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Outline

o dPG Framework

> minimal residual method

> mixed problem

> a posteriori error analysis
@ Applications

» Poisson model problem

» Stokes equations

> linear elasticity

> Maxwell equations
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» adaptive least-squares FEM
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dPG Framework

"dPG is a minimal residual method with
piecewise discontinuous test functions”
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Minimal Residual Method

Suppose b: X x Y — R is a bdd bilinear form on real Hilbert spaces X and
Y with inf-sup condition

0<pB= inf sup b(x,y)
xeX yey

IPelbx=1 )1y =1
Continuous problem (P) with given RHS F € Y* seeks

ve X with b(u,e)=FinY
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Minimal Residual Method

Suppose b: X x Y — R is a bdd bilinear form on real Hilbert spaces X and
Y with inf-sup condition
0<pf= in)f( sup b(x,y)
lIx[lx=1

eY
||y||y 1

Continuous problem (P) with given RHS F € Y* seeks
ue X with b(u,e)=FinY

Suppose (exclusively on the continuous level), in addition, non-degeneracy
in that

Vy e Y\{0} b(e,y) #0

so that (P) has a unique solution.
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Minimal Residual Method

Suppose b: X x Y — R is a bdd bilinear form on real Hilbert spaces X and
Y with inf-sup condition

0<pB= inf sup b(x,y)

xeX ey
1
Ilhe=1 5 1

Continuous problem (P) with given RHS F € Y* seeks
ue X with b(u,e)=FinY

Suppose (exclusively on the continuous level), in addition, non-degeneracy
in that

Vy e YA{0}  b(e,y) #0
so that (P) has a unique solution. The minimal residual method considers
u € argmin ||b(x, ®) — F||y=.
xeX

This is sensitive without any further condition on b bdd bilinear with 5 > 0.
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Discretization in Minimal Residual Method
Let X, < X and Y}, c Y be closed (e.g. finite-dimensional) subspaces with

0<Bp:= inf  sup b(xn yn)

XhEXh  yeYs,
lIxallx =1 |yn |y =1

Petrov-Galerkin discretization requires a non-degeneracy condition on the
discrete level and leads to dimX}, = dimY} € Ny u {oo}.
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Discretization in Minimal Residual Method
Let X, < X and Y}, c Y be closed (e.g. finite-dimensional) subspaces with

0<Bp:= inf  sup b(xn yn)

XhEXh  yeYs,
lIxallx =1 |yn |y =1

Petrov-Galerkin discretization requires a non-degeneracy condition on the
discrete level and leads to dimX, = dimY}, € Ny u {o0}. In what follows,
dimX, < dimY)}, and this is not a Petrov-Galerkin discretization but suits for
a minimal residual method

(minResy)  up € argmin || b(xp, ®) — Flyx
XhEXh "

Alternative formulation: Seek (up, vi) € Xp X Yp with

(M) b(xp,vp) =0 for all x5, € Xj
h
(Vi Yn) v+ b(un, yn) = F(yn)  forall y, € Yy
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Theorem.  (minRes;) < (M)
Proof. Ry, : Y, — Y, yn — (¥n,®)y Riesz map

“==" up € X}, solves (minResy) implies for all t € R, x, € X},

IF — b(un, ) 3 < IF — blu + txn, o) 3s

=[I Ry, (F — b(up, ®)) —t Ry, b(xn, *)II5

J

M vp < (vp,®)y + b(up,®) = F in Y}
= [lvally —2t b(xh, vi) + ]| b(xh, °)||§/h*
IF — b(un. )12

Hence b(e, vj) = 0 in Xj o
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Theorem.  (minRes;) < (M)
Proof. Ry, : Y, — Y, yn — (¥n,®)y Riesz map

“==" up € X}, solves (minResy) implies for all t € R, x, € X},

IF — b(un, ) 3 < IF — blu + txn, o) 3s

=[I Ry, (F — b(up, ®)) —t Ry, b(xn, *)II5

_/

~~

=: vy <> (vp, @)y + b(up,®) = Fin Yy
- w —2t b(xp, va) + £*[|b0xh, @) |5
= ||F = b(un, *)II3
Hence b(e, vj) = 0 in Xj o

<" (up, vp) € Xp x Y}, solves (M) implies
IF — b(un + txn, o) I35 = [vally — 2t b(xn, vi) +°|[b(xh, ®)[[3 o
h — h
-0
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dPG as Mixed Problem

Brezzi splitting lemma. (M},) is well-posed iff

0<pp:= inf SUP b(xh, yn)

XhEXh YhE
[Ixhllx=1 ||yh||y 1

Fortin criterion: 3, > 0 is equivalent to the existence of a projection
P:Y — Y (i.e. linear, bdd, idempotent) onto Y, = P(Y') with annulation
property
b(e,y — Py) =0 in X,
[cf. e.g. FE-book by D.Braess]
Then 0 < B/|IP|l < B
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dPG as Mixed Problem

