J, for the five quadratic discretization schemes of Section 4 listed in Table 1.
A reliable and efficient estimator u*(T) := p2(7) + u3(7) + u3(7) of the functional A is given by

12(T) = [|h3 (Ao — divpwAs + divpy, Ag)|?

W) = > (AL - divpwAy - 3(A2TE) /05T - Vel
ECE(Q)

() = hell(1 = Tgo) [Agvils - VEllZ, ) if I = id
eéeca) | helllAzvelE - VE”iz(E) if1, = I.

Theorem A.1 (reliability and efficiency). There exist positive constants Cre, Cesr > 0 that exclusively depend on the
shape regularity of T and on the polynomial degree k € Ny such that

CrallA o (1= JaIph)llx < p(T) < CegellAlll+.

Proof. The discussion in Subsection 7.2 applies to Res := F := A and uy = 0 with apx(F,7) = 0. In this
particular case, Proposition 7.1 provides the first inequality

A o (1 = JalnIn)lls < Cratt(7)
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with Cre) = C4. Letu € HS(Q) denote the Riesz representation of a(u,") = A € H%(Q) with the isometry
lIAfl+ = [lull in the Hilbert space (H2(€2), a) and || - || = a(-,)'/%. Then the efficiency estimate

u(7T) < CegelllAl«

follows from Proposition 7.2 with Ceg = Cg. O

Theorem A.1 allows for a direct application to the linearization of semilinear problems in [18]. It can be further
generalized in various directions, e.g., in the spirit of Section 7 that considers the a posteriori error analysis of
the linear biharmonic problem for a more general class of functionals in H2(Q) including line and point loads.
The reliability requires only piecewise smoothness of Ay, A1, Az so that the traces and derivatives in p1, g, U3
exist, while the efficiency may require extra oscillation terms (as in (7.5)).
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