Traces and Duality Lemma

Recall the duality lemma with HY2(9Q) := ~o(H'(Q)) defined as the trace
space of H'(2) endowed with minimal extension norm; i.e., for w € H'?(9Q) C

L2(09),

[w|| 17290y = min{||@]] g1 (oy@ € H'(), 3@ = w},

H™12(09Q) := dual to HY2(0Q) =: H/*(0Q)*

= v, (H (div, 2)).

Any ¢ € H(div,Q) (ie. ¢ € L*Q,R?), divg € L*Q)) defines v,q €
H=Y2(09) by

(1) (w) =t {q - v, W) = / (¢ Vi + 1 div g)da

for w € HY?(0Q) and @ € H'(Q) with @ = w.
(Side note:

(q-v,w)aa < gl || @] +|| div ql|||@]]
< |l #r(aiv, ) 10| 72 )

implies |79l g-1/290) < llql z(div.0)-)

Duality Lemma. (a) There ezists exactly one
1 € L(H(div, Q); B /2(09))
such that for all ¢ € H(; R")

Yq = (70q) - v a.e. on ON.

(b) Let («, «)oq denote the duality brackets of H™/2(0Q) x H'?>(9Q). All
q € H(div,Q) and v € H(Q) satisfy the formula

(72 Y0v) o0 = / (v divg+q - VU) dx.
Q



(c) The operator ~y, is surjective and
ker Yo = Ho(diV, Q) - W” ¢ ||H(div).

(d) (Duality lemma) For all t € H™Y/2(09Q) with t(w) =: (t,w)sq for w €
HY2(09), it holds

[t zr-17200) = sup  (t,w)an
weH1/2(8Q),
HwI|H1/2:1
t
= sup inf <770U>5Q
vern @), veHY(Q) [[v = ¢l i (q)
Yov#0

= _nf llallmavo)-

Yvq=t

Proof. Proof of (a). Let ¢ € H(div,Q). For all v € H2(0Q) v € HY(Q)
denotes the unique weak solution of
—Av+ 0 =01in €,
YU = v on Of).

Then [[v]| g1290) = [|9]lg1 (). Define

X,(v) = /(@ divg+¢q-Vo)de
Q0
The repeated application of the Cauchy Schwarz inequality shows

Xo() < |Oll2 |l div gl z2) + gl 2@ | VOl 220
< llallz@vnllollz @) = gl m@llvllz-1260)

Hence X, : H/2(02) — R is linear and bounded. Thus for any ¢ € H(div, )
there exists g(q) € H™/2(0Q) with X, = g(q). Define v, : ¢ — g(q). This op-
erator is linear. The last inequality shows that the operator is also bounded,
more precisely

Vol £ (i) 172000 < 1

Moreover, for all functions v € HY?(9Q) and ¢ € H'(2,R"), an integration
by parts leads to

(709) - v, v)a0 = (1) - v, Yo0)an = /Q(@ divg+¢q- Vv)dz,



Thus ((70q) - v, v)aa = (7,q,v)oq. Hence, for all v € HY?(9€) it holds

((709) - v = 1w, v)an =0,
ie., (70q) v = g € HV/2(09Q). This implies (a). Moreover, («, «)oq extends
the scalar product (., «)aq in L*(99) for smooth functions. O

Proof of (b). For all v € H'(Q) and q € H(div, ) it holds

(Y, Yov)on = /

Q(q-V@+@divq)dx,

where © € H'(Q) is such that A9 + o = 0 and v = Y0 in the weak sense.
Since ker g = H}(Q2) and v — 9 € Hy (), this equals

/ Yq - Yovds = / <q - Vv + vdivq)dx
o0 Q

and implies (b). O
Proof of (c). For all ¢ € D(2;R"™), v,q = (70q) - v = 0 a.e. by (a). Hence,

Hy(div, Q) = D(Q;R”)” e C ker,.

The proof of ker~, C Hy(div,(?) is more technical and can be found in the
literature, i.e., in [Girault, V. and Raviart, P. A., Finite Element Methods
for Navier-Stokes Equations, Springer-Verlag, Berlin, Heidelberg, New York
(1986)]. It remains to show the surjectivity of ~,. Given any t € H~1/2(99),
the functional

T:HY Q) — R, v (t,yv)aq

is linear and bounded, written T € H'(Q)*. The Riesz representation z €
H'(Q) of T in the Hilbert space H'(Q2) satisfies (z, +) g1y = T(+). For
¢ € D(Q), it follows for vy = 0 that

(z,0) ) = T(p) = (t,70p) = 0.