Brezzi splitting lemma. (M) is well-posed iff

0<pp:= inf SUIO b(xh, yn)

XhEXh YhE
[Ixhllx=1 ||yh||y 1

Fortin criterion: 5, > 0 is equivalent to the existence of a projection
P:Y — Y (i.e. linear, bdd, idempotent) onto Y, = P(Y') with annulation
property

b(e,y — Py) =0 in X,

[cf. e.g. FE-book by D.Braess]
Then 0 < B/IP| < B
General theory of mixed formulations leads to v, = v4(||b]|, 1, Bn):
Solution u € X to b(u,e) = F and v = 0 satisfy best-approximation
property in the ansatz space only

lu— unll3 + 110 = vall3 < [1b] 74! min fJu— xnlx
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Proof of Fortin Criterion " ="

Since 8, > 0, the discrete mixed problem has a unique solution for all
right-hand sides. Given any y € Y, consider the right-hand side
(F,G):=((y,")v,, b(-,¥)|x,) € Y} x X} and the unique solution

(vh,up) € Y x Xp to

(@) (vh, )y + b(up, ) = (y,-)y in Yp.

(b) b(7 Vh) = b(a)/) in Xh-

The map y — (vp, up) is linear and so vj, =: Py defines P € L(Y,Y).

If y € Yp, then (y,0) solves (a)-(b). Uniqueness of discrete solutions proves
y = Py. That is P = P2, The annullation property is (b). O
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Proof of Fortin Criterion " <"
Given xp, € S(Xj) < S(X), the inf-sup condition of 5 > 0 leads to y € S(Y)
in the Hilbert space Y with

B < |1b(xn, v+ = b(xh, y) = b(xn, Py)
< 16Gn, v [Pyl -
—

<[Pl

Hence 5/|P| < | b(xp, )”Yf Since x, € S(Xp) is arbitrary, this proves

160xh, )y
——
0<B/|P|<Br:= inf — sup blxnys) [
xh€S5(Xh) y,eS(Yh)

(R1) P is an oblique projection (not an orthogonal projection in general)
and Kato lemma asserts |P| = |1 — P| (provided P # 0,1).
(R2) The theorem holds in general Banach spaces as pointed out in [ Ern,
A. and Guermond, J.-L., A converse to Fortin’s Lemma in Banach spaces,
Comptes Rendus de I'Academie des sciences Serie 1,2016.]
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A Posteriori Error Analysis

Suppose b(u, ) = F is well-posed (i.e. 8 > 0 and non-degeneracy
condition) on the continuous level. The bilinear form leads to the operator
Bi: X — Y* x— b(x,e) and its dual B, : Y — X*, y — b(e,y).
Well-posedness means that By and By are invertible and and the inverse is
bounded by 1/3. Those mapping properties lead to equivalence

lu— unlix + lIvally ~ Ib(e, va)ll3x + IF = b(un, ®) + (vi, @) v[[3+
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A Posteriori Error Analysis

Suppose b(u, ) = F is well-posed (i.e. 8 > 0 and non-degeneracy
condition) on the continuous level. The bilinear form leads to the operator
Bi: X — Y* x— b(x,e) and its dual B, : Y — X*, y — b(e,y).
Well-posedness means that By and By are invertible and and the inverse is
bounded by 1/3. Those mapping properties lead to equivalence

lu — unllx + vally = l1b(e, vi) |5 + |F — b(un, ®) + (vh, @)y |7
Since B> is invertible and bdd,
Bllvally < [|b(e, va)llx+ < [b] [[vally

and ||vp||y is the computable norm of the residual.
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A Posteriori Error Analysis
Suppose b(u, ) = F is well-posed (i.e. 8 > 0 and non-degeneracy
condition) on the continuous level. The bilinear form leads to the operator
Bi: X — Y* x— b(x,e) and its dual B, : Y — X*, y — b(e,y).
Well-posedness means that By and By are invertible and and the inverse is
bounded by 1/3. Those mapping properties lead to equivalence
lu— unl% + [vally ~ 16(e, va)[5s + |F = b(un, ®) + (vi, @) v [[3
Since By is invertible and bdd,
Blivally < [[b(e, va)l[xx < [|b]| [[vally

and ||vp||y is the computable norm of the residual.
For all y € Y with norm 1, the annulation operator P : Y — Y with range
P(Y) = Y} and the discrete equations in (M) lead to

F(y) = b(un,y) + (va,y)y = F(y = Py) = b(un,y = Py) + (va,y = Py)y
Since b(up,y — Py) =0 and |(vh,y — Py)y| < ||val|y|P], it follows

2 2 2 2
lu = unllsc + lvally =~ [vally +[IFo(1—P)lys
——

hichar Ard

amn hla ar
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1. Extreme Example in PMP Shows LS < dPG

The Poisson model problem (PMP) seeks u € H3(2) with —Au = f in Q
in the weak sense for a given RHS f € [2(Q).
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1. Extreme Example in PMP Shows LS < dPG

The Poisson model problem (PMP) seeks u € H3(2) with —Au = f in Q
in the weak sense for a given RHS f € L2(Q). The equivalent first-order
system seeks

pe H(div,Q) and ue H}(Q) with p=Vu and f+divp=0
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1. Extreme Example in PMP Shows LS < dPG

The Poisson model problem (PMP) seeks u € H3(2) with —Au = f in Q
in the weak sense for a given RHS f € L2(Q). The equivalent first-order
system seeks

pe H(div,Q) and ue Hj(Q) with p=Vu and f+divp=0
For all (g,v) € X = H(div,Q) x H}(Q) define
Bi(q,v) := (g —Vv,divg) e Y = [2(;R") x [*(Q).

The PMP is equivalent to Bi(p, u) = (0,—f). Since Y = Y*, any
(gq,v) € X allows for

16(. vi ®)llys = y/llg — V|2 + | div |

The theory of least-squares FEM (LS) shows that this is indeed equivalent
to ||(g, v)|x and, in fact, this dPG method is a LS. This also shows that
any discretisation X, < X is stable and quasi-optimal.
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2. Extreme Example in PMP is Infeasible
In continuation of the PMP, define for any (q,v) € X = L2(Q;R") x H}(Q)

Bi(q,v) := (g —Vv,divg) e Y = L>(Q;R") x H71(Q).
This leads to a LS with discrete problem (which is always stable)

i — VVv|? + |f + div |-
(q@;gx(l\q v[* + If + div q|i-1(q))

The computation of |[f + div g||-1(q) requires an approximation of the
dual norm. The BPX precondition has been suggested to allow a practical
variant and is an established LS.
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2. Extreme Example in PMP is Infeasible
In continuation of the PMP, define for any (q,v) € X = L2(Q;R") x H}(Q)

Bi(q,v) := (g —Vv,divg) e Y = L>(Q;R") x H71(Q).
This leads to a LS with discrete problem (which is always stable)

(min n (lg - V|2 + If + div gl )

The computation of |[f + div g||-1(q) requires an approximation of the
dual norm. The BPX precondition has been suggested to allow a practical
variant and is an established LS. In general, one requires an approximation
of the norm in Y* by the computable norm in Y;* for a large but
finite-dimensional space Y}, the test-search space. This is not a
Petrov-Galerkin scheme, so in fact, dim X, < dim Y} in @ minimum residual
method. An effective computation, however, requires parallel computing
and breaking the test norms in the sense that Y} is a finite-dimensional
space of piecewise discontinuous functions. This allows for a piecewise
computation in parallel. The mathematical framework is in product spaces.
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Continuous Problem 4 dPG

e X(T),Y(T) real Hilbert spaces for any T € P and

XcX:=]]X(T) and Y:=]]Y(T)
TeP TeP

@ b: X x Y — R is a bounded bilinear form with

b((x7) rep, (y1)Tep) = Y, br(xT,¥7)

TeP
0<pB= )l(gf sue b(x,y)
=1 5§, =1

@ Let F e Y* and u € X satisfy b(u,e) = Fin Y

C. Carstensen (Humboldt) dPG Framework Berlin, August 29-30, 2016
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Discretization

Let Xo(T) < X(T) and Y,(T) < Y(T) be finite-dimensional subspaces

Xpi=Xo [[ Xo(T) and Y= [ Ya(T)
TeP Tep

“dPG is a minimal residual method

(minResp) up € argmin ||b(xp, ®) — F||y*
XhEXh h

with piecewise discontinuous test functions”

Alternative formulation. Seek (up, vp) € Xp x Yy with

(M) b(xp,vp) =0 for all x, € X,
h
(Vs yn)y+b(up, yn) = F(yn) forall y, € Yy
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dPG as Mixed Problem

Brezzi splitting lemma. (M) is well-posed iff

0<pfBp:= inf sup  b(xn, yn)
XhEXh YhEY
Ixallx=11y,||y=1

Local annulation. For all T € P let Pr: Y(T) — Y(T) be a bounded
linear projection onto Y,(T) s.t. any y1 € Y(T) satisfies

br(e,yr — Pryr) =0 in X,y(T)

Th in 3| Pr|| ™" <
en 0< g‘elgﬁ 1Pl Bh
General theory of mixed formulations. For u e X with b(u,e) = F,

lu— unll% + 110 = vall3 < [1b] 74! min flu— xulx

C. Carstensen (Humboldt) dPG Framework Berlin, August 29-30, 2016
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A Posteriori Error Analysis
Suppose b(u, ) = F is well-posed, then

lu—unllk + Ivally =~ [[b(e, vi)[%x + |F — b(up, ®) + (vi, @)y |3

Global annulation. P := [[;.p Pt fulfils b(e,y — Py) = 0 in X}, for any
yeY, Bnr>0,and

lu = unll% + Ivall3 ~ lvally, +[[Fo (1= P)I3x
—— -

~
computable higher order?

for all (xp, yn) € Xn x Y}, replacing (up, vp)