This proves —Az + z = 0 in the weak sense. In particular, ¢ := Vz €
L*(©;R™) and div Vz = Az leads to divg = z € L*(Q). Hence, ¢ € H(div, Q)
and
lgll vy = (Idivall® + gl = (l=]7 + [ V2]*)"?
= 2l = Tl @)



For any v € HY(Q), it follows

(Mq, Yov)an = / (q - Vv +vdiv q)dx = / (Vz - Vv + vz)daz
Q Q
= <ZaU>H1(Q) =T(v) = (t,%v)a0-

This implies (v,q — t,vv) = 0 for all v € HY(Q), which is v,g —t = 0 in
H~'2(99Q). Consequently, t = v,q € R(7,). []

Proof of (d). For any t € H~'/?(0Q) let z and ¢ be as above in the proof of
(c). Then

[t gr-12000) = sup (¢, 700)

beHL(Q)
HWOﬁHHl/Q(aﬂ):l
with (2,700) = (7. Vz,7%70) = (2,0) g1 @) < [|2llm1@)10]|51@)- Since [[0][71q) =
1, this implies ||t||g-1290) < [|2[lm)- Conversely, (t,702) = (2,2)m ()

Il

Q)-
Q)-

2020y Proves [l g-vaomy > 12lm
This concludes the proof and characterizes H~'/2(9€) completely. ]
Primal PMP with test functions in H'(Q) without (BC) leads to

b(u,t;v) = a(u,v) — (t,v)90 = F(v) for all v € H'(Q). (P)
Theorem. u solves (PMP) <= (u,v,Vu) solves (P).
Proof. ”=" v € H}(Q) implies (t,v)sn = 0. Hence u solves (PMP). O
7<" Let u € Hj(Q2) solve (PMP), then p := Vu € H(div,Q) leads to ¢ :=
v,p € H72(0Q) so that, for all v € H'(Q), it follows it follows

(t,v)ao = (P v,70(v))o0

—A(%-Vervd\ix;}Q)dx—a(u,v)F(v). O

Define Hy(div, Q) := {q € H(div, 2)|y,q = 0}.



Interface trace spaces

For a shape-regular triangulation 7 of 2 C R" into simplices define

HY2(0T) = {(tx)ker € || H V*(0K)|3q € H(div,QVK € T,
KeT

wlalk) =tx € H'?(0K)}

endowed with the norm

|(tx) ke la-1200m) = mind |||l maiv.0) VK € T, (qlx) = i }

and
HY(T) :={v e L*Q)VK € T,v|x € H'(K)}
=[] H'(K)
KeT
with
|(vi) keT || mr o) = Z ||U\KH12T{1(K)-

KeT

Given t = (tx)xer € H™VY?(OT) and v € H(T) define
(tvor == (tx,v|K)ox

KeT

There exists ¢ € H(div,2) such that
tk =(qlx) € HY*OK) foral KeT
and
(t,v)or = Z / (¢-Vv+wvdivg)der = /(q -Vnev + v - div q)dtx
KeT 'K 0
< llalmawanllollmr = Itlla-veor 1ol i)
Define
{b: (HY(Q) x HY2(0T)) x H(T) — R
b(u,t;v) == ((u,t),v) = ayc(u,v) — (t,v)or



Theorem. u solves (PMP) and t = (tx)ker = (%(Vulg))ker if and only
if (u,t) € HY(Q) x H2(OT) solves

b(u,t;v) = F(v)
for all v e HY(T).

Proof. The Proof is left as an exercise. ]

Remark. (t,v)or = 0 for v € H} ().

inf-sup Condition

This section is devoted to some immediate estimation for 5 > 0. Recall
X = Xy x Xy := H}Q) x HV2(0T), Y := H*(T) and the bounded bilinear
form b: X xY — R with

b(u,t;v) = b((u,t),v) = anc(u,v) — (t,v)or V(u,t) € X,v €Y.