[C-Demkowicz-Gopalakrishnan, SINUM (2014)]
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Application to Poisson Model Problem
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Simplified dPG for Single Domain

Let f € L?(Q2) in open, bounded, polygonal Lipschitz domain Q = R?. Seek
u:Q — R with

(PMP) —Au=1f inQ and u=0 on dQ

Test functions w € H'(Q) require (unknown) boundary term t = du/dv on
0Q as new variable and lead to well-posed problem: Given f € L?(Q), seek
(u,t) € X 1= H}(Q) x HY2(0Q) with

J VU'VWdX—<t,70W>aQ:f fwdx for all we Y := HY(Q)
Q Q
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Traces

Theorem. U < R" open, bounded Lipschitz domain

e Iqp € L(HY(U); L2(0U)) with yow = wlsy for all w e HY(U) n CO(U)
o HY2(0U) := vo(H*(U)) is a Hilbert space

o Let HY2(aU) := (HY2(aU))*, then 3, € L(H(div, U); H=Y2(aU))
surjective with v,q = qlsy - v for all g e C1(U;R™)

Integration by Parts. Any g € H(div, U) and w € H}(U) satisfy

{VWwq, Yow)ou = J qg-Vwdx —i—J divg - wdx
U U
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Traces on the Skeleton
Duality lemma.

= min ||h t|| - = min ;
&l 200y heHl(U)H [y tlla-12000) qu(diV7U)||q||H(d|v,U)
Yoh=g Twa=t

Let 7 be a regular triangulation of Q

Consequence. For g = (q7)7ep € H(div, T) := [] H(div, T),
TeT

vwa:=1]war
TeT

Define the Hilbert space H=Y/2(0T) := ] H(div, Q) with norm

1t 1207y = qurT(‘(}if\'Im|!q|!H(div,Q)

v q=t

C. Carstensen (Humboldt) Application to Poisson Model Problem Berlin, August 29-30, 2016
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dPG for PMP and Triangulation T

Xn(T) := Pi(T) x Po(E(T)) = X(T) := HY(T) x H~Y2(oT)
Yn(T) := P(T) < Y(T) := HY(T) are Hilbert spaces for any T with

local bilinear form by : X(T) x Y(T) - R,

br(ur,triwr) = J Vur - Vwr dx — {tT,%owTr)oT
T

Improved version of the duality and splitting lemma [CDG16] lead for
X = H}(Q) x HTY2(0T) < [ 117 X(T) and Y := [[ o7 Y(T)

to the inf-sup condition

1
0<y/l———=<p= inf sup b(x,y)
1 A xeX
Vi Iix=t Y

llylly=1

C. Carstensen (Humboldt) Application to Poisson Model Problem Berlin, August 29-30, 2016
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Low-order dPG for PMP

Xp=S3(T) x Po(E) and Y, = Pi(T)
The nonconforming interpolation Pt := Z"¢ has annulation property and
IF o (1=Z)|lyx < /1/48 + ji1 |7 f12(0)-

Experiment. Q = (—1,1)?\[-1,0]?, f(x,y) =0
u(r,0) = r¥3sin(2(0 + 7/2)/3) (polar coordinates (r, #))

tHH‘ T T 1T T T TTT] T LTI T T TTTT] T T 11T T \\\\Hﬂ .
g < 1 [~ |||lu — ucl|| (adaptiv)
| | | —*—GUB (adaptiv)
107 ¢ ! 1 | —e—[|u — uc]|| (uniform)
i 1 |—+— GUB (uniform)
1072 E

) Y A 1 Y A WA T
10t 102 10° 10* 10° 10° 107
ndof
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Low-order dPG for PMP

0.5

-0.5

-1 —-0.5 0 0.5 1

Figure : Triangulation plot with 496 elements (250 degrees of freedom for uc) for
adaptive mesh-refinement with GUB as refinement indicator and 6§ = 0.3
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Application to Stokes Equations
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Low-Order dPG for Stokes Equations

The Stokes equations in pseudostress formulation.

Given f € L2(Q;R") and g € H}(0Q; R") for domain Q < R”, seek
ue HY(Q;R™) and o € H(div, Q;R™")/R with

dev o = Du in Q
—dive =f in Q
u=g along 0Q

dev A:=A—1/n (trA)lpxn

C. Carstensen (Humboldt) Application to Stokes Equations Berlin, August 29-30, 2016
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Low-order dPG for Stokes Equations

Xn(T) :
()

Po(T; R™™) /R x Po(T;R") x PL(E(T);R") x Po(E(T); R™)
L2(T;R™") x L2(T;R") x HY2(8T;R") x H™Y2(0T;R")
— [2(Q;R™")/R x L2(Q;R") x Hy2(8T:R") x H Y2(aT;R")

c [T X(T) while v =T]Y(T

TeT TeT
Ya(T) := RTo(T;R™") x Py(T;R")
Y(T) := H(div, T;R™") x H(T;R")
Forall Te T let by : X(T) x Y(T) — R with

bT(a,u,s,t;T,v)zf O':Dncvdx+f deva:de+J u - divpeT dx
T T T

—{t,vovier — (W T, S)eT

F(r,v) :=L f-vdx+ <~y;fr,%Tg>aT
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Low-Order dPG for Stokes Equations

@ 3 and S are explicitly bounded in terms of the Friedrichs, tr-dev-div
constant and the inf-sup constant of the mixed FEM
H(div,Q : R™") /R x L?(Q : R")

o the data approximation error |F o (1 — P)Hyf:k is not necessarily of
higher order

@ the extension \A’h(T) = RTo(T;R™")/R@® b3(T)RL" x Py (T;R")
of Yu(T) with the cubic bubble b3(T) guarantees the higher order

@ the experiments compare the residual error estimators
Mh = |F = b(xh, ®)|yx. G = |F = b(XhH)H{/h*' and the up to a
generic constant guaranteed bound 7j2 := 72 + osc?(g’, £(R))
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Numerical Example: dPG for Stokes — colliding flow

Experiment. Q = (—1,1)?, f = 0 with implicit boundary data,

for all (x1,x2) € Q, u(x1,x2) = 4(5x1x5 — X7, 5xgx2 — X3)

and p(x1,x2) = 120x2x3 — 20(x{ + x3) — 16/3.

R L L L L L

| np, 0 =1
10% | E .

5 § 1w e 0=1

*g i 1o  dpo=1

s

o i }

9;_ - -

% 100 E

: E o & E

¢ i 1 ]

10—1 T Y A W1

10t 102 10 10* 10° 10° 107
number of degrees of freedom
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Numerical Example: dPG for Stokes — L-shaped domain

Experiment. Q = (—1,1)?\([0,1] x [-1,0]), f =0,
for all (r,¢) € [0,00) x [0,37/2], w := 37/2, a := 856399/1572864,
sin((a—1)¢) cos(aw)

w(p) = Snlitale)cosaw) _ cog((1 + a)p) + Snlazbledcoslaw) 4 cog((a — 1)),
with implicit boundary data, p(r, ) = 7ra_1((Haf_"g(‘prm(‘p)),

(1 + a)sin()w(p) + cos(@)w'(p)
and u(r.¢) = ( (1 + ) cos(p)w(e) + sin(p)w'(¢) )

L e T o
5 1@; 1| fin, 0 =1
g L 1] |x—=xulx, 0 =1
z [ J|-=—  mp0=03
[0 ~
5 100) J|-=  Dm0=03
5 F 1|—e— fip, 0 = 0.3
g i 1|~ lIx = xullx, 0 =03
g . .
2 1071} E
(&) - |
:Hum\ vl vl il il Hmu\:
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Numerical Example: dPG for Stokes — L-shaped domain

0.5

-0.5

-1 —-0.5 0 0.5 1

Figure : Triangulation plot with 371 elements (3711 degrees of freedom) for
adaptive mesh-refinement with 7, and 6 = 0.3
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Numerical Example: dPG for Stokes — backward facing step
Experiment. Q = ((—2,8) x (—=1,1))\((—2,0) x (—1,0)), f =0,

1/10(—x2(x2 — 1),0) for x; = —2,
boundary data g(xi,x2) = { 1/80(—(x2 — 1)(x2 + 1),0) for x; = 8,
(0,0) elsewhere.
| B 1= np 0=1
10-2 | 1 i =1
E : 0.3 E —=— TN, 6 =09
S " 1|—=nn 0 =06
g i {|—=1nn 6=03
[ SN || e o3
§ 10_3; n = +ﬁh,9=0.3
5 g === 0 =01
10—4 Lol Lol Lol Lol

103 10* 10° 100 107
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Numerical Example: dPG for Stokes — backward facing step

1 _
-2 0 2 4 6 8

Figure : Triangulation plot with 1551 elements (15511 degrees of freedom) for
adaptive mesh-refinement with 7, and = 0.3
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Example for Linear Elasticity
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Low-Order dPG for Linear Elasticity

The Navier-Lamé equations. Seek v e H(Q;R") and o € H(div,Q;S)

with
—dive =f in Q,
o=Ce(u) inQ,
u=20 on [p,
ov =20 on [y,

e(u) :=symDu:=(Du+Du'")/2,
C(A) :=2uA + A tr(A) lhxp.

C. Carstensen (Humboldt) Example for Linear Elasticity Berlin, August 29-30, 2016 35



Low-Order dPG for Linear Elasticity

Hilbert spaces.