For any (u,t) € S(X) and v € S(Y) the Cauchy-Schwarz inequality leads
to

b(u, t;v) < Juwll o llxe + 1l a-r2@m 1ol m e

2 2
< A P,y 10 e o o,

With || v [lxe < |||z ¢7) the choice of (u,t) and v finally shows, that b(u,t;v)
< /2. Given (u,t) € S(X) set M := ||b(u,t; +)
v := u/||u| g7y to obtain

(touhor = 3t u)or = /

KeT Q

| (7)< For w # 0 choose

(q-Vu+udivq>d:zs :/ uq-vds = 0.
o9

Hence,

2
axclw ) Jult
Fellzneny fa? + g g?

The Friedrichs inequality implies [|u|| < Cr(Q) || v || with Cp < width(Q) /7.
This leads to

b(u,t;v) =

b(u,t;v) < Il <M.

V1+C0%4(Q) ~




Hence

Jull < M1+ CE(Q). (1)

Given t let ¢ € H(div,Q) have minimal extension norm in H (div,(2) with
q-v=ton JK for all K € T. The duality lemma leads to some v € H(T)
with [[v]|gi ) = 1 and |[t|| g-12007) = (t,v)or (i.e. v is the normed Riesz
representation of (¢, «)o7 in H*(7)). This implies

=l vl +lEl -2 = axc(u, v) + [t g-12 = blu, t;v) < M,
whence
[l 1207y — ]|l < M. (2)

The inequalities (1) and (2) show that

L= [l wll* +1tF-2or) < ML+ /14 CHQ))? + M(1+ CH(Q)).

This leads to

1 2 = ||b(u, t; «
(T oy 11 o = = Ibet)

Since this holds for all (u,t) € S(X), it implies

‘2
HY(T)*

1
8= inf sup  b(u,t;v).

0< <
V34 2Cr(Q)2 +2/T+ CE(Q) veS(X) ves(m (7))

Splitting Lemmas

Splitting Lemma 1. Given real Hilbert spaces X1, Xo, X := X1 x X5, {0} #
Y1 CY and bounded bilinear forms b; : X; =Y forj=1,2,letb: X XY —
R; ('rly Ty y) = bl(xla y) + b?(x27 y) Suppose

A1)0 < By := inf sup bi(x1, 1),
( ) 51 a:1€S(X1)y1€ngl) 1( 1 yl)

(Ag) 0< 62 = inf sup b2(x27y)7
2265(X2) yes(y)

(A3) ba|x,xv, = 0.



Then b satisfies an inf-sup condition with 8 > 0 and

B152
< < )
BV DT

Example (Application to primal dPG for PMP). Let X; := H}(Q), X5 :=
H=Y2(0T) and Y := H}(Q) C HY(T) = Y.

Ad (A1). Show that

1
B = inf sup a(u,v) = _
ueHy(Q),u =1 veHH(Q) [l v ||? +|v]|2=1 v 1+ C%(Q)
Proof of “<” is as above. For “>" utilize the first Dirichlet eigenpair
(A1, 1) with [|@1]| = 1 and || ®; || = A2 so that Cp(Q) = A;*/* and
| @1/l zr () = V1 + A1 Consequently

P
B < sup a I’U)-
ve @) ol =1 I Pl

Since the eigenvectors (®;) ey form an L*-orthonormal and a-orthogonal
basis of Hg(2) the supremum is attained by v := ®1/||®||z1()o. This leads
to

B < K2 O 2 2 e S 1 _
e @y (Pl VIHA S VI+HATT 1+ CHQ)

Ad (A2). By duality lemma it holds

= inf su —(t,v)o1 = inf t| - — 1.
& teS(H‘l/Q(aT))veS(HE)(T)) - vor teS(H—l/Q(aT))H 2720

Ad (A3). The Cauchy-Schwarz inequality implies

[b1]l = sup sup  anc(u,v) < sup sup  [luflflofl <1
ueS(HE(Q)) veS(HY(T)) ueS(HL(Q)) veS(HY(T))

The proof of ||by]| > 1 is left as an exercise. This leads to the inf-sup estimate
1 1

_ <8
VIHCHQ) + (VITCHQ) +1)2 /34 204(Q) +2y/T+ CE(Q)




Proof of the first splitting lemma. Given (x1,x2) € S(X1xXs)let s := ||21]|x,
and ||z2||x, = V1 —s? for 0 < s < 1. Then (Al) and (A3) imply

Bis < ||bi(z1, +)

Moreover, (A2), the definition of b and triangle inequality show that

Bov' 1 — 5% < |lba(o, *)

Consequently

Yy = Hb(ﬂ]l,xz; °>| Yy = M

v, < Io(z1; 225 ) ly. + [|oa(21, +)

v, <M A+ [|ba]s.

f(s) == max{pis, B2V/1 — s> — [|by|s} < M.