X(T) = L2(T;S) x L2(T;R") x HY2(3T;R") x H~Y2(0T;R")
Y(T) := H(div, T;S) x HY(T;R")

X = [2(Q:S)/R x [2(Q;R") x HY* (0T R") x Hy?(0T:R")
XCHTGTX(T)7 Y = HTET Y(T)

Bilinear form. For all T € 7 let by : X(T) x Y(T) — R with

br(o,u,s, t;T,v) = f
T

— {t,v0Vv)eT — (W T, S)aT.

o:enc(v)dx + f Clo:7dx +f u - divper dx
T T

Discretization. Xj,(T) := Po(T;S)/R x Po(T;R") x P1(E(T);R") x
Po(E(T);R™), Yi(T) :=symRTo(T;R™™) /R x P;(T;R").
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Low-Order dPG for Linear Elasticity

bounds of 8 and 3, depend on Friedrichs, Korn, tr-dev-div constant,
the inf-sup constant of the mixed FEM and p, but are independent of A

canonical choice of norms (e.g., ||e]| on L2(;S)) lead to locking-free
L2-H' method

energy method with other, C-dependent norms (e.g., ||(C1/2o|| on
L?(£2;S)) suffers from locking

extension like for Stokes equations yield a higher order data
approximation error

C. Carstensen (Humboldt) Example for Linear Elasticity Berlin, August 29-30, 2016 37



error

Example: Rotated L-shaped domain with exact solution

10?
10t
10°
1071
1072

103

L UL SR LLLL UL SR B

—a— 7 unif
—&—  ||x — xp|x, unif
- @8- 71 adapt
-@- ||x — xp||x, adapt

= [2-H' method
. energy method

103

10*

10°

ndof
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error estimator

Numerical Example: Cook’'s membrane

—a— 7 unif [2-H!
{|-2- n adapt L2-H!

. —— 1) unif energy
10 d | |-+~ n adapt energy
i 1 |
: N
N
&\ﬁ
0 N .
10 - LN
Lot vt vt v \Hmp L
102 10® 10* 105 10°
ndof
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Numerical Example: Cook’'s membrane
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error estimator

Numerical Example: Locking

1

0—3 Y 1 B T B B}

102 10% 10* 10° 106
ndof
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A =142
A =16.44
A = 166.44
A = 1666.44
A = 16666.44
A = 166666.44
A = 1666666.44
— )\ = 16666666.45
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A energy method
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Application to Maxwell Equations
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Single Domain

Q < R3 open, bounded, polyhydral Lipschitz domain. Seek E : Q — R3
with

(Maxwell) curlcul E —w?E =J inQ and Exv=0 ondQ

Test functions F € H(curl, Q) lead to boundary term A = curl E x v on 0.
Suppose w? is not a Maxwell eigenvalue. The resulting well-posed problem
reads:

Given J € [2(Q;R3), seek (E, H) € X := Ho(curl, Q) x H~2(divaq, 0Q)
f curIE-curIFdx—wzf E-Fdx —{mF, HYsq :J J- Fdx
Q Q Q

for all H(curl, Q)

C. Carstensen (Humboldt) Application to Maxwell Equations Berlin, August 29-30, 2016 43



Traces

Theorem. U — R3 open, bounded Lipschitz domain

o 37, € L(H(curl, U); H"Y2(U)), v+H = H|sy x v for He C*(U;R3)

o H=Y2(divay, dU) := v-(H(curl, U)) is a Hilbert space
o Let HY2(curlay, dU) := (H=Y2(divay, 0U))*, then

37, € L(H(curl, U); H=Y2(curlyy, dU)) surjective with
7.F = v x (Floy x v) for all Fe C*(U;R3)

Integration by parts. Any F, H € H(curl, U) satisfy

<WTF77TH>5UZJ H'curIFdx—J curl H- Fdx
U U

C. Carstensen (Humboldt) Application to Maxwell Equations Berlin, August 29-30, 2016
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Traces on the Skeleton
Duality lemma.

H H||H*1/2(divau,6U) = HeHTcil?rl,U)H HH H(curl,U)

’YTH:H
IF 1l g-12(curlay,00) :FEHTCiIRLU)HqHH(curI,U)
’yVF:I:_

Let 7 be a shape-regular triangulation of € into tetrahedra

Consequence. For H = (Ht)rer € [] H(curl, T) let
TeT

’YZ—H = H vrHT
TeT

Define the Hilbert space H=Y/2(divar, T) := 47 H(curl, Q) with norm

“HHH*l/Z(divaT,aT) = HeHrPciLrl]rl,Q)||HHH(CUH’Q)

v H=H

C. Carstensen (Humboldt) Application to Maxwell Equations Berlin, August 29-30, 2016 45



dPG for Maxwell and Triangulation 7
X(T) = H(curl, T) x H=Y2(diva7,0T) and Y(T) = H(curl, T)
X := Ho(curl, Q) x H=Y2(divor, 0T) < [[7e7 X(T) and

Y :=[I7e7 Y(T) lead in (Maxwell) for all T € T to
bt : X(T) x Y(T) — R with

br(Er, Fir; Fr) :J

curl Ex-curl Fr dx-wQJ Er-Frdx—{(mFr, Hr)a1
T T

The duality and splitting lemma [CDG16] show for global bilinear form b

0<pB= inf sup b(x,y)
xeX yey
=Ly y =1

C. Carstensen (Humboldt) Application to Maxwell Equations Berlin, August 29-30, 2016 46



Discretization

Nédélec element. Ny (T) := Py_1(T;R3) @ Si(T;R3) with

Sk(T;R3) := {p e Pr(T;R®) |p homogenous polynomial of degree k and
p(x)-x=0in T}

Discretization with Nédélec elements.

Xh(T) = Nk(T)X’}/TNk(T) and Yh(T) = Ng(T) for k,g eN

Annulation operator Pt : Y(T) — Yu(T) in [CDG16] requires £ = k + 3

Numerical experiments with k = 1 seems to work with £ = 1 as well

C. Carstensen (Humboldt) Application to Maxwell Equations Berlin, August 29-30, 2016 47



Numerical Example. Primal dPG for Maxwell
Xh(T) = Nl(T)X’yTNl(T) and Yh(T) = Ng(T)

Experiment. Q= (0,1)3, w?=1, E = (sinmxsinmy sin7z,0,0)
k =1, uniform refinement

——[|E — EN*|| y(cun, )5

1 11 1 1 1) O e AR

—o— ||E — EC|| ycun,), £ = 1

100 | 4 [ In*Clly, e=1
B 1] HE - EdPGIIH(curI,Q)ve =2

i L el e =2
10—1 |- HE - EdPGIIH(curI,Q)ve =3

== |In%PCly,e=3

S O A 1 B W11

100 102 10% 10* 10° 10°
ndof
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Numerical Example. Primal dPG for Maxwell
Xh(T) = Nl(T)X’yTNl(T) and Yh(T) = Ng(T)
Experiment. Q = (—1,1)3\[0,1]® (Fichera's corner domain), w? = 3.1

E = (eiwz’ eio.)x7 eiwy)

Remark. w? is close to a Maxwell eigenvalue

101 SUuy) T TTTTT T TTTTT T TTTTTT TS
u | +||E_ ENed”H(curI,Q)
: 1o IIE = E%l y(cun,), £ = 1
- 1= lIn*Clly,t=1
0 —o— ||E — E®C||ycun,), £ = 2
107 1| ISy, e =2
E E - |[E— EdPG”H(curI,Q):Z =3
0 1= %Py, =3
10_1\\um ool il il 1l

102 103 104 10° 10°
ndof

C. Carstensen (Humboldt) Application to Maxwell Equations Berlin, August 29-30, 2016 49



Numerical Example. Primal dPG for Maxwell
Xh(T) = Nl(T)X’yTNl(T) and Yh(T) = Ng(T)
Experiment. Q = (—1,1)3\[0,1] (Fichera's corner domain), w? = 3.2

E = (eiwz’ eio.)x7 eiwy)

Remark. w? is close to a Maxwell eigenvalue

101 T T T T T T T T TTTT T T Ned
- 1 [ I1E = E™* eunt,)
i | IIE_EdPG”H(curI,Q)vﬁzl
i 1| Im*Clly.e=1
0 1| IIE = E®C|lh(cun,n), £ = 2
100 | | ||77dPGHY7£:2
g |-~ ”E_EdPG”H(curI,QbZ=3
i 117 *" [n9FCly, € =3
Ll Lol Lol Lol Lol

102 103 10* 10° 109
ndof
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Numerical Example. Singular Solution
Xh(T) = Nl(T)X’}/-,-Nl(T) and Yh(T) = Nl(T)
Experiment. Q = (—1,1)3\[0,1]® (Fichera's corner domain), w? =1

E = Vp(x,y,z) with p(x,y,z) = (x> + y? + 22 + 1076)1/4
Remark. Singularity in (x,y,z) =0

\\\\H‘ \\\\\\H‘ \\\\\\H‘ \\\\\H‘ \\\\\H‘
—o— ||E — ENlpycun,0), 0 = 1
100 b E dPG
B 1= IIE = E® | n(cun,0), 0 = -3
i 1 lmgPClly, 0= 3
107t | E
:HH\ Lol Lol Ll ]

102 103 10* 10° 109
ndof
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Numerical Example. [CDG16]

Experiment. J = 0 and w? = 25 with boundary condition
vx E=vxEP, where EP(x,y, z) = (sin my,0,0)

it &

Figure : Iteration 1, 5, and 9

C. Carstensen (Humboldt) Application to Maxwell Equations



Numerical Example. [CDG16]

Remark. Since w is large, the initial grid is too coarse for standard
discretizations, but adaptive dPG seems to work

Residual norm n

C. Carstensen (Humboldt)

—
o

&=

o

10°

10* 10°
Degrees of freedom

Application to Maxwell Equations
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Flexible Modelling

There exist equivalent [CDG16] formulations of (Maxwell), e.g. the
first-order system

iwE 4+ curlH = J and — jwH +curlE=0

It leads to the dPG method for the ultra-weak formulation
e X(T)=L2(T;C3 x L2(T;C3) x v.H(curl, T; C3) x ~v,H(curl, T;C3)
o X = [2(Q;C3) x L2(;C3) x v Hy(curl, Q; C3) x ~7 H(curl, Q; C3)
o Y(T)=H(curl, T;C3) x H(curl, T;C3), Y =[] Y(T)