It remains to compute min f := ming<s<1 f(s) < M. Since (x1,z2) € S(X) is
arbitrary, this lead to 8y < . The monotony of f1s and [yv/1 — s? — ||by||s
shows that the minimizer s exists in (0, 1) with

o]l + Br)s = Bav'1 — 2.

Set k= Bo/(B1 + ||b1]]), so s* = K*(1 — s?), whence s = k/v/1+ k. Con-

sequently,

fo = V1 + K2

concludes the proof. ]

Splitting Lemma I1. In addition to the notation of the first splitting lemma
with (A1)-(A2), suppose

Yii={yeY]|b(+,y) =0 in X5}
(then (A8) follows and characterizes mazximal Yy in (A3)) and
Ny :={y1 € Yi|bi(+,y1) =0 in X;} = {0}.
Then
N:={yeY|b(e,y)=0in X} =0

and

V2515 <8

B = <
\/ﬁf + 83+ [1ball + V(87 + B3 + [[b1]1?)? — 45753




Example (Application to primal dPG for PMP). Given v € Y7, then for any
q € H(div, ) follows

0= /(vdivq-l— q - Vnev) dz.
Q
Hence, any o = 1,2 and ¢ € H(Q) satisfy
0= /(U&p/(?oz + peq - Vnev) do.
Q

Hence, Vxcv is the weak gradient of v € L%*(Q), i.e. v € HY(Q). Con-
sequently,

/ vg-vds=0 forall g€ H(div, Q).
o0

This implies v = 0 on 99, whence v € H}(2). Consequently,
Vi ={ve H(T|\Vt € HY2OT), (t,v)9r = 0} = HL(Q).
Moreover,
Ny = {w € HY(9)] axc(~,w) = 0 in HYQ)} = {0},
Recall 1 = B, = ||by|| and 1/4/1 + CA(Q) and compute
V2
V2014 C2(Q) + 1+ /B 2CEQ) — 4(1 + CR(Q)
N V2
\[34203(Q) + /54 ACE©Q) + SCHQ)

fo < B =

Proof of the second splitting lemma. Since Y7 is a closed subspace of the Hil-
bert space Y, there is an orthogonal decomposition Y = Y1 @Y, with Yi+ = Y.
Then

0< inf sup bo(we,y) = inf sup  bo(xa, ys) = [Bo.
12€5(X2) yes(Y) ( ) 22€5(X2) 4, e5(Y3) ( )

Any yy € Yy with bo(+,72) = 0 in X5 belongs to Y;, whence o € Y1 NY; =
{0}. Consequently, bs|x,xy, satisfies inf-sup condition with 3, and is non-
degenerate. General theory of bilinear forms shows

By = inf sup  bo(xo,y2) > 0.
2 1eS0%) myesn) 2(@2 1)

10



Given any (z1,29) € S(X; X X3) there exists a unique solution y» € Y5 to
ba(+,y2) = (T2, *)x,. From Riesz isomorphism follows |[b(+,v2)||x; = |72l x,.
Then for any y, € Y5

Bolly2lly < [1b2(e, v2) ||l x5 = |22l x, -

Since f1 > 0 and Ny = {0}, b1|x, xy; satisfies inf-sup conditions and is non-
degenerate, whence there exists a unique solution y; € Y; to

bi(+,y1) = (+,z1)x, —bi(+,72) in Xj.
Consequently,

BilVilly < |[b1(e,91)]

xi < oz, + [1ou lyally-

Altogether

b(z,y1 +y2) = bi(x1, 11 + y2) + b2, y1 + y2)
= |1 |k, + bo(@2,92) = [la1]%, + ll22ll3, = 1.

On the other hand,

lys + w2l = llyalls + llwelly
1
< ﬁ(\lxl\lxl +[blll2alx,/B2)* + [k, /B
1

_ Br? 161181285 ) (I\xll\m)
- (H5171HX17 HJ/’QHXQ) (||b1H511_262_1 52—2(1 4+ ‘1‘[91“22/6%) Hx2HX2

is bounded from above by the maximal eigenvalue A of the 2 x 2 matrix

oL b/
O el gy 2l )

This implies

A,1/2 < b<xay1 +y2>
=y +w2lly

< Hb(l’, ')

|Y*.