° bT(E,H,E,Fl;F,G)zin E-Fdx+f H-curl Fdx — (F, A)sr
T T

—in H~de+J E-curl Gdx —{(G,E)st
T T
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Numerical Example. Ultra-weak dPG for Maxwell
Xp(T) = Po(T;C3) x Py(T;C3) x 4Ny (T;C) x 7Ny (T;C) and
Yo(T) = No(T;C3) x Ny(T;C3)

Experiment. Q= (0,1)3, w?=1, E = (sinmxsin7y sin7z,0,0)
k =1, uniform refinement

- 1| —*—IIE = Enlli2() £ =1
- 1| IH = Hill 2, £ =1
100 | 4 [~ In%Clly, =1
B 1| —*— IIE = Enll 20y, £ =2
i | | == lIH = Hll2), £ =2
10-1 —o— [In®Cly, £ =2

—o— ||E = Enllzq): £ =3
| Lol Ll Lol Lol L1l +HH—Hh”L2(Q),z:3

102 10® 10* 10°  10° o [P |ly, £ =3
ndof
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Adaptive Least-Squares FEM
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Adaptive LSFEM 4 Stokes — Backward Facing Step
Q= ((~2,8) x (=1, 1)\((=2,0) x (~1,0)), f =0,

1/10(—x2(x2 — 1),0) for x; = —2,
boundary data g(xi,x2) = { 1/80(—(x2 — 1)(x2 + 1),0) for x; = 8,
(0,0) elsewhere.

LS(fio,u) = |f +divo|z )l devo — D ul| 2

0, -

1k ‘ ‘ a
-2 0 2 4 6 8

Figure : Triangulation plot with with 1473 triangles (5895 degrees of freedom )

for adaptive mesh-refinement with 7, and 8 = 0.5
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Adaptive LSFEM — Adaptive Algorithm with Separate

Marking

Input: 7o, k&,
0, p, minNdof

{ =0

L =/1¢+1 —» Solve ~ oy, up,ndof
A
Estimate ~ 77 (T)
Case A
v
Mark y

(Dérfler criterion, 6)

Refine ~~ Ty,
(NVB)

If = f]? < rn?

Case B

Approx ~~ Tpy1
(TSA-+compl., p)

C. Carstensen (Humboldt)

Adaptive Least-Squares FEM

Berlin, August 29-30, 2016
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Adaptive LSFEM — Quasi-Optimal Convergence

Non-linear approximation class A (u, f) € A x L2(;R?) with

|(u, f)|f4s = sup N2SE(u7 f,N) <o

NeN
Best possible error
E(u,f,N)
~  min min LS(fims, ws) + osc2 (g, £(09)))
‘le‘—%ﬂgN (1L, s )EX(T) < A(T)

Optimal convergence rate 40 < kg < 00 30 < 0y < 1 V0 < k < Ko
VO<0<6GV0<p<l1lV0<s <o,

sup (|7i] - 1701) > (LS(F; 02, ug) + 0sc(g', £(09))) < Copel(u, F)[4,
(S

Copt depends solely on 7o, s, 5,0, p

C. Carstensen (Humboldt) Adaptive Least-Squares FEM Berlin, August 29-30, 2016
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Adaptive LSFEM — Quasi-Optimal Convergence — Proof

discrete
Helmholtz
decomposition

quasi-
interpolation

discrete
reliability (A3)
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Adaptive LSFEM — Quasi-Optimal Convergence — Proof

discrete
Helmholtz
decomposition

interpolation

discrete
reliability (A3)

C. Carstensen (Humboldt)

convergence
of uniform
refinement

reliability
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Adaptive LSFEM — Quasi-Optimal Convergence — Proof

discrete
Helmholtz
decomposition

convergence
of uniform

quasi- refinement

interpolation

discrete

reliability (A3) reliability

contraction

C. Carstensen (Humboldt) Adaptive Least-Squares FEM

separate
marking

orthogonality of

boundary data
approximation

stability (A1)

reduction (A2)
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Adaptive LSFEM — Quasi-Optimal Convergence — Proof

discrete convergence separate
Helmholtz of uniform marking
decomposition refinement

quasi-
interpolation

orthogonality of
boundary data

approximation
discrete

reliability (A3) reliability

stability (A1)

reduction (A2)
optimality of

data approxim- control of
ation algorithm [quasi—optimality overlay/closure
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Conclusions

e Comprehensive abstract theory for dPG as a mixed method and/or as
a minimum residual method

@ More stable and smaller pre-asymptotic range than other/standard
methods (e.g. Nédélec-FEM for Maxwell)

@ Test search space can be small without loosing stability in the
examples presented
@ Work in progress on

» Guaranteed upper error bounds

» Adaptive mesh design

» Time-evolving dPG

» dPG for non-linear problems (e.g. eigenvalue computation)
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