Since z € S(X) is arbitrary, this proves 8 > A~'/2. The formula follows from
explicit calculations of the above 2 x 2 matrix. ]

11



Discretization

Define for k € Ny

SETNT) € Xy = HY(Q)

Pi(&) € Xy = H V20T

Xh = (])H_l X Pk(g)

Y, = Pea(T) CY = HY(T).

Suggest d = dimension of domain and all k¥ € Ny. This lecture studies d = 1
for n = 2 space dimensions and k = 0.

Remark ( on Py(§) C H™Y?*(OT)). Given any ty € Py(&). Let mpr €
RTy(T) C H(div, Q) satisfy

VE €& :ty=7pr-vgon E.

Then

(to, v c’)T—Z/ (Trr|Kx - V)V ds

KeT
for all v € HY(T).

Discrete duality lemma. For any ty € Py(E) there exists exactly one prr €
RTy(7) C H(div, Q) such that for all K € T and E € E(K)

(ve - vi|Eg)to = (prT - VK)|E-

Then

h2
[toll 1207y < IRl (@IV.0Q) < A/ 1+ —IltoHH 1207

Proof. Recall that ||to|| g-1/2(97) is the minimum of all ||q|| g (aiv,0) for any ¢ €
H(div, 2) with

(ve - vilp)to=(q-vk)|p foral K € T, E € E(K). (3)

This proves the first inequality. Given any ¢ € H(div, ), (prr — ¢q) - vg = 0
on 0K defined by the integration-by-parts formula. In particular

0= / (prr — q) - vk ds = / div(prr — ¢) dz for all K € T.
oK K

12



Consequently,
div prr = llpdivg a.e. in €.

An integration by parts shows for any v € H'(T) that

|/Q(pRT —q) - Vnev dx| = | /Q(v — Tgv) div(q — prr) dz|
< P/ T | 0 llne (11 = THo) div g| 22
Set v(x) := (Hopgrr) - (r — mid(K)) + 1/4(div prr)|z — mid(K)|? with
Vxev = Hoprr + 1/2(div prr) + 1/2div prr(e — mid(7)) = prr

in the previous estimate to deduce

IpRel|72(0) = / q - prr dz + /(pRT —q) - Vnev do
0 Q

hmax .
< gl 2@ llprr ] £2(02) + - PR 2200 [I(1 = o) div || z2(00),  (4)

whence

hmaX .
lprrllza) < llallza@) + == (1 = o) div gl (@)
This and (4) imply with A = Ay /7
el Fraiv.) < (lallzz@) + A1 = THo) div gl 2())* + [Ty div gl 20

(1+ )‘Q)HQHLQ(Q) (1+1/A)N[|(1 = o) div q| 72 (g

<
< (14+ M) (Il 72 + (1 = o) div g 72(q) + [Ty div gl]).

In other words, ||prr||smdiv.0)/v/1+ ha/72 is a lower bound of ||q||mdiv.0)
for all ¢ with (3). By definition of |[ty]| ;1297 as the minimum, this shows

HpRTHH div,Q)
\/1 + hIQIlaX/ 2 B

Annulation property for P := I\ : HY(T) — H'(T) projection onto P;(T)
defined by

< [[tollzz-1207)- [

O Z ][ v|g) dsVg|x € Pi(K) foranyve HY(T), K € T.
Eeé(K

13



Given any v € H(T),

2
1= Pyolly = y/llo = Hgoll? + v — 1501 < /1 2R D0l

Consequently, the Kato lemma implies

[Pl = 1T = Pl < /1 + K2h5

Mean value property of the gradients Iy VxcIi&v for all v € HY(T) leads to
the annulation property

3 / to(vlxc — 10| ) ds = (tg, v — Po)or-
KeT oK

Hence, for all x), = (u.,t9) € X}, and v € HY(T), it follows
b(xp, v — Pv) = anc(ue, v — Pv) — (tg,v — Pv)sr = 0.

The abstract theory asserts discrete inf-sup condition with 5 < || P|| 5, < [|b]|.
This shows

V1+rK2h2 &

The a posteriori analysis involves ||F o (1 — P)]
computable but not of higher order.

v+ S HHhTfHLQ(T), Wthh iS
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